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A quantum harmonic oscillator oscillates in space. As we have learned from general relativity, spacetime is weaved as unity. If space and time are supposed to be treated on an equal footing, can a quantum harmonic oscillator oscillate in proper time? In this paper, we examine this possibility by assuming matter can oscillate in proper time. We demonstrate that a field with oscillations of matter in proper time can mimic the properties of a zero-spin bosonic field. A particle observed in this field is a proper time oscillator. The assumption also gives rise to properties that can reduce differences between quantum theory and general relativity, e.g., self-adjoint internal time operator and proper time uncertainty relation. Neglecting all quantum effects, a proper time oscillator can mimic a point mass at rest in general relativity. The spacetime outside a 'stationary' proper time oscillator is a Schwarzschild field. To test the idea, we propose to study a particle's arrival time. In motion, the proper time oscillation translates to oscillations in both time and space. These oscillations lead to uncertainty in the arrival time of a particle. Specifically, we study the effects on a neutrino's arrival time. The possible detection of a neutrino's arrival time uncertainty can test the theory proposed in this paper.

Introduction

A quantum field is defined as a sum of creation and annihilation operators with formulations akin to those developed for a quantum harmonic oscillator. However, the oscillators created/annihilated in a quantum field are treated as coupled particles versus the quantized energy levels of a quantum harmonic oscillator. Although the natures of the two oscillators are different, they have many shared features in their formulations. Because of these analogies, can there be a hidden symmetry relating to the two kinds of oscillators? On the other hand, when we study a quantum harmonic oscillator, oscillations are considered only in the spatial directions. However, as stipulated by relativity, space and time are supposed to be treated on an equal footing. If so, can matter also oscillate in time? Can this temporal oscillation be a missing link explaining the analogies between a quantum field's formulations and a quantum harmonic oscillator?

In response to the lack of symmetry between time and space in the formulations of quantum theory, we assume matter can oscillate in proper time [START_REF] Yau | Temporal vibrations in a quantized field[END_REF][START_REF] Yau | Time and space symmetry in a quantum field[END_REF][START_REF] Yau | Probabilistic nature of a field with time as a dynamical variable[END_REF][START_REF] Yau | Self-adjoint time operator in a quantum field[END_REF][START_REF] Yau | Proper time operator and its uncertainty relation[END_REF][START_REF] Yau | Thin shell with fictitious oscillations[END_REF][START_REF] Yau | Schwarzschild field of a proper time oscillator[END_REF]. We will check whether this proposition has any merits by comparing the properties engendered with those derived from quantum theory and general relativity. We find that a field with oscillations of matter in proper time can mimic the properties of a zero-spin bosonic field [START_REF] Yau | Temporal vibrations in a quantized field[END_REF][START_REF] Yau | Time and space symmetry in a quantum field[END_REF][START_REF] Yau | Probabilistic nature of a field with time as a dynamical variable[END_REF]. The proper time oscillations in the matter field are quantized. The particles created/annihilated are oscillators in proper time.

Interestingly, the internal time in this matter field can be reckoned as a selfadjoint operator [START_REF] Yau | Self-adjoint time operator in a quantum field[END_REF]. This outcome has no contradiction with the conundrum of Pauli's theorem [START_REF] Pauli | General Principles of Quantum Mechanics[END_REF][START_REF] Srinivas | The 'time of occurrence' in quantum mechanics[END_REF] since the internal time and the Hamiltonian of this system are not a conjugate pair 1 . This proposition is different from the results attained from other approaches that also treat time as a dynamic variable .

Following the same concepts developed, we can obtain an uncertainty relation for the internal time of a field with proper time oscillators [START_REF] Yau | Proper time operator and its uncertainty relation[END_REF]. This uncertainty relation is similar to the one for a quantum harmonic oscillator, except the oscillation is in time and not space. Contrary to most of the timeenergy uncertainty relation contemplated so far [START_REF] Aharonov | Time in the quantum theory and the uncertainty relation for time and energy[END_REF][START_REF] Holevo | Probabilistic and Statistical Aspects of Quantum Theory[END_REF][START_REF] Brunetti | Remarks on time-energy uncertainty relations[END_REF][START_REF] Ozawz | Uncertainty relations for noise and disturbance in generalized quantum measurements[END_REF][START_REF] Busch | On the energy-time uncertainty relation Part I: Dynamical time and time indeterminacy[END_REF][START_REF] Busch | On the energy-time uncertainty relation Part II: Pragmatic time versus energy indeterminacy[END_REF][START_REF] Hilgevoord | The uncertainty principle[END_REF][START_REF] Busch | Heisenberg's uncertainty principle[END_REF], the internal proper time and its conjugate are self-adjoint operators. These results allow a more symmetrical treatment between time and space in a matter field. They can also explain why the formulations of a quantum field have so many similarities with a quantum harmonic oscillator.

We can apply the concepts of proper time oscillation outside quantum theory. If we neglect all quantum effects, a proper time oscillator can be treated as a 'stationary' classical object, equivalent to a point mass at rest in general relativity. Under this assumption, we expect the proper time oscillator to curve the surrounding spacetime and generate a gravitational field; its solution shall be the Schwarzschild metric. These results have been recently affirmed in Refs. [START_REF] Yau | Thin shell with fictitious oscillations[END_REF][START_REF] Yau | Schwarzschild field of a proper time oscillator[END_REF].

The self-adjoint time operator, proper time uncertainty relation, and generation of a Schwarzschild field are properties that can reduce differences between quantum theory and general relativity. We propose studying a massive particle's arrival time to test this theory. We will show that a moving particle has spatial oscillations back and forth along its trajectory due to proper time oscillation. Depending on the phases of their oscillations, two particles can reach a target at different times, even if they have the same average velocity. These deviations will result in an uncertainty after repeated measurements of a particle's arrival time. The possible detection of this uncertainty can test the theory proposed in this paper. Specifically, we are interested in the measurement of neutrinos' arrival time.

A neutrino possesses mass. The speed of light limits its velocity. Many experiments have been conducted to measure the neutrinos' speed [START_REF]Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam[END_REF][START_REF]Measurement of the neutrino velocity with the OPERA detector in the CNGS beam[END_REF][START_REF] Caccianiga | GPS-based CERN-LNGS time link for Borexino[END_REF][START_REF]Measurement of the velocity of neutrinos from the CNGS beam with the Large Volume Detector[END_REF][START_REF]Measurement of the neutrino velocity with the OPERA detector in the CNGS beam using the 2012 dedicated data[END_REF][START_REF] Adamson | Precision measurement of the speed of propagation of neutrinos using the MINOS detectors[END_REF][START_REF] Stecker | Constraining Superluminal Electron and Neutrino Velocities using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events[END_REF] to test the validity of special relativity. So far, there are no deviations observed. Even so, more experiments are carried out for the possibilities of theoretical reasons that deviations may occur under certain circumstances, e.g., tachyon [START_REF] Chodos | The Neutrino as a Tachyon[END_REF], Lorentz violating neutrino oscillation [START_REF] Díaz | Lorentz and CPT-violating models for neutrino oscillations[END_REF]. Notably, in the study of quantum gravity, it is advocated that a particle can have varying travel distance/time when propagating through the fluctuating spacetime -lightcone fluctuation [START_REF] Deser | General relativity and the divergence problem in quantum field theory[END_REF][START_REF] Dewitt | Gravity: a universal regulator?[END_REF][START_REF] Ford | Gravitons and light cone fluctuations[END_REF]. Its accumulated effect can result in an uncertainty of a neutrino's travel time, which is conjectured to follow a power-law depending on the distance traveled and the energy of the particle [START_REF] Anchordoqui | Probing Planck scale physics with IceCube[END_REF][START_REF] Stuttard | Neutrino decoherence from quantum gravitational stochastic perturbations[END_REF][START_REF] Lisi | Probing possible decoherence effects in atmospheric neutrino oscillations[END_REF][START_REF] Coloma | Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore[END_REF]. As proposed in this paper, we demonstrate that a similar variation can also manifest due to a particle's proper time oscillation. The arrival time uncertainty derived has analogies to the power-law mentioned above and is a function of the particle's mass and energy. Since the neutrinos' arrival time uncertainty is a function of its mass, the measurement of the uncertainty can estimate a neutrino's mass.

Internal Time and Proper Time Oscillation

What do we mean by oscillation in proper time? To illustrate the idea, let us consider an analogy with a particle traveling at an average velocity v. The particle also oscillates with an angular frequency ω and an amplitude X, i.e., xf = vt -X sin(ωt), [START_REF] Yau | Temporal vibrations in a quantized field[END_REF] where xf is the position of the particle. To a stationary observer, the particle has a varying velocity. Suppose the angular frequency ω is large, and the amplitude X is small; the particle will appear to travel with a constant velocity if the instrument used by the observer is not sensitive enough to detect the slight variation of the oscillation. The properties of this model can be readily derived from classical mechanics. In this paper, we will investigate a similar model but replace the motions in space with the propagation and oscillation Proper Time Oscillation and a Particle's Arrival Time of a particle in proper time. If our assumption about proper time oscillation is incorrect, we will not be able to obtain the properties derived from the standard theories. Consider a Minkowski coordinate system (t, x). The coordinate time t is measured by the clock of a stationary observer O at spatial infinity. From what we have learned from relativity, a particle travels along a time-like geodesic. Instead of propagating smoothly, let us assume the proper time of a stationary particle also oscillates, i.e., tf = t + td = t -T0 sin(ω 0 t),

where td = -T0 sin(ω 0 t).

Note that Eq. ( 2) is an analogy of Eq. ( 1), except motion in space is replaced by propagation in time.

The 'internal time' tf is an assumed intrinsic property of a particle, which oscillates with an amplitude T0 and an angular frequency ω 0 . Without the assumed oscillation, the defined internal time is just the coordinate time, i.e., tf = t. The amplitude T0 is analogous to the amplitude of a classical oscillator, except the oscillation is in time and not in space. As noted, the coordinate time t remains a parameter. Only the temporal oscillation displacement td is the dynamic component of the internal time tf . From Eq. ( 2), the rate of the internal time relative to the coordinate time is,

∂ tf ∂t = 1 -T0 ω 0 cos(ω 0 t), (4) 
which has an average rate of 1. The 'moving' coordinate time t labels the equilibrium position of the proper time oscillation. The temporal oscillation displacement td is measured against this 'equilibrium'. After averaging over many cycles, the internal time tf is the same as the coordinate time t. If the clock at spatial infinity O is not sensitive enough to detect the internal time oscillation, the particle will appear to travel along a faux time-like geodesic as if there is no oscillation. In addition, the proper time oscillator is stationary at a fixed coordinate x of the spatial frame. A particle at rest has no spatial oscillation displacement, i.e., xd = 0.

We can extend the idea of proper time oscillation to a plane wave ζ to . Let us assume all the matters inside a plane wave have oscillations in proper time. We define the internal time of matters as,

t f (t, x) = t + Re[ζ t0 (t, x)] = t -T 0 sin(ω 0 t), (5) 
where

ζ t0 (t, x) = -iT 0 e -iω0t . (6) 
The temporal oscillation displacement is,

t d (t, x) = Re[ζ t0 (t, x)] = -T 0 sin(ω 0 t). (7) 
The rate of the internal time relative to the coordinate time is,

∂t f (t, x) ∂t = 1 -ω 0 T 0 cos(ω 0 t). (8) 
Again, this internal time rate has an average of 1. In addition, all the matters inside the plane wave are stationary in the spatial frame. These matters at rest have no spatial oscillation displacement, i.e., x d (t, x) = 0. The properties of this plane wave are analogous to those for the proper time oscillator, except we apply proper time oscillations to all matters inside a plane wave. Under a Lorentz transformation to another reference frame O ′ , matter in the plane wave acquires oscillations in both space and time, i.e.,

t ′ f = t ′ + t ′ d = t ′ + Re(ζ tk ) = t ′ + T k sin(k • x ′ -ωt ′ ), (9) 
x

′ f = x ′ + x ′ d = x ′ + Re(ζ xk ) = x ′ + X k sin(k • x ′ -ωt ′ ), (10) 
where

t ′ d = Re(ζ tk ), x ′ d = Re(ζ xk ), (11) 
ζ tk = -iT k e i(k•x ′ -ωt ′ ) , (12) 
ζ xk = -iX k e i(k•x ′ -ωt ′ ) , (13) 
T k = (ω/ω 0 )T 0 , X k = (k/ω 0 )T 0 . (14) 
We assume frame O travels at a velocity v = k/ω relative to frame O ′ . Apart from the oscillations, matter in this plane wave travels with an average velocity v.

As we shall note, (T k , X k ) is a 4-amplitude Lorentz transformation of (T 0 , 0), i.e.,

| T k | 2 =| T 0 | 2 + | X k | 2 . (15) 
Furthermore, the natural units c = ℏ = 1 are adopted in this paper. The derivative of the internal time relative to the coordinate time is

∂t ′ f ∂t ′ = 1 -ωT k cos(k • x ′ -ωt ′ ). ( 16 
)
In the above analysis, we adopted the Lagrangian wave mechanics formulation. The temporal and spatial displacements t ′ d (t ′ , x ′ ) and x ′ d (t ′ , x ′ ) are measured against the undisturbed state (t ′ , x ′ ). In the Lagrangian formulation, x ′ d (t ′ , x ′ ) tells us the spatial displacement of matter from the undisturbed coordinate x ′ at time t ′ . Similarly, t ′ d (t ′ , x ′ ) is the difference between the matter's internal time and the coordinate time t ′ . Matter originally at x ′ will be displaced to 

x ′ f = x ′ + x ′ d ,
ζ tk ζ xk = -i T k X k e i(k•x ′ -ωt ′ ) . ( 17 
)
3 Matter Field with Proper Time Oscillations

We have defined internal time and proper time oscillation in the previous section. Our next task is to investigate what properties our assumption can produce and compare them with the properties derived from quantum theory and general relativity. Summarizing the results from our previous articles [START_REF] Yau | Temporal vibrations in a quantized field[END_REF][START_REF] Yau | Time and space symmetry in a quantum field[END_REF][START_REF] Yau | Probabilistic nature of a field with time as a dynamical variable[END_REF][START_REF] Yau | Self-adjoint time operator in a quantum field[END_REF][START_REF] Yau | Proper time operator and its uncertainty relation[END_REF], we have obtained the following properties for a matter field with proper time oscillations: 1. Proper time oscillation in a matter field is quantized [START_REF] Yau | Temporal vibrations in a quantized field[END_REF][START_REF] Yau | Time and space symmetry in a quantum field[END_REF][START_REF] Yau | Probabilistic nature of a field with time as a dynamical variable[END_REF].

2. A matter field with proper time oscillations can mimic the properties of a bosonic field. The particles observed are proper time oscillators [START_REF] Yau | Temporal vibrations in a quantized field[END_REF][START_REF] Yau | Time and space symmetry in a quantum field[END_REF][START_REF] Yau | Probabilistic nature of a field with time as a dynamical variable[END_REF].

3. The internal time observed in a matter field can be treated as a selfadjoint operator [START_REF] Yau | Self-adjoint time operator in a quantum field[END_REF].

4. A proper time uncertainty relation can be derived analogously to the one for a quantum harmonic oscillator, except the oscillation is in time and not in space [START_REF] Yau | Proper time operator and its uncertainty relation[END_REF].

Quantization of Proper Time Oscillation [1-3]

Let us define a plane wave,

ζ k = T 0k ω 0 e i(k•x-ωt) . ( 18 
)
The temporal and spatial oscillation displacements2 from Eqs. ( 12) and ( 13) can be written in terms of ζ k , i.e.

ζ tk = ∂ 0 ζ k = -iT k e i(k•x-ωt) , (19) 
ζ xk = -∇ζ k = -iX k e i(k•x-ωt) . (20 
) Therefore, we can utilize ζ k to describe both the temporal and spatial oscillations. Also, ζ k serves another purpose; it represents a plane wave with matter moving at an average velocity v.

The plane wave ζ k and its conjugate ζ * k satisfy the Klein Gordon equation:

∂ u ∂ u ζ k + ω 2 0 ζ k = 0, (21) 
∂ u ∂ u ζ * k + ω 2 0 ζ * k = 0. ( 22 
)
For a system that can have multiple numbers of particles with mass m, the Lagrangian density and Hamiltonian density of ζ k are defined as,

L k = mω 2 0 2V [(∂ u ζ * k )(∂ u ζ k ) -ω 2 0 ζ * k ζ k ], (23) 
H k = mω 2 0 2V [(∂ 0 ζ * k )(∂ 0 ζ k ) + (∇ζ * k ) • (∇ζ k ) + ω 2 0 ζ * k ζ k ]. ( 24 
)
Volume V is a cube with periodic boundary conditions imposed on the walls. Moreover, we have adopted de Broglie's angular frequency as the mass-energy of the particles,

ω 0 = m [57].
The proper time oscillation is quantized. To understand the reason, let us consider a plane wave that has oscillation of matter in proper time only (|k| = 0, and |X| = 0), i.e.,

ζ 0 = T 0 ω 0 e -iω0t . (25) 
The Hamiltonian density from Eq. ( 24) is,

H 0 = ( mω 2 0 V )T * 0 T 0 . (26) 
As we shall note, matter in this plane wave has no spatial motion/oscillation. Therefore, the energy generated by the proper time oscillations shall belong to some intrinsic energy of the system. However, the field we are considering is 'free' with no charges or force fields. The only energy present is the intrinsic mass-energy of the matter inside the plane wave. For this reason, we adopt the energy in H 0 as the intrinsic mass-energy of matter inside volume V . For a plane wave with n number of particles, the Hamiltonian density shall be H 0 = nm/V . Compare with Eq. ( 26), the energy E in volume V is,

E = nm = mω 2 0 T * 0 T 0 , (27) 
which leads to a quantization condition,

ω 2 0 T * 0 T 0 = n. ( 28 
)
Since the number of particles is discrete, the proper time oscillation shall be quantized (or more strictly speaking, it is T * 0 T 0 that is quantized). We shall treat a matter field with proper time oscillations as a quantized field. Proper Time Oscillation and a Particle's Arrival Time

Bosonic Field and Proper Time Oscillator [1-3]

We can obtain a real scalar field by superposition of the plane waves ζ k and their conjugates ζ * k , i.e.,

ζ(x) = ω 0 ω k [ζ k (x) + ζ * k (x)] √ 2 = k (2ωω 0 ) -1/2 [T 0k e -ikx + T * 0k e ikx ], (29) 
where ω 0 /ω is a normalization factor. Following the same concepts developed in quantum theory, we can transform a classical field into a quantized field through canonical quantization. In other words, quantities such as ζ(x), T 0k and T † 0k are promoted to operators. As a quantized field, we can relate ζ(x) with the bosonic field φ(x) in quantum theory, i.e.

φ(x) = ζ(x) ω 3 0 V = k (2ωV ) -1/2 [a k e -ikx + a † k e ikx ], (30) 
where

a k = ω 0 T 0k , a † k = ω 0 T † 0k , (31) 
are the annihilation and creation operators.

As shown, a field with proper time oscillations can mimic the properties of a bosonic field. The properties of ζ(x) can be derived from the standard quantum theory by replacing the proper time amplitudes and their adjoints with the annihilation and creation operators through Eq. [START_REF] Kullie | Tunneling time in attosecond experiment for hydrogen atom[END_REF]. (For example, Eq. ( 28) derived from the proper time oscillations becomes the number operator in a quantum field.) The additional degree of freedom introduced can generate properties that match the standard quantum theory.

As shown in Eq. ( 31), the operator T † 0 creates a particle with proper time oscillation. This proper time oscillator is the same one we have defined in Section 2. Under the quantization condition Eq. ( 28), a particle with mass m has a unique amplitude | T0 | = 1/ω 0 . From Eq. (2), the particle's internal time is,

tf = t + td = t - sin(ω 0 t) ω 0 . ( 32 
)
Its time rate is,

∂ tf ∂t = 1 -cos(ω 0 t), (33) 
which is bounded between 0 and 2. As a result, the internal time tf bounces back and forth along the time-like geodesic but never goes back to its past. Since the de Broglie's angular frequency of a particle (e.g., ω 0 = 7.6 × 10 20 s -1 for electron) is so rapid, it is challenging to detect its effects. If the experiment is not sensitive enough to detect the oscillation, the particle will be observed as traveling along a 'smooth' time-like geodesic.

Self-Adjoint Internal Time Operator [4]

Based on Eq. ( 23) and treating the variables as operators, the conjugate momenta of ζ(x) is,

η(x) = ∂L ∂[∂ 0 ζ(x)] = -iω 3 0 √ 2V k [ Tk e -ikx -T † k e ikx ], (34) 
where Tk = T 0k ω/ω 0 . We can show that ζ(x) and η(x) satisfy the equal-time commutation relations,

[ζ(t, x), η(t, x ′ )] = iδ(x -x ′ ), ( 35 
) [ζ(t, x), ζ(t, x ′ )] = [η(t, x), η(t, x ′ )] = 0. ( 36 
)
Applying Eq. ( 19), the displaced time in the matter field is linearly related to η(x), i.e.,

t d (x) = ζ t (x) = ∂ 0 ζ(x) = k -i √ 2 [ Tk e -ikx -T † k e ikx ] = η(x)V ω 3 0 . ( 37 
)
Therefore, t d (x) and ζ(x) also form a conjugate pair and satisfy similar equaltime commutation relations,

( ω 3 0 V )[ζ(t, x), t d (t, x ′ )] = iδ(x -x ′ ), ( 38 
) [t d (t, x), t d (t, x ′ )] = 0. ( 39 
)
In a real scalar quantum field, φ(x) and its conjugate momenta Π(x) are self-adjoint operators. Because φ(x) and ζ(x) are linearly related as shown in Eq. ( 30), the quantities ζ(x), η(x) and t d (x) must also be self-adjoint operators. This outcome is what we expect since the displaced time t d oscillates back and forth relative to the external time t. Its spectrum is not bounded.

The internal time in a matter field is,

t f (t, x) = t + t d (t, x). (40) 
As discussed, t is a parameter, but t d (t, x) is a self-adjoint operator. These two time variables are treated differently in theory. The only dynamic component of the internal time is the temporal displacement t d (t, x). Being the sum of t and t d (t, x), the internal time t f must also be a self-adjoint operator. We can establish equal-time commutation relations between ζ(t, x) and t f (t, x) based on the results from Eqs. ( 38) and ( 39),

( ω 3 0 V )[ζ(t, x), t f (t, x ′ )] = iδ(x -x ′ ), ( 41 
)
Proper Time Oscillation and a Particle's Arrival Time

[t f (t, x), t f (t, x ′ )] = 0. ( 42 
)
The commutation relations established in Eqs. [START_REF] Busch | On the energy-time uncertainty relation Part II: Pragmatic time versus energy indeterminacy[END_REF] and [START_REF]Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam[END_REF] do not involve energy. The internal time and energy do not form a conjugate pair. Because of this, the internal time can be treated as a self-adjoint operator without contradicting Pauli's theorem [START_REF] Pauli | General Principles of Quantum Mechanics[END_REF][START_REF] Srinivas | The 'time of occurrence' in quantum mechanics[END_REF]. There is no restriction on the internal time spectrum, albeit the system's Hamiltonian is bounded from below. [START_REF] Yau | Proper time operator and its uncertainty relation[END_REF] Let us consider a real scalar field that has oscillations of matter in proper time only, i.e.,

Proper Time Uncertainty Relation

ζ ′ = 1 √ 2 [ζ 0 + ζ † 0 ] = 1 √ 2ω 0 [T 0 e -iω0t + T † 0 e iω0t ]. (43) 
The particles observed are motionless in the spatial frame. Applying Eq. ( 19), the displaced time t ′ d and the displaced time rate u ′ d are,

t ′ d = ζ ′ t = ∂ 0 ζ ′ = -i √ 2 [T 0 e -iω0t -T † 0 e iω0t ] = -i √ 2ω 0 [ae -iω0t -a † e iω0t ], (44) 
u ′ d = ∂ 0 t ′ d = -ω 0 √ 2 [T 0 e -iω0t + T † 0 e iω0t ] = -1 √ 2 [ae -iω0t + a † e iω0t ]. (45) 
The Hamiltonian density of the proper time real scalar field obtained based on Eq. ( 24) can be written as,

H ′ = 1 2 (mω 2 0 t ′ d 2 + P ′ d 2 m ) = ω 0 (a † a + 1 2 ), (46) 
where

P ′ d = mu ′ d . ( 47 
)
This result is analogous to the Hamiltonian density of a quantum harmonic oscillator, except the spatial oscillation is replaced by the temporal oscillation. The two terms on the RHS of Eq. ( 46) resemble the 'potential' and 'kinetic' energy of a classical harmonic oscillator.

The quantity P ′ d is taking the role of a 'momentum'. The displaced time t ′ d and the 'temporal momentum' P ′ d are analogies of a quantum harmonic oscillator's position and momentum operators. However, we stress that this P ′ d is not the 0-component of the 4-momentum; it is different from the energy of the field.

Based on Eqs. ( 44), ( 45) and ( 47), the displaced time t ′ d and the temporal momentum P ′ d satisfy an uncertainty relation,

∆t ′ d ∆P ′ d = n + 1 2 ≥ 1 2 . ( 48 
)
This uncertainty relation is obtained from the displaced time and temporal momentum variances. Compare Eq. ( 48) with ∆x∆p ≥ 1 2 , the proper time field satisfies an uncertainty relation that is similar to the one obtained for a quantum harmonic oscillator. These results demonstrate that our assumption can allow a more symmetrical treatment between time and space in a matter field. They can explain why the formulations of a quantum field have so many similarities with a quantum harmonic oscillator.

4 Schwarzschild Spacetime [START_REF] Yau | Thin shell with fictitious oscillations[END_REF][START_REF] Yau | Schwarzschild field of a proper time oscillator[END_REF] In the following analysis, we will neglect all quantum effects and treat the proper time oscillator as a 'stationary' classical object. Eq. ( 32) describes the proper time oscillation, which we will idealize here to be stationary at the spatial origin x 0 of a coordinate system. In the presence of the oscillator, time observed in the spacetime continuum at x 0 will oscillate. As a part of the spacetime geometry, the proper time oscillation at x 0 has geometrical properties that differ from those at spatial infinity, which is asymptotically flat with no oscillations. The difference in spacetime geometry at two spatially far apart locations implies that the spacetime between cannot be flat. A proper time oscillator can curve its surrounding spacetime and generates a gravitational field. Treating the proper time oscillator as a stationary classical object, it shall have effects equivalent to those for a point mass at rest in general relativity, which we want to demonstrate in this subsection.

The proper time oscillation at x 0 is a pulse that can be decomposed into a series of plane waves. For a relativistic theory, we shall utilize Lorentz covariant plane waves for the decomposition, i.e., ξtk ξxk = -i Tk Xk e i(k•x-ωt) .

In Section 2, we met a similar plane wave when we studied the matter field. For our current applications, instead of applying Lorentz covariant plane waves to describe the physical oscillations of matter, we will use them to characterize the fluctuations in spacetime geometry caused by the proper time oscillation. The plane wave defined in Eq. ( 49) describes spacetime geometrical effects and not physical oscillations of matter. We can apply ξtk from Eq. ( 49) to carry out the decomposition for the proper time oscillation at x 0 . However, ξtk is only the 0-component of a Lorentz covariant plane wave; the spatial component ξxk cannot be neglected. Thus, if we superpose the plane waves ξtk to obtain the proper time oscillation at x 0 , there will have spatial oscillations associated with the superposition of ξxk . These spatial oscillations are essential in our relativistic theory.

In spherical coordinates, the proper time oscillation and the radial oscillations revealed after the superposition are summarized as follows [START_REF] Yau | Schwarzschild field of a proper time oscillator[END_REF]:

At r = 0, tf (t, 0) = t - sin(ω 0 t) ω 0 , ( 50 
) rf (t, 0) = 0. ( 51 
) At r = ϵ/2 → 0, tf (t, ϵ/2) = t, (52) rf 
(t, ϵ/2) = ϵ/2 + ℜ ∞ cos(ω 0 t), (53) 
where ℜ ∞ is the amplitude of radial oscillations, and its magnitude is approaching infinity. Based on our convention adopted, tf (t, r) and rf (t, r) are the time and spatial position observed in the spacetime geometry displaced from the equilibrium state (t, r). Outside the sphere with r = ϵ/2, the spacetime is a vacuum with no oscillations. Eq. ( 50) describes the same proper time oscillation defined in Eq. ( 32). This proper time oscillation is stationary at the spatial origin, as demonstrated in Eq. ( 51). The radial oscillations from Eqs. ( 53) are the results of superposing the spatial component of the Lorentz covariant plane waves. These radial oscillations oscillate about a thin shell Σ 0 with infinitesimal radius (r = ϵ/2 → 0) centered at the origin. As we shall note, the amplitude of the radial oscillation has a magnitude approaching infinity (ℜ ∞ → ∞), which implies the instantaneous radial velocity is also approaching infinity. This result will violate the principles of relativity if the oscillations involve motions of matter. Therefore, we cannot study the radial oscillations as motions that can carry matter through space. Instead, we shall consider the radial oscillation as a spacetime geometrical effect acting on an observer stationary on the thin shell Σ 0 .

In Minkowski spacetime, a clock stationary anywhere in the coordinate system can be synchronized with the clock of a stationary observer O at spatial infinity. However, this is not the case for an observer Ȏ stationary on the thin shell Σ 0 . As shown in Eq. ( 52), the clock of O is synchronized with the clock of a 'fictitious' observer Ō that follows the radial oscillation defined in Eq. ( 53); Ō is a fictitious inertial observer in the oscillating frame. On the other hand, an observer Ȏ placed on the thin shell will oscillate relative to Ō. Since the clocks of O and Ō are synchronized, the clocks of Ȏ and O cannot be synchronized, albeit the two spatially far apart observers are physically stationary relative to one another. These conditions imply the spacetime geometry (or metrics) at O and Ȏ are different; a result due to the fictitious oscillation's effects on Ȏ. However, before we proceed further, we shall recall that the instantaneous velocity of the fictitious radial oscillations is approaching infinity. To apply our knowledge in relativity, we will study a thin shell with a finite radius that has an instantaneous fictitious velocity of less than the speed of light.

In Refs. [START_REF] Yau | Thin shell with fictitious oscillations[END_REF][START_REF] Yau | Schwarzschild field of a proper time oscillator[END_REF], we investigated a similar timelike hypersurface Σ with finite radius ȓ. On the surface of Σ, we apply the same fictitious oscillations but with instantaneous velocities vf (t) less than the speed of light, i.e., tf (t, ȓ) = t, (54)

rf (t, ȓ) = ȓ + ℜ cos(ω 0 t), ( 55 
) vf (t, ȓ) = ∂ rf (t, ȓ) ∂t = -ℜω 0 sin(ω 0 t), ( 56 
)
where ℜ is the amplitude of radial oscillation and ℜω 0 < 1. We can apply relativity to analyze the effects on the observer Ȏ stationary on the thin shell's surface. However, apart from the instantaneous velocity, the fictitious oscillation also has displacement relative to the thin shell Σ. From what we have learned about the properties of a harmonic oscillator, we expect the total energy generated by the instantaneous velocity and displacement to be constant over time. Therefore, our system has a time translational symmetry, as predicted by Noether's theorem. The total effects of the instantaneous velocity and displacement on Ȏ are constant over time. Observer Ȏ on the thin shell is stationary relative to observer O at spatial infinity. We can express the infinitesimal coordinate increments (dt, dr) of two events observed by O in terms of the infinitesimal coordinate increments (d t, dȓ), for the same two events observed by Ȏ,

dt dr = Υ t t 0 0 Υ r ȓ d t dȓ . (57) 
The two off-diagonal terms of the transformation matrix Υ are zeros, which are derived from the followings: 1) The basis vectors of O and Ȏ are parallel for two observers stationary relative to one another, i.e., ⃗ e t ∥ ⃗ e t and ⃗ e ȓ ∥ ⃗ e r .

2) The basis vectors in the temporal and spatial directions are orthogonal in the local frames of O and Ȏ, i,e., ⃗ e t • ⃗ e r = 0 and ⃗ e t • ⃗ e ȓ = 0. Under the two conditions, we have Υ t ȓ = ⃗ e t • ⃗ e ȓ = 0, and Υ r t = ⃗ e r • ⃗ e t = 0.

At t = t m = π/(2ω 0 ), the fictitious displacement rd (=r f -ȓ) from Eq. ( 55) is zero, but the instantaneous velocity from Eq. ( 56) is,

vf (t m , ȓ) = vfm = -ℜω 0 . (59) 
Therefore, observer Ȏ on the thin shell is traveling at a velocity vfm (= -v f m = ℜω 0 < 1) relative to the fictitious inertial observer Ō without displacement from the equilibrium. We can apply relativity to study the properties of a moving observer, albeit the motion is in the fictitious frame. At this instant, the measurements by Ȏ will undergo length contraction and time dilation relative to the fictitious observer Ō. However, as we shall recall, Ō is a fictitious inertial observer with its clock synchronized with O at spatial infinity. Although Ȏ remains stationary with O, its measurements will undergo the same length contraction and time dilation relative to O. Based on these arguments, we can write the two diagonal terms of the transformation matrix Υ as,

Υ t t = [1 -(v f m ) 2 ] -1/2 = (1 -ℜ 2 ω 2 0 ) -1/2 , (60) 
Υ r ȓ = [1 -(v f m ) 2 ] 1/2 = (1 -ℜ 2 ω 2 0 ) 1/2 . ( 61 
)
Since the system has a time translational symmetry, we can extend these results to all other times. Based on Eqs. ( 57), ( 60), [START_REF] Schmidt | The tetralogy of Birkhoff theorems[END_REF], and the time translational symmetry, the line element on the thin shell Σ is a constant over time, i.e.,

ds 2 = [1 -ℜ 2 ω 2 0 ]dt 2 -[1 -ℜ 2 ω 2 0 ] -1 dr 2 -ȓ2 dΩ 2 . ( 62 
)
Following the concepts developed in relativity for a spherically symmetric system, the line element of the external spacetime outside this thin shell Σ is a Schwarzschild field,

ds 2 = [1 - ȓℜ 2 ω 2 0 r ]dt 2 -[1 - ȓℜ 2 ω 2 0 r ] -1 dr 2 -r 2 dΩ 2 (63) 
In defining this line element, we have adopted the Schwarzschild coordinate system. By introducing a mass for the thin shell, i.e.,

m = ȓℜ 2 ω 2 0 2 , (64) 
and substitute m into Eq. ( 63), we obtain the line element of the Schwarzschild spacetime outside a massive thin shell,

ds 2 = [1 - 2m r ]dt 2 -[1 - 2m r ] -1 dr 2 -r 2 dΩ 2 . (65) 
By Birkhoff's theorem [START_REF] Birkhoff | Relativity and Modern Physics[END_REF][START_REF] Schmidt | The tetralogy of Birkhoff theorems[END_REF], the thin shell Σ can be contracted while the external geometry remains Schwarzschild as long as the equivalent mass m from Eq. (64) remains constant. As our thin shell Σ is contracted to ȓ = 2m, it will meet a coordinate singularity when the instantaneous velocity reaches the speed of light. However, the amplitude,

ℜ = 2M ȓω 2 0 , (66) 
and the metrics developed are well-defined until they reach ȓ = 0. Although the instantaneous velocity exceeds the speed of light, there is no violation of relativity. The fictitious oscillations are spacetime geometrical effects with no transportation of matter through space. Therefore, the thin shell Σ can be contracted to an infinitesimal radius with ℜ → ∞, the same thin shell Σ 0 generated around the proper time oscillator as described in Eqs. ( 52) and [START_REF] Anchordoqui | Probing Planck scale physics with IceCube[END_REF]. These results confirm that the spacetime outside a stationary proper time oscillator is Schwarzschild.

The external spacetime outside a proper time oscillator is curved. Here, we show that proper time oscillation can set up a direct link between matter and spacetime. The theory paints a simple picture: 'The proper time oscillator exerts fictitious radial oscillations on a thin shell with an infinitesimal radius. These radial oscillations alter the spacetime metric on the thin shell's surface and curve the surrounding external spacetime. In turn, the curved spacetime tells other matter how to react in the presence of the proper time oscillator' [START_REF] Yau | Schwarzschild field of a proper time oscillator[END_REF].

Particle's Time of Arrival

Let us consider a normalized plane wave 3 

, ζ = e i(k•x-ωt) ωω 3 0 . ( 67 
)
From Eq. ( 24), its Hamiltonian density is,

H = ω/V, (68) 
consisting one particle of energy ω in our system with volume V . In this normalized plane wave, the observed particle travels at an average velocity of v = k/ω. However, a particle only has a probability of being observed at a particular location in our quantum system. There is no classical continuous trajectory for a quantum particle. For illustration purposes, we will idealize the particle as a classical object with a continuous trajectory in the following analysis. We will then extend our results and apply them to the quantum system.

As the particle propagates, it oscillates in time and space. From Eqs. ( 11), [START_REF] Greenberger | Conceptual problems related to time and mass in quantum theory[END_REF] and [START_REF] Bauer | Conditional interpretation of time in quantum gravity and a time operator in relativistic quantum mechanics[END_REF], the oscillation displacements are,

td = Re(∂ 0 ζ) = T sin(k • x -ωt), (69) xd 
= -Re(∇ ζ) = X sin(k • x -ωt), (70) 
T = ω ω 3 0 , X = k ω 3 0 ω . (71) 
As we shall recall, we have adopted a convention similar to the Lagrangian formulation in wave mechanics. Without the oscillations, the idealized classical particle will travel along a trajectory x = vt; assuming it is first observed at x = 0 and t = 0. The oscillation displacements from Eqs. ( 69) and (70) are measured against this non-oscillating trajectory coordinates (t, x = vt). Therefore, at a particular time t, the particle will arrive at xf = x + xd and not x. It will follow a path similar to the one given by Eq. ( 1). Assuming a classical continuous path and substitute x = vt into Eqs. (69) and (70), the particle's internal time and spatial locations are, tf = t -T sin(ω p t),

xf = vt -X sin(ω p t), (72) 
where

ω p = ω 2 0 ω . (74) 
The particle's internal time rate and velocity with spatial oscillations are,

∂ tf ∂t = 1 - ω 0 ω cos(ω p t), (75) 
v = ∂x f ∂t = v[1 - ω 0 ω cos(ω p t)]. (76) 
As shown in Eq. (76), a particle travels back and forth along its trajectory with an average velocity v. For a target at a distance d from the origin, a particle will arrive at a time t ′ , i.e.

d = t ′ 0 vdt = v[t ′ -T sin(ω p t ′ + θ)]. (77) 
We have added θ as a phase factor for the particle's oscillation. In other words, particles with the same average velocity v can begin at the origin with different initial velocities depending on the initial phases of their oscillations. Note that v is the average velocity over all phases of θ. The average time t avg for a particle to travel the distance d with the average velocity v is,

t avg = | d | | v | = t ′ -T sin(ω p t ′ + θ). (78) 
Therefore, the deviation of the arrival time t ′ from the average time t avg is,

δt ′ = t ′ -t avg = T sin(ω p t ′ + θ). (79) 
Next, let us consider a phase angle,

δθ = ω p δt ′ = ω 0 ω sin(ω p t ′ + θ), (80) 
where δt ′ is defined in Eq. ( 79). Since we are testing particles at high energy, ω >> ω 0 , the magnitude of this deviation is very small, i.e.,

| δθ |≤ ω 0 ω << 1. (81) 
Taking δθ as negligible, the particle's arrival time is obtained from Eqs. (78), ( 79) and (80), t ′ = t avg + T sin(ω p t avg + δθ + θ) ≈ t avg + T sin(ω p t avg + θ).

Therefore, two particles with the same average velocity but different initial phases of oscillation, θ 1 and θ 2 , can reach a target at different times. This deviation is

δt ′ 2-1 = t ′ 2 -t ′ 1 ≈ T [sin(ω p t avg + θ 2 ) -sin(ω p t avg + θ 1 )], (83) 
which can be magnified when we project the particles to a higher speed. As shown in Table 1, using a neutrino assumed mass of m = 2eV [START_REF] Aseev | Measurement of the electron antineutrino mass in tritium beta decay in the Troitsk nu-mass experiment[END_REF][START_REF] Olive | Review of particle physics[END_REF], the frequency of an oscillator is lowered, and its amplitudes are amplified when the particle's speed is increased. At a higher energy level, the effects of the particle's oscillations will be easier to detect. Note: The assumed mass of the particle is m = 2eV .

For a sinusoidal distribution with amplitude T , the deviations in arrival time will give rise to an uncertainty after averaging the results attained from a large collection of particles with the same average velocity but different phase angles θ, i.e.

∆t ′ = ω 2ω 3 0 = E 2m 3 . (84) 
Although the above discussions are based on classical trajectories, we can extend the results to a quantum system. In the normalized plane wave ζ, a quantized particle has an average velocity v, albeit there is only a probability of observing the particle at a particular location. Each particle can have a different phase angle θ, which also gives rise to an uncertainty in arrival time.

The measurements of a large collection of quantized particles shall yield the same average uncertainty ∆t ′ as defined in Eq. (84).

To get a sense of the magnitudes, let us take the neutrino as an example again 4 . Since the mass of a neutrino is unknown now, we will consider its effects using three different assumed masses (m=2eV, 0.2eV, and 0.02 eV). As shown in Figure 1, the effects of the uncertainties can be magnified by projecting the particles to a higher speed. Uncertainty "t (s) m=2eV m=0.2ev m=0.02eV

Fig. 1 Neutrino's arrival time uncertainty as related to the particle's energy given by Eq. (84). Since the mass of a neutrino is not yet known, three different assumed masses are used in the plot.

Detecting the uncertainty in arrival time will not only provide evidence for a particle's temporal oscillation but can also yield a way to estimate the neutrino's mass. From Eq. (84) and using the arrival time uncertainty obtained from experiments, the mass of a particle is

m = [ ℏ 2 E 2(∆t ′ ) 2 ] 1/3 .
(85)

Conclusions and Discussions

The resemblances of the formulations between a quantum harmonic oscillator and a real scalar quantum field have alluded to the fact that certain symmetry could exist in quantum theory. This possible symmetry is a reason that inspires us to investigate whether matter can oscillate in time. As demonstrated, we can reconcile the zero-spin bosonic field and Schwarzschild spacetime from the proper time oscillation assumption. A field with matters that oscillate in proper time can mimic properties derived from the standard theories. The additional temporal and spatial oscillations can be observed only at sufficiently high energy or measurement resolutions. The properties engendered from our assumption, e.g., self-adjoint internal time operator and proper time uncertainty relation, allow a more symmetrical treatment between time and space in a matter field, reducing differences between quantum theory and general relativity. The outcomes of our analysis support the assumption we have made about proper time oscillation.

As advocated in the study of quantum gravity, investigations have been made on evaluating the accumulated uncertainty effects of a neutrino's travel time and distance in fluctuating spacetime. The suggested uncertainty follows a power-law depending on the neutrino's energy, i.e., ∆t ′ ∝ E n , where n is an unknown factor [START_REF] Anchordoqui | Probing Planck scale physics with IceCube[END_REF][START_REF] Stuttard | Neutrino decoherence from quantum gravitational stochastic perturbations[END_REF][START_REF] Lisi | Probing possible decoherence effects in atmospheric neutrino oscillations[END_REF][START_REF] Coloma | Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore[END_REF]. Although velocity fluctuations have not yet been detected for GeV neutrinos, it is believed that quantum fluctuations could be observed for > T eV [START_REF] Stuttard | Neutrino decoherence from quantum gravitational stochastic perturbations[END_REF]. As we have demonstrated in Eq. ( 84), the uncertainty derived from temporal oscillation is ∆t ′ ∝ E 1/2 . This result is akin to the power-law contemplated in the study of quantum gravity. However, the effect is due to an intrinsic property of a quantum particle, which can manifest in the distance much shorter than the cosmological distance studied in fluctuating spacetime.

From Eq. ( 84), the arrival time uncertainty is a function of the particle's mass and energy. As shown in Figure 1, with an assumed neutrino's mass/energy of m = 2eV and E = 1GeV , the calculated arrival time uncertainty is in the order of 10 -12 s. On the other hand, the mass of a neutrino is not yet known and could be even lower than 2eV . Assuming m = 0.2eV and E = 1T eV , the calculated uncertainty is in the order of 10 -9 s. Although the arrival time uncertainty magnitude is small, we can magnify its effects by projecting the neutrinos to a higher speed, as shown in Section 5. The experiments on neutrinos' speed can provide possible evidence for a particle's temporal oscillation. Since the neutrino's arrival time uncertainty is a function of its mass, the neutrino's mass can be estimated from the uncertainty measured.
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Table 1

 1 Amplitudes and frequencies of a particle with different energies as given in Eqs.

	(71) and (74)		
	E(GeV )	T (s)	X(cm)	ωp(s -1 )
	1	7.4 × 10 -12	0.22	6.1 × 10 6
	10	2.3 × 10 -11	0.70	6.1 × 10 5
	100	7.4 × 10 -11	2.20	6.1 × 10 4
	1000	2.3 × 10 -10	7.00	6.1 × 10 3

Proper Time Oscillation and a Particle's Arrival Time

If time and energy are a conjugate pair, they must satisfy a commutation relation [t, E] = -i. Pauli suggests that time cannot be treated as a self-adjoint operator because the energy of a typical system is either bounded from below or discrete. Therefore, the spectrum of a time operator cannot span the whole real line.

For convenience purposes, we have dropped the prime symbol from the coordinate (t ′ , x ′ ) in the rest of the paper.

Without loss of generality, we have omitted k when labeling the normalized plane wave in this section.

Neutrino is a 1/2 spin particle. Although the results developed in this paper are based on spin-0 particles, we expect the properties of mass (including the proposed proper time oscillation) to be universal for all massive particles regardless of their spins.