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Introduction

At the foundation of every system lies a complex connection scheme, represented by a graph that describes the interactions among various components. Graphs serve as a common language and data format for representing intricate systems. Essentially, a graph consists of a group of entities, or nodes, that are interconnected by edges, forming a network of relationships between them. Nodes represent the objects, while the edges denote the associations or interactions between pairs of these objects. Graphs are a pervasive data structure that finds broad application in computer science and related disciplines (social networks [START_REF] Bonchi | Social network analysis and mining for business applications[END_REF], bioinformatics [START_REF] Saidi | Comparing graphbased representations of protein for mining purposes[END_REF], etc.). All these domains and many others can be effectively represented as graphs, capturing the connections and interactions between individual units. Meanwhile, current graph research has primarily focused on representation learning (embedding). The goal is to convert various forms of graph data, such as nodes [START_REF] Perozzi | Deepwalk[END_REF], [START_REF] Tang | International World Wide Web Conferences Steering Committee[END_REF], [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF], links [START_REF] Yang | Relation learning on social networks with multimodal graph edge variational autoencoders[END_REF], [START_REF] Wei | Cross view link prediction by learning noise-resilient representation consensus[END_REF], and sub-graphs [START_REF] Niepert | Learning convolutional neural networks for graphs[END_REF], into low-dimensional vectors within an embedding space. Throughout this process, the graph's essential topological attributes, such as higher-order proximity [START_REF] Cao | Grarep: Learning graph representations with global structural information[END_REF] and structure [START_REF] Ribeiro | struc2vec[END_REF], are retained. As a result, these embedding vectors can be seamlessly integrated into different machine learning algorithms [START_REF] Liaw | Classification and regression by randomforest[END_REF], [START_REF] Chen | Xgboost: A scalable tree boosting system[END_REF], allowing for a broad range of downstream applications. Recent advances in graph embedding techniques have exhibited a remarkable capacity to transform high-dimensional and sparse graphs into low-dimensional, compact, and continuous vector spaces while maintaining the essential features of the underlying graph structure. Graph algorithms khouloud.ammar@fst.utm.tn (K. Ammar); wissem.inoubli@loria.fr (W. Inoubli); sami.zghal@fsjegj.rnu.tn (S. Zghal); engelbert.mephu_nguifo@uca.fr (E.M. Nguifo) ORCID(s): 0000-0001-5121-9043 (W. Inoubli) can be efficiently computed by describing a graph as a set of low dimensional vector(s). Describing a graph as a collection of low-dimensional vectors can enable efficient computation of graph algorithms. Graph embedding, or network representation learning, is a crucial and commonly used method for modeling objects and their interactions. This approach has piqued the interest of researchers in diverse scientific fields, as evidenced by the considerable research attention it has received [START_REF] Seo | Structured sequence modeling with graph convolutional recurrent networks[END_REF], [START_REF] He | Manifoldranking based image retrieval[END_REF], [START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF], [5], [69], [START_REF] Xiao | Discovering strategic behaviors for collaborative content-production in social networks[END_REF]. It is important to note that real-world systems are typically composed of numerous interacting objects of various types. For instance, in bibliographic networks [56,55], authors, papers, venues, and terms may all interact with one another. Similarly, in biomedical networks [82,[START_REF] Yang | Place deduplication with embeddings[END_REF], genes, proteins, diseases, and species may all play important roles. These kinds of networks are commonly referred to as information networks or heterogeneous graphs (HG), is a powerful model that can incorporate a range of entities, such as nodes and edges, and relationships. The distinguishing characteristic of this graph is its capacity to capture a wealth of semantic and structural information in real-world data. To capture and exploit such richness, researches has seen rapid expansion in fields like machine learning and data mining. These techniques have found widespread application in a number of real-world network mining scenarios, such as node classification, clustering [START_REF] Santos | Multilabel classification on heterogeneous graphs with gaussian embeddings[END_REF], [START_REF] Eswaran | [END_REF], [START_REF] Chen | Task-guided and path-augmented heterogeneous network embedding for author identification[END_REF], as well as recommendation systems [19], [83], [28].

Many embedding technique studies concentrated on homogeneous graphs, [START_REF] Cui | A survey on network embedding[END_REF] which are the initial graph type for graph embedding, where entities and links belongs to the same type. Almost the majority of studies ( [START_REF] Ou | Asymmetric transitivity preserving graph embedding[END_REF], [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF], [START_REF] Tang | International World Wide Web Conferences Steering Committee[END_REF], [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF], [START_REF] Perozzi | Deepwalk[END_REF], [START_REF] Cai | A comprehensive survey of graph embedding: Problems, techniques, and applications[END_REF]) has been conducted on this type of graph. In these studies, entities and links of the input graph are considered as the only available structural information, and are treated equally. The Deepwalk method [START_REF] Perozzi | Deepwalk[END_REF] is an example of a method that learns node embeddings by predicting nearby nodes that occur together during a random walk, using the Skip-Gram model [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF]. Similar methods, such as node2vec [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF] and LINE [START_REF] Tang | International World Wide Web Conferences Steering Committee[END_REF], also sampled neighboring nodes using a modified random walk. However, these methods were developed for graphs with a single node and edge type, thus limiting their suitability for heterogeneous graphs. Homogeneous graphs, in contrast to heterogeneous ones, possess a single type of node and edge, which distinguishes them from their heterogeneous counterparts. These homogeneous networks are typically retrieved from interacting systems by simply ignoring object and link heterogeneity or only considering one sort of relation among one type of object. The difficulty in working with heterogeneous graphs (HGs) lies in effectively navigating the global coherence among the diverse types of objects present in such graphs, including nodes and edges. Another challenge is how to project these objects into the same space during the process of heterogeneous graph embedding.

To tackle the challenges posed by heterogeneous network representation learning, numerous techniques have been put forward. It is essential for researchers to comprehend the advancements in this field by systematically summarizing these techniques. While some surveys have been conducted on heterogeneous network representation learning, existing ones lack emphasis on particular techniques. The survey [55] examined data mining tasks involving heterogeneous information networks, such as classification, clustering, link prediction, recommendation, and similarity measurement in detail. This survey focuses on analyzing heterogeneous information network applications rather than summarizing heterogeneous network embedding techniques. Also [START_REF] Yang | Heterogeneous network representation learning: A unified framework with survey and benchmark[END_REF] survey introduced an HG framework that included the most popular HG algorithms. Furthermore, no significant efforts on systematic literature review (SLR) on HG embedding approaches have been made. Consequently, it becomes challenging to attain a complete and thorough understanding of the existing approaches, relevant information, and supporting evidence. In light of the previous works, we seek to make contribution to the domain of heterogeneous network representation learning by conducting a comprehensive survey. Our approach entails providing a detailed and systematic review of "HIN," with a novel taxonomy that encompasses random-walk based algorithms, deep neural network based algorithms, and dynamic HG embedding algorithms. To gain a better understanding of the classical representation learning methods, we compare these techniques and explore specific applications of each method. Ultimately, we aim to create a useful guideline for researchers working on heterogeneous information network representation learning. While many studies have investigated heterogeneous graph embedding methods for various applications in diverse fields, there has yet no comprehensive and systematic survey that provides an in-depth analysis of both the strengths and limitations of these methods, along with detailed discussions of their techniques and practical applications. Therefore, to fill this gap in the literature, we will conduct a thorough survey of existing works on heterogeneous representation learning, covering representative methods and techniques, as well as industrial-level applications. Our approach will involve three main steps:

(1) performing a comprehensive and systematic literature review to identify relevant primary papers, extract the necessary data, and synthesize the results to obtain a deeper understanding of the investigated heterogeneous graph domain; (2) examining recent advancements in heterogeneous graph embedding by introducing representative techniques and methods and analyzing their strengths and limitations; and (3) discussing current methods of embedding heterogeneous graphs and their practical implementation in industrial applications. Finally, we will also discuss the challenges and open issues in this field. Furthermore, we will provide our insights and predictions for the future trajectory of research in this domain. Our distinct contributions in this paper are summarized as follows:

• We propose an SLR for HG embedding to aggregate all existing evidence on a research question.

• We conduct a thorough survey of existing heterogeneous graph learning methods, organized by the techniques utilized in the learning process.

• We provide a detailed analysis of HIN method and technique, highlighting their strengths and weaknesses.

• We investigate the dynamic aspects of HG embedding methods by presenting some specific works.

• We discuss potential future research directions in the field of heterogeneous network representation learning.

The remainder of this paper is structured as follows. In Section 2, we present a comprehensive and in-depth discussion of the methodology behind the Systematic Literature Review (SLR), highlighting the rigorous approach we have taken to review the existing body of literature. Section 3.1 presents some basic HG concepts, section 4 categorized and presents heterogeneous graph embedding methods. In Section 5, we provide a summary of prevalent techniques used in current state-of-the-art approaches for embedding heterogeneous graphs. In Section 6, we delve into real-world application systems of Heterogeneous Information Networks. Section 7 sheds light on potential avenues for future research in this domain. Lastly, we conclude the paper in Section 8.

SLR methodology

A Systematic Literature Review utilizes a well-organized, clear, and reproducible approach to recognize, choose, assess, and meticulously examine the current research available on a particular subject. The primary goal of our SLR is to assess and understand research on heterogeneous graph embedding techniques and highlight current challenges and difficulties. A review procedure has been devised in order to

Main question

Why is heterogeneous graph embedding? Objective Study the heterogeneous graph embedding methods, their techniques and their applications.

Inclusion criteria

Studies that mention graph embedding ; Studies that contains the follwing keywords :graph embedding, data representation learning, heteregeneous graph, information retreieval heteregenous information network analysis and heteregeneous dynamic network.

Exclusion criteria

The paper is not written in English; There is no validation in the paper; Published data not available; Number of citation is less than 5;

Specific question

How can heterogeneous information network research methods be categorized or classified? What are the future directions related to HIN analysis ? What are the real world applications related to HIN analysis? undertake a systematic and unbiased evaluation of the literature. The approach to conducting this SLR is based on the "Guidelines for Conducting Systematic Literature Reviews in Software Engineering" [START_REF] Kitchenham | Guidelines for performing systematic literature reviews in software engineering 2[END_REF], which provide guidelines for planning, executing, and reporting a systematic literature review. The review process consists of three main stages: review planning, review execution, and review reporting.

Review planning

In the review planning stage of the SLR, the following points were addressed: SLR main purpose, developing review protocol and the review protocol evaluation. Firstly, the main objective of this literature review is to examine the heterogeneous graph learning methods, their techniques and their applications. This Systematic Literature Review will perform a comprehensive examination of Heterogeneous Information Networks, frameworks, and methods. To summarize, the aim of this SLR is twofold. Firstly, it aims to examine the current state-of-the-art research, challenges, and future directions in the field of Heterogeneous Information Networks (HIN). Secondly, it aims to develop a taxonomy for Heterogeneous Information Networks embedding. To meet our SLR purposes, a review procedure is created after a thorough examination of the existing SLR methodology. This protocol provides a comprehensive description of the criteria we have employed for selecting studies, the selection process itself, and the checklist we have used to assess the quality of the studies we have reviewed. In addition, it outlines the data extraction strategy we have used, as well as the approach we have taken to synthesize the extracted data, ensuring a rigorous and systematic review process. The table 1 shows: our SlR established protocol including, the main question that leads us to conduct this literature review, our objective from this review and the inclusion and exclusion chosen criterion for papers and finally our search questions.

Following this, the review is conducted in accordance with the guidelines outlined by Kitchenham and Charters [START_REF] Kitchenham | Guidelines for performing systematic literature reviews in software engineering 2[END_REF]. Establishing a review protocol is vital to ensure that the literature review is systematic and minimize researcher bias. Consequently, the review centers on a set of research questions that align with the study's purpose and motivations. The review protocol is structured to prioritize the study's primary focus areas as defined by the research questions. The literature extraction strategy, which comprises resource libraries, a search query, and inclusion/exclusion criteria, is detailed in Section 2.2. The review methodology was extensively assessed against the following criteria: Are the search keywords appropriate and relevant to the research questions?. Will the data extraction points adequately address the study questions? and is the analysis approach appropriate to achieve the SLR's objectives? The aim of conducting this systematic literature review is to present a comprehensive summary of published research on HIN. Our research questions, formulated after thoughtful reflection and discussion, are as follows:

• Question 1: How can heterogeneous information network research methods be categorized or classified?

• Question 2: What are the real world applications related to HIN?

• Question 3: What are the future directions related to HIN analysis ?

Conducting the review

The review procedure began after the review protocol was properly established. This stage mainly includes five steps: identification of research, selection of primary studies, study quality assessment, data extraction and finally data synthesis. The identification of research is an important stage where we classify the primary papers relating to the research topics using an unbiased search method. The research questions are used to generate some keywords at first. Following that, an extensive search was conducted using seven electronic sources: Arxiv online archive; Papers With Code; ACM digital library; Google Scholar; Science Direct; Springer-Link; and IEEExplore. During the study selection stage, the process of extracting relevant literature involves conducting two distinct keyword searches using the terms "Heterogeneous network information embedding" and "Heterogeneous graph embedding" in the specified databases. Our search query is intentionally kept simple in order to capture the maximum possible number of papers that contain these specific terms. After selecting potential relevant primary studies, their relevance must be evaluated. Selection criteria help to identify and choose the primary research studies that provide evidence for the research questions. To decrease the possibility of bias, selection criteria were determined based • Research papers that specifically address the topic of graph representation learning;

• Research papers that specifically address the topic of heterogeneous information network analysis;

Following the collection of all possibly eligible articles, the quality evaluation is performed to analyze the articles more closely in the Study quality assessment step. The purpose of conducting a quality assessment is to conduct a secondary screening of publications in order to eliminate those that are not pertinent to the study. Thus, in addition to the standard inclusion and exclusion criteria, the quality of the primary research must be evaluated and more stringent criteria have been established. The quality assessment criteria are as follows:

• Are the objectives expressed clearly?

• Is the research approach being used correctly?

• Does the research study correctly evaluate the outcome?

• Does the research work allow for the answers to the questions?

The exclusion criterion's are, papers not in English, do not contain experimental validation, published data not available and papers that has a number of citation less than 5. The papers that were selected underwent continuous updates, with the most recent update made in August 2022. We have selected the starting year 2003 because we aim to cover all the recent graph embedding approaches over over the past 15 years. The literature screening was carried out in accordance with the aforementioned processes and criteria. The following are the results of the various rounds:

• In iteration 1: The literature review involves searching and gathering relevant materials from diverse electronic sources. In this particular round, a total of 356 literature pieces were gathered. Following the removal of any duplicate entries, the resulting number of literature items was 126.

• In iteration 2: Applying the quality evaluation criteria mentioned earlier, a total of 74 literature items were selected based on their quality standards.

To ensure the completeness and accuracy of the data collected during the SLR process, a data extraction and synthesis form was developed. The form was designed to gather essential information relevant to the research questions and was continuously updated throughout the review process. Prior to finalizing the data extraction form, a sample was tested in a preliminary study to ensure its completeness and identify any technical issues that may have arisen. The data extraction form was structured to include various components that aligned with the research questions, and a detailed outline of the significant parts of the form and their definitions can be found in Table 2. The rigorous approach to data extraction and synthesis ensured that the findings were based on reliable and comprehensive information, supporting the validity of the SLR results. This review contained 73 papers, which are listed in the appendix A. The data was tabulated to show, the number of citations, keywords, the publisher and the publisher year for every paper. These studies were published between 2003 and 2022. Figure 1 shows the distribution of papers across each year. Most of the studied papers were published between 2015 and 2021. As shown in figure 1, ACM Digital Library was the most popular database for primary studies, with more than 30 studies found.

PRELIMINARY

In the upcoming section, we aim to present a comprehensive introduction to the essential concepts of heterogeneous graphs (HGs). Furthermore, we will address the difficulties that arise due to the heterogeneity of HGs and contrast them with conventional homogeneous graphs.

Basic Concepts

A Heterogeneous Network is a type of graph that consists of multiple types of entities (nodes) and/or relationships (edges). A formal definition of a heterogeneous network is as follows. As illustrated in Figure 2, a heterogeneous network can be used to represent an academic network, where nodes represent authors (A), papers (P), venues (V), subjects (S), and organizations (O), and edges represent various relationships such as co-authorship (A-A), write (A-P), publish (A-P-V), affiliation (O-A), and belongs to (P-S). Heterogeneous information networks (HIN) are composed of multiple types of nodes and edges that can represent diverse node relationships and provide rich semantic information. To capture the specific relationships between node pairs, meta-paths are defined as a sequence of node and/or edge types. Meta-paths are an important tool for extracting rich semantics from HIN. The power of heterogeneous networks in capturing rich semantics has been demonstrated in many previous works [START_REF] Dong | metapath2vec[END_REF][START_REF] Fu | Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning[END_REF] on heterogeneous network representation learning, where the concept of meta-path has been introduced. The meta-path consists of a number of node and/or edge types that represent the specific relationship between node pairs. Definition 3.3. A meta-path 𝑀 is a series of node types 𝑣 1 , 𝑣 2 , ..., 𝑣 𝑛 and/or edge types 𝑒 1 , 𝑒 2 , ..., 𝑒 𝑛-1 :

𝑀 ∶ 𝑣 1 ← → 𝑒 1 v 2 .... 𝑣 𝑛 ← → 𝑒 𝑛 v 𝑛-1
For example, the relationship, authors that published paper in a venue, can be defined using the meta path 

𝐴 writing ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → 𝑃 writing by ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → 𝐴,
← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → 𝑃 belongs to ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← → 𝑆.
Each metapath carries out different semantics information which may allow HG to model the semantics in the graph.

Challenges

Achieving high-quality vectorial representations for heterogeneous networks poses inherent difficulties and involves grappling with the following key challenges:

• Semantics preservation: Heterogeneous networks are characterized by their inherent complexity and diversity, as they comprise various types of entities and links that represent different types of semantic relationships. In order to effectively learn node representations in such networks, it is crucial to be able to capture and retain these complex and diverse semantic relationships. While existing techniques like random walks and meta-paths have been proposed to capture some semantic information, they have limitations when it comes to comprehensively and thoroughly capturing the intricate relationships that arise from the interaction of various types of entities and links in a heterogeneous network. Consequently, there is a pressing need for the development of more robust and comprehensive methods that can effectively preserve rich semantic information in heterogeneous information networks.

• Data sparsity: In a heterogeneous information network, nodes are often only connected to a small subset of other nodes, resulting in sparse network structure. Additionally, the attributes of node content may be incomplete, contributing to sparsity in the node content as well. It is challenging to establish correlations between two nodes that are not explicitly linked at the structural level, as only edges between explicitly connected nodes are easily observed. Additionally, measuring similarity among nodes based on node content is problematic due to the frequent absence of attribute values. As a consequence, dealing with data sparsity presents a major obstacle in the representation learning of heterogeneous networks.

• Data Scalability: Real-world heterogeneous networks can be extremely large, often comprising millions or billions of nodes, and possess intricate and complex topological relationships. As a result, there is tremendous potential for learning low-dimensional and unified vector representations for these nodes from various sources, which could help unlock insights and enable various applications in different domains. However, the large scale of such networks entails significant computation and storage costs, that not only limit the applicability of traditional learning algorithms but also pose challenges for existing HIN approaches. In practice, the process of learning vectorial representations for nodes in a large-scale information network is often time-consuming due to the sheer volume of the data. Furthermore, large graphs or networks may be unable to be fully loaded into centralized memory for processing, which can be particularly challenging for graph embedding techniques. Many of these techniques require the entire graph to be loaded into memory to compute the representations, which can be impractical or even impossible for very large networks. As a consequence, efficient techniques for network representation learning in large-scale HINs are highly desirable. These techniques must be able to handle the size and complexity of the network while minimizing computation and storage costs. By addressing the aforementioned challenges, these techniques have the potential to unleash the power of heterogeneous networks, enabling various applications in domains such as social media analysis, e-commerce, healthcare, and others.

Method taxonomy

The presence of diverse node and link types in heterogeneous graphs gives rise to complex graph structures and rich attribute information (i.e., heterogeneity). To ensure that the representation encompasses this heterogeneity, we must take into consideration information from various aspects in the embedding, such as graph structures and attributes. In light of the above difficulties, we divide the existing approaches into three groups in this section according to the method they employed to extract information from heterogeneous graphs: (1) Random walk based. The primary goal of these methods is to capture and preserve the diversity contained within HINs. There are two categories into which these methods can be divided: meta-path based methods and non meta-path based methods. The partition between these two categories is based on the type of information they utilize in their analysis. Meta-path based methods make use of meta-paths, which are sequences of different types of entities and links in a HIN that capture specific semantic relationships. While, non metapath based methods do not rely on meta-paths and instead use other types of information, such as node attributes or edge weights, to guide the random walks. (2) deep neural network (DNN) based. These methods can incorporate additional information, such as attributes, into the process of representation learning in addition to structure. DNN based methods can be further split into two categories: message passing methods and encoder-decoder methods. The division between these two categories is based on the way in which the DNNs process and aggregate information from the network. Message passing methods use a series of message passing operations, in which information is passed between entities and links in the network, to learn representations of the network. Encoder-decoder methods, on the other hand, use an encoder to learn a compact representation of the network and a decoder to convert this representation back into a graph. (3) Heterogeneous dynamic graph embedding. Diverging from prior survey studies that primarily centered on embedding techniques for static heterogeneous graphs, our research in this paper takes a step forward by examining dynamic heterogeneous graph embedding methods. The objective of these techniques is to encapsulate the progression of heterogeneous graphs over time while retaining temporal data within the embeddings. With real-world networks being inherently dynamic, there has been a recent surge in research interest in learning representations for dynamic networks. The illustration in Figure 3 presents a comprehensive summary of the different categories of heterogeneous graph embedding methods that are explored and analyzed in this study.

We regrouped in table 2 the selected studied approaches with their acronym.

Random Walk based methods

In network embedding, the primary objective is to retain the topological information of the network. However, in the case of heterogeneous graphs, one key aspect that sets them apart is the existence of multiple connections between nodes, which requires the consideration of graph heterogeneity in the embedding process. As a result, learning semantic information from graph structures is an essential aspect of heterogeneous representation learning. There is one major category of topological preserving methods in HIN which is random walk based methods (inspired by DeepWalk [START_REF] Perozzi | Deepwalk[END_REF]), they have been widely used with the regard of graph embedding. The random walk principle is frequently used in graph embedding techniques to create sequences of nodes, which are subsequently regarded as "sentences" and employed to train the skip-gram model. Since it can capture both the local and global structural information of a graph, the skip-gram model is particularly useful in graph embedding techniques. It can predict the context nodes that are farther away from the target node but connected through several intermediate nodes. Overall, the random walk principle and the skipgram model are crucial components of graph embedding techniques because they enable the capture of both local and global structural information in the graph as well as the learning of low-dimensional node embeddings. Despite the inherent challenges associated with heterogeneous graphs, random walk-based methods have proven to be highly effective in numerous applications, including node classification, link prediction, and recommendation systems. They are especially useful in Heterogeneous Graph Embedding because they can capture the complex and diverse structures of realworld data. They do, however, have some limitations, the need for a significant volume of random walk data and the inability to capture higher-order structural information. Given that HINs consist of multiple types of entities and links, it can be difficult for random walkers to find a walk that can cover the entire network. As a result, many methods utilize meta-path guided random walks to decrease the traversal complexity in HIN. A meta-path is a sequence of nodes in a graph that defines a specific relationship between the nodes. Meta-paths are used to create representation learning (embeddings) of nodes in a graph, it is used to guide random walks while traversing the graph. A guided meta-path is a meta-path that is designed to capture a specific type of relationship or structural information in the graph. In the other hand using meta-path may limit the liberty of random walk which may leave us with unreachable or isolated nodes. Therefore random walk methods can be broadly divided into two types: meta-path based, and non meta-path based.

Meta-path based

Like homogeneous graph embeding methods [START_REF] Perozzi | Deepwalk[END_REF], [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF] metapath2vec [START_REF] Dong | metapath2vec[END_REF] uses random walks on a heterogeneous graph (with multiple node types) by defining "meta-paths" to guide the algorithm on how to traverse the different node types in a graph. The input is a heterogeneous network and a set of meta-paths specified by the user. The metapath2vec algorithm generates a set of feature vectors for every node within the network. Each feature vector is a numerical representation of the node that captures the internal network relationships defined by the meta-paths. The goal is giving the ability for the feature vector to automatically capture internal relations from a rich complex abstract heterogeneous network system. Formally, a meta-path schema 𝑀 ∶ 𝑜 1

𝑅 1 ← ← ← ← ← ← ← ← ← ← ← ← → 𝑜 2 𝑅 2 ← ← ← ← ← ← ← ← ← ← ← ← → 𝑜 𝑡 𝑅 𝑡 ← ← ← ← ← ← ← ← ← ← → 𝑜 𝑡+1
, the transition probability at step 𝑖 is defined as follows:

𝑀(𝑣 𝑖+1 |𝑣 𝑖 , 𝑀) = { 1 |𝑁 𝑅 𝑖 (𝑣 𝑖 )| ∅(𝑣 𝑖+1 ) = 𝑜 𝑖+1 , 𝜓(𝑣 𝑖 , 𝑣 𝑖+1 ) = 𝑅 𝑖 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1)
where 𝑁 𝑅 (𝑣) =𝑢|∅(𝑢, 𝑣) = 𝑅 refers to the neighboring nodes of 𝑣 that are connected to it via edges of type 𝑅. Metapath2vec utilizes a heterogeneous skip-gram technique to maintain the nearness of a node 𝑉 to its contextual nodes, which correspond to the neighbors found in the random walk sequences.

𝑎𝑟𝑔𝑚𝑎𝑥 𝜃 ∑ 𝑣∈𝑉 ∑ 𝑡∈𝑇 𝑉 ∑ 𝑐 𝑡 ∈𝑁 𝑡(𝑣) log 𝑝(𝑐 𝑡 |𝑣; 𝜃) (2)
where 𝑁 𝑡(𝑣) denotes v's neighborhood with the 𝑡 𝑡 ℎ type of nodes and 𝐶 𝑡 (𝑣) represents the context nodes of node 𝑣 with type 𝑡. 𝑝(𝑐 𝑡 |𝑣; 𝜃) represents the function that quantifies the degree of similarity among node 𝑣 and its context neighbors 𝑐 𝑡 in terms of their heterogeneity.

𝑝(𝑐 𝑡

|𝑣; 𝜃) = 𝑒 ℎ 𝑐 𝑡 .ℎ 𝑣 ∑ 𝑢 𝑡 ∈𝑉 𝑡 𝑒 ℎ 𝑢 𝑡 .ℎ 𝑣 (3)
where ℎ 𝑣 is the 𝑣 𝑡 ℎ row of ℎ, representing the embedding vector for node 𝑣 and 𝑉 𝑡 is the type node set 𝑡 in the network. This objective function [START_REF] Bian | Network embedding and change modeling in dynamic heterogeneous networks[END_REF], to calculate the similarity between the central node and its neighbors which is computationally expensive. Hence equation ( 3) is approximated using negative sampling [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF].

Source

Acronym Projected Metric Embedding [START_REF] Chen | Pme: Projected metric embedding on heterogeneous networks for link prediction[END_REF] PME Predictive Text Embedding [START_REF] Tang | PTE[END_REF] PTE Jump and Stay strategies [START_REF] Hussein | Are meta-paths necessary?[END_REF] Just Jump and stay random walk [START_REF] Basher | Leveraging heterogeneous network embedding for metabolic pathway prediction[END_REF] Rust Semantic aware Heterogeneous Network Embedding [START_REF] Zhang | Shne: Representation learning for semantic-associated heterogeneous networks[END_REF] SHNE Hyperbolic heterogeneous information network embedding [START_REF] Wang | Hyperbolic heterogeneous information network embedding[END_REF] HHNE Heterogeneous Spacey random walk [START_REF] He | Hetespaceywalk: A heterogeneous spacey random walk for heterogeneous information network embedding[END_REF] Hetespacey-walk Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification [START_REF] Chen | Task-guided and path-augmented heterogeneous network embedding for author identification[END_REF] GHE Multimodal Random Walks Neural Network [START_REF] Wu | Learning of multimodal representations with random walks on the click graph[END_REF] MRWNN Multiplex network embedding [START_REF] Zhang | Scalable multiplex network embedding[END_REF] MNE Translating Node Embeddings [START_REF] Li | TransN: Heterogeneous network representation learning by translating node embeddings[END_REF] TransN Relational Graph Convolutional Networks [START_REF] Schlichtkrull | Modeling relational data with graph convolutional networks[END_REF] R-GCN Metapath Aggregated Graph Neural Network [START_REF] Fu | Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding[END_REF] MAGNN Heterogeneous Attention Network [START_REF] Wang | Heterogeneous graph attention network[END_REF] HAN Heterogeneous Graph Neural Network [START_REF] Zhang | Heterogeneous graph neural network[END_REF] HETGNN Graph transformer networks [START_REF] Yun | Graph transformer networks[END_REF] GTN Dynamic Heterogeneous Networks Embedding [START_REF] Wang | Dynamic heterogeneous information network embedding with meta-path based proximity[END_REF] DyHNE Change Modeling in Dynamic Heterogeneous Networks [START_REF] Bian | Network embedding and change modeling in dynamic heterogeneous networks[END_REF] Change2vec Relationship prediction in dynamic heterogeneous information networks [START_REF] Milani Fard | Relationship prediction in dynamic heterogeneous information networks[END_REF] Metadynamix Dynamic heterogeneous network using Hierarchical Attention with temporal RNN [START_REF] Xue | Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal rnn[END_REF] DyHATR Dynamic heterogeneous graph embedding using Hierarchical Attentions [START_REF] Yang | Dynamic heterogeneous graph embedding using hierarchical attentions[END_REF] DyHAN Dynamic Heterogeneous Networks Embedding [START_REF] Yin | Dhne: Network representation learning method for dynamic heterogeneous networks[END_REF] Dhne Meta path-based Similarity [START_REF] Sun | [END_REF] PathSim Heterogeneous Dynamic Graph Attention Network [START_REF] Li | Heterogeneous dynamic graph attention network[END_REF] HDGAN

Table 2

Methods Acronym

A number of variations have been suggested which are based on metapath2vec method. In order to unify various meta-paths, Hetespacey-walk [START_REF] He | Hetespaceywalk: A heterogeneous spacey random walk for heterogeneous information network embedding[END_REF] creates a heterogeneous spacey random walk and uses a second-order hyper-matrix to regulate the likelihood of transitions between various node types. An expanded skip-gram strategy is suggested by BHIN2VEC [START_REF] Lee | Bhin2vec: Balancing the type of relation in heterogeneous information network[END_REF] to balance the different types of relations. In order to balance the impact of different relations on node embeddings, the training ratio of various tasks is modulated, given that heterogeneous graph embedding is deemed a multiple relation-based task. To this end, HHNE [START_REF] Wang | Hyperbolic heterogeneous information network embedding[END_REF] executes a meta-path guided random walk in hyperbolic spaces, wherein node closeness is evaluated using hyperbolic distance.

Non meta-path based

Unlike metapath2vec, Jump and Stay (Just) [START_REF] Hussein | Are meta-paths necessary?[END_REF] is a method for heterogeneous graph embedding that employs random walks rather than meta-paths. JUST involves utilizing an exponential decay function and a tuning parameter to choose the subsequent node during a walk, regardless of whether it belongs to the same or a different node type. This selection is based on two historical data sets: the total number of nodes previously visited in the same domain as the current node (represented by 𝑐), and a queue called 𝑀 that holds information about the node types visited in the past. The size of the queue is 𝑚.

𝑃 𝑟 𝑠𝑡𝑎𝑦 (𝑣 𝑖 ) ⎧ ⎪ ⎨ ⎪ ⎩ 0, 𝑖𝑓 𝑉 𝑠𝑡𝑎𝑦 (𝑣 𝑖 ) = ∅ 1, 𝑖𝑓 𝑉 𝑞 𝑗𝑢𝑚𝑝 (𝑣 𝑖 )|𝑞 ∈ 𝑄, 𝑞 ∉ 𝜙(𝑣 𝑖 ) = ∅ 𝛼 𝑙 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4) 
where 𝛼 ∈ [0, 1] is the initial stay probability, while 𝑙 signifies the count of nodes visited successively within the same domain as the current node 𝑣 𝑖 If a jump need to be executed, the process requires the selection of a target domain 𝑞. In order to maintain an even distribution of nodes across various domains, the selection of the next domain 𝑞 is made randomly and uniformly, by picking one domain from among those that differ from the last 𝑚 domains visited during the random walk. The proposed model uses a fixed-length queue 𝑄 ℎ𝑖𝑠𝑡 of size 𝑚 to remember up to 𝑚 previously visited domains, and it randomly selects one from the following list:

𝑄 𝑗𝑢𝑚𝑝 (𝑣 𝑖 ) = { 𝑞|𝑞 ∈ 𝑄 ∧ 𝑞 ∉ 𝑄 ℎ𝑖𝑠𝑡 𝑉 𝑞 𝑗𝑢𝑚𝑝 (𝑣 𝑖 ) ≠ ∅, not if empty 𝑞|𝑞 ∈ 𝑄𝑞 ∉ 𝑄 ℎ𝑖𝑠𝑡 𝑉 𝑞 𝑗𝑢𝑚𝑝 (𝑣 𝑖 ) ≠ ∅, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (5) 
Finally, the generated set of random walks 𝑊 is utilized to train a skip-gram model for learning node embeddings.

Rust [START_REF] Basher | Leveraging heterogeneous network embedding for metabolic pathway prediction[END_REF] borrow the random walk method with Jump and Stay strategy from Just [START_REF] Hussein | Are meta-paths necessary?[END_REF], to enhance the algorithm by introducing a unit-circle equation for sampling node pairs. This enhancement is designed to provide greater generality compared to Just methods. The unit-circle formed by the two hyper-parameters, namely 𝑠 and ℎ, is defined as ℎ2 + 𝑠2 = 1. Where ℎ ∈ [0; 1] determines the required degree of exploration within a domain, while 𝑠 ∈ [0; 1] specifies the depth of search towards other domains. If 𝑠 > ℎ it prompts the walk to navigate through additional domains, and conversely. As a result, Rust utilizes a combination of semantic associations and local/global structural information to generate walks.

TransN [START_REF] Li | TransN: Heterogeneous network representation learning by translating node embeddings[END_REF] builds on the concept of metapath2vec by taking into account the internal relationships between network nodes, but utilizes a translation-based method rather than using meta-paths to extract feature vectors. It is a Multiview, network embedding framework that obviates the need for node labels or user-defined meta-paths as inputs. It uses a combination of single-view and cross-view algorithms to learn the node embeddings. The single-view algorithm is applied to each view of the heterogeneous network to maintain the proximity information within each single view. The single-view algorithm receives random walks as input, which are sampled from the view in question. These random walks are biased to some extent towards node degrees, implying that nodes with higher degrees are more probable to be sampled due to their greater significance in the network. The single-view algorithm uses these random walks to learn the embeddings of the nodes in each view. The crossview algorithm is leveraged for every view-pair to transfer relationships between views via translators, which consist of a stack of encoders modeled by neural networks. Instead of employing the original views, the translators utilize random walks that are sampled from paired-sub-viewed. By utilizing these translators, the cross-view algorithm can determine how node embeddings from one view correspond to those from another view. The overall goal of TransN is to learn the node embeddings that capture the structure and relationships of the heterogeneous network. It minimizes an overall loss function, which is the sum of the loss functions of the single-view and cross-view algorithms. Formally, TransN learns the node embeddings of the input network via a minimization process of a loss function (ℎ) ∶ 𝐿 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐿 𝑠𝑖𝑛𝑔𝑙𝑒 + 𝐿 𝑐𝑟𝑜𝑠𝑠 . where 𝐿 𝑠𝑖𝑛𝑔𝑙𝑒 and 𝐿 𝑐𝑟𝑜𝑠𝑠 refers to the loss functions of the single view and cross-view algorithms, respectively.

Various other random walk strategies are suggested. For example, MRWNN [START_REF] Wu | Learning of multimodal representations with random walks on the click graph[END_REF] includes content priors into Deep-Walk [START_REF] Perozzi | Deepwalk[END_REF] for image retrieval. GHE [START_REF] Chen | Task-guided and path-augmented heterogeneous network embedding for author identification[END_REF] suggests a method for semi-supervised meta-path weighing; In a multi-view network, MNE [START_REF] Zhang | Scalable multiplex network embedding[END_REF] performs random walks separately for each view, using skip-gram technique.

Deep Neural Network based methods

Deep neural network-based models use deep learning approaches to give a stable and effective embedding that reflects deeper semantic information. DNNs (Deep neural network) designed to learn complex, non-linear relationships and patterns in data and have found widespread application in facial recognition, natural language processing (NLP), and computer vision. DNNs are frequently used for graph embedding and representation learning tasks. DNNs can learn rich representations of graph data by leveraging neural networks' expressiveness and capacity. Graph neural networks (GNNs) can be used for learning both homogeneous and heterogeneous graph representations. Some deep neural network-based methods have been used to embed heterogeneous networks, they are proven ability to handle various types of node and edge features. TOne of the main objectives of GNN is to utilize sophisticated neural networks to acquire embeddings from node properties or interactions. These approaches can be divided into two main categories: encoder-decoder-based and message passing-based. The encoder-decoder architectures, are unsupervised techniques that propagate information among graph nodes via a message-passing mechanism. By sending messages between the nodes to incorporate their features, the encoder learns a compressed representation of the nodes. The graph is then reconstructed using the learned representations by the decoder. While The message passing method is used to propagate information throughout the graph's nodes. The concept is to iteratively update each node's representation based on the representations of its neighboring nodes.

Encoder-Decoder based

PCA [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF] is a linear dimensionality reduction technique that reduces the data to its most important features, explaining the most variance in the data. A similar representation learning method that extracts features from data and is widely used in graph embedding is encoder-decoder architecture, which is commonly used in neural networks. In encoder-decoder techniques, the encoder network works to reduce the graph into a lower-dimensional representation, while the decoder network aims to reconstruct the original graph. The primary objective of these techniques is to use neural networks as encoders to acquire node embeddings from their attributes, and subsequently construct a decoder to retain particular characteristics of the graph. In other words, the encoder maps input data, such as node features and interactions, to a lower-dimensional embedding, and the decoder reconstructs the input data by mapping the embedding back to the original space. Unlike random walkbased methods, techniques that employ a combination of first-order and high-order relations, in the form of metapaths, are utilized to effectively capture the heterogeneity within Heterogeneous Graphs (HG). The aim is to determine whether two nodes are connected through a metapath, which is akin to a multi-label classification task. To accomplish this, HIN2VEC estimates the likelihood of a meta-path 𝑀 connecting two nodes 𝑢 and 𝑣. Formally :

𝑝(𝑟|𝑥, 𝑦) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑( ∑ 𝑊 ′ 𝑥 𝑥 ⊙ 𝑊 ′ 𝑦 𝑦 ⊙ 𝑓 01 𝑊 ′ 𝑅 𝑟) (6)
The model functions as a binary classifier, taking in a pair of nodes denoted by 𝑥 and 𝑦, along with a specific relationship 𝑟 ∈ 𝑅 as inputs, and produces a prediction regarding whether the relationship 𝑟 exists between the nodes 𝑥 and 𝑦. The input layer accepts three one-hot vectors, 𝑥, 𝑦, and 𝑟. These vectors are then transformed into latent vectors, namely 𝑊 ′ 𝑥𝑥, 𝑊 ′ 𝑦𝑦, and 𝑓 01, followed by an activation function, which is set as the identity function. Subsequently, the output layer, which takes the summation of these results as input and applies the sigmoid function as an activation function, computes sigmoid to accomplish logistic classification. HIN2VEC is an advanced technique that can learn embeddings of both nodes and meta-paths in a Heterogeneous Information Network (HIN). The relationships in the network, denoted by 𝑅, are not limited to firstorder structures like the A-P relation but also encompass higher-order structures such as the A-P-A relation. This flexibility allows HIN2VEC to capture various semantics through node embeddings, enabling it to effectively represent and analyze complex and heterogeneous data. By learning embeddings of both nodes and meta-paths, the model can capture both structural and semantic information, facilitating various downstream applications, such as recommendation systems, clustering, and link prediction. Furthermore, HIN2VEC is scalable and can be applied to large-scale and high-dimensional networks, making it a valuable tool for analyzing and visualizing complex data in real-world applications.

Encoder-decoder-based techniques utilize neural networks as an encoder to learn embeddings from node attributes and a decoder to maintain certain graph properties. HNE method [START_REF] Yang | Heterogeneous network representation learning: A unified framework with survey and benchmark[END_REF], for exampe, focuses on multi-modal heterogeneous graphs. To learn embeddings from images and texts, HNE utilizes Convolutional Neural Networks (CNNs) and autoencoders, respectively. The embedding is then used to determine whether a connection exists between the texts and images. The SHNE method [START_REF] Zhang | Shne: Representation learning for semantic-associated heterogeneous networks[END_REF] is an advanced technique that utilizes domain-specific deep encoders to incorporate additional node information, such as categorical attributes. Although SHNE uses heterogeneous skip-gram to preserve graph heterogeneity, it is primarily designed for text data, such as social media or product reviews. By combining text information with network structure, SHNE can effectively capture the complex relationships and patterns within text-based networks. However, it may not perform as well on other types of heterogeneous networks that do not have a significant text-based component. Nonetheless, the incorporation of domain-specific deep encoders has demonstrated its effectiveness in various applications, including sentiment analysis, recommendation systems, and social network analysis, by enabling the model to effectively capture the unique features and characteristics of the underlying data.

Message passing based

The purpose of message passing is to propagate information and communicate the node embedding to its neighboring nodes in a graph. A task that Graph Neural Networks (GNNs) [START_REF] Wu | A comprehensive survey on graph neural networks[END_REF] perform frequently. The construction of a proper aggregating function is a critical component of message passing-based approaches.

HAN [START_REF] Wang | Heterogeneous graph attention network[END_REF] is a powerful semi-supervised graph neural network specifically designed for heterogeneous graphs. It introduces a novel hierarchical attention mechanism that can capture both semantic information and node importance, allowing it to effectively learn node embeddings. The model utilizes a hierarchical attention structure that consists of two phases: node-level attention and semantic-level attention. In the node-level attention phase, the goal is to determine the importance of meta-paths. Initially, the node features with distinct feature spaces are taken as input. To standardize the projection space, a type-specific transformation matrix is employed to project the features into the same space. This is expressed mathematically as follows:

ℎ 0 𝑖 = 𝑊 (0)
𝑟 𝑖 𝑥 𝑖 [START_REF] Cao | Grarep: Learning graph representations with global structural information[END_REF] where ℎ 0 𝑖 denotes the projected node feature of node 𝑖 of type 𝑟 𝑖 , 𝑥 𝑖 denotes the original feature vector, and 𝑊 (0) 𝑟 𝑖 represents the transformation matrix specific to node type 𝑟 𝑖 .

After the initial projection, the model applies a selfattention mechanism to each meta-path, allowing it to capture the most relevant meta-paths and filter out noise. The attention weight for each meta-path is computed as follows:

𝛼 𝑟 𝑖 ,𝑟 𝑗 = 𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎 𝑇 [𝑊 𝑟 𝑖 ℎ 0 𝑖 ||𝑊 𝑟 𝑗 ℎ 0 𝑗 ])) ∑ 𝑘∈𝑁 𝑖 𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎 𝑇 [𝑊 𝑟 𝑖 ℎ 0 𝑖 ||𝑊 𝑟 𝑘 ℎ 0 𝑘 ])) (8) 
where 𝑎 is a trainable weight vector, || denotes concatenation, and 𝑁 𝑖 is the set of neighboring nodes of node 𝑖. The attention weight reflects the importance of meta-path 𝑟 𝑖 → 𝑟 𝑗 for node 𝑖.

In the semantic-level attention phase, the model aggregates the node features of each meta-path-based neighbor in a hierarchical manner to generate the final node embeddings. The aggregation process is controlled by a second attention mechanism that selects the most informative neighbors and meta-paths.

By utilizing a hierarchical attention mechanism, HAN can effectively capture the complex relationships and patterns within heterogeneous graphs, leading to state-of-theart performance in various applications such as node classification, recommendation systems, and social network analysis.

MAGNN, [START_REF] Fu | Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding[END_REF], is an extension of the Heterogeneous Attributed Network (HAN) model that incorporates metapath-based neighbors. MAGNN generates node embeddings through a series of transformations that involve node content transformation, intra-meta-path aggregation, and inter-meta-path aggregation. The inter-metapath aggregation which combines messages from various metapaths, and intra-metapath aggregation, which incorporates intermediate semantic nodes. The model utilizes type-specific linear transformations to map heterogeneous node attributes to a common latent vector space. MAGNN incorporates both structural and semantic information of nodes by using intrametapath aggregation and attention mechanisms for each metapath, which considers neighboring nodes and intermetapath context. In intra-metapath aggregation, MAGNN extracts and combines information from meta-path instances that link the target node to its metapath-based neighbors. Then, it uses the attention mechanism to fuse latent vectors from different metapaths during inter-metapath aggregation to generate the final node embeddings. By considering both structural and semantic information, MAGNN achieves state-of-the-art performance in various downstream tasks such as node classification and link prediction on heterogeneous graphs. R-GCN [START_REF] Schlichtkrull | Modeling relational data with graph convolutional networks[END_REF] is a semi-supervied learning approach that utilizes a graph convolutional network (GCN) variant capable of handling various kinds of entities and links in the graph. The method utilizes relational graph convolutional networks, which consist of 𝐾 convolutional layers and employ multiple weight matrices for projecting node embeddings into distinct relation spaces. As a result, the approach effectively captures the graph's heterogeneity. The node feature is the initial node representation ℎ (0) 𝑢 . In the 𝑘 𝑡ℎ convolutional layer, each representation vector is updated by taking a normalized sum of the vectors of its neighboring nodes.

ℎ 𝑙+1 𝑖 = 𝜎 ⎛ ⎜ ⎜ ⎝ ∑ 𝑟∈𝑅 𝑗∈𝑁 𝑟 𝑖 1 𝐶 𝑖,𝑟 𝑊 𝑙 𝑟 ℎ 𝑙 𝑗 + 𝑊 𝑙 0 ℎ 𝑙 𝑖 ⎞ ⎟ ⎟ ⎠ (9) 
In the given context, 𝐶 𝑖,𝑟 is a normalization constant that can be either learned or pre-selected and is specific to the problem at hand. The set of neighbor indices of node 𝑖 under relation 𝑟 ∈ 𝑅 is denoted by 𝑁 𝑟 𝑖 . To accumulate the transformed feature vectors of neighboring nodes, a normalized sum is used implicitly.

Compared to the standard Graph Convolutional Network (GCN) model, R-GCN is designed to handle edge heterogeneity by learning multiple convolution matrices, denoted as 𝑊 , which are specific to each edge type in the heterogeneous graph. The equation 9 could potentially encounter overfitting problems as the number of parameters increases proportionally to the number of relationships in the graph. To address this concern, the authors employed a regularization function that helps regulate the weights of the R-GCN layers.

Multisage, as proposed in [START_REF] Yang | [END_REF], is a model that takes advantage of the heterogeneity of real-world networks by classifying nodes into two types: target nodes and context nodes. Its main objective is to generate embeddings for target nodes while utilizing context nodes to represent the relationship between target nodes.

To learn the embedding of a given target node, Multisage leverages its neighbors (𝑁 𝑣 ) and identifies a dominant context node that best characterizes the target-neighbor interaction using a parallel contextualized random walk engine. The model utilizes a feature-based embedding approach for both target and context nodes, where raw node features are transformed using stacked dense neural networks, as shown below: To capture various facets and interactions of target nodes with their neighbors, contextual masking is applied to transform and aggregate target embeddings 𝑧 𝑡 based on context embeddings 𝑧 𝑐 . This projection results in multiple embeddings for each target node, corresponding to various egoneighbor pairs and capturing different aspects of their interactions.

𝑧 𝑡 =
𝑍 𝑡|𝑐 = 𝑧 𝑡 ⊗ 𝑧 𝑐 [START_REF] Chen | Task-guided and path-augmented heterogeneous network embedding for author identification[END_REF] GCNs have shown remarkable success in various tasks such as node classification, link prediction, and graph classification. This is due to the fact that GCNs have the ability to incorporate local graph structures and node features in a scalable and end-to-end fashion, thus allowing for the modeling of complex and large-scale graphs. Moreover, the flexibility of GCNs to handle both homogeneous and heterogeneous graphs makes them a versatile tool for various domains, including social networks, bioinformatics, and ecommerce.

HETGNN [START_REF] Zhang | Heterogeneous graph neural network[END_REF] is an unsupervised heterogeneous graph neural network model that aims to obtain node embeddings for heterogeneous graphs. To achieve this, HETGNN adopts a random walk with a restart strategy to sample a fixed number of strongly correlated heterogeneous neighbors for each node. The sampled neighbors are then grouped based on their node types to form a homogeneous graph, which can be fed to a Graph Convolutional Network (GCN) to learn embeddings.

To aggregate feature information from the sampled neighboring nodes, the authors of HETGNN designed a neural network architecture that comprises two modules. In the first module of the HETGNN neural network architecture, a bi-directional Long Short-Term Memory (Bi-LSTM) based architecture is utilized to encode the "deep" feature interactions of heterogeneous contents and generate a content embedding for each node:

𝑓 𝑡(𝑣) = ∑ 𝑖∈𝐶 𝑣 [ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖ ⃗ 𝐿𝑆𝑇 𝑀 { 𝔽 ℂ 𝜃𝑥 (𝑥 𝑖 ) } ⨁ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖ 𝐿𝑆𝑇 𝑀 { 𝔽 ℂ 𝜃𝑥 (𝑥 𝑖 ) } ] |𝐶 𝑣 | (12) 
Where 𝔽 ℂ 𝜃𝑥 (𝑥 𝑖 ) stands for feature transformer. Concatenation is indicated by the operator ⊕.

The second module responsible for collecting content (attribute) embeddings from different neighboring groups (types) and fusing them using Bi-LSTM technique. In the end-toend training procedure, HETGNN [START_REF] Zhang | Heterogeneous graph neural network[END_REF] includes a graph context loss and a mini-batch gradient descent procedure. The purpose of message passing, which is always employed in GNNs, is to transmit the node information to its neighbors. Designing an appropriate aggregate function that can capture the semantic information of HG is a crucial aspect of message passing-based approaches. Additionally, some heteregenous GNNs concentrate on different issues. For example, in order to automatically determine the appropriate meta-paths during message forwarding, GTN [START_REF] Yun | Graph transformer networks[END_REF] creates an aggregation function; HetETA [START_REF] Hong | Heteta: Heterogeneous graph attention network[END_REF] investigates a particular challenge of intelligent transportation time estimation utilizing a heterogeneous graph network with quick localized spectral filtering. When we compare random walk-based methods, DNNs based methods have the obvious advantage of inductive learning, i.e., which refers to the model's ability to generate embeddings for nodes that have not been encountered before, or for graphs that have not been seen before. In addition, HGNNs demand less memory space as they solely store model parameters, making them crucial for real-world applications. Nevertheless, they still impose substantial time costs.

Dynamic Heterogeneous graph embedding

Real-world graphs are dynamic and evolve over time, yet most existing surveys on heterogeneous graph embedding techniques [START_REF] Yang | Heterogeneous network representation learning: A unified framework with survey and benchmark[END_REF] focus on the static setting. To address this gap, recent work has focused on developing techniques that can learn embeddings for dynamic heterogeneous graphs. DYHNE [START_REF] Wang | Dynamic heterogeneous information network embedding with meta-path based proximity[END_REF] is a technique that learns node embeddings while taking graph heterogeneity and graph evolution into account. It is based on the notion of matrix perturbation. To obtain heterogeneous structural information, DYHNE introduce proximities based on meta-paths at first and second order. For two nodes to be in first-order proximity, their embeddings should be similar if they are linked by a metapath. Moreover, The embeddings of neighboring nodes are also considered in DYHNE, where the node embeddings are required to be close to the weighted sum of its neighbors' embeddings, which is determined by the second-order proximity. Both first-and second-order proximities are based on meta-paths and can be uniformly expressed as:

𝑙 = 𝑡𝑟(𝑈 𝑇 (𝐿 + 𝛾𝐻)𝑈 ) (13) 
Here, 𝑈 represents the matrix of node embeddings, 𝐿 = 𝐷 -𝑊 represents the graph Laplacian, and 𝐻 = (𝐼 -𝑊 ) 𝑇 (𝐼 -𝑊 ) represents the second-order proximity matrix. The hyper-parameter 𝛾 balances the influence of 𝐿 and 𝐻 in the objective function. The matrix 𝑊 is the fusion of different meta-paths, where 𝜃 𝑚 represents the weight of the 𝑚-th meta-path, and 𝐷 = ∑ 𝑚∈𝑀 𝜃 𝑚 𝐷 𝑚 is the diagonal matrix of node degrees for the fused graph. To solve the minimization of 𝐿 the eigenvalue decomposition is then used:

(𝐿 + 𝛾𝐻)𝑈 = 𝐷 ∧ 𝑈 ( 14 
)
where ∧ = 𝑑𝑖𝑎𝑔(𝜆 1, 𝜆2 • • • 𝜆 N ) is the eigenvalue matrix. DYHNE is designed to capture changes in heterogeneous graphs by leveraging the perturbation of metapath augmented adjacency matrices, allowing it to adapt to graph transformations. Additionally, the model is capable of updating node embeddings without necessitating the retraining of the entire system. DYHNE is a robust method for capturing the evolution of heterogeneous graphs, as it maintains both the structural and semantic information of the graph and uses matrix perturbation to efficiently track changes over time. Similarly, Change2vec [START_REF] Bian | Network embedding and change modeling in dynamic heterogeneous networks[END_REF] also utilizes the concept of incremental updates, presenting a dynamic variation of metapath2vec. MetaDynaMix also [START_REF] Milani Fard | Relationship prediction in dynamic heterogeneous information networks[END_REF] o capture both the temporal evolution and the node type heterogeneity of a dynamic heterogeneous graph. It uses matrix factorization and incremental updates to learn node embeddings that capture both the node type and temporal information. The incremental updates are carried out using a variant of the stochastic gradient descent algorithm, which allows the embeddings to be updated efficiently without requiring the entire graph to be re-factorized. This enables MetaDynaMix to handle dynamic graph data efficiently and scale to large-scale graphs. DYHATR [START_REF] Xue | Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal rnn[END_REF] seeks to capture temporal information by changing node embeddings in different timestamps. It is worth noting that a grpah with tiemstamps is a temporal graph which each edge has a timestamped attribute indicating when it was created or when it is valid. These edges can be used to represent time-varying relationships between nodes, such as social interactions, communication networks, or financial transactions. DYHATR, capture heterogeneity by employing a hierarchical attention model. Additionally, it uses a temporal attentive GRU/LSTM to effectively represent evolutionary patterns among snaps. This combination of techniques allows for a comprehensive analysis of the data, resulting in more accurate and meaningful insights. The DyHATR architecture consists of two distinct components. Firstly, a hierarchical attention mechanism is employed to learn node embeddings by combining the properties of neighboring nodes. This approach effectively captures heterogeneity and allows for a more comprehensive analysis of the data. Secondly, temporal information is captured through the use of a Recurrent Neural Network (RNN) with a self-attention mechanism. This technique enables the model to identify and represent evolutionary patterns among snaps, resulting in more accurate predictions and insights. DyHATR can learn node embeddings under varied timestamps using node-and edge-level attention. In order to capture temporal changes in node embeddings, an RNN is employed to process them. Additionally, DyHAN [START_REF] Yang | Dynamic heterogeneous graph embedding using hierarchical attentions[END_REF] utilizes a hierarchical attention mechanism to determine the significance of nodes and timestamps. HDGAN [START_REF] Li | Heterogeneous dynamic graph attention network[END_REF] also use the attention mechanism and a hawkes process [START_REF] Hawkes | Point spectra of some mutually exciting point processes[END_REF] to capture important features of the heterogeneous graph: structural, semantic, and temporal attention. The structural attention focuses on the network structure by learning the importance of different nodes and edges. The semantic attention combines the weights of different meta-paths, enabling the model to capture the semantic relationships between nodes. Finally, the temporal attention considers the time factor by incorporating time decay effects in the analysis of historical neighbor nodes. DHNE [START_REF] Yin | Dhne: Network representation learning method for dynamic heterogeneous networks[END_REF] addresses the challenge of modeling evolutionary patterns by constructing a sequence of historical-current networks from consecutive graph snapshots. This approach learns both the and current heterogeneous information to capture node representations. To achieve this, DHNE proposes a dynamic heterogeneous skip-gram model based on metapath-based random walks between the historical snapshots and the current snapshot.

There is a growing tendency that promotes temporal HIN embedding at the moment. Most of these research, including DHNE [START_REF] Yin | Dhne: Network representation learning method for dynamic heterogeneous networks[END_REF], Change2vec [START_REF] Bian | Network embedding and change modeling in dynamic heterogeneous networks[END_REF], and DYHNE [START_REF] Wang | Dynamic heterogeneous information network embedding with meta-path based proximity[END_REF], divide time into snapshots to acquire node embeddings and use metapath to capture semantics in HIN. Table 3 summarizes the dynamic heterogeneous networks method discussed above, we highlight the techniques used for each model and their real world application. Dynamic method also can be categorized by their update type, they fall into two kinds specifically: retrained update methods and incremental update methods. The latter approach involves retraining the models for every timestamp, the first uses existing node embeddings to learn how to embed new nodes in the following timestamp.

Other Methods

Besides the models discussed above, there are many other methods that deals with heterogeneous networks.

ESim [START_REF] Shang | Meta-path guided embedding for similarity search in large-scale heterogeneous information networks[END_REF] propose a framework for general embeddingbased similarity search in heterogeneous information networks (HINs). They learns vertex embedding vectors from user-guided meta-paths and network structures Cosine similarity determines the similarity between vertex embeddings of the same type.

The approach presented in PathSim [START_REF] Sun | [END_REF] involves calculating the similarity between two vertices of the same type using the normalized count of path instances that follow a userspecified meta-path between any two vertices. In addition, there are several other techniques based on decomposition strategy. The aim of such approaches is to break down heterogeneous graphs into multiple sub-graphs while maintaining the closeness of nodes within each sub-graph. One such example is PME [START_REF] Chen | Pme: Projected metric embedding on heterogeneous networks for link prediction[END_REF], which partitions the heterogeneous graph into bipartite graphs by considering the linkage types and then projects each bipartite graph into a semantic space that is specific to the relation. Another technique, PTE [START_REF] Tang | PTE[END_REF], categorizes documents as word-word graphs, worddocument graphs, or word-label graphs. It then employs LINE [START_REF] Tang | International World Wide Web Conferences Steering Committee[END_REF] to learn the shared node embeddings for each sub-graph. These techniques offer a range of strategies for analyzing and processing heterogeneous data, allowing for a more comprehensive understanding of complex systems. By leveraging innovative approaches such as decomposition and semantic projection, researchers can gain insights that would not be possible through traditional methods of analysis.

Discussion

In the previous section, we categorize the heterogeneous the widely used techniques (or models). In this section, we provide a technical discussion and comparison of the aforementioned methods, highlighting their respective strengths and limitations.

Random walk approach

Random walk is a powerful technique used in graph analysis to capture local structures within homogeneous graphs. However, when dealing with heterogeneous graphs, it is important to incorporate both the structural information and the semantic information into the node sequence. To address this challenge, a number of semantic random walk approaches have been developed. One such approach is Metapath2vec [START_REF] Dong | metapath2vec[END_REF], which generates a random walk based on meta-paths and uses skip-gram to conduct heterogeneous graph embedding. This method is particularly useful for capturing the complex relationships that exist within heterogeneous graphs, where nodes may have multiple types and connections can be diverse. By incorporating semantic information into the random walk, Metapath2vec provides a more comprehensive understanding of the graph's structure, enabling more accurate analysis and prediction. It is a powerful tool for tasks such as recommendation systems, link prediction, node classification and community detection, where understanding the relationships between nodes is crucial. Nevertheless these meta-paths either needs domain experts' prior knowledge for optimum meta-path selection, or it requires expensive computations to combine all meta-paths. However the approach Just [START_REF] Hussein | Are meta-paths necessary?[END_REF] suggests an alternative method that involves a random walk technique with Jump and Stay strategy, enabling the selection of whether to maintain or alter the type of the subsequent node in a random walk without utilizing a meta-path. Just cannot handle complex structures like large heterogeneous network or knowledge graph, also, it can misrepresent graph structure. Besides, Rust [START_REF] Basher | Leveraging heterogeneous network embedding for metabolic pathway prediction[END_REF] model extend the Just method by enhancing the algorithm, they adopt a unit circle equation to adjust the Jump and Stay strategy. this method can work on both homogeneous and heterogeneous networks still have a high computational complexity and need manual Parameter settings. Metapath-based and non-metapath-based methods are two different approaches used in graph analysis for heterogeneous graphs. Metapath-based methods, are useful for capturing complex relationships that exist within heterogeneous graphs. However, the selection of meta-paths may require domain experts' prior knowledge or expensive computations. On the other hand, non-metapath-based methods, such as Just and Rust models, they do not require prior domain knowledge, but they still have some limitations, such as high computational complexity and the need for manual parameter settings. Non-metapath-based methods can be more flexible in terms of their ability to handle different graph structures. In summary, Metapath-based methods provide more comprehensive understanding of graph structure by incorporating semantic information using meta-paths, while non-metapath-based methods can be more flexible in handling different graph structures but may require more manual adjustments and parameter tuning.

Deep learning approaches

In the case of deep learning approaches using random walk strategy, it often evaluates a node's local neighbors inside the same path and so ignores global structural information. Furthermore, finding a "optimal" sampling approach is problematic since embedding and path sampling are not concurrently optimized in a unified framework. For example similar to metapah2vec, HIN2VEC [START_REF] Fu | Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning[END_REF] perform meta-path guided random walks to apply embedding, which can capture both the structural and semantic aspects of relationships, however it sampled all meta-paths that were shorter than a certain length, resulting to its inefficiency. In the other hand deep learning models without random walks suffer from the high computing cost. Such as R-GCN [START_REF] Schlichtkrull | Modeling relational data with graph convolutional networks[END_REF] model that learns the embddings for nodes and relations using a graph neural network. During graph convolutions, it requires to put the whole graph into memory which can lead to extended computations. Comparing with random walk methods, heterogeneous GNN have the advantage to conduct inductive learning. It is clearly noticed that random walk methods in Heterogeneous Information Networks (HINs) generally do not depend on the downstream task since the learning is unsupervised for all the mentioned methods. On the other hand, Graph Neural Networks (GNNs) learning type can be supervised and use of node attributes and graph structure to generate node representations, and these representations are often tailored to the downstream task at hand. However, it's not always necessary for GNNs to have labels to build the embeddings. Unsupervised or supervised learning is also applicable to generate node representations in a GNN, in which case the embeddings would not be dependent on the downstream task. Furthermore, in addition to the advantage of being able to handle complex and heterogeneous networks, heterogeneous GNNs also require less memory to store model parameters. However, the high training cost remains a significant challenge for real-world applications.

Table 4, we classify typical heterogeneous graph embedding methods using various perspectives. The table summarizes the similarities between methods by gradually coarsening their properties from left to right. The first column indicates the technique used by each method, and the second column indicates whether the method has inductive capability. We can observe that a majority of message passingbased methods have inductive capability, but they often require labeled data for guiding the training process. The information and learning type in each method are shown in the middle two columns. The learning can be supervised, unsupervised, and semi-supervised. The purpose of supervised graph embedding is to preserve structural information in the graph while also predicting node labels or graph properties. This necessitates labeled training data as well as the use of a loss function to calculate the prediction error. Although supervised techniques are more accurate than unsupervised techniques, they also require more labeled data and are more computationally expensive. The goal of unsupervised graph embedding is to preserve structural information in a graph without using node labels or graph properties. Unsupervised techniques are thus more flexible and simple to use, but they do not capture as much information about the graph as supervised techniques. Semi-supervised graph embedding is a method that combines aspects of both supervised and unsupervised techniques. It guides the embedding process with a small amount of labeled data and can enhance the accuracy of the resulting embeddings. However, compared to supervised techniques, it requires fewer labeled examples and is less computationally expensive. Overall, the technique used in heterogeneous graph embedding will be determined by the task's specific goals and the availability of labeled

Method

Leaning technique Inference Learning Input information Application Metapath2vec [START_REF] Dong | metapath2vec[END_REF] Bhin2vec [START_REF] Lee | Bhin2vec: Balancing the type of relation in heterogeneous information network[END_REF] HHNE [START_REF] Wang | Hyperbolic heterogeneous information network embedding[END_REF] Hetespacey-walk [START_REF] He | Hetespaceywalk: A heterogeneous spacey random walk for heterogeneous information network embedding[END_REF] Structural information + metapath

Node classification

Node clustering Link prediction Recommendation MRWNN [START_REF] Wu | Learning of multimodal representations with random walks on the click graph[END_REF] Image retrieval MNE [START_REF] Zhang | Scalable multiplex network embedding[END_REF] Rust [START_REF] Basher | Leveraging heterogeneous network embedding for metabolic pathway prediction[END_REF] Just [START_REF] Hussein | Are meta-paths necessary?[END_REF] TransN [START_REF] Li | TransN: Heterogeneous network representation learning by translating node embeddings[END_REF] Unsupervised Structural information Node classification Node clustering Link prediction Recommendation GHE [START_REF] Chen | Task-guided and path-augmented heterogeneous network embedding for author identification[END_REF] Random walk based Semi-supervised Structural information + metapath Author identification PTE [START_REF] Tang | PTE[END_REF] Text classification PME [START_REF] Chen | Pme: Projected metric embedding on heterogeneous networks for link prediction[END_REF] ESIM [START_REF] Shang | Meta-path guided embedding for similarity search in large-scale heterogeneous information networks[END_REF] Pathsim [START_REF] Sun | [END_REF] Proximity based Structural information Node classification Node clustering Link prediction HNE [START_REF] Yang | Heterogeneous network representation learning: A unified framework with survey and benchmark[END_REF] Structural information + Attribute

Text classification Image retrieval

Hin2vec [START_REF] Fu | Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning[END_REF] Structural information + metapath SHNE [START_REF] Zhang | Shne: Representation learning for semantic-associated heterogeneous networks[END_REF] Encode-Decoder Transductive HETGNN [START_REF] Zhang | Heterogeneous graph neural network[END_REF] MAGNN [START_REF] Fu | Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding[END_REF] HAN [START_REF] Wang | Heterogeneous graph attention network[END_REF] R-GCN [START_REF] Schlichtkrull | Modeling relational data with graph convolutional networks[END_REF] Inductive Unsupervised GTN [START_REF] Yun | Graph transformer networks[END_REF] Transductive Semi-supervised

Node classification Node clustering Link prediction Recommendation

Multisage [START_REF] Yang | [END_REF] Message passing Inductive supervised

Structural information + Attribute

Recommendation Table 4 Heterogeneous network representation learning methods data. Additionally, it's important to mention that, the majority of deep learning-based techniques are developed for heterogeneous graphs with attributes, whereas random walk model-based methods are primarily intended for exploiting structures. The last column summarize the application tasks used in HG embedding we can notice that clustering, node classification, node recommendation, and link prediction are the most popular use cases.

Industrial level applications

HINs has gained significant importance in real-world applications due to the prevalence of heterogeneous objects and interactions in many practical systems. This section will provide a summary of some important applications of heterogeneous graph embedding. Unlike the methods discussed in section 4, the approaches presented in this section address practical challenges encountered in industrial data applications.

Recommendation systems

Heterogeneous information networks (HINs) are a popular approach for handling a variety of data mining activities, especially in recommendation systems. HINs can represent multiple types of objects, such as users, movies, actors, and interest groups in movie recommendation, as well as various types of relationships between them, including viewing information, social relations, and attribute information. By incorporating multiple types of information, HINs can improve the precision of recommendations. The figure 4 illustrates the complex interactions between object types in a recommendation system, which make HINs a powerful tool for generating better recommendations.

There has recently been an increase in the number of studies [30], [75], [START_REF] Liu | A survey on heterogeneous information network based recommender systems: Concepts, methods, applications and resources[END_REF], on HIN-based recommendation algorithms, due to their adaptability and excellent semantic modeling capabilities. These algorithms take advantage of the rich information integration and semantic information provided by HINs to improve recommendation performance. Aspect-level CF (NeuACF) [START_REF] Han | Aspect-level deep collaborative filtering via heterogeneous information networks[END_REF] is a model for neural networks. It involves creating several similarity matrices for both users and items at the aspect-level, which are then used to model information-rich objects and relationships within a recommender system as a HIN. The process involves inputting the resulting matrices into a DNN to generate aspect-level latent components. These components are combined with an attention mechanism to create the topN recommendations. [54] proposed HIN-based recommendation, they created a random walk approach based on meta-paths. For the purpose of learning network representations, they created a meta-path-based random walk approach that uses meaningful node sequences. Item embedding generation is the primary focus of conventional HIN-based recommendation systems. However, they give relatively little thought to the different heterogeneous relationships that exist in the HIN or their significance.

Fraud Detection

The famous Alibaba and Amazon website are the perfect example of e-commerce these days, this latter is the electronic exchange of products through online services. It is critical to the development of the social economy. An e-commerce platform typically involves large-scale heterogeneous entities and interactions, such as users, items, and stores. As a result, HG offers a strong and natural network analysis paradigm for modeling such complicated data. One of the important task we may use in e-commerce is fraud detection. As e-commerce has grown, it has attracted a large number of fraudsters who make a profit from transactions by using unethical methods. Some research attempts to identify these fraudulent accounts using HG embedding techniques due to the diversity of fraudsters' behavioural patterns. Liu et al. [START_REF] Liu | Heterogeneous graph neural networks for malicious account detection[END_REF] have defined fraudulent behavior in the context of HG as "Device aggregation" and "Activity aggregation". To tackle the challenge of identifying fraudulent activities in credit payment services, researchers have proposed innovative techniques. One such technique proposed by Hu et al. [START_REF] Hu | Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism[END_REF] involves recognizing users, sellers, and devices as distinct types of nodes, and representing their interactions as edges in a heterogeneous graph. They utilize a meta-path based embedding technique to identify cash-out users. In addition, to simulate the topology of a heterogeneous account device graph and account activities in the local structure, they proposed a Graph Neural Network (GNN) approach. By integrating these techniques, they have improved the accuracy of fraud detection and demonstrated the potential of using graph-based models in combating financial crimes.

To distinguish between genuine and spam reviews, researchers have adopted an innovative approach by treating users and items as distinct types of nodes in a bipartite graph, where the reviews serve as edge attributes. They proposed a heterogeneous Graph Neural Network (GNN) technique that utilizes both local heterogeneous information and global context. By integrating these techniques, the proposed model effectively captures the relationships between users, items, and reviews and enhances the accuracy of spam detection. This approach has significant implications in improving the quality and reliability of online reviews.

Bioinformatics

Recently, heterogeneous information networks (HIN) have successfully met numerous biological challenges by effectively integrating complicated and interconnected data into an unified network. Nodes and links in an HIN can thus reflect components and relevant interactions in a biological system. Since HIN possesses a number of advantageous properties, HIN-based approaches are a potential strategy for conducting in-depth analyses in biology and medicine. Furthermore, the analysis on each type of HIN yields a distinct result. MicroRNAs are a crucial class of small non-coding RNAs that play numerous critical managerial roles within cells, including gene expression regulation, cell proliferation, differentiation, and apoptosis. Therefore, identifying miRNA expression patterns is of paramount importance, especially for characterizing the miRNA-mRNA regulatory network. The miRNA-mRNA regulatory network can help researchers understand how miRNAs interact with target mRNAs and other regulatory factors in various biological processes, and can thus provide insight into miRNA-RNA functional modules.

Furthermore, Heterogeneous Information Networks (HINs) have become a valuable tool for analyzing complex biological systems. In particular, disease-biomolecule HINs have been widely utilized to identify disease-related biomolecules, including miRNAs, mRNAs, proteins, and other biomolecules, by integrating various biological information including gene expression, protein-protein interaction, and pathway information. By leveraging the rich information encoded in HINs, researchers can improve their understanding of the underlying molecular mechanisms of diseases and identify potential therapeutic targets. In the field of biology, researchers have developed several models for predicting miRNA-disease associations using various computational techniques.

For instance, a novel model for predicting miRNAdisease associations is presented in [START_REF] You | Pbmda: A novel and effective path-based computational model for mirna-disease association prediction[END_REF] called PBMDA. PBMDA constructs a heterogeneous graph by combining three interrelated subgraphs and uses the Depth-First-Search (DFS) algorithm to forecast connections between miRNA and diseases.

Similarly, [START_REF] Chen | Bnpmda: bipartite network projection for mirna-disease association prediction[END_REF] introduced a novel model for projecting bipartite networks to predict potential associations between miRNA and disease. This model takes into account the functional similarity of miRNA, the semantic similarity of disease, and known human miRNA-disease connections in order to forecast novel miRNA-disease associations.

Additionally, [START_REF] Zheng | Mlmda: a machine learning approach to predict and validate microrna-disease associations by integrating of heterogenous information sources[END_REF] have presented a new approachnamed MLMDA, to improve the prediction of miRNA-disease associations. MLMDA employs a deep auto-encoder neural network (AE) to identify potential correlations between miRNA and diseases, utilizing various inputs such as miRNA sequence information, miRNA functional similarity, disease semantic similarity, and Gaussian association spectrum kernel similarity information. This approach enhances the accuracy of miRNA-disease association prediction and has significant implications in the field of biomedical research.

Future directions

The field of heterogeneous graph embedding has shown significant progress in recent years, becoming a powerful and promising paradigm for graph analysis. In this section, we will delve into several potential directions for future research in this area.

Capture heterogeneous information network semantics

HINs are known for their rich semantics, which distinguish them from other types of networks. In an attempt to capture these semantics, meta-paths are frequently used by researchers to extract features from HINs. Object similarity measurement can be achieved using various meta-paths, and these similarity scores can be utilized as feature vectors for a range of tasks, such as clustering, link prediction, and recommendation. Nevertheless, some researchers have noted the limitations of meta-paths. In certain situations, the use of meta-paths may not adequately capture the intricate semantics of an application. For example, the "Author-Paper-Author" meta-path represents the relationship of author collaboration but may not accurately reflect the reality that two authors collaborate frequently in one field but not in another. Another limitation of meta-paths is that they Not taking into account attribute values. associated with edges. In practical applications, weighted connections are often used, such as the authorship order in papers in bibliographic networks or the rating scores among users and products in recommendation systems. Moreover, choosing the appropriate meta-paths in practical applications can be challenging. The number of meta-paths in an HIN is theoretically unlimited, and it is not always clear which meta-paths are relevant or significant. Additionally, the importance of the weight of different meta-paths can also be difficult to determine.

Large-scale heterogeneous network

Large-scale heterogeneous networks pose significant challenges for traditional representation learning approaches due to their complex node types and relationships, and can require significant storage and training time. To address these challenges, researchers are exploring ways to divide large networks [START_REF] Peng | Streaming social event detection and evolution discovery in heterogeneous information networks[END_REF] into smaller sub-networks while still preserving their rich semantic information, and developing scalable distributed heterogeneous network embedding architectures. These approaches have the potential to enable more efficient and effective analysis of large-scale heterogeneous networks in real-world scenarios.

Dynamic heterogeneous network

The static network structure is the focus of the majority of current works on heterogeneous network representation learning. However, the network structure is constantly changing in real-world scenarios. More specifically, there are always new nodes and edges appearing, along with old nodes leaving and old edges disappearing. These static representation learning approaches, such as metapath2vec [START_REF] Dong | metapath2vec[END_REF], HIN2VEC [START_REF] Fu | Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning[END_REF], and many others discussed in our survey, remain powerless in handling these dynamic changes. Besides, when node proprieties also vary over time, another difficulty for dynamic heterogeneous network representation learning arises. Therefore, it has become more critical than ever to create fast and effecient representation learning methods for dynamic heterogeneous networks.

Conclusion

Heterogeneous graph embedding has made HG analysis and related applications more easier. In this survey, we have delved into the latest heterogeneous graph embedding approaches, providing a thorough discussion and summary of their pros and cons. Although HIN has demonstrated impressive performance in a wide range of downstream tasks, it is still in its infancy, and there are several challenges that need to be addressed. We anticipate that this survey will provide a valuable overview of heterogeneous graph embedding, aiding both researchers and interested readers in furthering their understanding of this emerging field. 
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Figure 4 :

 4 Figure 4: HIN-based movie recommender system [39].

Table 1 SLR Protocol

 1Protocol 

  𝑥 𝑡 and 𝑥 𝑐 refer to the raw features of target and context nodes, respectively. The learnable parameters are denoted by 𝑊𝑘 𝑡 , 𝑏 𝑘 𝑡 , 𝑊 𝑘 𝑐 , and 𝑏 𝑘 𝑐 , where 𝑘 is the number of stacked dense neural networks used for feature-based embedding. The embeddings of the target and context nodes are represented by 𝑧 𝑡 and 𝑧 𝑐 , respectively.

	𝑅𝐸𝐿𝑈 𝑧 𝑐 = 𝑅𝐸𝐿𝑈 ( 𝑊 𝑘 𝑡 ...𝑅𝐸𝐿𝑈 (𝑊 1 𝑡 𝑥 𝑡 + 𝑏 1 𝑡 ) + 𝑏 𝑘 𝑡 ( 𝑊 𝑘 𝑐 ...𝑅𝐸𝐿𝑈 (𝑊 1 𝑐 𝑥 𝑐 + 𝑏 1 𝑐 ) + 𝑏 𝑘 ) 𝑐 ) (10) ,
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