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ABSTRACT

Shared Mobility Services (SMS), e.g., demand-responsive transport or ride-sharing, can improve mobility in low-density areas,
often poorly served by conventional Public Transport (PT). Such improvement is mostly quantified via basic performance
indicators, like wait or travel time. However, accessibility indicators, measuring the ease of reaching surrounding opportunities
(e.g., jobs, schools, shops, . . . ), would be a more comprehensive indicator. To date, no method exists to quantify the
accessibility of SMS based on empirical measurements. Indeed, accessibility is generally computed on graph representations
of PT networks, but SMS are dynamic and do not follow a predefined network. We propose a spatial-temporal statistical
method that takes as input observed trips of an SMS acting as a feeder for PT and summarized such trips in a graph. On
such a graph, we compute classic accessibility indicators. We apply our method to a MATSim simulation study concerning
demand-responsive transport in Paris-Saclay.

Keywords: Accessibility; Public Transport; Shared Mobility; Mobility On-Demand; Demand-Responsive Transport

1 Introduction
Location-based accessibility measures the ease of reaching surrounding opportunities, such as education, health, culture,
shopping places, via transport (Miller [2020]). The ease is mainly measured in terms of time needed, but it can also include
other factors, such as monetary cost, discomfort. Accessibility provided by conventional Public Transport (PT) is generally
poor in low-demand areas, e.g., suburbs (Badeanlou et al. [2022]), because a high frequency and high coverage service in such
areas would imply an unaffordable cost per passenger. Poor PT accessibility in the suburbs makes them car-dependent, which
prevents urban regions from being sustainable ([Saeidizand et al., 2022, Section 2.2]), under the three pillars of sustainability:
(i) Environment: 61% of European road transport comes from cars (EUF [2022]), (ii) Society: people without cars can have
up to 5 times less access to jobs (Wiersma et al. [2021]) and (iii) Economy: the time spent into congestion amounts to 100
billion C in Europe (EU Commission [2020]). The lack of satisfying accessibility from PT and the car-dependency might be
one of the cause of the fact that suburban population is responsible for a part of pollution that is larger than those living in the
centre. Such fact has been observed by Pottier et al. [2020] (Fig. 4) in France.

Shared Mobility Services (SMS), e.g., Demand-Responsive Transit (DRT), ride-sharing, carpooling, car-sharing, are
potentially more efficient than conventional PT in the suburbs (Calabrò et al. [2023]) and can contribute to reducing the gap
of accessibility between suburbs and city centres Wang et al. [2024]. However, their current deployment is commonly led
by private companies targeting profit maximization. This may turn SMS into a competitor of sustainable modes, such as
Public Transport (PT) (Cats et al. [2022]), and an additional source of congestion and pollution (Henao and Marshall [2019],
Erhardt et al. [2019]). In order to fully exploit the social benefit potential of SMS, their deployment should be overseen by
public transport authorities. A large corpus of literature advocates for integrating SMS into conventional PT (Fielbaum and
Alonso-Mora [2024], Wang et al. [2024], Calabrò et al. [2023]) instead of operating it separately. However, no quantification
methods exist to measure the impact of such an integrated system on the distribution of accessibility in a given region.

In this paper, we devise a method to quantify the impact of SMS on accessibility, based on empirically observed trips.
Developing such a method is challenging, because most accessibility definitions are based on computing shortest paths on a



graph. While a graph (in particular a time-expended graph) can model well conventional PT (Fortin et al. [2016]) and road
networks, SMS do not have a natural graph representation. Indeed, the routes of SMS are stochastic and change over time.
As a consequence, it would be misleading to compute accessibility on a graph trivially composed of connections served by
observed trips (for instance trips of the day before). Such a computation would just give us an idea of what opportunities people
reached in the past and how easy it was for them. This violates the spirit of accessibility indicators, which aim instead to tell the
potential of reaching opportunities, even those that have never been accessed by a particular user. Computing accessibility from
SMS thus require to extract, from past observed trips, such a potential. This calls for statistical methods that can “summarize”
observations over multiple days.

The novel contribution of this paper consists in developing a spatial-temporal statistical pipeline to transform a dataset of
previously observed SMS trips in a graph representation, on top of which well-established accessibility computation can be
performed. The observations that can be taken as input might come from real measurements or from simulation. This paper’s
observations come from a MATSim simulation of a DRT, acting as feeder for main metro lines in the Paris Saclay (Chouaki
et al. [2023]). Our method is thus adapted to the case of a many-to-one and one-to-many transport service acting as a feeder for
conventional PT. However, our method could later be adapted to ride-hailing, carpooling, car-sharing or bike-sharing.

It is well known that SMS implies a high cost for the operator (Calabrò et al. [2023]), and thus for the communities who
might consider developing it. Therefore, such communities need to know what are the benefits of SMS. However, SMS are
often evaluated in terms of level of service (amount of requests that can be served, average trip time, etc.). By doing so, the
benefits of SMS are understated, and are limited to the performance of SMS itself. High cost of development, together with a
lack of understanding and quantification of the real benefits of SMS, are barriers to their large adoption. We believe that the real
potential of SMS resides in its ability to improve accessibility in places where conventional PT cannot do it: being able to show
claims such as “a certain SMS deployment gives to suburban people access to additional x thousands jobs in half an hour with
respect to conventional PT only” is much more meaningful than just saying that it can guarantee a certain average trip time,
and can foster adoption of SMS. In this sense, by providing a first method to quantify the accessibility of SMS on empirical
observations, this work can contribute to foster adoption of SMS and to guide their deployment under the lens of accessibility.

2 Related Work
There exists multiple decades of excellent work regarding Shared Mobility Services (SMS) and regarding accessibility.
Reviewing these two fields would be out of the scope of this section. A recent review on modelling and optimization of SMS,
with a focus on Demand-Responsive Transit (DRT), can be found in Sec. 2 of Calabrò et al. [2023]. A short and excellent
review on the concept of accessibility is provided by Miller [2020] and tools to evaluate it are presented in Silva et al. [2019].
However, work on SMS does not generally consider accessibility and work on accessibility does not generally consider SMS.

Chandra et al. [2013] study how SMS improves connection to conventional PT stops. The observation is confirmed
by Calabrò et al. [2023] (Fig. 7), who show that, by deploying SMS-based feeder in the suburbs, the time to access main
Public Transport (PT) corridors is reduced with respect to conventional fixed-route feeder lines. However, the “access to PT”
observed in the aforementioned two papers needs not to be confused with accessibility, which expresses the potential to access
opportunities, rather than the potential to access PT. When computing accessibility, PT should not be treated as the target, but
as a means. This is why, in our work, accessibility is equal to the number of opportunities that can be reached in a certain time
via SMS combined with PT.

Considerations about the impact of SMS in accessibility have been triggered by the advent of automated vehicles. Milakis
et al. [2018] proposes a conceptual method, based on interviews to experts, to qualitatively evaluate the impact of automated
SMS into accessibility. Eppenberger and Richter [2021] propose another conceptual method to identify the areas in which the
accessibility currently provided by conventional PT is much lower than cars. Such areas are identified as the one in which
the development of automated SMS could be the most beneficial. These contributions, however, are focused on qualitative
considerations and do not compute accessibility of SMS. Quantification of accessibility provided by SMS is pursued by
Nahmias-Biran et al. [2021], Zhou et al. [2021] and Ziemke and Bischoff [2023]. They all resort to random-utility based
measures of accessibility (following the terminology of Miller [2020]). Such measures are based on utilities perceived by
agents within high-detail simulations. However, the complexity of the development of such simulations limits the applicability
of such methods. Moreover, the validity of the obtained accessibility measure is tightly dependent on the correctness of the
model and of the calibration of the agent-based simulation, which is hard to obtain and hard to prove. For this reason, we adopt
instead an isochrone-based measure of accessibility, which counts the number of opportunities that can be reached in a given
amount of time. This measure is easily interpretable. It also allows us to quantify accessibility, solely based on observed SMS
trip times, either from the real world or simulation, and applying an appropriately designed statistical method (Sec. 3).

We now emphasize the difference between our work and previous work of Ziemke and Bischoff [2023] and Abouelela et al.
[2024]. Ziemke and Bischoff [2023] compute accessibility of a taxi-like service, with one passenger at a time, going from an
origin to a destination. Abouelela et al. [2024] analyse the accessibility generated by shared e-scooters, which, obviously, can
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be used by one user at a time. In both cases, there are no shared trips. In this work we compute instead the accessibility of a
shared feeder service, where (i) having multiple passengers at a time is crucial for achieving the required cost-efficiency and
(ii) the accessibility gained by passengers is achieved by bringing passengers to main PT hubs from which opportunities are
easily reachable. The two aspects that characterize our work with respect to Ziemke and Bischoff [2023] and Abouelela et al.
[2024] are thus (i) trip sharing and (ii) multimodality. These two aspects prevent us from computing travel times as simply
inversely proportional to the speed of the considered mode (e.g., e-scooter speed, as in Abouelela et al. [2024]). The novel
statistical approach we devise in this paper allows to naturally deal with these two aspects, by estimating resulting travel times
from a dataset of observed trips.

Recent work focuses on the accessibility improvement achieved via a feeder provided by Demand-Responsive Transport
(DRT), and models the travel times of DRT with analytic models, namely continuous approximation (Le Hasif et al. [2022],
Wang et al. [2024]). The former builds a detailed dynamic graph representing the schedule of the conventional PT, based on real
world General Transit Feed System (GTFS), and adds new “virtual links” with travel and waiting times obtained by continuous
approximation. The latter does not adopt a detailed GTFS-based representation and resorts to a frequency-based graph: the core
of this graph is a simplified representation of conventional PT, on top of which “DRT arcs” are added in the different regions in
which DRT is deployed, weighted by the average waiting time and travel times, computed via continuous approximation. The
goal of Wang et al. [2024] is to find an allocation of DRT in a metropolitan region in order to decrease the inequality in the
geographic distribution of accessibility. The issue is that, since they use analytic models for computing SMS performance,
Le Hasif et al. [2022], Wang et al. [2024] fail to give real insights specific to the areas under study. Our effort consists instead
in estimating accessibility from empirical observations. Note that, recently, the GTFS-Flex extension allows also describing
SMS (Craig and Shippy [2020]). Although our estimates could thus be fed into GTFS-Flex data, for the sake of simplicity, we
use plain GTFS instead.

To summarize, to the best of our knowledge, we are the first to propose a method to compute isochrone measures of the
accessibility obtained via integrating SMS with a conventional PT service. The main novel feature of our method is that it is
fully data-driven, as it allows computing accessibility based on observed trips (either from real scenarios or simulations) via
statistical methods, without needing to build complex models.

3 Methodology
The idea behind our method is intuitive: we aim to model Shared Mobility Services (SMS) with the same representation of
conventional PT lines, so as to allow computing accessibility on a coherent model. Conventional PT is usually modelled as a
time-dependent graph, this is the implicit model underlying GTFS. In this model, each PT line is represented by a set of arcs,
each arc represents the passage of a bus from one stop to another. To adapt to the conventional PT model description, we wish
to represent a feeder service from an area to a certain stop,1 as a set of “virtual PT lines”, each connecting a centroid to that
stop. We wish to construct such a virtual PT line as a proxy of the performance offered by SMS, i.e., in a way such that the
performance of such a virtual line is similar, on average, to the performance actually experienced by SMS users.

3.1 Accessibility
As in (Biazzo et al. [2019]), the study area is tessellated in sufficiently small hexagons,2 whose centres u ∈ R2 are called
centroids and denoted with set C ⊆R2. Each hexagon contains a certain set of opportunities, e.g., jobs, places at school, people.
With Ou we denote the amount of opportunities in the hexagon around u and with T (u,u′, t) the time it takes to arrive in u′,
when departing from u at time t. According to the isochrone-based definition of Miller [2020], accessibility is the amount of
opportunities that one can reach departing from u at time of day t within time τ:

acc(u, t)≡ ∑
u′∈C(u,t)

Ou′ . (1)

C(u, t) = {u ∈ C|T (u,u′, t)≤ τ} is the set of centroids reachable within time τ . We consider here travel times provided by
PT (combining walk, fixed lines and SMS).3 Accessibility jointly depends on the spatial distribution of opportunities (which
determines number Ou of opportunities around centroid u) and the transport system (which determines travel times T (u,u′, t)).
The focus of this paper is on the transport system. By improving PT, such a set can be enlarged, which consents to reach more

1Symmetrically, we also represent an SMS service from a stop to a surrounding area.
2The smaller the hexagons, the more precise is the accessibility computation, but the more the computational power needed.
3We deliberately make the choice of excluding other modes from our analysis, and in particular of excluding cars. It is true that people can access

opportunities by car. On the other hand, in view of the urgent need of reducing car-dependency, we believe transport planners should be concerned on the ease
of reaching opportunities via sustainable modes, in lieu of (or at least in addition to) the ease of reaching opportunities by whichever modes. Indeed, if planners
aimed to improve accessibility by whichever modes, they would inevitably plan cities for cars, as cars are often the fastest way to travel. This would obviously
contradict the effort of achieving sustainable cities.
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Figure 1. Time-expanded graph, representing two trips on line A and one trip on line B, as well as a potential change.

opportunities. In this work, for simplicity, the opportunities are the number of people (residents) that can be reached. We make
this choice as it is sufficient to show the formalism of our method. One could easily replace the distribution of people with
the distribution of other kind of opportunities to compute a more meaningful measure of accessibility. Observe that travel
times T (u,u′, t) are always computed on a graph representation of the transport network. However, SMS are not based on any
network, due to their dynamic and stochastic nature. Our effort is thus to build a graph representation of SMS, despite the
absence of a network model. In the following subsections we describe our method to do so.

3.2 Time-Expanded Graph Model of conventional PT
We first describe the model of conventional PT. Inspired by Fortin et al. [2016] and Le Hasif et al. [2022], we model PT as a
time-expanded graph G, compatible with the GTFS format. The nodes of G are stoptimes. Stoptime (s, t) indicates the arrival of
a PT vehicle at a stop s ∈R2 (modelled as a point in the plane) at time t ∈R. Different trips on a certain PT line are represented
as sequences of different stoptimes, as in Figure 1. Change from a line to another is represented by a connection between
stoptimes (s, t) and (s′, t ′), which belong to the first and the second line, respectively. This “change connection” is added if time
Twalk(s,s′) between s and s′ is within a maximum tolerated time and if it is possible to arrive in s′ before the departure of the
corresponding vehicle, i.e., if t +Twalk(s,s′)≤ t ′. When a user departs at time t0 from location x to location x′, they can simply
walk (but no more than the maximum walk time). Or they can walk to s, board a PT vehicle at t (corresponding to a stoptime
(s, t), use PT up to a stoptime (s′, t ′) and from there walk to x′. The arrival time at x′ will be t ′ plus the time for walking. Users
are assumed to always choose the path with the earliest arrival time. Path computation is performed within CityChrone ([Biazzo
et al., 2019, Supplementary Information]). No capacity constraints are considered.

3.3 Integration of shared mobility into the time-expanded graph
SMS is assumed to provide a feeder service to conventional PT. In a feeder area F(s) ⊆ R2 around some selected stops s
(which we call hubs), SMS provide connection to and from s. The set of centroids in such an area is C(s) = C ∩F(s). In this
section, we will focus on access trips (from a location to a PT stop) performed via SMS. The same reasoning applies to egress
trips, mutatis mutandis. We assume to have a set O of observations. Each observation i ∈O corresponds to an access trip and
contains:

• Time of day ti ∈ R when the user requested a trip via SMS

• Location xi ∈ R2 where the user is at time ti

• Station si where the user wants to arrive via the SMS feeder service

• Duration wi indicating the wait time before the user is served: it can be the time passed between the time of request and
the time of pickup from a vehicle, in case of ride-sharing, SMS or carpooling; it can be the time to wait until a vehicle is
available at the docks in a car-sharing or bike-sharing system.

• Travel time yi: time spent in the SMS vehicle to arrive at si.

We interpret yi and wi as realizations of spatial-temporal random fields (Handcock and Wallis [1994]): for any time of day
t ∈R and physical location x ∈ F(s), random variables W s(x, t),Y s(x, t) represent the times experienced by a user appearing in
t and x, willing to go to stop s via SMS. Let ŵs(u, t), ŷs(u, t) estimations of expected values E[W s(u, t)],E[Y s(u, t)], respectively,
at centroids u ∈ C(s). We defer the computation of such estimation to the next subsection, and we now instead explain how we
use such estimations to calculate “virtual PT lines”, which we then add as additional arcs to the time-expanded graph of PT.
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Figure 2. Hub and virtual trips provided by SMS

The virtual PT line that we will use as a proxy of SMS between centroid u ∈ C(s) and hub s (Figure 2) is a sequence of
“virtual trips”. Such trips are “virtual” in the sense that they have not necessarily been observed in the past (although they
should statistically summarize observed trips). We make all virtual trips start at u and end at s, and we assign to them departure
times t j, j = 1,2, . . . spaced by a headway ĥs(u, t j), i.e. t j = t j−1 + ĥs(u, t j). We use the common approximation from [Cascetta,
2009, (2.4.28)], to approximate the headway as double the waiting time: ĥs(u, tt) = 2 · ŵs(u, t j). For each virtual SMS trip,
we add a time-dependent arc to the overall graph G. We associate to that arc the trip time of the virtual SMS trip, which we
set equal to ŷs(u, t j). The origin of each arc above is stoptime (u, t j). Before generating stoptimes, we first fix an instant t0
(selected uniformly at random in the interval [00 : 00,24 : 00]), and then we add stoptimes before and after t0, all spaced
by ĥs(u, t j) = 2 · ŵs(u, t j):

(u, t0),
(u, t j) where t j = t j−1 +2 · ŵs(u, t j−1)for j = 1,2, until 11:59 pm, (2)
(u, t j) where t j = t j+1 −2 · ŵs(u, t j+1)for j =−1,−2, until 00:00 am.

Correspondent stoptimes are also added to represent the arrival of the virtual SMS trips (s, t j + ŷs(u, t j)), so that the
time-expanded arcs representing virtual SMS trips connect a corresponding departure stoptime and the corresponding arrival
stoptime. A similar process is applied for egress trips, mutatis mutandis. At the end of the described process, time-expanded
graph G will have been enriched with stoptimes and time-expanded arcs representing SMS trips. Having done so, it is
possible to reuse accessibility calculation methods for time-expanded graphs, such as CityChrone Biazzo et al. [2019], with no
modifications required.

3.4 Estimation of Waiting and Travel Times
In the previous subsection, we have explained how, given estimations ŵs(u, t) and ŷs(u, t), we can enrich the overall graph
with time-expanded arcs representing SMS. We now explain how we construct such estimations. For simplicity, we give our
explanation only for waiting times ŵs(u, t) of access SMS trips only. Similar reasoning is applied to trip times ŷs(u, t) and
egress trips. We assume random field W s(x, t) is approximately temporally stationary within each timeslot:

W s(x, t) =W s(x, tk), ∀x ∈ R2,∀t ∈ [tk, tk+1[,∀ station s (3)

For any timeslot, we thus just need to find estimation ŵs
tk(u) of the expected values of random field W s

tk(x) ≡ W s(x, tk).
First, we collect the observations O that fall onto time-slot [tk, tk+1]:

Os
tk ≡ {observation i = (xi,wi,yi)|i ∈O, t ∈ [tk, tk+1[, i is related to an access trip to s} (4)

Estimation ŵs
tk(u) is computed by Ordinary Kriging (Sagar et al. [2018]) on the observations Os

tk as a convex combination of
observations wi:

ŵs
tk(x) = ∑

i∈Os
tk

λi ·wi (5)

In short (details can be found in [Chilès and Desassis, 2018, Sec. 19.4]), coefficients λi are computed based on a
semivariogram function γs

tk(d), which obtained as a linear regression model, with predictors di, j (distances between all pair of
observations) and labels γi, j, which are called experimental semivariances:

γi, j ≡
1
2
· (wi −w j)

2 (6)
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Figure 3. Implementation pipeline. Note that input data can come either from simulation or a real scenario. CityChrone is the
tool developed by Biazzo et al. [2019].

The underlying assumption here is that correlation between wait times in two different locations vanishes with the distance
between such locations.4 The semivariogram gives the “shape” of this vanishing slope. Formula (5) implicitly implies
that different observations wi contributes differently to the estimation of waiting time in location x, and the contribution of
observations closer to x is given higher weight λi. Under hypothesis on spatial stationarity and uniformity in all directions (Col
[2023]), Theorem 2.3 of Yakowitz and Szidarovsky [1985] proves that Kriging is an asymptotically biased estimator: as the
number of observations goes to infinite, ŵs

tk(x) tends to the “true” E[W s
tk(x)].

Note that, by means of interpolation on a limited set of observed trips, the method described here allows inferring the
potential to access opportunities, also via trips that may not have been observed yet.

4 Implementation
The methodology of Section 3 is implemented in a Python pipeline, which we release as open source (Diepolder [2023]) and is
depicted in Figure 3.

1. We first get centroids and cells performing the tessellation via CityChrone software [Biazzo et al., 2019, Fig. 1].

2. We read the file containing the observations (SMS trips). Such a file can be a simulation output or measurements of real
SMS. Each observation includes the information listed in Sec. 3.3. Observations are stored in a dataframe.

3. We assume SMS is deployed as feeder (as it is the case for the MATSim simulation on which we perform our analysis).
Therefore, we can classify every SMS trip as either access or egress, depending on whether the origin or the destination
is a conventional PT stop.

4. To establish feeder area F(s) around any stop s, we find among the observations O the furthest cell from s in which
a trip to/from s has occurred. All cells within such a distance are assumed to be in F(s). Observe that feeder areas of
different hubs may overlap.

5. We group observations in timeslots (Figure 9).

6. In each time slot [tk, tk+1[ and each centroid u in F(s), we perform Kriging (Sec. 3.4) via library pyInterpolate
(Moliński [2022]) to obtain estimations ŵs(u) and ŷs

tk(u).

7. We create stoptimes and time-dependent arcs using the estimations above, as specified in (2). We add stoptimes and
time-dependent arcs to the GTFS data of conventional PT, following the specifications in gtf [2023].

8. We give the obtained GTFS file as input to CityChrone, which will give us accessibility scores in all the centroids.

6/17



Table 1. Parameters used for the numerical results.

Parameter Value Reference
Side of a hexagon (tessellation) 1 km Badeanlou et al. [2022]
τ (Equation (1)) 1 hour Badeanlou et al. [2022]
Total number of SMS trips 14700 Chouaki et al. [2023]
- as access towards PT 5289 Chouaki et al. [2023]
- as egress from PT 9412 Chouaki et al. [2023]
Maximum tolerated walk time 15 minutes
Total number of hubs 16
Walk times Computed via OpenStreetMap
Travellers in the considered area 76k travellers From the simulation of Chouaki et al. [2023]
Average request rate served by SMS in the entire region XX requests / minute Chouaki et al. [2023]
SMS fleet size (calculated in order to minimize rejections) 1600 Chouaki et al. [2023]
Frequencies of rail and tramway lines 1/2.4 minutes Chouaki et al. [2023] and SGP [2015]

5 Results and discussion
5.1 Data Source of the observations
The dataset of observed trips used in this study was obtained from a MATSim simulation. The considered simulation scenario
was presented in Chouaki et al. [2023]. The simulation includes the future rail infrastructure, consisting in new automated
subway lines and tramway lines, which will be deployed within the Grand-Paris Express project, in the Paris-Saclay area. An
SMS service, provided via a fleet of minibuses (Demand-Responsive Transport - DRT), is simulated, operating as a feeder for
rail-based public transport. The SMS service serves door-to-rail-stop and rail-stop-to-door trips. The area in which SMS is
deployed is depicted in Figure 4.

This simulation is obtained starting from a synthetic population of the Île-de-France region, generated exclusively from
open data, and a MATSim simulation for this population (Hörl and Balac [2021]). Four future subway lines planned for the
region in the scope Grand-Paris Express project are added to this simulation, as well as the tramway line T 12, which was under
construction in the Paris-Saclay area at the time of the study. The region wide simulation after these modifications on the PT
offer is performed to identify a preliminary impact of these lines on traveller decisions. Afterwards, for the simulation of the
SMS service, a focus is performed on the Paris-Saclay area by cutting the road and PT network around it and leaving only
agents that travel in this area. The SMS service is simulated in competition to the other modes (walk, car, bike, PT). This means
that the identified trips that are used later on reflect the attractiveness of the service.

Scenario parameters are show Table 1. While absolute results may change when changing parameters such as the side of
the hexagon and the time threshold τ , the method (which is the focus of this paper) would remain valid.

5.2 Analysis of Temporal and Spatial Patterns of Shared Mobility Service trips
Figure 5 clearly shows morning peak [7 : 00,10 : 00[, evening peak [16 : 00,19 : 00[ and off-peak (all the other intervals).

The following figures concern SMS trips toward/from all hubs, without distinguishing between hubs. Figure 6 is a negative
result: travel times (figures on the right) do not appear to be spatially stationary (the distribution of values measured close to
the related PT stops is different from further). Therefore, our estimations are not guaranteed to be asymptotically unbiased
(Sec. 3.4). In our future work, we will explore indirect estimation of travel times through other indicators, e.g., the detour
factor of SMS, which respect the requirements for the unbiasedness of Kriging. As for waiting time instead, there is no clear
correlation with the distance (Figure 7).

Figure 8 shows that wait time follows expected peak/off-peak patterns. Values are generally low, since the simulation is
configured so that an SMS trip is accepted only if the dispatcher predicts it is possible to serve it within 10 minutes. All wait
times exceeding this limit are likely due to the dispatcher not taking traffic correctly into account.

5.3 Estimation of Waiting and Travel Times
Figure 9 shows that timeslots of 1h preserve the temporal pattern of trips, so 1h should be preferred to smaller timeslots, so as
to perform Kriging within each timeslot with as many observations as possible.

4Note that we talk here about the correlation between the waiting time of observation i and the waiting time of observation j and we are assuming that such
a correlation vanishes with their mutual distance di, j . This is not to be confused with the dependence between the wait time of observations and the distance to
the hub, which may not exist, as later shown in Fig. 7
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Figure 4. Hub Catchment Areas and Hub Locations. Each dot corresponds to the origin of one trip observed during the
simulation. The differentiation in colour of the observed trip origins indicates the catchment by different hubs

Figure 5. Trips over time. One trip is defined by the departure within the study area of Paris Saclay. A trip consisting out of
multiple legs (e.g. walk + SMS + PT is considered as one trip)
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Figure 6. Relation between travel time and distance measures. Travelled distance is the actual Km travelled by the user inside
the SMS vehicle. Direct distance is the one from the shortest road network road from the origin centroid to the hub. Beeline is
the Euclidean distance.

Figure 7. Relation between wait time and distance measures.

Figure 8. Mean Wait Time: A moving average of wait time during one day
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Figure 9. Comparison of different timeslot sizes. Values exceeding 10 minutes are not depicted, as they are due to simulation
events unpredictable for the SMS dispatcher

Figure 10. Spatial Trend Travel Time for access time, morning peak (evening and off-peak show similar trends).
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Figure 11. Spatial correlation of travel time observations

Figure 12. Spatial Trend Wait Time: No clear pattern can be identified, indicating low spatial autocorrelation

Figure 10 clearly shows that there is spatial correlation between observations, i.e., the closer the observations, the similar
the values of observed travel times, which is favourable to the use of Kriging. This spatial correlation is confirmed by the
experimental semivariance in Figure 11, i.e., the γi, j between pair of observation i, j (Equation (6)) increases with the spatial
distance between the observations.

Such trends are not as evident for wait times (Figure 12) although similarity between observations still decay with their
mutual distance (Figure 13).

5.4 Improvement of Accessibility Brought by Shared Mobility Services
Figure 14 shows headway and travel times of the virtual SMS trips added to PT graph G. We can then compute accessibility on
this graph. Note that accessibility varies with the time of day (1). However, in the following figures, we show averages over the
time periods mentioned.

First, we study a system with SMS access services only (no egress). Figure 15 shows that the catchment area is expanded,
especially in the south: hexagons with no access to PT within the maximum tolerated walk time (15 minutes), i.e., white
hexagons in Figure 15-left, can now use PT (Figure 15-right). Figure 16 shows more clearly the improvement in accessibility
brought by SMS. As only access SMS feeder is added in Paris Saclay to obtain this figure, the areas outside Saclay do not show
any changes, except slight improvement in some locations, for instant south of Versailles, possibly due to the possibility for
travellers starting from there to make changes in Saclay, which are enhanced by SMS.

Accessibility improvements are even greater in off-peak hours (Figures 17 and 18, as SMS compensates for the low
frequency of conventional PT.

Figure 19 shows the improvement in accessibility when both access and egress SMS trips are added, averaged over the
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Figure 13. Spatial correlation of wait time observations

Figure 14. Headway and Travel Times of some examples of virtual SMS trips. Each departure time of a virtual SMS trip is
indicated by a cross. Therefore, the distance between cross is the estimated headway. The respective travel time is indicated by
the y-axis value.

Figure 15. Sociality Score - Access Only - Morning Peak 07:00–10:00
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Figure 16. Sociality Score Improvement - Access Only - Morning Peak 07:00–10:00

Figure 17. Sociality Score - Access Only - Off Peak 10:00–16:00
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Figure 18. Sociality Score Improvement - Access Only - Off Peak 10:00–16:00

Figure 19. Sociality Score Improvement - Access & Egress - Full Day 05:00–23:00
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entire day. Improvement is much greater than the access-SMS only case. It is interesting to observe that improvement is also
visible outside the Saclay area, even if no SMS is deployed outside: users from everywhere can now reach opportunities in
Saclay faster, thanks to SMS egress connections.

6 Conclusions
We proposed a method to compute the impact of SMS on accessibility, based on empirical observations of SMS trips. Our
method can support transport agencies and authorities in future deployment of SMS, to decide in which areas SMS is more
beneficial and how many resources is beneficial to invest. We believe that being able to quantitatively support claims such as “if
SMS is deployed in a certain community, the number of people that can be reached by that community within 1h increases
by 500 thousands” is extremely important to encourage the deployment of SMS by such communities, much more important
than just estimating expected travel times or waiting times. Therefore, by devising a method that can compute accessibility
improvement brought by SMS, this method contributes to accelerate their adoption. On the contrary, in some cases, our method
could be used to assess the uselessness of SMS in a certain region, if it does not considerably improve accessibility over the
already deployed conventional PT, which can also prevent the emergence of an undesirable competition between conventional
PT and SMS.
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