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ARTICLE

Hearing as adaptive cascaded envelope
interpolation
Etienne Thoret 1,2✉, Sølvi Ystad 3 & Richard Kronland-Martinet 3

The human auditory system is designed to capture and encode sounds from our surroundings

and conspecifics. However, the precise mechanisms by which it adaptively extracts the most

important spectro-temporal information from sounds are still not fully understood. Previous

auditory models have explained sound encoding at the cochlear level using static filter banks,

but this vision is incompatible with the nonlinear and adaptive properties of the auditory

system. Here we propose an approach that considers the cochlear processes as envelope

interpolations inspired by cochlear physiology. It unifies linear and nonlinear adaptive

behaviors into a single comprehensive framework that provides a data-driven understanding

of auditory coding. It allows simulating a broad range of psychophysical phenomena from

virtual pitches and combination tones to consonance and dissonance of harmonic sounds. It

further predicts the properties of the cochlear filters such as frequency selectivity. Here we

propose a possible link between the parameters of the model and the density of hair cells on

the basilar membrane. Cascaded Envelope Interpolation may lead to improvements in sound

processing for hearing aids by providing a non-linear, data-driven, way to preprocessing of

acoustic signals consistent with peripheral processes.
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What and how do we hear? Sound waves are trans-
formed into electrical signals through the interactions
between the basilar membrane and the inner and

outer hair cells, a fragile process that occurs at the first stages of
the auditory system. Modeling these hearing processes through
sound signal-processing models is still a timely question, in
particular for curing hearing deafness through cochlear implant
technologies. Cochlear implants indeed still fail to accurately
recreate sounds with high fidelity due to limitations in replicating
the mechanical-to-electrical transduction that occurs at the
cochlear level.

Two opposite theories have influenced the development of
signal-processing models of cochlear processes. The theories in
question had their origin as models for pitch perception and have
a well-established history within the discipline. On the one hand,
Seebeck1 put forth a temporal coding approach and showed that
the pitch of a complex tone is dependent on repeated temporal
signal patterns. On the other hand, Helmholtz2 viewed the ear as
a frequency analyzer implemented through the mechanical
properties of the basilar membrane that processes the spectral
components of sounds, known as the place coding theory. This
theory, which was later supported by von Békesy’s work on the
physiology of hearing3, has remained dominant and continues to
influence the design of signal representations used in neuro-
prosthetic technologies such as cochlear implants.

According to this theory, the inner ear maps sound frequencies
to specific places on the basilar membrane, leading to models
based on linear spectro-temporal filter banks and Fourier
analysis4,5. Despite its widespread agreement, this model-based
view is still challenged by unanswered questions, conflicting
views, and incompatible observations which still lead to vivid
debates6. For instance, the sensitivity of the ear to sound signals
has traditionally been measured using pure tones, resulting in
equal-loudness curves7 with a maximum sensitivity of around
4000 Hz. However, when the sound level of white noise, covering
the whole frequency range, is reduced, neither its timbre nor its
pitch changes8, indicating the limitations of considering the ear as
a -static- linear Fourier analyzer. These examples demonstrate the
ongoing challenges and limitations in fully understanding and
modeling cochlear processes.

Another phenomenon that is incompatible with the con-
sideration of the cochlea as linear resonators are the perception of
phantom sounds9,10, such as the missing fundamental11,12 and
combination tones13,14. Although these phenomena have been
thoroughly studied2, their computational underpinnings remain
unclear. Models based on linear Fourier analysis have incorpo-
rated posterior rectifications15–18, but do not naturally account
for these nonlinear phenomena. Whether combination tones and
the missing fundamentals are caused by the same underlying
phenomenon is still a source of debate19, and no consensus has
been reached on the origins of these nonlinearities in the auditory
system. When no plausible interpretations are found at the per-
ipheral processing level, such phenomena are often attributed to
higher cortical processing and modeled using deep-neural
networks20. There is currently no agreed-upon framework for
explaining the generation of these nonlinearities in the auditory
system.

What are we missing in the ear’s sound processing? Model-
based frequency decomposition, inspired by the dominant place
coding theory, is not necessary to accurately simulate complex
auditory tasks21. The auditory neural code extracted at the
cochlear level is adaptively optimized to fit the acoustical struc-
ture of natural sounds, such as speech22–24. Temporal coding,
based on timing cues also appears to play a crucial role after
cochlear processes. Studies have demonstrated that amplitude
modulations, driven by temporal coding, provide important

acoustic cues both in the cochlea and auditory nerve25–29. These
findings suggest that both temporal and place coding are present
at the cochlear level in our hearing system, and are effective for
different frequency domains. However, there is still a lack of a
unified model that can reconcile these seemingly opposing
behaviors. Some models have attempted to compensate for this
discrepancy by adding nonlinearities to their spectral models30,
but these approaches do not provide an intrinsically unified
explanation of the auditory processes.

In this paper, we tackle the question of modeling how the
auditory system processes sound at the cochlear level. Rather
than focusing on the resonances of the basilar membrane that
inspired Fourier-based decompositions, we examine the sam-
pling occurring at the level of the stereocilia, positioned at the
top of the inner hair cell bundles. These stereocilia move in
response to the endolymph motions, the fluid that fills the
cochlea and which conveys vibrations, herewith performing
interpolations of the incoming sound signal. To model the
underlying cochlear processes, we propose to place envelope
interpolation at the center of the sound coding. This computa-
tional model is inspired by the empirical model decomposition
(EMD)31,32 and interpolates a given signal based on the upper
and lower signal envelopes. Upper and lower envelopes are
envelopes of the signal obtained by interpolating respectively the
maxima and minima of a signal. EMD offers a promising solu-
tion for methods that take into account hearing specificities in
the case of noise33, frequency selectivity10,31, and source
separation34. Our framework, therefore, provides an imple-
mentation that is compatible with a range of auditory adap-
tive and data-driven temporal coding phenomena. It can
also account for nonlinear hearing behaviors. Furthermore, this
model accounts for phenomena such as pure tone masking in
noise35, which is a canonical example of the cocktail party effect.
It also provides a plausible explanation for adaptive coding23 that
occurs at the cochlear level. This framework is coherent with
traditional cochlear filter properties and behaves as a constant-Q
transform that takes into account the frequency selectivity of the
ear. This also drives the perception of roughness, consonance,
and dissonance of harmonic sounds12.

This study embraces the challenge of modeling the human
hearing sensory system. One issue of computational modeling is
to accurately define the level of biological plausibility a model can
afford and what it exactly accounts for. The relationship between
biological observations and modeling is dynamic, with biological
knowledge being influenced by the way we observe a phenom-
enon and modelers using functional interpretations of biological
observations to inform their models. David Marr36 proposed to
categorize biological models into three levels—computational,
algorithmic, and physical—to differentiate the relationship
between the model from the underlying biological mechanism
and from its computational function. Here, in the case of hearing,
signal processing representations are used and can be placed at an
intermediate level between the algorithmic and physical levels of
Marr’s framework. These signal representations provide a formal
description of the encoding of sounds in the auditory pathway
from the cochlea to the primary auditory cortex37 and more
recently up to cortical areas based on deep-neural network
activations38–43. They are directly inspired by biophysical phe-
nomena and measurement paradigms, such as auditory spectro-
grams that account for critical bandwidths of the basilar
membrane or spectro-temporal modulation models based on
neuronal responses in the auditory nerves and primary auditory
cortex37,44.

In the following sections, we detail the computational basis of
this decomposition and demonstrate how it can be applied to
modeling various psychoacoustic phenomena.
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Cascaded envelope interpolation. Cascaded envelope interpola-
tion (CEI) is a mathematical concept aiming to decompose sig-
nals into a finite set of modes, inspired by the EMD32. EMD
consists of a cascaded process that extracts modes based on
envelope interpolation and that shares striking similarities with
auditory processes. Here, we introduce CEI, a variation of EMD
with only one iteration and a fixed number of modes. This
approach is different from EMD as the extracted mode does not
fulfill the EMD’s mode criteria.

The CEI starts by extracting upper and lower temporal
envelopes from the original signal, averaging them to compute
an interpolative envelope, and subtracting it from the original
signal to get the first mode of the decomposition and a residual
signal corresponding to the difference between the original signal
and the mode. The residual is then used as an input for the next
iteration to extract the next mode and so on until all the modes
have been extracted (see Fig. 1a). This decomposition differs from
the EMD algorithm in that each mode is extracted with only one
interpolative envelope extraction and is not driven by a
convergence threshold. In the framework of David Marr’s theory,
CEI is proposed as the algorithm that accounts for sound coding
at the cochlear level.

It must also be noted that high-frequency modes are computed
first and that higher-order modes correspond to lower frequen-
cies. This behavior aligns with what is known about cochlear
processes where the highest frequencies are extracted near the
cochlear base while the lowest frequencies are extracted near the
apex. The number of modes was arbitrarily fixed at 6 for each
studied phenomenon as the energy of modes higher than 6 was
close to 0.

CEI also differs from traditional envelope extraction, which
often relies on the Hilbert transform of a signal, and which results
in symmetric upper and lower envelopes. Conversely, CEI
extracts upper and lower envelopes through a numerical process
that involves finding the maxima and minima of the signal and
averaging between them. This leads to an interpolative envelope
that is not perfectly symmetric.

It is also important to note that the CEI is fully data-driven, as
the maxima and minima depend solely on the signal. In order to
compare this signal approach with traditional time-frequency
representations, the power spectrum density of each mode can be
computed and then summed up to provide a short-term Fourier
transform (STFT) of the CEIs modes. It should be noted that this
spectral analysis representation of CEI modes does not imply that
a Fourier transform is performed in the auditory system. We only
use it as a mathematical tool to compare the CEI with common
signal representations. By considering that each mode is
processed separately, its spectral content can be analyzed and
used to compare with psychoacoustics results.

The CEI decomposition intrinsically differs from Fourier or
Wavelet transforms as it is data-driven. Unlike traditional fixed
dictionary transforms, CEI decomposes signals based on their
own structure, without any prior assumption on the basis
functions of the dictionary. For example, in the case of a signal
composed of a chirp, a pure tone, and a modulated pure tone, CEI
naturally separates each component (as shown in Fig. 1b), while
classical models using fixed bandpass filter banks or Fourier-
based decompositions fail to provide such a signal specific
decomposition. In the traditional framework, source separation is
achieved from complex models such as convolutional deep-neural
networks fed by Fourier-based representations such as
spectrograms.

Based on these observations and phenomenological considera-
tions, we here challenge the ability of CEI to account jointly for
different fundamental auditory phenomena: nonlinearities lead-
ing to phantom tone perception, frequency selectivity of the

cochlear filter bank at the origin of roughness, consonance, and
dissonance, and the data-driven behavior considering the sound
processing at the cochlear level as an adaptive filter bank which
can be revealed by frequency masking experiments.

Results
Phantom sounds and virtual pitches. A vivid debate in hearing
sciences lies in the origin of phantom sounds and virtual pitches
which corresponds to situations where frequency components are
perceived although they are not present in the Fourier spectrum9.
These sounds, also known as combination tones (Fig. 2d), are
created within the auditory system. They generally occur for
signals composed of two pure tones with close frequencies, and
have a lower frequency than the initial sounds13,14. Another close
situation, known as the missing fundamental perception
(Fig. 2a–c), occurs when the low frequencies of a harmonic signal
are missing, but are still heard. This phenomenon can be
observed when listening to the speaker of an old cellphone with a
narrow frequency bandwidth. The fundamental frequency which
is not physically present is virtually perceived and created within
the auditory system allowing to perceive speech prosody. How
many frequencies are created within the auditory system remains
an open and still debated question. However, it is related to an
essential non-linear mechanism that for instance plays an
important role for communication in noisy environments to
restitute masked frequency components.

Here we observe that CEI naturally produces these non-linear
perceptual phenomena. The fundamental frequency of a speech
sound is naturally reconstructed when low frequencies are
removed by filtering (Fig. 2a, b). Similarly, CEI reproduces the
most canonical combination tones which appear when two
sinusoids of frequencies f1 and f2 are played at the same time
(f1 < f2), and a third component at a frequency 2f1–f2 is perceived
(Fig. 2d, e and Methods). This phenomenon also appears in
music where the combination of harmonic tones with distinct
pitches are played at the same time, leading to a third perceived
pitch (Fig. 2c). Combination tones were used by the baroque
music composer Giuseppe Tartini45 (Fig. 2f). These are striking
demonstrations of the nonlinear behavior of hearing. While a
posteriori rectifications are used to account for such behavior15,
we here observe that CEI naturally reveals these intra-aural
generated components (Fig. 2a–e). Such a non-linearity is a direct
consequence of the interpolation which becomes visible in the
CEI spectrum. The fact that the CEI spectrum reveals
components that are not present in the Fourier spectrum and
that fit with those actually perceived suggests that this
nonlinearity could occur directly at the hair-cell level as suggested
by physiological observations9. Further physiological measure-
ments are obviously necessary to confirm this claim and to make
the CEI decomposition biologically plausible. This striking
similarity suggests that hair-cell bundle motions, driven by the
fluid motion triggering the spikes at the input of the auditory
nerve, could be at the origin of such virtual sounds.

CEI as an adaptive cochlear filter bank. To satisfactorily serve as
a candidate model for cochlear processes, CEI should also be
compatible with the processing of the full set of sounds such as
broadband noise, sound textures, and their mixing with speech
and harmonic sounds such as music. Traditionally, the cochlea is
believed to perform a constant-Q transform leading to repre-
sentations such as auditory spectrograms37. In addition, cochlear
processes are malleable and naturally adapt to the spectro-
temporal content of incoming sounds23. We here tested the
compatibility of CEI when considering the cochlea as an adaptive
filter bank. It is indeed remarkable that the spectral shape of the
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CEIs filter bank naturally adapts to the spectral content of the
analyzed signal (Fig. 3a–c). We therefore here inquire whether
CEI behaves as an adaptive filter bank whose properties fit with
the equivalent rectangular bandwidth (ERB) model, the gold
standard law accounting for the ears’ bandpass processing.

Ears nonlinearly decompose sounds onto a code optimized for
speech processing compatible with cochlear filters46,47. This

behavior is often modeled as a band pass filter bank whose
properties, i.e., central frequency and bandwidth are closely
linked and follow a nearly linear relationship. This filter bank is
adaptive which means that the filters automatically adapt their
bandwidth according to the spectral content of a sound. Here we
observe that CEI strikingly follows such an adaptive behavior
with the same frequency bandwidth dependence as traditional
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cochlear filters46,47. We tested this by fitting a linear filter bank
equivalent to CEI when processing a large database of speech
sounds. This allowed us to compute the equivalent center
frequencies and bandwidths for each CEI’s mode considered as
the result of a band-pass filter on the input signal (see Fig. 3d).
Strikingly, the relationship between the center frequency and the
bandwidth was compatible with psychoacoustics models based on
the ERB. Such an adaptive behavior differs from current model-
driven constant-Q transforms that consider the cochlea as a fixed
band-pass filter bank. This makes it potentially compatible with
adaptive efficient coding22,23. It is striking that CEI, like the
auditory system, naturally adapts to the spectral content of a
sound. CEI, therefore, opens a door to a computational basis for

the acoustical niches that may drive the co-adaptation between
acoustic environments and the communications abilities of
species. This indeed suggests that the auditory systems of living
beings are based on an adaptive sensory coding, tuned to the
communication signals of their conspecifics and to the environ-
ment, rather than a fixed model-driven filter bank.

Frequency selectivity. One other property of the cochlea is its
ability to separate meaningful signals, often harmonic, in a
mixture of noise with concurrent harmonic sounds. This sensory
preprocessing is fundamental to perceiving speech in noise and is
often known as frequency selectivity. This has historically been
studied in canonical situations with pure tones masked by noisy

Fig. 1 Cascaded envelope interpolation. a The algorithm. The signal is analyzed through a finite iterative process. Local maxima and minima are first
identified. Interpolative envelopes are further obtained by interpolators (here we used cubic spline) providing the upper envelope (in red) and the lower
envelope (in yellow). The average between the two envelopes, the so-called interpolative envelope (in blue) is then obtained and subtracted from the
original signal. The process is then repeated for a given number of modes. For each mode, the spectrum can be computed and then summed in order to
compute the CEI’s spectrum. This analysis can be done in the short term in order to compute the short-term CEI spectrum or spectrogram. These spectral
representations are useful for comparison with Fourier representations. b Separation of tonal signal mixtures. A mixture signal (first row) composed of a
frequency-modulated sinusoid (x1) and a chirp (x2) is analyzed with CEI. The two first modes are displayed (second row). To investigate the spectral
contents of the modes, the short-term Fourier transform (third row) of each mode is then computed and summed to provide a representation of the
combined spectral contents of the extracted modes. It is noticeable that CEI naturally extracts each signal component x1 and x2 separately in each mode.

Fig. 2 Cascaded envelope interpolation accounts for nonlinear phenomena. Perception of the missing fundamental.Short-term Fourier spectrum of a
speech signal without frequencies below 300 Hz (a) and short-term cascaded envelope interpolation spectrum (b). The figure reveals that CEI
reconstructs the fundamental frequency just like the ear. c The Fourier spectrum (in red) and the spectrum of the cascaded envelope decomposition (in
blue) for three synthetic pure tones. While the Fourier spectrum only shows the three components, the cascaded envelope decomposition reveals the
missing spectral components which correspond to a signal with a fundamental frequency of 400 Hz which matches the perceived frequency. This
illustrates how the CEI naturally accounts for virtual pitches while the Fourier spectrum does not. Combination tones. d One example of combination tones.
Two pure tones of frequencies f1 and f2 lead to the perception of a third one of frequencies 2f1–f2. While the Fourier spectrum does not reveal this phantom
sound, the CEI spectrum has energy at this frequency. e Correspondence between the theoretical cubic combination tone frequency and the one predicted
by CEI for 70 pairs of pure tones, see Methods for details. f Tartini sound. The Fourier spectrum (in red) and the spectrum of the cascaded envelope
decomposition (in blue) of a combination of two synthetic harmonic sounds with fundamental frequencies 400Hz and 533.33 Hz, the perfect fourth. While
the Fourier spectrum provides the sum of the individual spectra, the cascaded envelope decomposition reveals components at 133.33 Hz and at 266.66 Hz
which corresponds to the perceived phantom Tartini notes. The perceived pitch at 133.33 Hz corresponds to the difference between the two fundamental
frequencies 533.33 Hz and 400 Hz.
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mixtures35 or by other pure tones48. Participants had to detect a
probe signal in a given mixture in order to fit the bandpass filter
properties. Here we reproduced these two situations in order to
test whether CEI has the same frequency selectivity.

Noise masker. The human ability to detect sinusoids in noise is
characterized by two main aspects: (1) The larger the noise fre-
quency bandwidth the weaker the ability to detect the sinusoid.
(2) The higher the frequency of the probed sinusoid the larger the
bandwidth, also known as the auditory critical bandwidth. More
precisely, above 500 Hz, the critical bandwidth increases linearly
with respect to the logarithm of the sinusoid’s frequency. We here
wanted to test whether CEI reproduces these phenomena. In
Patterson’s masking experiment35 sinusoids of a given frequency
f0 are played back simultaneously with a bandpass-filtered white
noise centered at f0 with a given bandwidth Δf. The noise level is
increased until the subject is unable to detect the sinusoid, and
the corresponding detection threshold is then determined
accordingly. We simulated such an experiment for 5 frequencies
f0 (250 Hz; 500 Hz; 1000 Hz; 1500 Hz; 2000 Hz) and 15 frequency
ratios Δf/f0 between 0 and 1. We applied CEI for different
bandwidths to determine a detection threshold of the sinusoids.
Subjects were replaced by a virtual listener whose responses were
simulated by CEI representations and a detection process. For a
given frequency and a given ratio, the masking threshold was
estimated thanks to an adaptive staircase procedure. CEI repro-
duces the expected behaviors (see Fig. 4). In particular, we fitted
threshold curves similar to known psychophysical tuning curves
obtained in perceptual experiments on humans49. This result
confirms that CEI is compatible with the behavior of cochlea as a
filter bank, interestingly the bandwidth at −3 dB of the corre-
sponding filter is proportional to the central frequency.

Pure tone masker. CEI hence naturally accounts for the frequency
masking of a pure tone in noise. This is particularly important for
the perception of meaningful signals such as speech embedded in
a mixture of background noise. However, frequency masking
appears also in contexts such as music when pure tones are
interacting. In the canonical context of the combination of two

pure tones, these beats lead to a sensation called roughness, which
also relates to the notion of consonance or dissonance related to
the frequency selectivity of the cochlear filter bank. In the speech,
roughness drives the perception of aversiveness50. Formally,
auditory roughness can be described as the perception of very fast
fluctuations in sounds. It is now well-known that for stimuli
composed of two pure tones, i.e., two tones that each have a single
frequency, the sensation of roughness is driven by the ratio
between the frequencies of the components. When the ratio is
close to one, the perception leads to slow beats perceived as one
single signal. When the ratio increases, the perception gives rise to
a rough sensation revealing that the auditory system is unable to
disentangle the two components. When the ratio further
increases and reaches the critical bandwidth, the ears separate
the components, and two frequencies are perceived12. From a

Fig. 3 Cascaded envelope interpolation as an adaptive filter bank. CEI naturally adapts to decompose the sound signal. a One hundred pink noises. b One
hundred pure tones at 100 Hz and 1000 Hz. c A mixture between pink noise and pure tones has been analyzed with CEI. The spectrum of the 100 CEIs has
been averaged. The filtering operated by CEI (dashed black lines) matches with the spectrum of the original signal (solid red line) and naturally adapts to
the signal to be analyzed. d For complex sounds such as speech or environmental noise, the behavior of CEI can be interpreted in terms of equivalent band-
pass filter bank properties (center frequency and bandwidth). CEIs equivalent linear bandpass filter bank (blue dots and black curve) follows the equivalent
rectangular bandwidth (r(410451)= 0.8, p < 10−10) and one-third octave r(410451)= 0.8, p < 10−10) models corresponding to the theoretical bandwidth
models of cochlear filters (yellow and violet curves). In order to give an idea of the bandwidth variability with respect to the center frequency, the black
curve represents the mean and standard deviation on 11 points regularly spaced on the center frequency scale logarithmically sampled. Here we used a
corpus of speech and environmental sounds71. For each sound, the CEI decomposition is first computed and the spectra of the equivalent linear filtering
allowing to compute each mode from the original signal are then computed (see Method for details). The center frequencies and the bandwidths are finally
computed and plotted (blue dots). As a comparison, the 1/3 octave model (in violet) and the ERB (in yellow) are superimposed and are coherent with the
impulse response properties of the CEI equivalent linear bandpass filter bank.

Fig. 4 Masking thresholds of pure tones in noise. Masking thresholds of
sinusoids with respect to the normalized bandwidth Δf/f0 of notched noise.
We report signal-to-noise ratios (SNR) between the sinusoid and the
notched noise that leads to 80% correct responses. For each frequency, the
raw curves have been fitted with 10th-order polynomials. For each of the
five frequencies, we observe that the normalized bandwidths (cutoff at
−3 dB) of the corresponding bandpass filters are almost the same. This
confirms that CEI is compatible with classical knowledge of auditory
frequency masking.
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mathematical point of view, the sum of two pure tones can indeed
be interpreted either as one sinusoid modulated by a slow mod-
ulation whose frequency is driven by the difference between the
two components, or it can be seen as the sum of two components.
Said differently, below a given frequency ratio, a sensation of
roughness is perceived due to the ears’ inability to disentangle the
two pure tones. Here we aimed to test whether CEI behaves as
hearing when decomposing a sum of two pure tones. We simu-
lated situations in which CEI analyzes pairs of sinusoids and
evaluated whether one or two frequencies were detected. When
the two sinusoids are well separated by CEI, the first and the
second mode of the decomposition respectively correspond to the
first and the second sinusoid. But when the separability dimin-
ishes, either the third mode contains energy that can be related to
the sensation of roughness, or the first mode corresponds to a
sinusoid slowly modulated by another one. We here define an
index of separability d allowing us to characterize these three
phenomena: when d= 1, the CEI considers the sum of sinusoids
as one component, when d= 0, the CEI considers that the signal
is composed of two separate sinusoids when d is between 0 and 1,
the CEI is not able to separate between the two pure tones and
beats/roughness appear. Figure 5 shows the value of this separ-
ability index for different frequencies f0, f1, and ratios α with
f1= αf0. We observe that the three behaviors are compatible with
human auditory perception. As for the masking with noise, it is
noticeable that the CEIs separability ability does not depend on
the frequency while it is known that roughness maxima change
with frequencies. This is coherent with the fact that CEI acts as a
constant-Q filter bank in the auditory system. However, one
current limitation of the model is that the frequency selectivity
doesn’t match with the theoretical roughness curves, see Fig. 5a.

An algorithmic way to address this limitation is to consider the
EMD in its original form which includes a supplementary
process, called sifting, which is an iterative process within each
mode of computation (see Methods). However, there is currently
no sound hypothesis on how a sifting process could be done by
cochlear processes, or after. We removed this process by keeping
only 1 iteration for each mode which makes the CEI process more

potentially implementable from a biological point of view by hair
cells stereocilia. On the contrary, an iterative process with a
threshold has no obvious plausible implementation. Nevertheless,
by considering this process, we observe that the number of sifting
iterations controls the frequency selectivity which can be adjusted
to be more or less important according to the lowest frequency f0.
The higher the number of sifting iterations, the tighter the
frequency selectivity and therefore the lower the roughness
maxima (see Fig. 5b). We hereby determined the number of
sifting iterations necessary to fit the index of separability with a
roughness maximum similar to the theoretical curve for different
frequencies f0. We found a logarithmic relationship between the
number of sifting iterations and the frequency f0. Although its
implementation in the cochlea remains very speculative, the
number of iterations necessary to fit with the theoretical
roughness is coherent with the inner hair cell distribution on
the cochlea. This distribution is almost constant from the base to
the apex, but as the frequency tuning varies logarithmically with
respect to the cochlear tonotopy (Fig. 5c)51, the number of inner
hair cells involved per frequency band increases logarithmically
with respect to the cochlear tonotopy. Such a correlation would
suggest a possible link between the number of sifting iterations
and the number of involved hair cells.

Interestingly, it is known that frequency selectivity decreases
with aging because of deficient or damaged hair cells which leads
to sensorineural hearing loss52, especially for high frequencies.
The origin of this larger bandwidth due to hearing loss remains
debated, but the reduction of the number of healthy hair cells are
known to impact such hearing damage. Here, we provide a
concrete possible perspective to link the number of healthy hair
cells with the increase of the bandwidth of cochlear filters (see
Fig. 5b). This opens the possibility to use CEI as a model for
sensorineural hearing loss. However, it remains necessary to more
precisely understand how the sifting or an equivalent process
could be implemented at a biological level.

Taken together, masking simulations with noise and pure tones
reveal that CEI behaves as the auditory system for frequency
selectivity. In addition, the effect of sifting iterations can reflect

Fig. 5 Separability of two pure tones. a CEI separates a sum of two frequencies onto one slowly modulated frequency or two frequencies or an
intermediate situation that can be assimilated to auditory roughness perception where it does not separate the two pure tones. The graphic shows the
value of the separability index for 5 different frequencies f0 (250 Hz, 500Hz, 1000 Hz, 1500 Hz, 2000Hz), and 50 intervals, i.e., ratio values α. The
frequency of the second component is computed as follows: f1= αf0, resulting in a signal: s(t)= cos(2πf0t)+ cos(2πf1t). b The CEI separability curves
(dashed lines) for different numbers of sifting iterations and the theoretical roughness curves for f0= 500 Hz (dotted line). c The number of sifting
iterations can be adjusted so that the separability index fits at best with the theoretical roughness curve. It is observed that the number of iterations
necessary for the optimization increases as the frequency f0 increases logarithmically. The number of iterations are necessary to fit the roughness curve is
determined by minimizing the error between the frequency of the maximum value of the theoretical roughness curve and the frequency of the simulated
separability curve where the separability is starting to differ from 1, here arbitrarily set to 0.98.
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the number of hair cells implicated in a mode extraction, as it is
in accordance with cochlear tonotopy and with the effect of
sensorineural hearing loss. This suggests a strong link between
CEI and possible physiological implementation.

Consonance and dissonance. In relation to auditory roughness,
when two musical instruments with two different timbres are
playing the same note, roughness leads to beatings perceived as
more or less consonant or dissonant2,13. Musical consonance is
often associated with the pleasantness of a musical sound and
conversely for dissonance. The origins of musical consonance and
dissonance perception have been extensively studied from sensory
and cognitive points of views53–56. In addition, models of con-
sonance of complex sounds have been proposed based on the
roughness curves obtained from pure tone combinations12. Here
we tested the ability to predict theoretical consonance curves
directly from the CEI representation. We simulated pairwise
comparison experiments between pairs of tones with harmonic
spectra (sawtooth). The underlying metrics used to simulate the
pairwise judgments were based on the separability between the
CEI spectra of the sum of the considered harmonic tones and
the sum of the CEI spectra of each harmonic tone separately. We
finally computed an arbitrary dissonance score characterizing the
probability of a given interval to be judged as more dissonant
than another one (Fig. 6). For the sake of coherence with the
literature, dissonance curves have been transformed into con-
sonance curves after being subtracted from 1. Interestingly, we
observed that well-known consonant/dissonant intervals are
naturally revealed by such an analysis. In particular, the octave
(P8), the perfect fifth (P5), the perfect fourth (P4), the major sixth
(M6), and the major third (M3) provide the most consonant
intervals followed by the minor third (m3) and the tritone (tt).
This result is well-known in music theory and confirms that CEI
also aligns with this well-known auditory phenomenon. In this
context, this would suggest that consonance/dissonance percep-
tion, which can also be driven by cultural and cognitive functions,
would be mainly driven by bottom-up acoustic features as a
consequence of envelope interpolation at the very first step of the
auditory system.

Discussion
We here present a data-driven framework based on a simple
computational unit founded on CEI. By meta-analyzing well-
known psychophysical phenomena in light of this transforma-
tion, we first show that it bridges linear, nonlinear, and adaptive

principles of peripheral hearing under a single framework. It
supports that envelope extraction by interpolation is at the core of
nonlinear and adaptive cochlear processes.

Envelope interpolation might be at the common origin of
combination and phantom tones19. One current understanding of
the missing fundamental suggests that autocorrelation is per-
formed at the stage of the auditory nerve51. Such a process
involves the implicit computation of time delays, which is still not
elucidated and challenged by behavioral observations57. Combi-
nation tones have been considered as the consequence of different
mechanisms such as nonlinear transduction at the hair-cell level9

or due to central processes58. None of these models have to date
provided a satisfying and unifying account of these psychophy-
sical observations. In particular, whether peripheral and/or cen-
tral processes are at the origin of these phenomena remains
debated. On the other hand, CEI does not necessitate such a time
delay computation hypothesis. If our study does not yet provide a
precise account of how the complete mode extraction might be
performed physiologically, the envelope interpolation is compa-
tible with known intracellular recordings inside inner hair cells59.
An important perspective is a better understanding of the active
mechanism of outer hair cells and in particular distortion pro-
ducts leading to otoacoustic emissions60. The emitted frequencies
corresponding to cubic distortion products could also potentially
be explained by envelope interpolation distortions. Of course, this
result doesn’t preclude that the central system also contributes to
these phenomena and the interplay between the peripheral and
the central level of the auditory system remains to be clarified.
Phenomena such as the missing fundamental perception could
also be generated at higher levels of the auditory system61.
Conversely, adding adaptivity and non-linearity in peripheral
transformation modeling can also help us refine the under-
standing of the processing of different acoustical patterns such as
spectro-temporal modulations37 that are central for the percep-
tion of speech62 and musical instrument timbre63,64.

CEI offers a perspective on hearing adaptability by demon-
strating that its computationally simple approach is compatible
with the adaptive properties of hearing. The efficient coding
kernel functions naturally comply with model-based cochlear
filters23. However, the mechanism for extracting adaptive codes
within the auditory system is not yet known. We suggest that
envelope interpolation may be at the core of this process, as it has
a higher physiological plausibility than the matching pursuit
algorithms used to derive the efficient auditory code23, which is
not implementable at a physiological level. In addition, CEI not
only accounts for phenomena ignored by linear auditory models
but also simulates well-known phenomena such as the masking of
pure tones in noise, auditory roughness, and musical consonance
perception. This unification under a single data-driven frame-
work opens avenues for reconsidering still-misunderstood phe-
nomena, such as the cocktail party effect and how the brain tracks
meaningful signals in noisy backgrounds.

CEI provides also a perspective on modeling sensorineural
hearing loss resulting from hair cell damage or deficiency. We
observed that the increasing critical bandwidth associated with
sensorineural hearing loss can be accounted for by the number of
sifting iterations, although the exact implementation of these
iterations at the cochlear level is unknown. One possible imple-
mentation is a joint operation of a population of hair cells coding
at the same location on the cochlea and computing the iterative
envelope by averaging their activity. However, this remains a
major limitation of the current model, and future research may
help to make it even more biologically plausible.

Understanding the computational mechanism behind CEI
could have implications for hearing aids. Hearing aids and
cochlear implants still use passive gamma tone filter banks as

Fig. 6 Dissonance curve of musical sounds. The dissonance curve was
obtained by simulating a pairwise comparison experiment based on the CEI
spectrum of harmonic sounds (blue), and theoretical dissonance curves
from Plomp and Levelt’s model (red dashed), see Methods for details. A
strong coherence between the theoretical consonance maxima and the
simulated one is observed. This reveals that CEI accounts for the perception
of consonance and suggests that sensory consonance can be processed at
the very first steps of the auditory system.
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front-end representation, however, it is well established that
temporal fine structures and temporal envelopes are essential for
speech perception22. Here, we demonstrated that CEI can repli-
cate the effects of hair-cell loss, which leads to an increase in the
cochlear filter bandwidth. CEI thus offers a perspective on signal
coding through implant electrodes, allowing for direct accounting
of nonlinear cochlear behaviors while remaining compatible with
cochlear filtering for non-stationary signals. In a broader context,
efficient coding is also a fundamental principle of visual coding65,
and CEI may provide insights into how optimal codes can be
extracted from other sensory systems such as vision.

From a larger theoretical perspective, CEI offers the possibility
to reconsider the cortical processes of speech occurring after the
cochlea in the primary and the first steps of the auditory system
considering this unified data-driven framework. For speech per-
ception, it has been shown that the brain tracks the sound
envelope which is reminiscent of neural oscillations66. This has
been interpreted as a functional principle to process speech sig-
nals by extracting the relevant sensory-motor oscillations, how-
ever, the computational bases of speech envelope modulations
extraction from spectro-temporal information remains unclear.
Considering CEI as the input, envelope extraction by interpola-
tion can be achieved at very early processing stages and provides a
plausible peripheral mechanism that supports and bridges with
the existing literature on neural oscillations.

Methods
All sounds were sampled at 16,000 Hz.

Cascaded envelope interpolation. CEI is a simplified version of the EMD32 with
only one envelope extraction at each step. It is interesting to note that this
decomposition provides a perfect reconstruction of the original signal by simply
summing up the modes. For a given signal, at each iteration, the upper and lower
envelopes of the signal are extracted and averaged into an interpolative envelope
which is then subtracted from the original signal. The interpolation is mathema-
tically achieved by cubic spline interpolators. The process is then repeated a given
number of times according to the number of defined modes, here 6 times. See
Supplementary Fig. 1 for details.

Short-term CEI. In the spirit of time-frequency representations, we here define the
short-term CEI as the time-frequency representation of the different modes of CEI.
For each mode, the STFT is computed and then summed up together to form the
short-term CEI which allows comparison with the STFT of the initial signals.

Phantom sounds and virtual pitches
Combination tones. Sums of two sinusoidal signals are generated with frequencies
f1 and f2 defined such as f1 < f2 with f2= αf1 for 7f1 values (500 Hz; 750 Hz; 1000 Hz;
1250 Hz; 1500 Hz; 1750 Hz; 2000 Hz) and 10α values (1.3300; 1.3711; 1.4122;
1.4533; 1.4944; 1.5356; 1.5767; 1.6178; 1.6589; 1.7000). For each of the 70 pairs of
sounds, we determined the value of the generated combination tone’s frequency as
the frequency with the biggest energy in the spectrum below f1 or above f2. This
value was determined with an automated peak detection algorithm and was
compared to the theoretical combination tone frequency with a regression.

Adaptive filter bank
Pure tones+ pink noise. Tests signals composed either of pink noise, i.e., a random
signal with a spectrum defined by S(f)= 1/f2 and a random phase, or two pure
tones with frequencies at 100 and 1000 Hz. The CEI decomposition of each signal
is first computed and the CEI power spectrum of each mode is then computed. The
operation is repeated 100 times with 100 different pink noise excerpts. The power
spectra of each mode are then averaged.

Sound database. Speech and environmental sounds are 1500 excerpts from the
Making Sense of Sounds (MSoS) challenge which are excerpts from the Freesound
database67, the ESC-50 dataset68. We chunked the 1500 excerpts in segments of
800 ms leading to 148,500 short sound excerpts.

Equivalent linear filter bank. Each excerpt e(t) of the 148,500 segments was first
decomposed with the CEI in 6 modes. Each mode m(t) was then considered as the
result of a linear convolution between the excerpt and a filter with a transfer

function h(t):

m tð Þ ¼ ðe � hÞðtÞ ð1Þ
h(t) was fitted by computing the cross-correlation between m(t) and e(t). In order
to evaluate the correspondence of such a filter bank with the properties of the
cochlear filter bank model, each transfer function h(t) was modeled as a bandpass
filter whose central frequency and bandwidth were determined based on its transfer
function, see Supplementary Fig. 2.

Frequency selectivity
Noise masker. We simulated such an experiment for 5 frequencies f0 (250 Hz;
500 Hz; 1000 Hz; 1500 Hz; 2000 Hz) and 15 frequency ratios Δf/f0 between 0 and 1.
We applied CEI for different bandwidths to determine a detection threshold of the
sinusoids. Subjects were replaced by a virtual listener whose responses were
simulated by CEI representations and a detection process described below. For a
given frequency and a given ratio, the masking threshold was estimated thanks to
an adaptive staircase procedure. Specifically, to simulate the detection task, we
computed the CEI decomposition of each sinusoid+ noise mixture and the
minimum Euclidean distance between the target sinusoid and each CEI mode. We
then only kept the minimum value of these distances which is supposed to simulate
the best ability to detect the sinusoid in the mixture. To test whether the sinusoid is
detected or not, we secondly computed the Euclidean distance between each CEI
mode and the same white noise, but this time without the target signal. We con-
sider that the sinusoid is detected when the distance with the signal is above the
correlation with noise. The noise power was adjusted so that the detection rate is
80% with an adaptive staircase method (3 down/1 up with an average of the 30 last
reversals). For each frequency and each notched noise, we repeated the adjustment
10 times. The average SNR was then computed for each frequency and fitted with a
10th-order polynomial function.

Pure tone masker. Two-tone separation experiments are made with CEI. Signal
with two pure tones of frequency f0 and f1 are generated and analyzed with CEI. In
order to determine whether CEI separates frequencies in this manner, we first
define an index of separability:

d ¼ km1ðtÞ � cosð2παf0tÞkL2
kcosð2παf0tÞkL2

ð2Þ

where m1(t) is the first extracted mode of the CEI. m1 indeed corresponds to the
highest frequency of the two pure tones as CEI extracts first the highest frequency
which is supposed to be equal to cos(2πf0t) when the two pure tones are separated.

Sifting. To fit the roughness curves with the theoretical ones, we introduce the
sifting iteration, a parameter from the original version of the EMD, which is
involved in the extraction of each mode. In CEI, we stop the interpolative envelope
extraction after one iteration. The interpolative envelope is computed and then
subtracted to the original signal to provide the first mode and the process is
repeated on the interpolative envelope to compute the second mode, and so on. For
each mode, EMD continues the process until the residual, i.e., the difference
between the signal and the interpolative envelope, becomes completely flat or
monotonic. In EMD, the flatness is defined by a threshold with no prediction on
how many iterations are necessary to converge. This process whose complexity is
unknown, called sifting, makes EMD different from CEI. Here, we tested the
influence of the number of iterations on the simulated roughness curves by fixing it
arbitrarily. See supplementary Fig. 3 for a detailed scheme of the process. We
adjusted the number of necessary sifting iterations to fit the simulated roughness
maximum to the frequency interval leading to a theoretical roughness maximum
according to the Plomp13 model. In the simulation, the maximum roughness value
is reached when the separability index falls below the arbitrarily chosen value
d= 0.98.

Consonance and dissonance. We considered pairs of harmonic tones composed of
two sawtooth signals of fundamental frequencies f0 and f1= αf0 with α corre-
sponding to 104 ratios between the two frequencies. Typical ratios are denoted on
the interval axis (abscissa): P1 (1:1—perfect unison, α= 1, f1= f0), m2 (16:15—
minor second), M2 (9:8—major second), m3 (6:5—minor third), M3 (5:4—major
third), P4 (4:3—perfect fourth), tt (7:5—tritone), P5 (3:2—perfect fifth), m6 (8:5—
minor sixth), M6 (5:3—major sixth), m7 (9:5—minor seventh), M7 (15:8—major
seventh), P8 (2:1—perfect octave, α= 2, f1= 2f0). 13f0 were considered (261.63 Hz;
277.18 Hz; 293.66 Hz; 311.13 Hz; 329.63 Hz; 349.23 Hz; 370.00 Hz; 392.00 Hz;
415.31 Hz; 440.00 Hz; 466.17 Hz; 493.89 Hz; 523.26 Hz). Ten thousand pairwise
comparisons were then simulated by computing the following separability index
between the averaged CEI spectra of the 2 signals s(f0,t) and s(αf0,t):

d ¼ mseðlog10ðCEIðsðf 0; tÞ þ sðαf 0; tÞÞÞ; log10ðCEIðsðf 0; tÞÞ þ CEIðsðαf 0; tÞÞÞÞ þ ε

ð3Þ
where mse is the mean square error and with ε a Gaussian random noise added to
the separability to arbitrarily introduce variability in the decision. A win-matrix
corresponding to the times a given interval was found more dissonant than one
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other was then computed, and a consonance/dissonance score was finally com-
puted thanks to the Bradley–Terry algorithm69.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sounds from the Making Sense of Sounds dataset can be accessed here: https://dcase-
repo.github.io/dcase_datalist/datasets/sounds/msos.html or upon request. https://doi.
org/10.17866/rd.salford.6901475.v4. The source data of all the figures are available here:
https://doi.org/10.6084/m9.figshare.23264405. Please contact the corresponding author
for any additional requests.

Code availability
The custom codes to generate all the figures included in the paper can be accessed at the
following repository: https://github.com/EtienneTho/hearing-as-cei/ and at this
permanent link70: https://doi.org/10.5281/zenodo.8025054. The MATLAB scripts for
computing the Cascaded Envelope Interpolation are provided here: https://github.com/
EtienneTho/cei/ and at this permanent link70: https://doi.org/10.5281/zenodo.8025054.
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