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A B S T R A C T

We present SpecTrHuMS, a Spectral Transformer for 3D triangular Human Mesh Se-
quence learning which combines known deep learning models with spectral mesh pro-
cessing to capture characteristics of 3D shapes as well as temporal dependencies be-
tween the frames. Unlike previous works in this field, our approach is able to work di-
rectly with a compressed representation of the geometry, the spectral coefficients, rather
than relying solely on skeleton joints that does not contain surface information. The
vertices of each mesh of a sequence are first projected on the eigenvectors of the Graph
Laplacian computed from the common triangulation. A convolutional encoder then
encodes each frame into lower dimensional latent variables that preserve as much as
possible the spectral information. These latent variables are next passed through a trans-
former architecture so that the model understands the context of the sequence and learns
temporal dependencies between the frames. Each frame of the transformer’s output is
then decoded by a convolutional decoder which aims to reconstruct the input spectral
coefficients. Finally, all frames are transformed back into the spatial domain, resulting
in a general process able to treat 4D surfaces with a constant connectivity. Our method
is evaluated on a prediction task on AMASS, a dataset of human surface sequences,
showing the ability of our model to produce realistic movements while preserving the
identity of a subject, and showing that this work is a significant step towards efficient
and high-quality representation of triangular mesh sequences with constant connectiv-
ity. Additional experiments show that our model can be easily extended to other tasks
such as long term prediction, completion and that it is generalizable to other datasets
with constant connectivity. This work opens up new possibilities for applications in the
fields of animation, virtual reality, and computer graphics. Pretrained models, the code
to train them and the code to create datasets are available at https://github.com/MEPP-
team/SpecTrHuMS.

1. Introduction

Modeling, analyzing and synthesizing human mesh se-
quences is a crucial problem in various fields from the computer
graphics world such as virtual reality, video games or movies.
Recent progress concerning the technology to capture moving
shapes made the acquisition cheaper and more efficient while
making databases of dynamic meshes more available and more

detailed. Nevertheless, the cost and the difficulty to obtain those
scans are still non negligible, and developing processes able to
understand or generate synthetic but realistic data is today a
necessary need.

This last decade, deep learning techniques have been mas-
sively used in order to treat large datasets composed of one-
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dimensional (e.g. audio, time series and language) or two-
dimensional (e.g. images and videos) samples. More recently, a
new field has emerged which aims to apply those techniques to
data embedded in a higher dimensional space that can be rep-
resented as triangular meshes or point clouds and that do not
have the Euclidean structure of one or two dimensional data
anymore. This field, named Geometric Deep Learning [1], is
still the subject of a consequent amount of research, and rep-
resents challenges that are the main obstacle when trying to
treat sequences of meshes. Recent works concerning human
motion modeling deal with this problem by taking as input in-
formation regarding sequences of skeletons and not surfaces
([2, 3, 4, 5, 6, 7, 8]), reducing by a large factor the dimen-
sion of the problem. The disadvantage of these methods is
that they do not have access to the geometry information and
need additional skinning and blending steps in order to gener-
ate meshes. Other methods [9] take as input a simplified repre-
sentation of surfaces such as SMPL parameters [10] that con-
tain this geometric information, but they are specific to some
datasets and still need an additional process to generate meshes.
Also, there are methods able to treat surfaces but they only rely
on poses in a static manner, without taking the motion into ac-
count [11, 12, 13, 14]. More discussions about the state of the
art are given in Section 2. In this work, our goal is to show
that by using spectral methods, it is possible to efficiently treat
surfaces by also taking into account the dynamic of a motion.

Spectral analysis applications allow to alleviate the amount
of treated data by working in the spectral domain. A signal can
be well approximated using only low frequencies spectral co-
efficients, reflecting the energy compaction of the spectral do-
main. Those properties are good candidates to solve the prob-
lems of Geometric Deep Learning, that are the large amount of
nodes and their non-ordering.

The process presented here is based on this characteristic of
the spectral domain. It consists in a convolutional autoencoder
able to represent a static mesh into a latent variable by taking
spectral coefficients as input instead of spatial vertices. This ar-
chitecture is coupled with the recently introduced transformer
able to understand the context of sequences from a dataset.
It is based on BERT [15] (only the encoder part of the trans-
former) and is mainly evaluated on the task of predicting the
end of a sequence. Additional experiments show the possibility
to easily extend its applications, such as long term prediction,
completion of missing parts (in-betweening) or generalizabil-
ity to other datasets. The use of the spectral domain enables
a fast treatment of the data, and the transformer enables a par-
allelizable process that can generate human motion in a non-
autoregressive manner (in this context, a non-autoregressive
generation means that multiple poses are generated in one pass
thanks to the transformer, in contrast with recurrent neural net-
works that generate outputs based on previous generations, step
by step). The main process is depicted in Fig 1.

The contributions of our paper are summarized as follows :

1. we use the spectral coefficients obtained from the geome-
try of human triangular meshes with constant connectivity

as input of the network.
2. we only train the network in the spectral domain without

going back to the spatial one, making the process fast.
3. we use a double architecture composed of a convolutional

autoencoder and a transformer encoder able to predict fu-
ture frames (in short or long term), or complete missing
frames of a mesh sequence.

4. the latent space of the convolutional autoencoder is used
as input and output of the transformer, giving it access to
surface information.

5. the process works in a non-autoregressive manner, en-
abling the efficient generation of human motion frames in
a fast way.

Pretrained models, the code to train them and the code
to create datasets are available at https://github.com/MEPP-
team/SpecTrHuMS.

We present related works in Section 2, we recall spec-
tral mesh processing techniques and introduce how our model
works in Section 3, and finally show results of experiments in
Section 4.

2. Related works

In this section, we first highlight methods enabling the gener-
ation of static triangular meshes which are part of recent studies
on Geometric Deep Learning [1]. Then, recent works enabling
the treatment of human motion are presented, which allows us
to show how our work differs from them by combining spectral
triangular mesh processing with temporal modeling.

2.1. Static

Deep learning has proven to be useful when trying to de-
tect features in data that is grid structured like time series or
images. Recently, more applications appear where the infor-
mation is represented as graphs or manifolds such as triangu-
lar meshes. Such domains have an increased complexity and
bring challenges when trying to transfer known deep learning
architectures to them. These challenges are mainly the irreg-
ular structure of the grid and the high and variable number of
nodes. Here, we focus on methods enabling the generation of
human triangular meshes and more specifically movement-like
generation by interpolating between two poses. It is difficult to
learn on human surfaces in an unsupervised manner with deep
learning methods because the human body is subject to near-
isometric transformations. The network should be able to un-
derstand the manifold of realistic poses of a human body.

A first line of works take as input triangular meshes by treat-
ing them as point clouds (refer to [16] for a recent survey). Most
of them have an architecture based on PointNet [17, 18]. Au-
mentado et al. [19] use a variational autoencoder to disentangle
intrinsic and extrinsic information using spectral information in
a unsupervised way. Cosmo et al. [11] use a strong geomet-
ric prior in order to make the latent space preserve computed
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Fig. 1. Illustration of the general process. Each frame’s vertices of a mesh sequence are first transformed into spectral coefficients. They are next passed
through a convolutional encoder in order to get latent variables, which are the input of a transformer. The latent variables generated by the transformer
are then decoded by a convolutional decoder, and finally transformed back to the spatial domain. The training only takes place in the spectral domain,
meaning that there is no need to go back to the spatial one during training. Input data are in blue, output data are in orange, learnable parameters for the
static process are in green, and learnable parameters for the dynamic process are in red, meaning the overall parameters of the model are in green and red.

geodesic distances on generated surfaces. Rakotosaona et al.
[12] use a mapped double latent space, one extracted from ver-
tices and the other one extracted from edge lengths in order to
generate movements by interpolating in the edge latent space.
Even if these methods result in processes able to treat variable
topologies with simple and efficient architectures, they still are
slow and only able to treat small datasets having meshes with
few vertices. Also, their core architectures based on PointNet
are not able to capture local correlation between neighbour ver-
tices and are often less expressive than methods using the con-
nectivity of meshes.

A second line of works takes as input triangular meshes, ex-
ploit the information available in the connectivity and take place
only in the spatial domain. Pioneer works from Masci et al.
[20] and Boscaini et al. [21] used local patches in order to ap-
ply convolutions to meshes. Fey et al. [22] pre-defined local
pseudo coordinates over the graphs. Lim et al. [23] introduced
spiral convolutions, completed by Bouritsas et al. [24] by cou-
pling them with an autoencoder, and finally upgraded by Gong
et al. [13]. Hanocka et al. [25] apply convolutions and pooling
to meshes by using edges information. Huang et al. [26] in-
troduce a loss based on as-rigid-as-possible (ARAP) deforma-
tions which is combined with a network inspired by FeastNet
from Verma et al. [27]. Milano et al. [28] aggregate features
from edges and faces using attention mechanisms. As for point
clouds, the high dimensionality of the data makes processes
slow and only able to work on a reduced number of vertices
if the dataset contains a lot of meshes, which is the case when
treating sequences of meshes. Also, these methods imply to
create pooling procedures that are not trivial.

Another line of work use spectral graph theory. By first

transforming nodes of a graph in the spectral domain using the
eigenvectors of the Graph Laplacian, a convolution layer can
be written as a product of signals. One of the first works using
this method was introduced by Bruna et al. [29]. But there is
a computational disadvantage induced by the forward/inverse
Graph Fourier transform, so Defferrard et al. [30] used trun-
cated Chebyshev polynomials and Kipf et al. [31] used only
first-order Chebyshev polynomials that resulted in faster pro-
cesses. This resulted in an autoencoder introduced by Ranjan et
al. [32]. Other polynomials were also used, such as Cayley ones
by Levie et al. [33] and Zernike ones by Sun et al. [34]. But
these methods still go back to the spatial domain for input data
processing, slowing the process. Lemeunier et al. [14] are able
to encode human triangular meshes by only taking as input the
spectral coefficients, without going back to the spatial domain,
resulting in a faster process able to give similar results. Marin
et al. [35], with its extension [36], presented a model that learns
how to reconstruct a 3D shape when only given as input eigen-
values from the Laplace-Beltrami operator, while making it a
generative process by using interpolation or style transfer. Sim-
ilarly, Pegoraro et al. [37] developped a shape from eigenvalues
model but while using a mixture of multiple operators. More re-
cently, Sharp et al. [38] use diffusion in the spectral domain to
get a model agnostic to sampling, resolution and representation.

Also, deformation-based representations can be exploited to
learn on surfaces. Gao et al. [39] designed a representation
called rotation-invariant mesh difference (RIMD), which was
used as input of Mesh VAE [40] for deformable shape analysis
and synthesis. Next, Gao et al. [41] designed an as-consistent-
as-possible (ACAP) representation which imposes limitations
between adjacent vertices. Then, they combined this represen-
tation with graph convolutions [30] in [42] with a newly de-
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signed pooling operation.

Finally, other methods were presented such as the one from
Eisenberg et al. [43] where a deformation field combined with
graph convolutions are used in order to learn interpolation.
Also, Hartman et al. [44] use a Riemannian framework for hu-
man body scan representation, interpolation and extrapolation.

All these methods have the advantage of achieving genera-
tion tasks, but only by considering shapes in a static manner
and using methods such as interpolations, reducing the capac-
ity of creation. In this paper, our goal is to combine this way
of treating surfaces while including a dynamic treatment. As
we work here with mesh sequences, and the resulting datasets
consist of a large number of surfaces, we kept the method from
Lemeunier et al. [14] for processing the input samples within a
reasonable time.

2.2. Dynamic

Human motion generation has recently seen a lot of interest
in the litterature. Since our main application is prediction, we
will focus on recent papers concerning this objective. Human
motion prediction is generally expressed as a sequence to se-
quence task where the observed motion is represented as the
input. First methods used Gaussian process [45], Restricted
Boltzmann Machine [46] or Markov models [47]. More recent
methods used recurrent neural networks (RNNs) for longer and
better predictions [48, 49] but still suffered from discontinu-
ities and were trained only on specific actions. These disad-
vantages were corrected by working on velocities [50] or with
RNNs variants [51, 52]. Still, training or inference is difficult
with RNNs and have memory constraints, so prediction was
further improved by using sliding windows [53, 54], convo-
lutional models [55, 2] or adverserial training [56, 55]. Next,
other works use Graph Convolutional Networks (GCNs [31])
to better encode spatial connectivity of human joints. The first
one used DCT coefficients to encode temporal information in
the frequency space [3]. Various sizes for convolutional layers
coupled with a GCN are used in [57], and variants of GCNs
are used in [7, 8, 58]. A fully connected network is coupled
with convolutions to encode temporal and spatial information
in [53]. Some works use the transformer architecture [59] cou-
pled with a RNN [60], by combining attention to correlate tem-
poral and spatial information [61], or by combining attention
with DCT coefficients [62]. Others use attention with GCNs
and DCT [4] or by fusing the predictions from three attention
modules that process motion at different levels: full body, body
parts, and individual joints [5]. Also, motion completion is
achieved in [63] by using a transformer architecture. Guo et
al. [6] use a simple multilayer perceptron (MLP) and prove that
a small and simple model is able to give state of the art results.
Another line of work generate human movement conditioned on
text by using a variational autoencoder (VAE) [64] or by using
diffusion [65]. While conditioning on text is out of the scope
of this paper, all cited methods have in common the fact that
only skeleton information is exploited, resulting in processes
not having access to surface details.

Differently, Marsot et al. [9] use a conditional variational
autoencoder (CVAE) [66] in order to create a latent space al-
lowing to represent and generate human motions by taking as
input SMPL parameters, thus taking into account surface infor-
mation. This is similar to our case since these parameters repre-
sent a compact space, as the spectral one we use, from which a
mesh can be recovered. Nevertheless, frameworks similar to the
SMPL one are dedicated to humans, or at least surfaces that can
be approximated by skeletons like animals [67]. On the other
side, our framework can be easily generalized to other kind of
dynamic surfaces that cannot be approximated with skeletons
(see Section 4.6.3). Also, the model from Marsot et al. [9]
needs a disentangled space as input, while ours have the spectral
coefficients space as input, where pose and identity information
are entangled.

Finally, Fernandez-Abrevaya et al. [68] introduced a frame-
work that allows to extend the Laplace-Beltrami operator to
temporally coherent mesh sequences, thus including surface
and temporal information and allowing to edit a mesh sequence
in a simple way. While it would be interesting to see how deep
learning models could utilize the spectral information coming
from this operator, it is impractical to introduce it in our frame-
work: in the same way as using the Laplace-Beltrami operator
in a static way, each sequence would necessitate a new compu-
tation and eigendecomposition, each time creating a new basis.
In our case, by using the Graph Laplacian in a static manner,
only one computation of eigenvectors is needed.

In this work, we show that it is possible to develop appli-
cations such as human motion prediction while giving as in-
put to the network information on surfaces by using spectral
mesh processing coupled with a convolutional autoencoder and
a transformer architecture. In the next section, the process of
the framework is presented.

3. SpecTrHuMS method

The process we present in this paper is composed of a double
network architecture: the first one is the Spectral Autoencoder
(SAE) presented in Lemeunier et al. [14], and the second one
is a transformer encoder [59]. We first recall notions of spectral
mesh processing, how the SAE works, and introduce how we
couple it with the second transformer architecture.

3.1. Spectral mesh processing

Surfaces can be studied using spectral mesh processing
through operators, usually variants of the Laplacian, in order
to obtain a new basis useful for multiple applications. In our
case, the properties of the Graph Laplacian are exploited since
this operator only rely on the topology of a mesh and thus give
the same basis for meshes with the same connectivity, which is
the case for the used dataset. If we were to use another opera-
tor based on the geometry of each mesh (such as the Laplace-
Beltrami), multiple sets of eigenvectors would have been calcu-
lated and spectral synchronization would have been necessary.
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Fig. 2. Process of the transformer. For prediction and completion, 2 seconds, or 50 frames at 25Hz, are given as input to the transformer (on the left). For
prediction (in the middle), the last frame of the input sequence is repeated for the ending part of the sequence. For completion (on the right), the ending
part is replaced by an interpolation between the last known input frame and the last frame of the sequence. Then, an MSE is computed between the output
of the transformer and the ground truth as a loss function.

Each mesh of a dataset with the same connectivity can be
projected on the same eigenvectors of the Graph Laplacian in
order to obtain their spectral coefficients. To obtain these eigen-
vectors, the operator L is first computed as L = D − A, D being
the diagonal matrix of degrees of each vertex and A being the
adjacency matrix. The matrix L ∈ Rn×n, n being the number of
vertices, can be decomposed into k pairs of scalar eigenvalues
λi and eigenvectors ϕi with i ∈ [1, k] and k <= n.

The eigenvectors are of size n and correspond to columns of
the matrix:

Φ =


ϕ1

1 ϕ2
1 ... ϕk

1
...
...
...
...

ϕ1
n ϕ2

n ... ϕk
n

 (1)

Using these eigenvectors, it is possible to transform the ab-
solute coordinates of mesh vertices to spectral coefficients and
to inverse transform the spectral coefficients to absolute coordi-
nates using matrix multiplications.

When using enough eigenvectors, this process allows to rep-
resent a surface in a compact space, where low frequencies co-
efficients contain the global information and high frequencies
coefficients contain details information. For more details on
this process, please refer to the paper [14].

3.2. Spectral autoencoder (SAE)

We use the architecture SAE-LP from Lemeunier et al.
[14] that consists in successive layers of convolutions, pool-
ing/upsampling using matrix multiplications and activation lay-
ers. The spectral coefficients are the input of this network. This
enables the creation of a latent space from which reconstruction
is possible.

The static process is as follows: a mesh composed of n ver-
tices is represented as a matrix V ∈ Rn×3. The absolute coor-
dinates of the vertices are transformed into spectral coefficients
C ∈ Rk×3 with a spectral transform: C = ΦT · V , with k <= n
being the number of used eigenvectors. These spectral coeffi-
cients C are passed through the SAE’s encoder in order to obtain

a latent variable X ∈ Rl, l being the size of the latent space rep-
resenting a more compact space than the spectral domain. This
encoder is made of blocks composed of convolution, downsam-
pling and activation layers, followed by a final fully connected
layer. In the next section, we will show how latent variables
of a mesh sequence are passed through the transformer archi-
tecture. The latent variable of a mesh is then passed through
the SAE’s decoder in order to obtain the output spectral coeffi-
cients Ĉ ∈ Rk×3. The decoder is made of a first fully connected
layer followed by blocks composed of upsampling, convolution
and activation layers. For visualisation, the reconstructed spec-
tral coefficients are transformed back into the spatial domain to
obtain the reconstructed vertices with the matrix multiplication
V̂ = Φ · Ĉ with V̂ ∈ Rn×3. The choice of the values k and l are
precised in section 4.

3.3. Motion transformer

Our goal is to feed a human motion to a neural network so
that it understands the context of the movement, which is rep-
resented as a sequence of spatial vertices V1:t ∈ Rt×n×3 with t
being the number of frames of the sequence. We exploit the
widely used transformer architecture for the second part of our
network. In order to be able to give the information contained in
the sequence of spatial vertices, we first transform each frame in
the spectral domain, giving a sequence of spectral coefficients
C1:t ∈ Rt×k×3, and then encode each frame of the spectral co-
efficients sequence with the SAE’s encoder introduced before,
giving a sequence of latent variables X1:t ∈ Rt×l.

The generation task is formulated as a sequence-to-sequence
problem. For the unknown input latent variables, before feeding
them to the transformer model, we either repeat the last frame
of the input sequence if the objective is prediction, which is
the main task the model is evaluated on, either use linear inter-
polation to fill in missing values if the objective is completion,
which is an additional task. Then, the loss is computed as the er-
ror between the output of the transformer and the ground truths
in order to train the model. Figure 2 shows how sequences are
fed to the model in both cases. Since we subsample each se-
quence to 25Hz (more information on used datasets are given
in Section 4), this means that t = 75. For prediction, the latent
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variables X1:50 are ground truths, and X51:75 are X50 repeated.
For completion, the latent variables X1:50 and X75 are ground
truths, and X51:74 are interpolations between X50 and X75.

The flow in the transformer part is as follows. First, the input
sequence of latent variables X1:t is projected to the transformer’s
input dimension with a fully connected layer. This gives a set
of projected latent variables X1:t

p ∈ Rt×d, d being the output
dimension of the fully connected layer and the input dimension
of the transformer.

The design of the transformer architecture makes it unable to
know the order of the input frames, so the latent variables are
summed with a standard positional encoding Pe ∈ Rt×d. The
positional encoding is a learnable matrix of sinusoidal func-
tions. The resulting embedding of projected latent variables is
X1:t

e = X1:t
p + Pe, with X1:t

e ∈ Rt×d.

We use a standard transformer encoder architecture to pro-
cess sequential embedded latent variables. It is composed of
multiple encoder layers, each consisting in multi-head self-
attention layers and feed-forward networks, with a residual con-
nection between the two layers and a final norm layer. The
multi-head attention layers allow a dense computation between
each pair of input frames and long range relations to be cap-
tured. We refer the reader to the literature [59] for more details
on the general process of this architecture. The transformer
encoder outputs a sequence of reconstructed embedded latent
variables, which is then projected back to the dimension of the
latent space of the static network using fully connected layers,
giving a sequence of reconstructed latent variables X̂1:t ∈ Rt×l.
Each frame of those reconstructed latent variables can finally
be decoded by the convolutional decoder in order to get recon-
structed spectral coefficients, which can then be transformed
back to the spatial domain for visualisation.

3.4. Loss functions

The two networks (SAE and the transformer) are trained si-
multaneously. The first one, represented as a static encoder and
decoder, is trained in order to reconstruct the input spectral co-
efficients without using the dynamic network. The loss to train
this static network is thus the mean squared error between input
spectral coefficients C and output spectral coefficients Ĉ with-
out using the transformer. The second dynamic network, the
transformer, is trained in order to reconstruct the latent vari-
ables sequence. The loss to train this network is thus the mean
squared error between the input latent variables sequence X1:t

and the output latent variables sequence X̂1:t.

4. Experiments

4.1. Baselines

We evaluate against multiple baselines. convSeq2Seq [2]
uses a convolutional model, but as for images, convolutions
do not consider relations between distant elements, which is
important for human behavior understanding. LTD [3] uses

GCN for spatial information by building graphs across skele-
tons joints and DCT coefficients for temporal information, lead-
ing to a model already achieving a good prediction. However,
such a graph was still insufficient and has been surpassed by
Pose Motion Att [4] that uses attention coupled with GCN and
DCT, which was upgraded with Motion Att. + Post-fusion [5]
by adding the predictions from three other modules operating
at full body, body parts, and individual joints levels. It achieved
state of the art results until siMLPe [6] introduced a simple mul-
tilayer perceptron (MLP) operating on skeletons’ joint positions
encoded with a Discrete Cosine Transform. STS-GCN [7] and
STG-GCN [8] use variants of GCNs, but were also surpassed
by siMLPe. First, all these baselines use skeletons’ joints in-
formation, meaning that their architectures are not directly ap-
plicable to surface vertices because of their high dimensional-
ity and their non-ordering. Also, these architectures are only
intended for the task of prediction. On the other hand, our ar-
chitecture is applicable to surfaces even with a high number of
vertices since we do not use all available frequencies, and using
the transformer architecture makes our process easily general-
izable to other tasks such as completion or easily generalizable
to training on sequences of different lengths. Finally, using a
transformer architecture could be useful, in the future, for more
complex learning steps such as pretraining with masked model-
ing and then fine-tuning with specific losses for other different
tasks.

4.2. Datasets

AMASS [69] is a unification of multiple datasets using the
SMPL parameterization. We follow [4, 5, 6] and use multiple
datasets such as CMU, KIT and other ones (all part of AMASS)
as the train set and AMASS-BMLrub as the test set. For the
first part of experiments, we follow the state of the art and use
a unique identity without hand gestures in order to generate the
dataset so that our results are comparable. Models trained on
this dataset will have the suffix OI for One Identity. For the sec-
ond part of experiments, since we work with surfaces and the
identity of a mesh has meaning, we generate the same dataset
using different identities coming from ground truths in order to
show that our network is able to understand the conservation of
identity in a human movement. Models trained on this dataset
will have the suffix MI for Multiple Identities. We recall that
both datasets are composed of the same number of poses, but
one is made of an unique identity while the other one is made
of multiple identities. Also, since they use the same discretisa-
tion from SMPL, the eigenvectors are computed only once and
are usable for both of them. Similar to previous works, we ig-
nore the global translation and rotation of the poses and down-
sample each sequence to 25Hz. After being processed and for
visualisation, the sequences are upsampled to 60Hz.

We follow prior works to select the input sequences: we set
the input length to 50 frames (2 seconds) and the output length
to 25 frames (1 second). These 75 frames are selected using
a sliding window over the AMASS sequences with an offset
of 5 frames. The train set is composed of 7,799 animations
and gives a set of 7,475 animations after filtering since some



Preprint Submitted for review /Computers & Graphics (2023) 7

Dataset AMASS-BMLrub
Time (ms) 80 160 320 400 560 720 880 1000

repeating last frame 24.0 45.0 77.5 89.0 103.7 107.7 101.5 95.3
convSeq2Seq [2] 20.6 36.9 59.7 67.6 79.0 87.0 91.5 93.5
LTD-10-10 [3] 10.3 19.3 36.6 44.6 61.5 75.9 86.2 91.2
LTD-10-25 [3] 11.0 20.7 37.8 45.3 57.2 65.7 71.3 75.2

Pose Motion Att [4] 11.3 20.7 35.7 42.0 51.7 58.6 63.4 67.2
Motion Att.

+ Post-fusion [5] 11.0 20.3 35.0 41.2 50.7 57.4 61.9 65.8
siMLPe [6] 10.8 19.6 34.3 40.5 50.5 57.3 62.4 65.7

SpecTrHuMS-OI-ES
(ours) 15.4 22.3 34.8 39.9 47.6 52.8 56.9 59.6

SpecTrHuMS-OI
(ours) 11.9 21.3 39.1 46.2 56. 63.1 69.4 73.2

Table 1. We compare MPJPE scores for two of our models on the one iden-
tity (OI) dataset for prediction at each time step (without taking into ac-
count previous predicted frames), one with early stopping (ES) and the
second one without early stopping. When early stopping, our model is able
to give better results than the state of the art for long time prediction.

animations are shorter than the needed window, giving 458,104
windows, which is equivalent of approximately 380 hours of
video. The test set is composed of 3,061 animations and gives
2,640 animations after filtering and 145,443 windows.

4.3. Evaluation metrics
As we focus on surfaces while previous works only examine

skeletons, a direct comparison is not feasible. To align with the
current state of the art, we begin by presenting the results using
the Mean Per Joint Position Error (MPJPE) [70] calculated on
3D skeleton joint coordinates. We obtain these joints positions
by using the joint regressor available in the SMPL parameter-
ization that allows to transform mesh vertices to 3D joints po-
sitions. But this MPJPE only compares generated movements
with a ground truth, and a generated motion could still be realis-
tic without having a good score following this metric. So, since
the MPJPE does not perfectly reflect the behaviour of generat-
ing realistic movements, we also introduce an edge length vari-
ation measure that expresses the conservation of the identity.
This measure is computed as the absolute mean pairwise dif-
ference between corresponding edge lengths of the last known
frame of the input motion with predicted frames so that it does
not depend on the ground truth but rather on the conservation
of identity during the movement. This measure will be named
Mean Edge Length Variation (MELV).

4.4. Implementation
The number of mesh vertices coming from SMPL is n =

6890. We set the value of used eigenvectors to k = 512 (on
the 6890 available) since it is sufficient to have enough detailed
surfaces and since it alleviates the work of the coupled network.
The static network is composed of 3 layers for the encoder and
decoder each, and uses a convolution window of size 3. The
latent size of the static network is set to 256, which is the same
as the input dimension of the transformer. The transformer is
composed of 4 heads, 6 layers, has a feedforward dimension of
1024 and has the GELU function as activation.

The spectral coefficients are first precomputed and stored lo-
cally on the hard-drive. We standardize (subtraction of mean

Dataset AMASS-BMLrub
Time (ms) 80 160 320 400 560 720 880 1000

repeating last frame 18.3 29.1 47.7 55.4 67.9 76.6 81.7 83.5
STS-GCN [7] 10.0 12.5 21.8 24.5 31.9 38.1 42.7 45.5
STG-GCN [8] 10.0 11.9 20.1 24.0 30.4 - - 43.1

siMLPe [6] 6.1 10.8 19.1 22.8 29.5 35.1 39.7 42.7
SpecTrHuMS-OI-ES

(ours) 13.9 17.2 23.8 26.8 32. 36.2 39.7 42.
SpecTrHuMS-OI

(ours) 9.8 14.3 23.5 27.7 34.8 40.5 45.4 48.6

Table 2. We compare MPJPE scores for two of our models on the one iden-
tity (OI) dataset for average prediction at each time step (by taking into
account previous predicted frames), one with early stopping (ES) and the
second one without early stopping. When early stopping, our model is able
to give better results than the state of the art for long time prediction.

and division by the standard deviation) the input of the static
network but compute the loss on the destandardize spectral co-
efficients so that more importance is given to low frequencies
(we recall that low frequencies spectral coefficients have higher
magnitudes than high frequencies ones, see [14]). The input
latent variables are also standardized and the loss of the trans-
former is computed on these standardized latent variables. The
static and dynamic networks are trained simultaneously. The
static network is first trained alone for two epochs so that it
first learns to reconstruct approximately the static meshes. At
the third epoch, the training of the dynamic network starts, and
both networks continue to train. Because the weights of the
static network are updated during training, the values of the la-
tent variables are modified, so we use the Welford algorithm
[71] to update the means and standard deviations of the latent
variables during training.

We use the PyTorch framework to train the networks for 100
epochs, with the ADAM optimizer, with a batch size of 32 and a
starting learning rate of 1e-4 without warm-up but with a sched-
uler that reduces the learning rate to 1e-6 at the end of training.
Training is done on a NVIDIA V-100 GPU. More details about
the number of epochs are given in the quantitative results sec-
tion. Training takes approximately 12 hours.

We first present results on the main task of prediction us-
ing the dataset that follows previous compared works with one
identity and using the dataset with multiple identities. Then, we
present other applications easily implemented from our frame-
work such as long term prediction (by using an autoregressive
generation), completion (also called in-betweening) and we fi-
nally show that our model can be used with other datasets made
of surfaces that cannot be approximated by skeletons.

4.5. Main application: prediction

The main task presented in this work is prediction: the
model tries to generate a 1 second motion when having as in-
put the previous 2 seconds (see Figure 2 in the middle). In
order to be comparable with the literature, we first evaluate our
method on a dataset with only one neutral identity. With this
dataset, we present two models: one that has been trained for a
few epochs (SpecTrHuMS-OI-ES for SpecTrHuMS using One
Identity with Early Stopping), and another one that has been
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Fig. 3. Curves of the evolution of the mean MPJPE and the mean MELV
over all time steps during training on the test set. We can see that the model
becomes gradually less accurate in terms of MPJPE but becomes better at
preserving edge lengths.

fully trained (SpecTrHuMS-OI). Next, results on the dataset
using multiple identities are highlighted with a model named
SpecTrHuMS-MI for SpecTrHuMS using Multiple Identities.

4.5.1. Quantitative results
Table 1 showcases the results of our models compared to

those of prior studies, employing the evaluation methodology
proposed in [4, 5, 6]. In this table, the evaluation score only ac-
counts for predicted time steps and does not take into account
previous time steps predictions. Table 2 presents the results ob-
tained through the protocol employed in [7, 8], where evalua-
tions are computed by taking the average over previous frames.
Values for other models are taken from prior papers. We also
report in Tables 1 and 2 results of MPJPE when simply repeat-
ing the last known frame as a baseline. As a reminder, our
focus is on surfaces, whereas the methods being compared op-
erate on positions of skeleton joints. Consequently, our network
processes additional information that incorporates the identity
particulars of the surfaces. While our results are less accurate
for shorter time steps, our network, when early stopped, is able
to better predict the movement at longer time steps using the
MPJPE metric. However, we are going to see that after being
fully trained, the model fails to produce better results using this
metric, indicating that it learned to retain other features of the
data during the training process.

Figure 3 illustrates the progression of evaluation metrics. No-
tably, the MPJPE begins to increase at epoch 5, while the MELV
continues to decrease. This is attributed to the network generat-
ing movements that do not precisely replicate the ground truth,
but still maintain better consistency in the edge length of the
subject. This phenomenon highlights the ambiguity in evaluat-
ing the generation of movement, which goes beyond a simple
comparison of the predicted and actual positions of skeleton
joints. Table 3 presents the MELV values and their correspond-
ing standard deviations for the same model at the epoch yielding
the best MPJPE results and the last epoch compared to ground
truth values. The results demonstrate that with longer training,
the fully trained model is capable of preserving edge lengths
more effectively than the early stopped model.

Fig. 4. Visual comparison of our model with one identity early stopped
(SpecTrHuMS-OI-ES) with our model fully trained (SpecTrHuMS-OI) on
the test dataset. While the early stopped model gives better MPJPE scores,
the fully trained one is able to better preserve edge lengths. Blue meshes
represent the ground truths with an MELV of 0.72mm. Orange meshes
represent the output of our models, with an MELV of 2.03mm for the
SpecTrHuMS-OI-ES and 0.59mm for the SpecTrHuMS-OI. All MELVs
indicated in this caption are for the last time step.

We now illustrate how our model correctly learns to preserve
the identity of a mesh while making it move. We use for this
a similar dataset than the previous one but by introducing the
variability of the identity (with the suffix MI for Multiple Iden-
tities). To the best of our knowledge, there is no existing re-
search that focuses on a prediction task and that directly gen-
erates surfaces, making it impossible to compare the quality of
our generated surfaces with those of prior works. However, we
present in Table 3 that our model, when utilizing multiple iden-
tities, achieves similar results in preserving edge lengths when
compared to the models that employ only one identity. The
conservation of edge lengths in both datasets is approximately
the same, as indicated by the ground truth lines, signifying that
the values are comparable. More precisely, we can observe that
the MELV’s evolution slows down significantly at 560ms at ap-
proximately 0.5mm, indicating that the evaluation should con-
verge towards this value. We note that the average edge length
of the dataset with multiple identities is around 16mm.

4.5.2. Qualitative results
In Figures 4 and 5, we compare visual results of predictions

on the test set with one identity when using a model stopped
early and giving best results in terms of MPJPE and a model
fully trained. MELVs are indicated in Figure’s captions for the
ground truths and model’s predictions. By observing these val-
ues and visual representations in both Figures, it is apparent that
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Time (ms) 80 160 320 400 560 720 880 1000

Dataset AMASS-BMLrub-OI (one identity)
ground truth 0.13 ± 0.08 0.23 ± 0.13 0.38 ± 0.2 0.43 ± 0.22 0.49 ± 0.25 0.51 ± 0.26 0.49 ± 0.28 0.47 ± 0.28

SpecTrHuMS-OI-ES 0.4 ± 0.17 0.48 ± 0.21 0.63 ± 0.31 0.7 ± 0.35 0.81 ± 0.43 0.87 ± 0.47 0.89 ± 0.5 0.88 ± 0.52
SpecTrHuMS-OI 0.2 ± 0.09 0.29 ± 0.13 0.42 ± 0.2 0.47 ± 0.21 0.54 ± 0.23 0.57 ± 0.24 0.57 ± 0.26 0.57 ± 0.27

Dataset AMASS-BMLrub-MI (multiple identities)
ground truth 0.13 ± 0.08 0.24 ± 0.14 0.39 ± 0.21 0.44 ± 0.23 0.5 ± 0.26 0.52 ± 0.27 0.5 ± 0.29 0.48 ± 0.29

SpecTrHuMS-MI 0.37 ± 0.14 0.43 ± 0.15 0.55 ± 0.2 0.59 ± 0.21 0.65 ± 0.23 0.68 ± 0.24 0.68 ± 0.26 0.67 ± 0.27

Table 3. Top: comparison of the MELV on the dataset with one identity between the ground truth, a model early stopped (SpecTrHuMS-OI-ES) and a
model fully trained (SpecTrHuMS-OI). The fully trained model is able to better preserve edge lengths than the early stopped one. Bottom: comparison
of the MELV on the dataset with multiple identities between the ground truth and a fully trained model (SpecTrHuMS-MI). Edge length conservation
between the two ground truths for both dataset approximately have the same values, so evaluation on both datasets are comparable. The model trained on
multiple identities is able to correctly preserve edge length when compared with SpecTrHuMS-OI.

Fig. 5. Visual comparison of our model with one identity early stopped
(SpecTrHuMS-OI-ES) with our model fully trained (SpecTrHuMS-OI) on
the test dataset. While the early stopped model gives better MPJPE scores,
the fully trained one is able to better preserve edge lengths. Blue meshes
represent the ground truths with an MELV of 0.96mm. Orange meshes
represent the output of our models, with an MELV of 2.31mm for the
SpecTrHuMS-OI-ES and 0.64mm for the SpecTrHuMS-OI. All MELVs
indicated in this caption are for the last time step.

the model trained for a longer duration exhibits superior ability
in maintaining the length of the arms.

In Figure 6, we show visual results with the model using the
dataset with multiple identities (SpecTrHuMS-MI). Both Fig-
ures show the ability of our model to correctly preserve the
identity. Similarly to the model trained on the dataset with one
identity, the generated movement is not necessarily close to the
ground truth but is still realistic. Nevertheless, the model is
able to understand how to move spectral coefficients, and thus
the vertices of input meshes, while maintaining the appearance
of the subject, which is a crucial feature for many real-world

Fig. 6. Visual results with a model trained on a dataset with multiple identi-
ties (SpecTrHuMS-MI): the identity of shapes is well preserved while gen-
erating a realistic movement.

applications where identity preservation is essential.

To summarize, the model exhibiting the best results is the one
fully trained even if its score regarding the MPJPE is worse.
This is visually evidenced in Figures 4 and 5: when arms
lengths are not conserved, the MPJPE is better, meaning that
this metric is not suitable for our approach. This is why the
MELV metric is more relevant (see Figure 3). This results in
predictions that can deviate from ground truths but that are more
realistic. In the future, metrics regarding the realism of a move-
ment should be introduced.
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Fig. 7. Visual comparisons with siMLPe [6]. In our case, we get joints
positions from mesh vertices using the regression matrix available in the
SMPL framework, whereas the baseline directly works with skeletons.

We also present visual comparisons with siMLPe [6] in Fig-
ures 7 and 8. We recall that their architecture takes as input
skeleton joints whereas our model takes as input spectral coef-
ficients containing surface information (we get joints positions
from mesh vertices using the regression matrix available in the
SMPL framework). In Figure 7, for the first example, the mo-
tion predicted by siMLPe is closer to the ground truth, while the
movement predicted by our model deviates from it while still
being realistic, reflecting the ambiguity of the MPJPE evalua-
tion approached previously. In other examples, both works tend
to produce less dynamic movements than ground truths, but our
method is able to generate more movements than siMLPe (see
Figures 7 and 8 at the bottom). Also, in the case of siMLPe, the
generated skeletons can have reduced arms lengths (see Figure
8 line 2).

An additional video file is provided in order to better visu-
alise results.

4.6. Other applications

We show in this section additional results for other applica-
tions, first on a task of long term prediction that does not need
another training method, on a task of completion/in-betweening
that needs another training method, and finally on a prediction
task when using a dataset made of surfaces that can not be ap-
proximated by skeletons.

Fig. 8. Visual comparisons with siMLPe [6]. In our case, we get joints
positions from mesh vertices using the regression matrix available in the
SMPL framework, whereas the baseline directly works with skeletons.

4.6.1. Long term prediction
In order to predict for a longer term a given movement, we

adopt an autoregressive method. This approach involves feed-
ing an initial set of 50 frames of motion into the model and
predicting the next 25 frames based on the input. The predicted
frames are then appended to the initial set, and the process is
repeated with the last second of the input motion and the newly
predicted frames serving as the new input. By iteratively repeat-
ing this process, we are able to generate a sequence of frames
that extrapolates the original movement over an extended pe-
riod of time. Figure 9 shows examples of this application. The
first line show long term prediction of arms movement. On the
second line, a walking animation is generated, similar to the be-
ginning of the input. The model is able to correctly generate a
motion while keeping the movement and identity information.
It is important to note that the generation of additional frames
with this autoregressive method can be realised in real-time.

4.6.2. Completion / in-betweening
Because our approach utilizes a transformer architecture, it

can be easily applied to other tasks such as completion. In this
additional application, which needs another training, the model
endeavors to predict the movement between two known points,
with the provision of two seconds of motion and an additional
last frame. Adapting our approach to in-betweening only re-
quires the addition of an extra frame to the input and replacing
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Fig. 9. Examples of extrapolation. Blue meshes are given as input to the model, and orange meshes are generated in an autoregressive manner: 2 seconds
are given as input, 1 second is generated, and the next seconds are generated by giving as input the previous generated seconds. The used model is SHTMS-
MI, and a total of 6 seconds are generated. The model is able to extrapolate an input motion while keeping the identity and the dynamic information.

Fig. 10. Examples of completion/in-betweening. The model is able to cor-
rectly interpolate between two frames while taking into account previous
motion.

unknown latent variables with an interpolation between the last
frame of the input and the extra frame (see Figure 2). Figure
10 shows example of this application. The model is able to cor-
rectly interpolate between two frames while taking into account
previous motion and while preserving edge lengths.

4.6.3. Application to other datasets
In order to prove the generalizability of our method, we

present experiments on the prediction of a piece of cloth’s sim-
ulation. Using Blender [72], we generate a triangular mesh rep-
resenting a piece of cloth (see Figure 11) made of 484 vertices,
while assigning it a cloth modifier. Using this mesh, 20,000
simulations of two seconds are created in which two different
random vertices are pinned and the surface undergoes the grav-
ity and self-collisions (16,000 are used for training and 4,000
for testing). The mesh is geometrically asymmetrical so that
generated simulations are always different. The Graph Lapla-
cian with its eigenvectors are then computed from the connec-
tivity, allowing to create sequences of spectral coefficients that
are given as input to our model, in the same way as in Figures
1 and 2 in the case of prediction, but with one second of known
input and one second of prediction.

Fig. 11. The used triangular mesh to create a dataset of piece of cloth sim-
ulations. It is flat (only on x and y axis) and made of 484 vertices. For
each animation, two random vertices are pinned and the fabric undergoes
gravity and self-collisions. The mesh is geometrically asymmetrical so that
simulations are always different.

Time (ms) 80 160 320 400 560 720 880 1000
Dataset AMASS-BMLrub-OI

SpecTrHuMS-OI 0.00590 0.01123 0.02166 0.02575 0.03111 0.03476 0.03782 0.03959
Dataset Cloth dataset

SpecTrHuMS-cloth 0.00625 0.00672 0.00769 0.00819 0.00935 0.01069 0.01228 0.01369

Table 4. Comparison of RMSEs on mesh vertices for models trained on
the human dataset with One Identity (AMASS-BMLrub-OI) and on the
cloth dataset. RMSEs are normalised by the largest bounding box of each
mesh so that values are comparable. Values are lower for the cloth dataset,
showing that our model is generalizable to cloth simulations.

In Table 4, quantitative evaluations present the root-mean-
square error (RMSE) between ground truths and generated sur-
faces at each time step on the test dataset. RMSE is used
since errors are normalised by the largest diagonal length of the
bounding box of each mesh so that they are comparable, mean-
ing that the scores are expressed as a percentage of the corre-
sponding mesh’s bounding box. The values corresponding to
the cloth dataset are comparable with those from the human
dataset, showing that our model is generalizable to dynamic
surfaces that cannot be approximated with skeletons and that
our model does not have to rely on parameterizations such as
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Fig. 12. Visual examples of cloth simulations predictions. For each line, one
second is given as input (on the left), on the top are ground truths, and at
bottom are generated meshes. For each animation, two random vertices
are pinned (marked with red dots) and the cloth undergoes gravity and
self-collisions. Our model is able to reproduce realistic movements, self-
collisions and folds.

SMPL.

Also visual examples are presented in Figure 12. We can see
that the model manages to predict realistic movement of a cloth
simulation given the beginning of a sequence. It is difficult to
see as the examples are shown as images, but self-collisions are
well reproduced in generated animations. Also, created folds
are not exactly like in ground truths, showing that the model did
not completely learn the dataset but is rather able to generate
realistic behaviour of the cloth under gravity. An additional
video file is provided in order to better visualise results.

5. Discussion

We showed that our model is able to generate human motion
depending on past frames in short and long term, to complete
a missing part in a motion, and that it is generalizable to other
kind of surfaces without having to rely on parameterizations.
Nevertheless, the proposed architecture exhibits some limita-
tions. First, since we use the Graph Laplacian, only datasets
made of meshes with a constant connectivity can be given as

input. In the case of a dataset with a varying number of ver-
tices and varying connectivity, we could preprocess and remesh
all samples with a common connectivity so that it is compatible
with our framework. Also, it could be possible to compute the
operator for all connectivities and map them with Functional
Maps [73] in order to align all different bases to a common one.
Secondly, we only used 512 frequencies on the 6890 available
from the SMPL discretisation. This leads to meshes that are
low-pass filtered and do not show high frequencies details, es-
pecially on the face, hands and feet. This is a limitation, but also
an advantage since when analysing the motion of a human body,
high frequency details are not essential, and our method allows
a control over the precision the network has access to. Giving
high frequencies to our model is straightforward, while meth-
ods such as SMPL need an upgrade to increase the quality of
meshes [74]. In the future, this aspect could be improved either
by working with more frequencies or by introducing an addi-
tional neural network whose task is to complete high frequency
details depending on the available low frequency information.

6. Conclusion

In this paper, we presented SpecTrHuMS, a Spectral Trans-
former for 3D triangular Human Mesh Sequence learning that
can efficiently and accurately process 3D triangular mesh se-
quences. Our model is able to capture both the spatial and tem-
poral dependencies of the shapes, and it does so by directly
working with a compressed representation of the spectral infor-
mation of the shapes. Unlike most of previous works in this
field, our model does not rely solely on skeleton joints and is
able to preserve surface information of the shapes. Also, com-
pared to works that take as input SMPL parameters which con-
tain surface information, our model is able to have a control
over the amount of information it has access to and is general-
izable to other datasets that cannot be represented using skele-
tons.

We evaluated our model on a main prediction task on
AMASS, a dataset of human surface sequences. Also, due to
the used architecture, we were able to show additional applica-
tions that can be easily implemented from our framework. Our
experiments show that our model is able to correctly generate
a sequence by preserving the meshes’ edge lengths, producing
realistic movements while preserving the identity of a subject.
These results demonstrate the effectiveness of our approach in
capturing both physical attributes of an object and features vari-
ations over time of 3D triangular mesh sequences. This sug-
gests that our model represents a significant step forward in the
efficient and high-quality representation of triangular mesh se-
quences, which opens up new possibilities for applications in
the fields of animation, virtual reality, and computer graphics.
Overall, our approach of combining spectral information with a
convolutional autoencoder and a transformer provides a promis-
ing direction for future works in the field of 4D shape analysis
and processing. We believe that our model has the potential
to contribute to a wide range of applications and will serve as
baselines for future works on this subject. In the future, efforts
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will be directed towards training on more extensive databases
and adapting the framework to enable users to influence the
generation process. This will include modifying the number
of spectral coefficients utilized to generate surfaces with vary-
ing degrees of detail, as well as allowing users to input specific
text to generate targeted actions, rather than relying solely on
movement inputs.
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