Discrimination between Alpha-Synuclein Protein Variants with a Single Nanometer-Scale Pore

Mazdak Afshar Bakshloo, Safia Yahiaoui, Matthieu Bourderioux, Régis

Daniel, Manuela Pastoriza-Gallego, John Kasianowicz, Abdelghani Oukhaled

To cite this version:

Mazdak Afshar Bakshloo, Safia Yahiaoui, Matthieu Bourderioux, Régis Daniel, Manuela Pastoriza- Gallego, et al.. Discrimination between Alpha-Synuclein Protein Variants with a Single NanometerScale Pore. ACS Chemical Neuroscience, 2023, 14 (14), pp.2517-2526. 10.1021/acschemneuro.3c00164 . hal-04154813

HAL Id: hal-04154813

https://hal.science/hal-04154813

Submitted on 28 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Discrimination between Alpha-Synuclein Protein Variants with a Single Nanometer-Scale Pore

Mazdak Afshar Bakshloo, Safia Yahiaoui, Matthieu Bourderioux, Régis
Daniel, Manuela Pastoriza-Gallego, John Kasianowicz, Abdelghani Oukhaled

To cite this version:

Mazdak Afshar Bakshloo, Safia Yahiaoui, Matthieu Bourderioux, Régis Daniel, Manuela Pastoriza- Gallego, et al.. Discrimination between Alpha-Synuclein Protein Variants with a Single NanometerScale Pore. ACS Chemical Neuroscience, 2023, 10.1021/acschemneuro.3c00164 . hal-04154813

HAL Id: hal-04154813

https://hal.science/hal-04154813

Submitted on 28 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Discrimination between Alpha-Synuclein Protein Variants with a ${ }_{2}$ Single Nanometer-Scale Pore

${ }_{3}$ Mazdak Afshar Bakshloo, Safia Yahiaoui, Matthieu Bourderioux, Regis Daniel, ${ }_{4}$ Manuela Pastoriza-Gallego, John J. Kasianowicz,* and Abdelghani Oukhaled*

- INTRODUCTION

Alpha-synuclein $(\alpha \mathrm{S})$ is a protein located primarily in neurons, ${ }^{1-3}$ where it aids in the regulation of synaptic vesicle trafficking and neurotransmitter release. ${ }^{4,5}$ In dysfunctional states, it is associated with several neurodegenerative diseases (synucleinopathies), including Parkinson's disease (PD), ${ }^{6,7}$ multiple system atrophy, ${ }^{8-11}$ dementia with Lewy bodies (DLB), ${ }^{12-16}$ and others. ${ }^{17,18}$ In these cases, $\alpha \mathrm{S}$, which is intrinsically disordered, ${ }^{19}$ typically accumulates and aggregates into fibril structures ${ }^{20-24}$ in Lewy bodies. ${ }^{3}$ It is the latter form that induces cytotoxic effects, which are assumed to be responsible, in part, for the symptoms noted above. Some evidence suggests that α S can interact with relatively short amyloidogenic proteins (e.g., $\mathrm{A} \beta 40$ and $\mathrm{A} \beta 42$). ${ }^{25,26}$
Alpha synuclein's sequence is highly conserved in many species, ${ }^{27-29}$ and in humans it is composed of 140 amino acids. ${ }^{30,31}$ A rather striking finding is that a point mutation of the guanosine to adenosine at position 209 (G209A) in the SNCA gene encoding for α S, which causes an A53T amino acid change in the N -terminal repeat segment of the protein, is associated with PD. ${ }^{32-34}$ After the initial study, it was shown that additional missense mutations of $\alpha \mathrm{S}$, including A53E, ${ }^{35}$ A30P, ${ }^{36}$ and E46K, ${ }^{37}$ were linked to PD as well.
We previously demonstrated that an ion channel formed by aerolysin (AeL) can discriminate between different proteins based on how their protease-cleaved fragments partition into the channel's nanometer-scale pore and thereby reduce its ionic conductance. ${ }^{38,39}$ For example, trypsin-induced frag-
ments from three different full-length proteins (myoglobin, 47 lysozyme, and cytochrome C, with molecular masses between 48 12 and $16.9 \mathrm{~kg} \mathrm{~mol}^{-1}$) produce ionic current signal patterns 49 that act as characteristic fingerprints of each protein. Here, we 50 show that the method can also distinguish between proteolytic 51 fragments from wild-type $\alpha \mathrm{S}$, one of the deleterious point 52 mutants mentioned above (E46K), and a post-translational 53 modification (PTM) of $\alpha \mathrm{S}$ (Y39 nitration). This method 54 should be versatile because the use of multiple proteases allows 55 the targeted cleavage of the α S protein into detectable peptide 56 fragments of desired length carrying the mutation(s) or 57 PTM(s) of interest, thereby permitting the discrimination of 58 various forms of α S protein.

RESULTS

60
The primary sequence of full-length wild-type (i.e., native) $\alpha \mathrm{S}_{61}$ (α S_wt) is shown in Scheme 1. To produce the desired 62 s1 enzyme-induced cleavage fragments for $\alpha S _w t$ and the single- 63 point mutant version (α S_E46K), we used the recombinant 64 zinc metalloprotease LysN from Grifola frondose, which 65 cleaves proteins at the amino terminus side of lysine 66

[^0]Scheme 1. Full Length Human α-Synuclein Sequence ${ }^{\boldsymbol{a}}$
\qquad
MDVFMKGLSK AKEGVVAAAE KTKQGVAEAA GKTKEGVLYV GSKTKEGVVH

$$
60
$$

70
80
90
100
GVATVAEKTK EQVTNVGGAV VTGVTAVAQK TVEGAGSIAA ATGFVKKDQL

$$
\begin{array}{llll}
110 & 120 & 130 & 140
\end{array}
$$

GKNEEGAPQE GILEDMPVDP DNEAYEMPSE EGYQDYEPEA
${ }^{a}$ The sequence of 140 amino acids in $\alpha \mathrm{S}$, with the first proteolytically cleaved fragment of interest (highlighted in yellow) and the singlepoint amino acid mutation studied here (α S_E46K, emphasized in red).

67 residues. ${ }^{40-42}$ Thus, LysN cleavage of wild-type $\alpha \mathrm{S}$ would 68 theoretically create 16 total polypeptides with varying numbers 69 of amino acid residues and composition, of which 13 are 70 unique (Table 1). Note that one of these fragments, which

Table 1. LysN Cleavage Products of Wild-Type α S $\left(\alpha \mathrm{S} _\mathrm{wt}\right)^{a}$

Length	Sequence	Mass (g mol	
)	Charge @ $\mathbf{p H} \mathbf{7 . 5}$	
1	K	146.2	1
2	KA	217.27	1
2	KT	247.29	1
2	KT	247.29	1
2	KT	247.29	1
2	KT	247.29	1
4	KGLS	403.48	1
5	MDVFM	641.8	-1
5	KDQLG	559.62	0
9	KEGVVAAAE	872.97	0
9	KQGVAEAAG	829.91	0
9	KEGVLYVGS	951.09	0
13	KEGVVHGVATVAE	1295.46	-1
16	KTVEGAGSIAAATGFV	1478.67	0
20	KEQVTNVGGAVVTGVTAVAQ	1928.17	0
39	KNEEGAPQEGILEDMPVDPD	4416.59	-13
	NEAYEMPSEEGYQDYEPEA		

${ }^{a}$ The protease cleavage fragment in which the point mutation E46K occurs is highlighted in yellow, and the two amino acids are emphasized in red colored text. The three 9 -amino-acid-long fragments highlighted in light orange are discussed later in this study.
contains 13 amino acids highlighted in yellow (residues 45 to 57, inclusive), is where the E46K point mutation considered here would be located. Thus, as we demonstrate below, the ability to discriminate between the two versions of this particular fragment, $\alpha \mathrm{S} _$wt and $\alpha \mathrm{S} _\mathrm{E} 46 \mathrm{~K}$, is a key to differentiate between these versions of the full-length protein.

The physical properties of this fragment's two variants are listed in Table 2. Note that the $\left(\alpha \mathrm{S} _\mathrm{wt}\right)_{13}$ fragment has 13 amino acids, whereas $(\alpha \text { S_E46K })_{12}$ has 12, because the latter's full-length protein includes an additional LysN cleavage site at residue 46. The net charges on each of the polypeptide

Table 2. Properties of the Two α-Synuclein Fragments Studied Here ${ }^{a}$

Fragment	Length (amino acids)	Sequence	Mass (g mol	
)	Charge @ $\mathbf{~ p H}$ $\mathbf{7 . 5}$			
$\left(\alpha S_{-} \mathrm{wt}\right)_{13}$	13	KEGVVHGVATVAE	1295.46	-1
$\left(\alpha S^{1} \mathrm{E} 46 \mathrm{~K}\right)_{12}$	12	KGVVHGVATVAE	1166.32	0

${ }^{a}$ The altered amino acid in the point mutant is highlighted in red colored text.
fragments are -1 and 0 for the $\alpha \mathrm{S}$ variants $\left(\alpha \mathrm{S} _\mathrm{wt}\right)_{13}$ and 82 $(\alpha \text { S_E46K })_{12}$, respectively.

83
Because protein-based nanopores can differentiate between 84 slightly different molecular species, ${ }^{43-60}$ including pro- 85 teins, ${ }^{38,39,61}$ we used the nanometer-scale pore formed by the 86 protein Aeromonas hydrophila $\mathrm{AeL}^{62,63}$ in an attempt to 87 discriminate between the two α S polypeptides in Table $2 . \quad{ }_{88}$
In the protein nanopore-based analytical method, ${ }^{47}$ an ion 89 channel is formed in a planar lipid bilayer membrane, and the 90 target species are typically added to one of the two aqueous 91 electrolyte solutions bathing the membrane. Individual 92 molecules that enter the pore transiently reduce the ionic 93 current due to volume exclusion and, in certain instances to the 94 reversible binding of mobile ions to the molecules. ${ }^{49}$ The 95 degree by which the single channel current is reduced, and the 96 distribution of residence (or dwell) times for the molecules in 97 the pore provide information about the target molecules' 98 physical and chemical properties. ${ }^{49}$ The relatively long dwell 99 times of single polypeptides in the pore are a consequence of 100 the interaction between the two.

101
We first show how enzymatically cleaved fragments of wild- 102 type $\alpha \mathrm{S}\left(\alpha \mathrm{S} _\right.$wt $)$and the E46K single-point mutant version 103 (α S_E46K) interact with a single AeL nanopore. Figure 1A 104 fl illustrates schematically that the LysN-induced cleavage of 105
A

B

Figure 1. Nanopore-based discrimination of protease fragments of wild-type α-synuclein ($\alpha \mathrm{S} _\mathrm{wt}$) and a point mutant version of the protein ($\alpha \mathrm{S} _\mathrm{E} 46 \mathrm{~K}$). (A) Cleavage of either full length $\alpha \mathrm{S}$ _wt or α S_E46K by protease LysN produces well-defined polypeptide fragments. Polypeptide fragment samples of either $\alpha \mathrm{S}$ _wt or α S_E46K are added to the electrolyte solution surrounding one side (cis) of an AeL nanopore. A transmembrane voltage V drives fragments into the pore and thereby reduces the pore's ionic conductance. (B) Protease-induced fragments of α S_wt or α S_E46K cause short-lived reductions in the ionic current (typical single blockade events for each of the samples are shown); $I_{0}, I_{\mathrm{b}}, \sigma_{\mathrm{b}}$, and t_{b} are the mean open current, the mean blocked current, the standard deviation of the blocked current, and dwell time for each event, respectively. (C) Histogram of the I_{b} / I_{0} values for the cleaved samples of $\alpha \mathrm{S} _$wt (top) or α S_E46K (bottom). The colored peaks correspond to a Gaussian fit to those segments of the data. All data were recorded at $T=22^{\circ} \mathrm{C},[\mathrm{KCl}]=2.5 \mathrm{M},\left[\mathrm{CaCl}_{2}\right]=1 \mathrm{M},[$ HEPES $]=25 \mathrm{mM}, \mathrm{pH}$ 7.5 , and the transmembrane potential was $V=+80 \mathrm{mV}$. The data shown here are for a single experiment, but the results were highly reproducible ($n=3$).

Figure 2. Nanopore-based discrimination of the synthetic short polypeptides ($\left.\alpha \mathrm{S}_{-} \mathrm{wt}\right)_{13}$ and (α S_E46K $)_{12}$ (Table 2). (A) Single channel ionic current blockade value histograms, (B) dwell time (t_{b}) vs current blockade value (I_{b} / I_{0}) event plots, and (C) blocked ionic current standard deviation event plots for $\left(\alpha \mathrm{S} _\mathrm{wt}\right)_{13}$ only (top); $\left(\alpha \mathrm{S} _\mathrm{E} 46 \mathrm{~K}\right)_{12}$ only (middle); or an equimolar mixture of both $\left(\alpha \mathrm{S} _\mathrm{wt}\right)_{13}$ and ($\alpha \mathrm{S}$ _E46K) ${ }_{12}$ polypeptides in the same sample (bottom). Gaussian fits to the predominant single peaks for the ($\left.\alpha \mathrm{S} _\mathrm{wt}\right)_{13}$ (green) or ($\alpha \mathrm{S}$ _E46K $)_{12}$ (red) samples are shown. All data were recorded at $T=22^{\circ} \mathrm{C},[\mathrm{KCl}]=2.5 \mathrm{M},\left[\mathrm{CaCl}_{2}\right]=1 \mathrm{M},[\mathrm{HEPES}]=25 \mathrm{mM}, \mathrm{pH} 7.5$, and the transmembrane potential was $V=+80 \mathrm{mV}$. These data were obtained in single experiments but were highly reproducible in $n>3$ replicates.
either of the full-length proteins produces well-defined polypeptide fragments (listed in Table 1). An aliquot of one protein's fragments is added to the aqueous phase bathing the cis side of a membrane that contains a single AeL nanopore, and a voltage V is applied across the membrane, which drives polypeptides into the pore nanopore one at a time, thereby causing brief but characteristic reductions in the pore's ionic current (Figure 1B). Three parameters for each event are recorded: the relative current blockade value $\left(I_{\mathrm{b}} / I_{0}\right.$, where I_{0} and I_{b} are the ionic currents through a fully open and polypeptide-occupied pore, respectively), the dwell time of the molecule in the pore $\left(t_{\mathrm{b}}\right)$, and the ionic current standard deviation (σ_{b}) (Figure 1B).
The histograms of the relative current blockade values I_{b} / I_{0} for each of the two cleaved protein fragments (Figure 1C) show that a single AeL nanopore can discriminate between the LysN-induced polypeptide fragments from full-length wildtype ($\alpha \mathrm{S} _\mathrm{wt}$) and the point mutant ($\alpha \mathrm{S} _\mathrm{E} 46 \mathrm{~K}$). In addition to the discriminatory capability of the I_{b} / I_{0} histogram (Figure 1C), the proteins can also be qualitatively differentiated based on the dwell time- and standard deviation-event plot data (Figure S1, Supporting Information section).
In Figure 1C, there are fewer distinct peaks than one might expect based on the predicted action of the protease on the target protein. There are several hypothetical reasons that might account for that observation. First, proteolytic digestions are generally not 100% efficient in either the complete processing of the target protein or in the production of every polypeptide fragment. Second, it is possible that aggregation of either the target protein or some of the fragments could occur even though the experimental conditions (i.e., a relatively short digestion time of 3 h , the pH was basic at pH 10 , and no stirring was applied) are not conducive to that process (aggregated fragments would likely not enter the pore). Third, some of the predicted polypeptide fragments may not enter the pore due to an excessively high entropic cost (i.e.,
their secondary structures may limit the partitioning of some 142 polypeptides into the highly confined geometry of the 143 nanopore). We are currently investigating this issue exper- 144 imentally.

The green and red Gaussian fits to the single peaks in the $I_{\mathrm{b}} / 146$ I_{0} histogram data (Figures 1 C and S1) are located at $I_{\mathrm{b}} / I_{0}=147$ 0.34 ± 0.01 and 0.38 ± 0.01 for the samples derived from full- 148 length (α S_wt) and (α S_E46K), respectively. Because the 149 only polypeptide fragments that would contain the amino acids 150 that are different in the two full-length proteins are $\left(\alpha \mathrm{S}_{-} \mathrm{wt}\right)_{13} 151$ and (α S_E46K) ${ }_{12}$ (Tables 1 and 2), it follows that those 152 particular fragments are the likely cause of those two different 153 peaks.

To test that hypothesis, we studied the effects of synthetic 155 polypeptides $\left(\alpha \mathrm{S} _\mathrm{wt}\right)_{13}$ and $\left(\alpha \mathrm{S} _\mathrm{E} 46 \mathrm{~K}\right)_{12}$ individually on the 156 AeL nanopore. Figure 2A (top) shows that there is one peak in 157 fz the I_{b} / I_{0} histogram for $\left(\alpha \mathrm{S} _\mathrm{wt}\right)_{13}$ located at 0.34 ± 0.01. The 158 results obtained with $\left(\alpha \mathrm{S} _\overline{\mathrm{E}} 46 \mathrm{~K}\right)_{12}$ (Figure 2A, center) show 159 that there are two peaks in its I_{b} / I_{0} histogram: a predominant 160 one located at 0.38 ± 0.01 and a secondary peak at 0.51 ± 161 0.01 . Note that the locations of the single peak for $\left(\alpha S_{-} w t\right)_{13} 162$ and the more probable peak for $\left(\alpha S_{-} \mathrm{E} 46 \mathrm{~K}\right)_{12}$ are situated at 163 the same I_{b} / I_{0} values as the Gaussian fit peaks from LysN- 164 cleaved full-length ($\alpha \mathrm{S} _$wt) and (α S_E46K), respectively 165 (Figure 1C). Note that the ionic current blockade dwell time 166 (Figure 2B, center) and standard deviation (Figure 2C, center) 167 vs the blockade depth $\left(I_{\mathrm{b}} / I_{0}\right)$ event plots provide two 168 additional means to discriminate between these two synthetic 169 polypeptides. Lastly, the bottom panels in Figure 2A-C show 170 that the effects of $\left(\alpha \mathrm{S} _\mathrm{wt}\right)_{13}$ and $(\alpha \mathrm{S} \text { E46K })_{12}$ on the AeL 171 nanopore current are independent of each other, which 172 suggests that the two different polypeptides do not interact 173 significantly with each other in the bulk aqueous phase. The 174 histograms shown in Figure 2, which were produced with 175 equimolar concentrations of $\left(\alpha \mathrm{S} _\mathrm{wt}\right)_{13}$ and $\left(\alpha \mathrm{S} _\mathrm{E} 46 \mathrm{~K}\right)_{12} 176$ polypeptides, have qualitatively similar blockade event rates. 177

Table 3. Physical Properties of the Three 9-Amino-Acid-Long Polypeptides Predicted from LysN Cleavage of the Full-Length α S_wt Protein (from Table 1) and of the PTM Y39 Nitration Version ${ }^{a}$

Polypeptide Abbreviation	Sequence	Length (amino acids)	Mass (g mol	
-1 $)$	Charge @ $\mathbf{~ p H ~ 7 . 5 ~}$			
$(\mathrm{KE} \mathrm{wt})$	KEGVVAAAE	9	872.97	-1
$(\mathrm{KG} \mathrm{wt})$	KQGVAEAAG	9	829.91	0
$(\mathrm{Y} 39 \mathrm{wt})$	KEGVLYVGS	9	951.09	0
$\left({\left.\mathrm{Y} 39 \mathrm{NO}_{2}\right)}^{\text {KEGVLY }\left(\mathrm{NO}_{2}\right) \text { VGS }}\right.$	9	996.08	0	

[^1]These results suggest that even though these two fragments are only slightly different in sequence, mass, and length (Table 2), the AeL nanopore can easily discriminate between them and thus between the LysN-cleaved versions of the full-length native and (α S_E46K) point mutant proteins (Figure 1).
Although the E46K point mutation correlates with some cases of PD and DLB, not all the patients affected by synucleinopathies present with it. Other reported neurodegenerative cases are associated with certain PTMs of α S. Thus, these PTMs, which include phosphorylation of S129, ${ }^{64,65}$ nitration, ${ }^{66}$ O-GlcNAcylation, ${ }^{67}$ sumoylation, or ubiquitination, ${ }^{66}$ are also used as biomarkers for PD and DLB.

LysN proteolysis of full-length $\alpha \mathrm{S}$ _wt would theoretically produce three unique 9 -amino-acid-long polypeptides (Table 1), which we label here as (KE wt), (KG wt), and (Y39 wt). The physical properties of those fragments and those of a Y39 nitration PTM of the latter one ($\mathrm{Y} 39 \mathrm{NO}_{2}$) are listed in Table 3. Given that nanopores have proven useful for discriminating between different size RNA oligonucleotides, ${ }^{45}$ synthetic polymers, ${ }_{70-73}^{46,49}$ polypeptides, 68,69 and characterizing PTMs in proteins, ${ }^{70-73}$ we tested whether the AeL nanopore can discriminate between these three identical-length wild-type protein fragments and a PTM nitration version.

Figure 3A-C shows the AeL nanopore electrophysiology data for the three 9 -amino-acid-long polypeptide fragments predicted from LysN proteolysis of wild-type $\alpha \mathrm{S}$ protein, each produce characteristic and differentiable distributions. The polypeptide fragment (KE wt) produces events characterized with one peak at $I_{\mathrm{b}} / I_{0}=0.48 \pm 0.01$ in the relative current blockade value histogram (Figure 3A left). Adding the (KG wt) polypeptide to the sample causes a new peak to appear at $I_{\mathrm{b}} / I_{0}=0.57 \pm 0.02$ (Figure 3B left). The subsequent addition of the third fragment type (Y 39 wt) caused a broadening of the peak caused by (KE wt) due to an additional peak at $I_{\mathrm{b}} / I_{0}=$ 0.49 ± 0.02 (Figure 3C left). Finally, adding the Y39 nitration PTM polypeptide ($\mathrm{Y} 39 \mathrm{NO}_{2}$) caused another distinct peak at $I_{\mathrm{b}} / I_{0}=0.42 \pm 0.02$ (Figure 3D left).
While the I_{b} / I_{0} histogram data allow the discrimination between all four of these polypeptides, their corresponding dwell time (t_{b}) event plots (Figure 3A-D, center) provide additional discriminatory capability. The latter plots show that the first two polypeptide variants, (KE wt) and (KG wt), have similar dwell time distributions with mean residence times $\left\langle t_{\mathrm{b}}\right\rangle$ ~ 0.3 and 0.5 ms , respectively (Figure 3B center). Both the third polypeptide variant (Y 39 wt) and its Y 39 nitration PTM version (Y39 NO2) have mean dwell times that, at $\left\langle t_{\mathrm{b}}\right\rangle \approx 5.4$ and 7.9 ms , respectively, are about an order of magnitude longer than those for the other two polypeptides. Moreover, note that the clustered t_{b} event plots for each of the four variants are further distinguishable because their distributions cluster at different I_{b} / I_{0} values. Moreover, the standard deviation (σ_{b}) event plots (Figure 3A to 3D right) for each
variant are also distinct. Note further that the first three 230 polypeptides (Figure 3C) are also discriminated when the 231 whole $\alpha \mathrm{S}$ protein variants discussed above are digested 232 (Figures S2-S4 for $\alpha \mathrm{S} _$wt and S 5 to S 7 for $\alpha \mathrm{S} _\mathrm{E} 46 \mathrm{~K}$).

Another relevant biomarker is a phosphorylation on serine 234 residue S129. However, the length of the peptide fragment 235 generated by LysN that includes S129 (Table 1) is longer than 236 the pore's length and therefore not within the detectable and 237 discernible length range for polypeptide discrimination with 238 the AeL nanopore. ${ }^{68,69}$ We overcame that limitation by 239 changing the protease to cleave the relevant fragment into 240 one that is sufficiently short. Specifically, we used another 241 enzyme, AspN peptidyl-Asp metalloendopeptidase from the 242 Gram-negative bacteria Pseudomonas fragi, ${ }^{74-77}$ which cleaves 243 at the amino terminus side of aspartic acid residues. This 244 process should produce the polypeptide fragments listed in 245 Table 4.

Our goal here was to determine whether the AeL nanopore 247 can discriminate between wild-type α S and a PTM 248 phosphorylation of serine residue at amino acid 129 (S129). 249 AspN should produce a 14 -amino-acid-long polypeptide that 250 contains S129. This fragment and its phosphorylated version 251 are listed in Table 5.

Figure 4 illustrates the AeL nanopore electrophysiology data 253 f 4 for the (S129wt)AspN and phosphorylated PTM variant 254 (S129_pho)AspN proteolysis fragments. The individual 255 polypeptide fragment (S129_wt)AspN produces two peaks 256 in the I_{b} / I_{0} histogram at 0.18 ± 0.01 and 0.14 ± 0.01 (Figure 257 4A, left). The phosphorylated fragment (S129_pho)AspN 258 produces also two peaks at $I_{\mathrm{b}} / I_{0}=0.20 \pm 0.02$ and 0.09 ± 0.01259 (Figure 4B, left). When both polypeptides were detected with 260 the AeL nanopore from a co-mixed sample, two well-defined 261 populations were observed, which clearly show the pore's 262 ability to discriminate between the minor components of 263 (S129_wt)AspN and (S129_pho)AspN (Figure 4C, left). In 264 addition, the dwell time (Figure 4A-C, center) and ionic 265 current standard deviation (Figure 4A-C, right) event plots 266 provided further discriminatory capability for this particular 267 PTM. Note that the dominant peaks in the phosphorylation 268 data overlap strongly. Nevertheless, the lesser peaks still 269 provide a means to differentiate between the different species. 270

■ DISCUSSION

Previous studies on nanopore-based detection of individual 272 polymers enabled sequencing DNA, ${ }^{45,46,51,52,54,56}$ simultaneous 273 detection of several different proteins, ${ }^{78}$ discriminating 274 between polymers based on their size, ${ }^{46,49,53,57,79}$ and 275 identifying several different proteins from their protease- 276 induced fragments. ${ }^{38,39,61}$ The work described herein repre- 277 sents a significant extension of the latter method. Specifically, 278 we used two different proteases (LysN and AspN) and the AeL 279

Figure 3. AeL nanopore-based discrimination of the three 9-amino-acid-long polypeptides predicted from LysN proteolysis of full-length $\alpha \mathrm{S}$ _wt (Tables 1 and 3) and the PTM (Y39) nitration of one of the polymers (Table 3). The plots are histograms of the relative ionic current blockade value, I_{b} / I_{0} (left), dwell time-current blockade value event plots (center), and ionic current standard deviation-current blockade value event plots (right) for a successive addition of (A) (KE wt), (B) (KE wt) + (KG wt), (C) (KE wt) + (KGwt) + (Y39 wt), and (D) (KE wt) + (KG wt) + $(\mathrm{Y} 39 \mathrm{wt})+\left(\mathrm{Y} 39 \mathrm{NO}_{2}\right)$. For clarity, the results that correspond to each polypeptide variant are indicated with arrows matching their respective color-code. The data shown is from a single experiment but was highly reproducible for $n>3$ replicates.

280 nanopore to discriminate between wild-type α-Synuclein and 281 three different versions of it (i.e., a single-point mutation E46K 282 and two different PTMs, Y39 nitration and S129 phosphor283 ylation) that are implicated in several neurodegenerative 284 diseases, including Parkinson's and DLB. The method shown 285 here offers the possibility to detect various forms of proteins 286 with a single nanopore through its versatility. This is made
possible because of multiple selective proteases allow the 287 precise cleavage of proteins into detectable and discriminable 288 polypeptide fragments of the desired length bearing the 289 mutation(s) or MTP(s) of interest.

We note that not all of the blockade events shown in Figure 291 1 are necessarily due to polypeptide translocation. Specifically, 292 some of the events might instead be caused by polypeptides 293

Table 4. Seven Polypeptide Fragments Predicted from AspN Proteolysis of Full-Length Wild-Type α S Protein ${ }^{a}$

$\left.$	Length (amino acids)	Sequence	Mass (g mol
)			
:---:			
@ $\mathbf{p H} \mathbf{7 . 5}$	\right\rvert\,		

${ }^{a}$ The 14-amino-acid-long variant, highlighted in yellow, and a phosphorylated variant of it (Table 5) were analyzed with a single AeL nanopore (Figure 4).

Table 5. Two Variants (Wild-Type and S129 Phosphorylation) of the Predicted 14-Amino-Acid-Long AspN-Cleaved Fragment from the Full-Length α S_wt Protein

Polypeptide	Length (amino acids)	Sequence	Mass (g $\mathbf{m o l}^{-1}$)	Charge $@ \mathbf{p H}$ $\mathbf{7 . 5}$
(S129_wt)AspN	14	DNEAYEMPSEEGYQ	1661.67	-5
(S129_pho)AspN	14	DNEAYEMPS (pho) EEGYQ	1741.63	-7

Figure 4. AeL nanopore-based discrimination of two 14 -amino-acid-long polypeptides $\left(\alpha S_{-} \mathrm{wt}\right) \mathrm{AspN}_{14}$ and its phosphorylated version ($\alpha \mathrm{S} _$S129) AspN N_{14} _pho. The single channel ionic current blockade value histograms (left), dwell time $\left(t_{\mathrm{b}}\right)$ vs current blockade value $\left(I_{\mathrm{b}} / I_{0}\right)$ event plots (center), and blocked ionic current standard deviation event plots (right) for (A) (S129_wt)AspN only, (B) (S129_pho)AspN only, or (C) a mixture of both (S129_wt)AspN and (S129_pho)AspN polypeptides in the same sample. For clarity, the results that correspond to each polypeptide variant are indicated with arrows matching their respective color-codes. All data were recorded at $T=22^{\circ} \mathrm{C},[\mathrm{KCl}]=2.5 \mathrm{M},\left[\mathrm{CaCl}_{2}\right]=$ 1 M, [HEPES] $=25 \mathrm{mM}, \mathrm{pH} 7.5$, and the transmembrane potential was $V=+50 \mathrm{mV}$. The data shown are for single experiments but were highly reproducible in replicate ($n>3$) experiments.

294 that enter and leave the pore from the sample side. Also, there 295 are two known processes that can drive polypeptides into and 296 possibly through the aerolysin channel. These include 297 electrophoresis (e.g., as was the case for single-stranded DNA 298 transport through the $\alpha \mathrm{HL}$ nanopore $)^{45}$ and electroosmosis, 299 which can drive polypeptides with any net charge (positive, 300 301 302 and PTMs, which should work for many other proteins, could 303 be a useful tool for rapid diagnoses at the point of care in 304 medical facilities if it is integrated into a low-cost, miniaturized, 305 high-throughput analytical platform. However, there are several 306 technological hurdles and levels of systems integration (e.g., of
microfluidics-based protein separation, ${ }^{80,81}$ etc.) that will need 307 to be resolved or employed.

EXPERIMENTAL SECTION

Protein Synthesis. His SpinTrap mini columns were purchased 310 from GE Healthcare Life Science (Chicago, IL, USA), IPTG 311 (R0392), HEPES buffer (BP310) from Thermo Fisher Scientific 312 (Waltham, MA, USA), and Vivaspin 10 kDa cut-off filters (VS0101) 313 from Sartorius (Gottingen, Germany). LysN protease (L101) was 314 purchased from ImmunoPrecise Antibodies (Victoria, Canada), 315 trypsin-agarose (T1763), imidazole (104716), potassium chloride 316 (P5405), calcium chloride (223506), trifluoroacetic acid (TFA, 317 T6508), and decane (457116) were purchased from Merck 318 (Darmstadt, Germany). Diphytanoyl-phosphocholine (DPhPC, 319
temperature controller (CL-100, Warner Instruments) coupled to a 389 liquid cooling system (LCS-1, Warner Instruments).

Data Analysis. Data analysis was performed using Igor Pro 6.12A 391 software (WaveMetrics, OR, USA) with in-house routines. The 392 approach relies on a statistical analysis of the properties of the analyte- 393 induced current blockades, involving at least several hundred (more 394 typically thousands) events. The detection of each individual current 395 blockade in a nanopore current v s time recording is based on a single 396 current-threshold (Th) method. A blockade event is detected when 397 the current magnitude becomes smaller than Th, until it returns to a 398 value greater than $T h$. The beginning of the blockade is defined as the 399 first point of current increase after having monotonically decreased 400 below $T h$, and its end as the last point of current decrease before 401 monotonically increasing above Th . This defines the range of points 402 used to compute the characteristic quantities of the blockade, such as 403 dwell time t_{b}, mean residual current value I_{b}, and the standard 404 deviation σ_{b} of the residual current. Here, $T h=I_{0}-5 \sigma_{0}$, where I_{0} and 405 σ_{0} are the mean value and standard deviation of a Gaussian fit of the 406 open-pore current distribution, respectively.

Histograms of the relative mean residual current I_{b} / I_{0} are 408 constructed with a bin width of $0.002 . I_{\mathrm{b}} / I_{0}$ values constitute the 409 main criterion to discriminate populations of blockades induced by 410 enzymatically produced polypeptide fragments from the α S protein 411 variants. I_{b} / I_{0} population j is defined as the subset of blockades whose 412 I_{b} / I_{0} values fall in the range $\left\langle I_{\mathrm{b}} / I_{0}\right\rangle_{j} \pm 1.96 \sigma_{j}$, where $\left\langle I_{\mathrm{b}} / I_{0}\right\rangle_{j}$ and σ_{j} are 413 respectively the mean value and standard deviation of a Gaussian fit of 414 the distribution of I_{b} / I_{0} values in the corresponding histogram peak. 415 This range includes 95% of the Gaussian distribution.

The mean blockade duration $\left\langle t_{b}\right\rangle_{j}$ is determined by fitting the distribution of $\ln \left[\left(t_{\mathrm{b}}\right)_{j}\right]$ values with a single-exponential probability density model, where the maximum of the distribution occurs at $\ln \left[\left\langle t_{\mathrm{b}}\right\rangle_{j}\right]$. The mean standard deviation of the residual current $\left\langle\sigma_{\mathrm{b}}\right\rangle_{j}$ is the mean value of a Gaussian fit of the distribution of $\left(\sigma_{\mathrm{b}}\right)_{j}$ values. In the case where the distribution of $\left(\sigma_{\mathrm{b}}\right)_{j}$ presents different subpopulations, each sub-population is Gaussian-fitted and associated 423 with its own mean value.

MALDI Instrumentation. MALDI-TOF mass spectra were 425 acquired using a Bruker UltraFlextreme mass spectrometer (Bruker, 426 Billerica, MA, USA) equipped with a Smartbeam $2 \mathrm{Nd} /$ YAG laser 427 (Bruker) operating at 355 nm . Spectra were acquired using 428 FlexControl software (version 3.4 Bruker). The reflectron mode 429 was used with a mass range of $m / z 100$ to 600 . The fixed instrument 430 voltages were ion source $1,20.00 \mathrm{kV}$; ion source $2,17.85 \mathrm{kV}$; lens, 431 7.90 kV ; reflector $1,20.80 \mathrm{kV}$; and reflector $2,10.80 \mathrm{kV}$. All mass 432 spectra were processed using FlexAnalysis software (version 3.4, 433 Bruker). Pulsed ion extraction was set to 170 ns. Matrix suppression 434 cut off mass was set to $500 \mathrm{~m} / \mathrm{z}$. Mass calibration was performed using 435 peptide calibration standard from the Bruker Starter Kit (P/N 436 8208241).

437
MALDI Sample Preparation. The 2,5-dihydroxybenzoic acid 438 (DHB) matrix was prepared at $20 \mathrm{mg} / \mathrm{mL}$ in 30% acetonitrile (v / v) 439 in water with 0.1% trifluoroacetic acid (TFA). Polypeptides were 440 diluted to a working concentration of $1 \mu \mathrm{M}$ in 30% acetonitrile (v / v) 441 in water with 0.1% TFA as well. Samples were mixed 1:1 with DHB 442 matrix prior to spotting $1 \mu \mathrm{~L}$ on an MTP anchorchip 384 target ($\mathrm{P} / \mathrm{N} 443$ 8280790) and allowed to air dry at room temperature.

- ASSOCIATED CONTENT 445
(s) Supporting Information 446
The Supporting Information is available free of charge at 447 https://pubs.acs.org/doi/10.1021/acschemneuro.3c00164. 448

Discrimination between α S_wt and α S_E46K proteins; 449 reproducibility of α S_wt protein fragmentation and 450 $\left(\alpha S _w t\right)_{13}$ identification; reproducibility of α S_E46K 451 protein fragmentation and (α S_E46K $)_{12}$ identification; 452

- ABBREVIATIONS

504α S, alpha synuclein; DLB, dementia with Lewy bodies; PD, 505 Parkinson's disease; AeL, Aerolysin; PTM, post-translational 506 modification; KCl , potassium chloride; CaCl_{2}, calcium chloride

REFERENCES

(1) Maroteaux, L.; Campanelli, J.; Scheller, R. Synuclein: a neuron- 508 specific protein localized to the nucleus and presynaptic nerve 509 terminal. J. Neurosci. 1988, 8, 2804-2815.
(2) Maroteaux, L.; Scheller, R. H. The Rat Brain Synucleins; Family 511 of Proteins Transiently Associated with Neuronal Membrane. Mol. 512 Brain Res. 1991, 11, 335-343.
(3) Taguchi, K.; Watanabe, Y.; Tsujimura, A.; Tanaka, M. Brain 514 Region-Dependent Differential Expression of Alpha-Synuclein. J. 515 Comp. Neurol. 2016, 524, 1236-1258.
(4) Bendor, J. T.; Logan, T. P.; Edwards, R. H. The Function of $\alpha-517$ Synuclein. Neuron 2013, 79, 1044-1066.
(5) Huang, C.-C.; Chiu, T.-Y.; Lee, T.-Y.; Hsieh, H.-J.; Lin, C.-C.; 519 Kao, L.-S. Soluble α-synuclein facilitates priming and fusion by 520 releasing $\mathrm{Ca} 2+$ from thapsigargin-sensitive $\mathrm{Ca} 2+$ pool in PC12 cells. J. 521 Cell Sci. 2018, 131, jcs213017.
(6) Lee, V. M.-Y.; Trojanowski, J. Q. Mechanisms of Parkinson's 523 Disease Linked to Pathological α-Synuclein: New Targets for Drug 524 Discovery. Neuron 2006, 52, 33-38.
(7) Stefanis, L. α-Synuclein in Parkinson's Disease. Cold Spring 526 Harbor Perspect. Med. 2012, 2, a009399.
(8) Graham, J. G.; Oppenheimer, D. R. Orthostatic Hypotension 528 and Nicotine Sensitivity in a Case of Multiple System Atrophy. J. 529 Neurol. Neurosurg. Psychiatry 1969, 32, 28-34.
(9) Stefanova, N.; Bücke, P.; Duerr, S.; Wenning, G. K. Multiple 531 System Atrophy: An Update. Lancet Neurol. 2009, 8, 1172-1178. 532
(10) Wenning, G. K.; Stefanova, N. Recent Developments in 533 Multiple System Atrophy. J. Neurol. 2009, 256, 1791-1808. 534
(11) Laurens, B.; Vergnet, S.; Lopez, M. C.; Foubert-Samier, A.; 535 Tison, F.; Fernagut, P.-O.; Meissner, W. G. Multiple System Atrophy - 536 State of the Art. Curr. Neurol. Neurosci. Rep. 2017, 17, 41.
(12) Spillantini, M. G.; Schmidt, M. L.; Lee, V. M.-Y.; Trojanowski, 538 J. Q.; Jakes, R.; Goedert, M. α-Synuclein in Lewy bodies. Nature 539 1997, 388, 839-840.
(13) Kim, W. S.; Kågedal, K.; Halliday, G. M. Alpha-Synuclein 541 Biology in Lewy Body Diseases. Alzheimer's Research \& Therapy 2014, 542 6, 73.
(14) Simon, C.; Soga, T.; Okano, H. J.; Parhar, I. α-Synuclein- 544 mediated neurodegeneration in Dementia with Lewy bodies: the 545 pathobiology of a paradox. Cell Biosci. 2021, 11, 196.
(15) Marotta, N. P.; Ara, J.; Uemura, N.; Lougee, M. G.; Meymand, 547 E. S.; Zhang, B.; Petersson, E. J.; Trojanowski, J. Q.; Lee, V. M.-Y. 548 Alpha-Synuclein from Patient Lewy Bodies Exhibits Distinct 549 Pathological Activity That Can Be Propagated in Vitro. Acta 550 Neuropathol. Commun. 2021, 9, 188.
(16) Ayers, J. I.; Lee, J.; Monteiro, O.; Woerman, A. L.; Lazar, A. A.; 552 Condello, C.; Paras, N. A.; Prusiner, S. B. Different α-synuclein prion 553 strains cause dementia with Lewy bodies and multiple system atrophy. 554 Proc. Natl. Acad. Sci. U.S.A. 2022, 119, No. e2113489119.
(17) George, J. M. The Synucleins. Genome Biol. 2002, 3, 556 REVIEWS3002.
(18) Goedert, M.; Jakes, R.; Spillantini, M. G. The Synucleino- 558 pathies: Twenty Years On. JPD 2017, 7, S51-S69.
(19) Esteban-Martín, S.; Silvestre-Ryan, J.; Bertoncini, C. W.; 560 Salvatella, X. Identification of Fibril-Like Tertiary Contacts in Soluble 561 Monomeric α-Synuclein. Biophys. J. 2013, 105, 1192-1198. 562
(20) Vilar, M.; Chou, H.-T.; Lührs, T.; Maji, S. K.; Riek-Loher, D.; 563 Verel, R.; Manning, G.; Stahlberg, H.; Riek, R. The fold of α-synuclein 564 fibrils. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8637-8642. 565
(21) Cremades, N.; Cohen, S. I. A.; Deas, E.; Abramov, A. Y.; Chen, 566 A. Y.; Orte, A.; Sandal, M.; Clarke, R. W.; Dunne, P.; Aprile, F. A.; 567 Bertoncini, C. W.; Wood, N. W.; Knowles, T. P. J.; Dobson, C. M.; 568 Klenerman, D. Direct Observation of the Interconversion of Normal 569 and Toxic Forms of α-Synuclein. Cell 2012, 149, 1048-1059. 570
(22) Lorenzen, N.; Lemminger, L.; Pedersen, J. N.; Nielsen, S. B.; 571 Otzen, D. E. The N-terminus of α-synuclein is essential for both 572 monomeric and oligomeric interactions with membranes. FEBS Lett. 573 2014, 588, 497-502.
(23) Guerrero-Ferreira, R.; Taylor, N. M.; Mona, D.; Ringler, P.; Lauer, M. E.; Riek, R.; Britschgi, M.; Stahlberg, H. Cryo-EM Structure 577 of Alpha-Synuclein Fibrils. eLife 2018, 7, No. e36402.
578 (24) Guerrero-Ferreira, R.; Kovacik, L.; Ni, D.; Stahlberg, H. New 579 Insights on the Structure of Alpha-Synuclein Fibrils Using Cryo580 Electron Microscopy. Curr. Opin. Neurobiol. 2020, 61, 89-95.
581 (25) Mandal, P. K.; Pettegrew, J. W.; Masliah, E.; Hamilton, R. L.; 582 Mandal, R. Interaction between $\mathrm{A} \beta$ Peptide and α Synuclein: 583 Molecular Mechanisms in Overlapping Pathology of Alzheimer's 584 and Parkinson's in Dementia with Lewy Body Disease. Neurochem. 585 Res. 2006, 31, 1153-1162.
586 (26) Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, 587 H. E. Amyloid Beta: Structure, Biology and Structure-Based 588 Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 12055891235.

590 (27) Uéda, K.; Fukushima, H.; Masliah, E.; Xia, Y.; Iwai, A.; 591 Yoshimoto, M.; Otero, D. A.; Kondo, J.; Ihara, Y.; Saitoh, T. 592 Molecular Cloning of CDNA Encoding an Unrecognized Component 593 of Amyloid in Alzheimer Disease. Proc. Natl. Acad. Sci. U.S.A. 1993, 594 90, 11282-11286.
595 (28) Touchman, J. W.; Dehejia, A.; Chiba-Falek, O.; Cabin, D. E.; 596 Schwartz, J. R.; Orrison, B. M.; Polymeropoulos, M. H.; Nussbaum, R. 597 L. Human and Mouse α-Synuclein Genes: Comparative Genomic 598 Sequence Analysis and Identification of a Novel Gene Regulatory 599 Element. Genome Res. 2001, 11, 78.
600 (29) Gitler, A. D.; Chesi, A.; Geddie, M. L.; Strathearn, K. E.; 601 Hamamichi, S.; Hill, K. J.; Caldwell, K. A.; Caldwell, G. A.; Cooper, A. 602 A.; Rochet, J.-C.; Lindquist, S. α-Synuclein is part of a diverse and 603 highly conserved interaction network that includes PARK9 and 604 manganese toxicity. Nat. Genet. 2009, 41, 308-315.
605 (30) Xia, K.; Hagan, J. T.; Fu, L.; Sheetz, B. S.; Bhattacharya, S.; 606 Zhang, F.; Dwyer, J. R.; Linhardt, R. J. Synthetic Heparan Sulfate 607 Standards and Machine Learning Facilitate the Development of Solid608 State Nanopore Analysis. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, 609 No. e2022806118.
610 (31) Uversky, V. N.; Fink, A. L. Amino acid determinants of α 611 synuclein aggregation: putting together pieces of the puzzle. FEBS 612 Lett. 2002, 522, 9-13.
613 (32) Polymeropoulos, M. H.; Lavedan, C.; Leroy, E.; Ide, S. E.; 614 Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; 615 Stenroos, E. S.; Chandrasekharappa, S.; Athanassiadou, A.; 616 Papapetropoulos, T.; Johnson, W. G.; Lazzarini, A. M.; Duvoisin, R. 617 C.; Di Iorio, G.; Golbe, L. I.; Nussbaum, R. L. Mutation in the α 618 Synuclein Gene Identified in Families with Parkinson's Disease. 619 Science 1997, 276, 2045-2047.
620 (33) Ki, C.-S.; Stavrou, E.; Davanos, N.; Lee, W.; Chung, E.; Kim, J.621 Y.; Athanassiadou, A. The Ala53Thr mutation in the α-synuclein gene 622 in a Korean family with Parkinson disease. Clin. Genet. 2007, 71, 471623473.

624 (34) Puschmann, A.; Ross, O. A.; Vilariño-Güell, C.; Lincoln, S. J.; 625 Kachergus, J. M.; Cobb, S. A.; Lindquist, S. G.; Nielsen, J. E.; 626 Wszolek, Z. K.; Farrer, M.; Widner, H.; van Westen, D.; Hägerström, 627 D.; Markopoulou, K.; Chase, B. A.; Nilsson, K.; Reimer, J.; Nilsson, C. 628 A Swedish family with de novo α-synuclein A53T mutation: Evidence 629 for early cortical dysfunction. Parkinsonism Relat. Disorders 2009, 15, 630 627-632.
631 (35) Pasanen, P.; Myllykangas, L.; Siitonen, M.; Raunio, A.; 632 Kaakkola, S.; Lyytinen, J.; Tienari, P. J.; Pöyhönen, M.; Paetau, A. 633 A novel α-synuclein mutation A53E associated with atypical multiple 634 system atrophy and Parkinson's disease-type pathology. Neurobiol. 635 Aging 2014, 35, 2180.e1-2180.e5.
636 (36) Krüger, R.; Kuhn, W.; Müller, T.; Woitalla, D.; Graeber, M.; 637 Kösel, S.; Przuntek, H.; Epplen, J. T.; Schols, L.; Riess, O. AlaSOPro 638 mutation in the gene encoding α-synuclein in Parkinson's disease. 639 Nat. Genet. 1998, 18, 106-108.
640 (37) Zarranz, J. J.; Alegre, J.; Gómez-Esteban, J. C.; Lezcano, E.; 641 Ros, R.; Ampuero, I.; Vidal, L.; Hoenicka, J.; Rodriguez, O.; Atarés, 642 B.; Llorens, V.; Tortosa, E. G.; del Ser, T.; Muñoz, D. G.; de Yebenes, 643 J . G. The new mutation, E46K, of α-synuclein causes parkinson and

Lewy body dementia: New α-Synuclein Gene Mutation. Ann. Neurol. 644 2004, 55, 164-173. 645
(38) Afshar Bakshloo, M.; Kasianowicz, J. J.; Pastoriza-Gallego, M.; 646 Mathé, J.; Daniel, R.; Piguet, F.; Oukhaled, A. Nanopore-Based 647 Protein Identification. J. Am. Chem. Soc. 2022, 144, 2716-2725. 648
(39) Bakshloo, M. A.; Yahiaoui, S.; Piguet, F.; Pastoriza-Gallego, M.; 649 Daniel, R.; Mathé, J.; Kasianowicz, J. J.; Oukhaled, A. Polypeptide 650 Analysis for Nanopore-Based Protein Identification. Nano Res. 2022, 651 15, 9831-9842.
(40) Hohmann, L.; Sherwood, C.; Eastham, A.; Peterson, A.; Eng, J. 653 K.; Eddes, J. S.; Shteynberg, D.; Martin, D. B. Proteomic Analyses 654 Using Grifola Frondosa Metalloendoprotease Lys-N. J. Proteome Res. 655 2009, 8, 1415-1422.
(41) Tsiatsiani, L.; Heck, A. J. R. Proteomics beyond Trypsin. FEBS 657 J. 2015, 282, 2612-2626.
(42) Zhao, M.; Hao, B.; Li, H.; Cai, M.; Xie, J.; Liu, H.; Tan, M.; 659 Zhai, L.; Yu, Q. Peptidyl-Lys Metalloendopeptidase (Lys-N) Purified 660 from Dry Fruit of Grifola Frondosa Demonstrates "Mirror"Digestion 661 Property with Lysyl Endopeptidase (Lys-C). Rapid Commun. Mass 662 Spectrom. 2020, 34, No. e8573.
(43) Bezrukov, S. M.; Kasianowicz, J. J. Current Noise Reveals 664 Protonation Kinetics and Number of Ionizable Sites in an Open 665 Protein Ion Channel. Phys. Rev. Lett. 1993, 70, 2352-2355. 666
(44) Kasianowicz, J. J.; Bezrukov, S. M. Protonation Dynamics of the 667 Alpha-Toxin Ion Channel from Spectral Analysis of PH-Dependent 668 Current Fluctuations. Biophys. J. 1995, 69, 94-105.
(45) Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. 670 Characterization of Individual Polynucleotide Molecules Using a 671 Membrane Channel. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 13770-672 13773.
(46) Robertson, J. W. F.; Rodrigues, C. G.; Stanford, V. M.; 674 Rubinson, K. A.; Krasilnikov, O. V.; Kasianowicz, J. J. Single-Molecule 675 Mass Spectrometry in Solution Using a Solitary Nanopore. Proc. Natl. 676 Acad. Sci. U.S.A. 2007, 104, 8207-8211.
(47) Kasianowicz, J. J.; Robertson, J. W. F.; Chan, E. R.; Reiner, J. E.; 678 Stanford, V. M. Nanoscopic Porous Sensors. Annual Rev. Anal. Chem. 679 2008, 1, 737-766.
(48) Howorka, S.; Siwy, Z. Nanopore Analytics: Sensing of Single 681 Molecules. Chem. Soc. Rev. 2009, 38, 2360.
(49) Reiner, J. E.; Kasianowicz, J. J.; Nablo, B. J.; Robertson, J. W. F. 683 Theory for Polymer Analysis Using Nanopore-Based Single-Molecule 684 Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 12080-685 12085.
(50) Schibel, A. E. P.; An, N.; Jin, Q.; Fleming, A. M.; Burrows, C. J.; 687 White, H. S. Nanopore Detection of 8-Oxo-7,8-Dihydro-2'-Deoxy- 688 guanosine in Immobilized Single-Stranded DNA via Adduct 689 Formation to the DNA Damage Site. J. Am. Chem. Soc. 2010, 132, 690 17992-17995.
(51) Derrington, I. M.; Butler, T. Z.; Collins, M. D.; Manrao, E.; 692 Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Nanopore DNA 693 Sequencing with MspA. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 694 16060-16065.

695
(52) Manrao, E. A.; Derrington, I. M.; Laszlo, A. H.; Langford, K. 696 W.; Hopper, M. K.; Gillgren, N.; Pavlenok, M.; Niederweis, M.; 697 Gundlach, J. H. Reading DNA at Single-Nucleotide Resolution with a 698 Mutant MspA Nanopore and Phi29 DNA Polymerase. Nat. 699 Biotechnol. 2012, 30, 349-353.

700
(53) Baaken, G.; Ankri, N.; Schuler, A.-K.; Rühe, J.; Behrends, J. C. 701 Nanopore-Based Single-Molecule Mass Spectrometry on a Lipid 702 Membrane Microarray. ACS Nano 2011, 5, 8080-8088.
(54) Kumar, S.; Tao, C.; Chien, M.; Hellner, B.; Balijepalli, A.; 704 Robertson, J. W. F.; Li, Z.; Russo, J. J.; Reiner, J. E.; Kasianowicz, J. J.; 705 Ju, J. PEG-Labeled Nucleotides and Nanopore Detection for Single 706 Molecule DNASequencing by Synthesis. Sci. Rep. 2012, 2, 684.
(55) Baaken, G.; Halimeh, I.; Bacri, L.; Pelta, J.; Oukhaled, A.; 708 Behrends, J. C. High-Resolution Size-Discrimination of Single 709 Nonionic Synthetic Polymers with a Highly Charged Biological 710 Nanopore. ACS Nano 2015, 9, 6443-6449.
(56) Fuller, C. W.; Kumar, S.; Porel, M.; Chien, M.; Bibillo, A.; 713 714

735 (61) Lucas, F. L. R.; Versloot, R. C. A.; Yakovlieva, L.; Walvoort, M. 736 T. C.; Maglia, G. Protein Identification by Nanopore Peptide 737 Profiling. Nat. Commun. 2021, 12, 5795.
(62) Parker, M. W.; Buckley, J. T.; Postma, J. P. M.; Tucker, A. D.; 739 Leonard, K.; Pattus, F.; Tsernoglou, D. Structure of the Aeromonas 740 toxin proaerolysin in its water-soluble and membrane-channel states. 741 Nature 1994, 367, 292-295.
742 (63) Degiacomi, M. T.; Iacovache, I.; Pernot, L.; Chami, M.;
\qquad

751 (65) Levine, P. M.; Galesic, A.; Balana, A. T.; Mahul-Mellier, A.-L.; 752 Navarro, M. X.; De Leon, C. A.; Lashuel, H. A.; Pratt, M. R. α 753 Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing 754 certain residues as potential inhibitors of Parkinson's disease. Proc. 755 Natl. Acad. Sci. U.S.A. 2019, 116, 1511-1519.
756 (66) Wang, Y.; Shi, M.; Chung, K. A.; Zabetian, C. P.; Leverenz, J. 757 B.; Berg, D.; Srulijes, K.; Trojanowski, J. Q.; Lee, V. M.-Y.; Siderowf, 758 A. D.; Hurtig, H.; Litvan, I.; Schiess, M. C.; Peskind, E. R.; Masuda, 759 M.; Hasegawa, M.; Lin, X.; Pan, C.; Galasko, D.; Goldstein, D. S.; 760 Jensen, P. H.; Yang, H.; Cain, K. C.; Zhang, J. Phosphorylated α 761 Synuclein in Parkinson's Disease. Sci. Transl. Med. 2012, 4, $121 r a 20$. 762 (67) Anderson, J. P.; Walker, D. E.; Goldstein, J. M.; de Laat, R.; 763 Banducci, K.; Caccavello, R. J.; Barbour, R.; Huang, J.; Kling, K.; Lee, 764 M.; Diep, L.; Keim, P. S.; Shen, X.; Chataway, T.; Schlossmacher, M. 765 G.; Seubert, P.; Schenk, D.; Sinha, S.; Gai, W. P.; Chilcote, T. J. 766 Phosphorylation of Ser-129 Is the Dominant Pathological Mod767 ification of α-Synuclein in Familial and Sporadic Lewy Body Disease. 768 J. Biol. Chem. 2006, 281, 29739-29752.
769 (68) Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Manivet, P.; 770 Pelta, J.; Oukhaled, A. Identification of Single Amino Acid Differences 771 in Uniformly Charged Homopolymeric Peptides with Aerolysin 772 Nanopore. Nat. Commun. 2018, 9, 966.
773 (69) Ouldali, H.; Sarthak, K.; Ensslen, T.; Piguet, F.; Manivet, P.; 774 Pelta, J.; Behrends, J. C.; Aksimentiev, A.; Oukhaled, A. Electrical 775 Recognition of the Twenty Proteinogenic Amino Acids Using an 776 Aerolysin Nanopore. Nat. Biotechnol. 2020, 38, 176-181.
777 (70) Rosen, C. B.; Rodriguez-Larrea, D.; Bayley, H. Single-Molecule 778 Site-Specific Detection of Protein Phosphorylation with a Nanopore. 779 Nat. Biotechnol. 2014, 32, 179-181.
(71) Restrepo-Pérez, L.; Huang, G.; Bohländer, P. R.; Worp, N.; 780 Eelkema, R.; Maglia, G.; Joo, C.; Dekker, C. Resolving Chemical 781 Modifications to a Single Amino Acid within a Peptide Using a 782 Biological Nanopore. ACS Nano 2019, 13, 13668-13676.
(72) Li, S.; Wu, X.; Li, M.; Liu, S.; Ying, Y.; Long, Y. T232K/K238Q 784 Aerolysin Nanopore for Mapping Adjacent Phosphorylation Sites of a 785 Single Tau Peptide. Small Methods 2020, 4, 2000014.
(73) Ensslen, T.; Sarthak, K.; Aksimentiev, A.; Behrends, J. C. 787 Resolving Isomeric Posttranslational Modifications Using a Biological 788 Nanopore as a Sensor of Molecular Shape. J. Am. Chem. Soc. 2022, 789 144, 16060-16068.
(74) Porzio, M. A.; Pearson, A. M. Isolation of an Extracellular 791 Neutral Proteinase from Pseudomonas Fragi. Biochim. Biophys. Acta 792 Enzymol. 1975, 384, 235-241.
(75) Noreau, J.; Drapeau, G. R. Isolation and Properties of the 794 Protease from the Wild-Type and Mutant Strains of Pseudomonas 795 Fragi. J. Bacteriol. 1979, 140, 911-916.
(76) Drapeau, G. R. Substrate Specificity of a Proteolytic Enzyme 797 Isolated from a Mutant of Pseudomonas Fragi. J. Biol. Chem. 1980, 798 255, 839-840.
(77) Hagmann, M.-L.; Geuss, U.; Fischer, S.; Kresse, G.-B. [51] 800 Peptidyl-Asp Metalloendopeptidase. Methods in Enzymology; Academ- 801 ic Press, 1995; Vol. 248, pp 782-787. 802
(78) Kasianowicz, J. J.; Henrickson, S. E.; Weetall, H. H.; Robertson, 803 B. Simultaneous Multianalyte Detection with a Nanometer-Scale 804 Pore. Anal. Chem. 2001, 73, 2268-2272.

805
(79) Rodrigues, C. G.; Machado, D. C.; Chevtchenko, S. F.; 806 Krasilnikov, O. V. Mechanism of KCl Enhancement in Detection of 807 Nonionic Polymers by Nanopore Sensors. Biophys. J. 2008, 95, 5186-808 5192.
(80) Ramsey, J. D.; Jacobson, S. C.; Culbertson, C. T.; Ramsey, J. M. 810 High-Efficiency, Two-Dimensional Separations of Protein Digests on 811 Microfluidic Devices. Anal. Chem. 2003, 75, 3758-3764.
(81) Foote, R. S.; Khandurina, J.; Jacobson, S. C.; Ramsey, J. M. 813 Preconcentration of Proteins on Microfluidic Devices Using Porous 814 Silica Membranes. Anal. Chem. 2005, 77, 57-63.
(82) Afshar Bakshloo, M.; Yahiaoui, S.; Ouldali, H.; Pastoriza- 816 Gallego, M.; Piguet, F.; Oukhaled, A. On Possible Trypsin-induced 817 Biases in Peptides Analysis with Aerolysin Nanopore. Proteomics 818 2022, 22, 2100056.

[^0]: Received: March 11, 2023
 Accepted: May 18, 2023

[^1]: ${ }^{a}$ The polypeptide abbreviations, which are specific to this study, are color-coded to aid interpretation of the electrophysiology data illustrated in Figure 3.

