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Abstract. This paper deals with the numerical modeling of immiscible
three-phase flows. The main focus here is on the numerical treatment
of the source terms of the model. A new scheme based on a more cou-
pled approach than the preexisting fractional step strategy is presented.
Properties of this scheme are given. Numerical applications highlight the
benefits of this scheme in terms of both accuracy and stability.
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1 Introduction

Some recent computations of immiscible three-phase flow models have high-
lighted some weaknesses of existing numerical schemes, for instance when repre-
senting vapor explosion [1], and thus have urged the building of robust implicit
schemes. This has also motivated to investigate the behavior of solutions of
rather complex sets of PDEs, such as those arising in [7], which are used in
[1]. Moreover, it is widely admitted by the scientific community that the hyper-
bolic models at stake here contain inner relaxation processes that guarantee the
return-to-equilibrium. The purpose of the current work precisely consists in bet-
ter understanding the associated (at least expected) relaxation process first, and
then taking advantage of the latter in order to stabilize approximate solutions
obtained with help of rather classical Finite Volume procedures. In the sequel,
we will focus on the model [7], and propose a two-step numerical strategy. This
strategy accounts for the expected inner relaxation process in an suitable im-
plicit way, and also uses an explicit Riemann-type solver in order to cope with
convective effects.

First, the model presented in [7] is recalled as well as its main properties. We em-
phasize that the strategy that has been used to derive model [7] is similar to the
one that has been used in [2], in the two-phase flow framework. This guarantees a
meaningful definition of non-conservative products for these models. Then, the
new numerical strategy to compute approximate solutions of [7] is presented.
Eventually, numerical cases depict the effectiveness of the new method. This
paper is the sequel of a work that is dedicated to two-phase flow models [6].
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2 The immiscible three-phase flow model [7]

The system of PDEs governing the time-space evolution of the variables is:

∂αk

∂t
+ VI(W ) · ∇αk = Sα

k (W ) ,

∂mk

∂t
+∇ · (mkUk) = Sm

k (W ) ,

∂mkUk

∂t
+∇ · (mkUk ⊗ Uk + αkPkI) +

3∑
l=1,l ̸=k

Πkl(W )∇αl = SU
k (W ) ,

∂αkEk

∂t
+∇ · (αkEkUk + αkPkUk)−

3∑
l=1,l ̸=k

Πkl(W )
∂αl

∂t
= SE

k (W ) ,

(1)

where ∀k ∈ J1, 3K , αk ∈]0, 1[ denote the statistical fractions which satisfy :

α1 + α2 + α3 = 1 . (2)

ρk stand for the densities, mk = αkρk are the partial densities, Uk the velocities,
Pk the pressures and Ek the total energies which read Ek = ρk(ϵk +U2

k/2). The
specific internal energies ϵk are obtained through an Equation Of State (EOS):
ϵk = ϵk(ρk, Pk), and I stands for the identity. The velocity VI(W ) is chosen as :

VI = U1 , (3)

see [7], which leads to the following unique interfacial pressure definition, owing
to the entropy inequality (see Appendix G of [7]):{

Π12 = Π21 = Π23 = P2 ,
Π13 = Π31 = Π32 = P3.

(4)

The state variable W ∈ R11 is defined as:

W = (α2, α3,m1,m1U1, α1E1,m2,m2U2, α2E2,m3,m3U3, α3E3)
⊺ . (5)

In this work, the phase transitions are neglected, hence:

∀k ∈ J1, 3K, l ̸= k Sm
k (W ) = 0 . (6)

In order to close the source terms, the total entropy η(W ) paired with its entropy-
flux Fη(W ), the temperature Tk and the celerity ck are introduced:{

η = m1s1(P1, ρ1) +m2s2(P2, ρ2) +m3s3(P3, ρ3) ,
Fη = m1U1s1(P1, ρ1) +m2U2s2(P2, ρ2) +m3U3s3(P3, ρ3) .

(7)

1

Tk
=

∂Pk
(sk(Pk, ρk))|ρk

∂Pk
(ϵk(Pk, ρk))|ρk

and c2k ∂Pk
(sk(Pk, ρk))|ρk

+ ∂ρk
(sk(Pk, ρk))|Pk

= 0.

Functions sk denote specific entropies. Source terms are written, ∀k ∈ J1, 3K, as:

Sα
k =

3∑
l=1,l ̸=k

Kkl(W )(Pk − Pl) ; SU
k =

3∑
l=1,l ̸=k

dkl(W )(Ul − Uk) ;

SE
k =

3∑
l=1,l ̸=k

qkl(W )(Tl − Tk) +

3∑
l=1,l ̸=k

dklVkl(Ul − Uk) ,

(8)
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(see [7, 1]), with the positive parameters dkl(W ) = mkml/(MτUkl(W )),Kkl(W ) =
αkαl/(Π0τ

P
kl(W )) and qkl(W ) = mkmlCvkCvl/(τ

T
kl(W )(mCv)kl). Quantities CVk

denote the specific heat capacities. Vkl are phasic mean velocities: Vkl = (Uk +
Ul)/2. Π0 is a positive pressure of reference, M = m1+m2+m3 and (mCv)kl =
mkCvk +mlCvl . For each phasic connection k − l, τPkl(W ), τTkl(W ) and τUkl(W )
are the positive relaxation time scales related to the return to equilibrium of the
associated thermodynamic quantity. Closure laws for the relaxation time scales
can be found in the literature, see [4] for the pressure or [9] for the velocity and
temperature. Model (1) with closures (3), (4), (6) and (8) is such that:

Property 1: (three-phase flow model in a 1D framework)

If ∀k ∈ J1, 3K, αk stay in ]0, 1[ and ∥Uk − U1∥ ≠ ck, then:

– The convective part of the model is hyperbolic and the associated eigenval-
ues are:

λ1,2,3(W ) = U1 ; λ4(W ) = U2 ; λ5(W ) = U3 ;
λ6,7(W ) = U1 ± c1 ; λ8,9(W ) = U2 ± c2 ; λ10,11(W ) = U3 ± c3 .

(9)

– Fields associated with λk (k = 6− 11) are GNL. Other fields are LD.
– Smooth solutions of the model comply with an entropy inequality:

∂t (η(W )) +∇ · Fη(W ) ≤ 0 . (10)

– The model is symmetrizable.

Proof. The first three items can be found in [7] and the latter is detailed in [8].

3 Numerical scheme

The overall scheme is quite similar to the one detailed in [1]. It is a Finite Volume
scheme for unstructured meshes. It consists of two main steps:

- I: First, compute explicitly a solution between tn
∆t−−→ t∗ of the convective

subsystem:

A(W )∂t (W ) +∇ · F (W ) + C(W )∇ ·W = 0 , (11)

using a Rusanov scheme [10] adapted for non-conservative products. Equa-
tion (11) exactly corresponds to system (1), while setting all source terms
to zero.

- II: Then, compute an approximate solution of the ODE:

A(W )∂t (W ) = S(W ) , (12)

between t∗
∆t−−→ tn+1. Equation (12) corresponds to system (1), when all spa-

tial derivatives are set to zero. This step is solved with an implicit scheme.
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The discretization of the time derivative is done with a first-order Euler scheme.
The time step ∆t is determined by the Courant-Friedrich-Levy (CFL) condition
of the first step. Details of the convective step are given in [1]. An extension of the
scheme proposed in [11] for a barotropic three-phase flow model to the current
three-phase flow model (which includes energy equations) would be useful. This
would give higher accuracy than the scheme used in the present work. This
strategy has already been used in the case of a two-phase flow model in [3].

We focus in the sequel on the numerical treatment of the source terms for this
model. A fractional step algorithm, which fully decouples each relaxation effect,
is employed in [1]. However, in some cases, this method is not robust enough to
compute a solution (see Part 4.4 of [1]). Hereafter, a new method for a better han-
dling of the source terms is presented. Setting for k ∈ J1, 3K, Φk ∈ {Uk, Pk, Tk},
∆Φkl = Φk − Φl, system (12) reads:

∂αk

∂t
=

3∑
l=1,l ̸=k

Kkl(W )∆Pkl ,

∂mk

∂t
= 0 ,

∂mkUk

∂t
= −

3∑
l=1,l ̸=k

dkl(W )∆Ukl ,

∂αkEk

∂t
−

3∑
l=1,l ̸=k

Πkl(W )
∂αl

∂t
= −

3∑
l=1,l ̸=k

qkl(W )∆Tkl −
3∑

l=1,l ̸=k

dkl(W )
U2
k − U2

l

2
.

(13)
Setting: ∆S ∈ R6 , ∆S = (∆U12, ∆U13, ∆P12, ∆P13, ∆T12, ∆T13)

⊺ ∈ R6, it can
be derived from (13):

∂t (∆S) = −Rrelax(W )∆S , (14)

and the five stationary constraints:

∀k ∈ J1, 3K , ∂tmk = 0 ; ∂t

3∑
k=1

mkUk = ∂t

3∑
k=1

αkEk = 0 , (15)

with Rrelax a matrix in M6(R) of the form:

Rrelax(W ) =

RUU (W ) 0 0
RPU (W ) RPP (W ) RPT (W )
RTU (W ) RTP (W ) RTT (W )

 , (16)

where each sub-matrix RIJ(W ), (I, J) ∈ {U,P, T}2 is in M2(R). All coefficients
of the sub-matrices are given in detail in [5] for a class of three-phase flow models.
The counterpart for a similar class of two-phase flow models is given in [6]. From
(14) and (16), conditions that guarantee the relaxation process over time can
be exhibited, as it has been done in [6] for a two-phase flow model. Because
of the block triangular structure of Rrelax, the overall method to compute an
approximate solution of (13) is:
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(i) Estimate the evolution of ∆U = (∆U12, ∆U13)
⊺
between t∗

∆t−−→ tn+1− ac-
cording to:

∂t (∆U) = −RUU (W )∆U , (17)

with RUU (W ) ∈ M2(R). Then update the state variable at time tn+1− using
the conservation law of the total momentum (see [1] section 3.3.1).

(ii) Compute the evolution of∆ ∈ R4 , ∆ = (∆P12, ∆P13, ∆T12, ∆T13)
⊺ between

tn+1− ∆t−−→ tn+1, solution of:

∂t (∆) = −RPT (W )∆ , (18)

with RPT (W ) ∈ M4(R) defined as:

RPT (W ) =

(
RPP (W ) RPT (W )
RTP (W ) RTT (W )

)
. (19)

Moreover, as the velocity relaxation is handled beforehand, the equation of
evolution of the sum of the internal energies turns into a conservation law:

∂t

(
3∑

k=1

mkϵk

)
= 0 , (20)

which enables to update W at time tn+1, together with constraint (2).

Hereafter, setting time tn+1− as tn for clarity, the algorithm in stage (ii) is:

Step 1: Compute the solution of (18) at tn+1 with a linear implicit Euler scheme
and RPT (W ) frozen at time tn:

∆n+1 =
(
I4 +∆t RPT (Wn)

)−1
∆n , (21)

with I4 the identity matrix of size 4.

Step 2: Setting: 
ξn = m1ϵ1(P

n
1 , T

n
1 ) +m2ϵ2(P

n
2 , T

n
2 ) +m3ϵ3(P

n
3 , T

n
3 ) ,

Tn+1
2 = Tn+1

1 −∆Tn+1
12 ; Tn+1

3 = Tn+1
1 −∆Tn+1

13 ;
Pn+1
2 = Pn+1

1 −∆Pn+1
12 ; Pn+1

3 = Pn+1
1 −∆Pn+1

13 .
(22)

Compute Pn+1
1 and Tn+1

1 , solutions of:mn
1 ϵ1(P

n+1
1 , Tn+1

1 ) +mn
2 ϵ2(P

n+1
2 , Tn+1

2 ) +mn
3 ϵ3(P

n+1
3 , Tn+1

3 ) = ξn ,
mn

1

ρ1(P
n+1
1 , Tn+1

1 )
+

mn
2

ρ2(P
n+1
2 , Tn+1

2 )
+

mn
3

ρ3(P
n+1
3 , Tn+1

3 )
= 1 .

(23)
System (23) comes from (20) and the immiscible constraint (2).
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Step 3: Update αn+1
2 and αn+1

3 :

αn+1
2 =

mn
2

ρ2(P
n+1
2 , Tn+1

2 )
; αn+1

3 =
mn

3

ρ3(P
n+1
3 , Tn+1

3 )
, (24)

and the total energies :
(α1E1)

n+1 = mn
1 ϵ1(P

n+1
1 , Tn+1

1 ) +
1

2
mn

1 (U
n
1 )

2 ,

(α2E2)
n+1 = mn

2 ϵ2(P
n+1
2 , Tn+1

2 ) +
1

2
mn

2 (U
n
2 )

2 ,

(α3E3)
n+1 = αn

1E
n
1 + αn

2E
n
2 + αn

3E
n
3 − (α1E1)

n+1 − (α2E2)
n+1 .

(25)

Note that system (23) is non linear implicit. Hence we get:

Property 2: (P-T coupled relaxation algorithm)

a) For a mixture of ideal gases, the solution of (23) exists and is unique inside
the relevant domain of definition and statistical fractions remain in [0, 1].

b) If all of the principal minors of RPT (W ) are positive, then (21) ensures the
discrete relaxation process over time, whatever the time step ∆t is.

Sketch of proof: a) Thanks to the specific structure of the ideal gas EOS, the
internal energies are functions of only one thermodynamic variable. Because
of that, the conservation of the sum of the internal energies in (23) gives the
temperature at time tn+1. The complete proof is similar to the one given in [6]
for a two-phase flow model.
b) The proof of the second property is also an extension of the one given in [6].

4 Numerical results

In the sequel, for a quantity Ψ ∈ {P, T}, the relaxation time scales are sup-
posed to be identical on each phasic connection: τΨ12 = τΨ13 = τΨ23 = τΨ . For
simplicity, they are set as constants: τP = 10−5s and τT = 10−3s. Besides, in
all of the following numerical test cases, each phase k is given a stiffened gas
EOS: γ1 = 22.84 (Jkg−1K−1), Π1 = 1.884 109 (Pa), γ2 = 1.615 (Jkg−1K−1),
Π2 = 3.564 108 (Pa), γ3 = 1.086 (Jkg−1K−1), Π3 = 0 (Pa). It represents a
mixture of hot liquid metal, liquid water and its vapour.

First, let us consider a homogeneous flow. Thus, for each phase k, Uk = 0 and
for each quantity Ψk we have: ∇xΨk = 0. With this hypothesis, the set of PDEs
associated with model (1) is identical to the one approximated by step (ii). At
time t = 0 s, the pressures are set equal: P1 = P2 = P3 = 1.0× 105 Pa and the
temperatures are set as: T1 = 2500K, T2 = 363K and T3 = 1000K. Figure 1
highlights the poor behaviour of the fractional step algorithm for the pressure
P1 with coarse time steps. As the time step is given by the convective part of the
simulation under a CFL condition, the numerical method used to compute an
approximate solution of (13) must be robust. The coupled algorithm obviously
better captures the global behaviour of the solution on coarse time steps. Figure
2 confirms that the two schemes converge to the same solution with order 1.
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The second case consists in a liquid water shock tube. For the numerical simula-
tion, two meshes are considered: 50 000 cells and 100 000 cells. The CFL number
is set to 1/2. At time t = 0s, the shock tube is set as in Table 1. All phasic
velocities are set to zero at time t = 0s. When the numerical simulation starts,
the tube contains three zones: a high pressure chamber filled with liquid water,
a low pressure zone full of liquid water, and an interaction zone. In the high
pressure chamber, all phasic pressures are set to 15 × 105 Pa at time t = 0s.
Throughout the interaction zone, aluminium droplets of 500µm diameter are
introduced at time t = 0s. The droplet temperature is set to T1 = 2500K. Thus,
two Riemann problems have to be solved at xI12 = 2.0m and xI23 = 2.15m in
a short transient regime, and then interact with one another. Figure 3 shows
the evolution of the total pressure Pmix = α1P1 + α2P2 + α3P3 over time at
two stations. Station 1 is located at xS1

= 1.4m and Station 2 is positioned at
xS2 = 2.4m. Focusing first on Station 2, the minor decrease of the total pressure
Pmix at the beginning of the computation is the counterpart of what happens
in the homogeneous case. After that, the small decrease of the total pressure at
time t = 0.4ms corresponds to the right-going wave associated with the initial
interface located at xI23 . At time t = 0.6ms, the incident right-going shock wave
of magnitude 8.5 × 105 Pa, generated at time t = 0s at xI12 arrives at Station
2. Then, the return-to-equilibrium process takes place till 3.8ms. Afterwards
the left-going rarefaction wave reflected from the right-side reaches station 2.
Besides, as Station 1 is located inside the initial high pressure chamber, Pmix

plateaus at 15 × 105 Pa till t = 0.9ms, which corresponds to the arrival of the
left-going rarefaction wave generated at xI12 .

Abscissa (m) x ∈ [0; 2.0] x ∈]2.0; 2.15[ x ∈ [2.15; 3.75]

α1 ϵlim = 10−8 ϵlim 0.026

α2 1− 2ϵlim 1− 2ϵlim 0.884

P1 = P2 = P3 (Pa) 1, 5× 106 1, 0× 105 1, 0× 105

T1 (K) 1000 363 2500

T2 (K) 1000 363 363

T3 (K) 1000 363 1000

Table 1. Initial conditions for test case 2. All phasic velocities are set to zero.
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