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Abstract 

Networks are now widely used to represent, quantify and model animal behaviour. These 

approaches have proved valuable in linking individual behaviours to emergent population-

level patterns, and quantifying the implications of these population structures for wider 

ecological and evolutionary processes. However, there are diverse approaches available to 

represent network data and choosing the right tool to answer a particular question can be 

challenging. Here I provide an overview of different network representations, highlighting 

their potential applications in behavioural ecology and drawing attention to key resources to 

help with their implementation. My aim is to provide an accessible guide that helps 

behavioural ecologists take full advantage of the potential of the different ways in which their 

data can be used to generate social (and spatial) networks. 
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• A guide of different approaches to represent animal social network data 

 

• An overview of how to employ and when best to use different network 

representations 

 

• Introduction to less used methods such as multigraphs, and signed and ego 

networks 

 

• Case study showing association data as bipartite, dyadic and higher-order 

networks 
 



Introduction 

Social network analysis is now pervasive in behavioural ecology. It has helped us understand 

how behavioural interactions between individuals scale up to group- or population-level 

social structures. This has played a key role in helping answer key questions related to social 

ecology and evolution, for example being applied to study dominance and group stability 

(Shizuka & McDonald 2012; Dey & Quinn 2014; Silk et al. 2019; Hobson et al. 2021a), 

cultural evolution (Allen et al. 2013; Aplin et al. 2015; Kulahci et al. 2018), infectious disease 

transmission (Hamede et al. 2009; VanderWaal et al. 2014; Silk et al. 2018c; Powell et al. 

2020), cooperation (Edelman & McDonald 2014; Dakin & Ryder 2020; Connor et al. 2022) 

and population responses to selection (Farine & Sheldon 2015; Fisher & McAdam 2017; 

Wice & Saltz 2021). 

However, since its introduction as a tool the use of social network approaches have 

changed considerably over time alongside the questions they have been applied to (Pinter-

Wollman et al. 2014; Croft et al. 2016; Cantor et al. 2021). Increasingly researchers have 

moved to consider dynamic networks that consider changes in social relationships over time 

(Farine 2017b; Fisher et al. 2017a) or multilayer networks that consider different types of 

interaction or association within the same network object (Silk et al. 2018b; Finn et al. 2019). 

More recently there has been a real push in the network science community to embrace 

network approaches that move beyond solely considering dyadic representations of 

interactions (Musciotto et al. 2022; Silk et al. 2022).  

As a result, there are now diverse options available to an animal behaviour 

researcher when choosing an approach to represent their social system, even prior to 

selecting appropriate statistical analyses or modelling approaches. Here, instead of a 

detailed ‘How To’, I provide an overview of the principal ways to represent relational datasets 

in animal societies, pointing towards more detailed resources for less-used approaches and 

offering guidance on when different approaches are most valuable. Even for the same 

dataset it is possible to represent interaction or association data in different ways, meaning 

decisions about the best approach to use should depend first and foremost on the research 

questions of interest (Carter et al. 2015) and second on any limitations inherent to the 

dataset analysed. I hope to provide a resource that can be valuable for researchers 

designing animal social network projects and analyses (e.g. for pre-registered studies or 

funding applications) as well as for those faced with previously collected data with particular 

limitations or constraints.  

 



The building blocks of networks for animal behaviour 

The basics of how to construct networks in ecology (Proulx et al. 2005) and animal social 

behaviour (e.g. (Croft et al. 2008; Farine & Whitehead 2015)) have been discussed 

extensively elsewhere so I provide only a very brief overview that indicates the scope and 

focus of this paper. 

Networks consist of nodes or vertices connected by links or edges between them. In 

most animal social networks nodes will represent individuals. However, nodes can also 

represent particular groups, locations (e.g. burrows, watering holes, food resources) or time-

points that individuals are connected to. While not strictly social networks, movement 

networks in which nodes represent locations and edges the movements of individuals 

(Jacoby & Freeman 2016), also provide valuable tools to study animal social behaviour. 

Edges represent some form of interaction or association between the nodes. Examples in 

animal social behaviour include specific behavioural interactions (e.g. grooming, aggressive 

interactions), close contact (e.g. as recorded using proximity loggers) or co-occurrence of 

individuals within a group or at a particular location. Sometimes edges will represent more 

abstract indications of the social relationship between individuals based on one or more of 

these data sources. 

In typical network approaches all nodes will represent the same “type” of entity (e.g. 

you wouldn’t mix individuals and locations) and edges only connect pairs of nodes (or 

dyads). However, alternative network representations also discussed below relax these 

restrictions. For example, bipartite networks can be used to represent networks with 

interactions only between two types of node (Larremore et al. 2014), multilayer networks 

allow the representation of different types of nodes and/or edges together, and higher-order 

network approaches allow for edges that connect more than two individuals together. As a 

result, the full network toolkit available to researchers provides considerable flexibility to 

researchers that can be adapted to the questions they have. 

An important note here, is that regardless of the network representation used it is 

important that animal social network data is typically only a sample of the individual (nodes), 

associations/interactions that occur (edges) or both and it is important to account for this 

appropriately with subsequent analyses. This will be especially important when sampling is 

biased or uneven. How best to do this will vary considerably depending on the research 

questions being asked, the method of data collection and the representation being used and 

is beyond the scope of this paper. However, readers are encouraged to explore the recent 

literature discussing statistical methodologies to deal with these sampling issues in a range 

of contexts (Young et al. 2020; Franks et al. 2021; Hart et al. 2021; Ross et al. 2022). 

 



Static networks 

Binary networks 

A binary, undirected network is the most basic representation of social relationships. Edges 

(or links) connect vertices (nodes) when two individuals share a meaningful social 

relationship. When measuring animal social networks these edges typically represent 

individuals detected in close proximity (e.g. contact networks: (White et al. 2017)), recorded 

in an aggregation or group together (Franks et al. 2010) or interacting in a specific way (e.g. 

grooming: (Cowl et al. 2020); fighting: (Hobson et al. 2021a)). A long history of researchers 

using binary, undirected networks means that there are a wealth of approaches available to 

study the position of individuals within the network, features intermediate between individual 

and group or population properties (mesoscale structure) such as cliques and communities, 

as well as properties of the network as a whole (see overviews provided by (Croft et al. 2008; 

Wey et al. 2008; Farine & Whitehead 2015; Silk et al. 2017b). In addition, some measures 

calculated in more complex representations are inherently binary, such as degree (the 

number of connections an individual has). However, by representing social relationships as 

dyadic, unweighted and undirected (or by using binary measures) a considerable amount of 

information is typically lost meaning the use of unweighted networks in animal behaviour 

research is frequently cautioned against in most cases (see discussion and simulation 

studies in (Franks et al. 2010; Croft et al. 2011; Farine 2014; Farine & Whitehead 2015)), 

although can be useful occasionally as long as the threshold used is carefully justified (Croft 

et al. 2011). In R representation and basic analysis of binary networks is possible using the 

packages igraph (Csardi & Nepusz 2006), sna (Butts 2008a, 2014) and network (Butts 

2008b, 2015) among others. 

 

Weighted networks and multigraphs 

Another easy way to add information to a network representation is to incorporate data on 

the frequency, duration or strength of social relationships. In weighted networks edges are 

assigned a value to indicate the strength of the connection between two individuals. 

Relatively early in the history of animal social network analysis, the importance of using 

weighted edges to represent interactions and associations was recognized (Franks et al. 

2010; Farine 2014), and a wide variety of different ways of weighting edges are now 

available for researchers to use in different contexts, such as commonly-used association 

indices (Hoppitt & Farine 2018) or equivalents that retain information on the number of 

observations (Hart et al. 2021). Most common network analyses have now been generalized 

for weighted networks including many key network measures and community detection 

algorithms, typically using the same software packages highlighted in the previous section. In 



addition, a number of statistical tools have recently been developed that deal with sampling 

issues in weighted network representations that offer potentially powerful tools in animal 

social network analysis (see approaches described in (Young et al. 2020; Hart et al. 2021; 

Ross et al. 2022). However, it can be very important to consider how edge weights are 

included in these calculations and subsequent analyses. For example, when calculating the 

shortest paths through the network (and measures derived from this such as betweenness 

and closeness centrality) edges with higher weights could be considered “shorter” or “longer” 

depending on context. Moreover, how the path length calculated depends on edge weight 

need not always have the same mathematical form. A key example of this is that default 

behaviour of the R package igraph (Csardi & Nepusz 2006) treats edge weights as a cost 

(e.g. as if they are a distance) while in many applications in animal behaviour the opposite is 

true, meaning the edge weights used have to be redefined for many applications of these 

approaches in behavioural ecology. 

What is often neglected in animal social network research, however, is that repeated 

interactions can also be represented as a multigraph, where there is no constraint on the 

number of edges connecting a dyad (Fig. 1b). In some contexts, this might be a more 

appropriate way of representing the frequency of interactions between pairs of individuals 

(e.g. A groomed B 10 times), and it certainly helps more intuitively generate reference 

models for subsequent analysis as edge rewiring algorithms (a permutation approach in 

which at each step the identity of nodes connected by a selected edge are changed) can be 

applied to each edge independently (Hobson et al. 2021b). In addition, for some animal 

network datasets including both the frequency and duration or strength of interactions could 

provide valuable additional information. In this case it is necessary to analyse a weighted 

multigraph (Fig. 1c). For example, when testing hypotheses in grooming networks it may be 

that the length of individual grooming bouts and frequency of grooming bouts provide 

independent information about the social relationship between two individuals. Taking this 

approach can open up new research questions about the relative importance of frequent 

versus long duration social interactions in group social structure and stability. It may also be 

important, for example, when studying social contagions if the likelihood of transmission 

depends on the duration of interactions (e.g. for less infective pathogens or for social 

learning of more complex behaviours). When using multigraphs in this way it will be 

important to control for variation in sampling effort (e.g. the number of times individuals were 

observed) if this varies among individuals when conducting subsequent statistical analyses.  

Using multigraphs can also create challenges when representing networks visually 

(especially with many edges between nodes) and is more computationally intensive than 

using weighted networks, so using them should be reserved for contexts in which 

maintaining the independence of the frequency and duration of interactions provides valuable 



additional information on social relationships and their ecological and evolutionary 

consequences as outlined above. The R package igraph (Csardi & Nepusz 2006) facilitates 

storing and representing weighted multigraphs. 

 

   

Figure 1. Examples of a) a weighted network in which edge width represents the total 

duration of interactions, b) an unweighted multigraph in which the number of edges in a dyad 

represents the number of interactions between two individuals, and c) a weighted multigraph 

in which the number of edges in a dyad represents the number of interactions between two 

individuals and the width of each edge illustrates the duration of each interaction. The 

weighted multigraph retains the most information about social interactions within the group. 

 

 

Directed networks 

Another simple way to include additional information is to use a directed network instead. In 

directed networks (or digraphs) edges no longer simply represent a connection between 

node A and node B, they indicate a connection from node A to node B. Directed networks 

have proven especially useful for representing behavioural interactions, in which who initiates 

an interaction is important. For example, directed networks have been commonly used to 

provide insights into the structure of dominance hierarchies (Dey & Quinn 2014; Silk et al. 

2019; Hobson et al. 2021a). When studying hierarchies, considering directed edges makes it 

possible to distinguish between transitive (individual I is dominant over individual j and k, 



individual j is dominant over individual k) and cyclical (individual i is dominant over individual 

k, individual j is dominant over individual k and individual k is dominant over individual i)  

triads (Shizuka & McDonald 2012; Dey & Quinn 2014) or investigate reciprocity effects (Dey 

& Quinn 2014; Silk et al. 2019) which are important indicators of the linearity and stability of 

dominance hierarchies. Directed edges have also proved valuable in studying grooming 

behaviour and affiliative interactions within groups (Balasubramaniam et al. 2018; Cowl et al. 

2020). Finally, they have also provided valuable tools in studying movement behaviour, 

especially when it is possible to define discrete patches or locations that individuals move 

between (reviewed by (Jacoby & Freeman 2016)). Many common measures and tools have 

been extended to use in directed networks, and some additional measures are available (e.g. 

PageRank centrality; (Ding et al. 2009)). Directed networks can be represented and relevant 

measures calculated using the same software tools as binary and weighted networks. 

Similarly, Bayesian statistical models that are designed account for sampling issues common 

in empirical social network data can be applied to directed network data (see modelling 

frameworks provided by (Hart et al. 2021; Ross et al. 2022)).   

 

Signed networks 

While conventionally non-zero edges or links will have positive values (as for all the forms of 

network discussed so far), researchers in other fields have started to use signed networks 

(Beigi et al. 2016; Kirkley et al. 2019). In signed networks positive (e.g. affiliative) interactions 

are assigned positive edge weights and negative (e.g. agonistic, avoidance) interactions are 

assigned negative edge weights (although in practice most analysis of signed networks has 

focused on binary versions in which edge weights are either +1 or -1). Many applications of 

networks to study behavioural interactions in animal groups could lend themselves to the 

analysis of signed networks when there is information available about different types of 

interaction and these are considered to be either “positive” or “negative”. Perhaps the most 

direct application will be in comparing patterns of affiliative interactions (positive) with 

patterns of social avoidance (negative), especially given social avoidance is relatively 

understudied in non-human animals (Strickland et al. 2017). Another context in which signed 

networks may be valuable is in comparing networks of affiliative and agonistic interactions, 

although note that for some research questions it may be more effective to integrate these 

behaviours as a multilayer network (see below).  

 Signed network approaches are likely to be especially beneficial when studying 

questions related to group stability (e.g. (McCowan et al. 2011; Larson et al. 2018)) and 

alliance formation (e.g. (Connor et al. 2022)). Structural balance theory (Ilany et al. 2013), 

which predicts for example that if two individuals share a strong mutual connection they are 

unlikely to possess a negative social relationship, extends neatly into signed networks (see 



Fig. 1 in (Facchetti et al. 2011)). The presence of unbalanced triads (e.g. the triad described 

in the previous sentence) in a signed network could be used to predict network dynamics or 

changes in group composition. There may be interest in investigating the relative importance 

of structural imbalances involving different combinations of positive and negative ties. 

Similarly, the commonly-used stochastic block model has been extended to signed networks 

with the aim of identifying clusters or communities characterized by positive interactions with 

each other but negative ties with other clusters (Jiang 2015). This offers a very natural way to 

characterize complex social structures such as those dominated by matrilines or where 

alliances govern access to mates or reproductive opportunities. Analysis of signed networks 

in R can be conducted using the R package signnet (Schoch 2020), an extension of igraph 

for signed networks. 

 

Bipartite (two-mode) networks 

Bipartite (or two-mode) networks connect two different types of node, with connections 

between the same type of node not possible (Larremore et al. 2014) (Fig. 3). They have 

been commonly used to study ecological networks such as plant-pollinator (Dupont et al. 

2014; Miele et al. 2020) or host-pathogen (Valverde et al. 2020; Albery et al. 2021) networks. 

However, one of the classic social network datasets – the Davis’ Southern women network – 

illustrates the potential values of bipartite networks in behavioural ecology. The Southern 

women network links a set of 18 women to the parties or events that they attended (Davis et 

al. 1941; Opsahl 2013). This is equivalent to group-based methods of animal social network 

construction (Franks et al. 2010; Farine & Whitehead 2015). These datasets can be naturally 

represented as a bipartite network linking individuals to particular groups or aggregations 

(see Case Study: Alternative network representations of animal groups). Frequently, this 

network is then collapsed into a weighted network using the gambit of the group assumption 

(see Case Study: Alternative network representations of animal groups). Other datasets such 

as mating networks (Fisher et al. 2016; McDonald & Pizzari 2016) or those connecting 

individuals to locations they have visited (e.g. refuges, watering holes, foraging locations) are 

also a natural fit to bipartite representations (e.g. (Sah et al. 2016)). By representing these 

networks as bipartite rather than collapsing them to be conventional (unipartite) social 

networks, key structural information is maintained that would otherwise be lost. This can be 

very helpful in addressing particular questions. For example, in the case of group-based 

networks, questions related to choices of group membership for individuals or in breaking 

down gregariousness into a tendency to be in more and/or larger groups. A wealth of tools is 

available to analyse bipartite networks, although predominantly tailored to other fields. For 

example, as well as (generalised) linear model approaches, exponential random graph 

models have been extended to incorporate bipartite dependency assumptions (Wang et al. 



2013) and the R package bipartite (Dormann et al. 2008) provides capability calculating a 

range of measures and fitting some more specialist models (albeit with the analysis of 

ecological rather than social networks in mind). It is important to note that issues with biased 

sampling (and potentially also identification errors) that apply to dyadic network 

representations will also apply to the statistical analysis of some bipartite networks, requiring 

careful consideration during statistical model design. 

 

Tripartite networks 

It is also possible to represent animal behaviour with additional layers of complexity. For 

example, (Manlove et al. 2018) demonstrate how it is possible to use a tripartite networks as 

a conceptual tool to integrate movement and social behaviour. These networks contain three 

types of node: individuals, spatial locations and time points. Individuals and locations are 

linked via nodes representing time points. It is then possible to collapse this network into 

various bipartite and unipartite networks commonly used in behavioural ecology research 

(see Fig. 2 in (Manlove et al. 2018)). 

 

Multilayer networks 

Multilayer networks provide a general framework to represent dyadic networks between 

different types of entity and/or containing different types of social relationships (Kivelä et al. 

2014). They contain different network layers, with edges possible both within (intra-layer 

edges) and between (inter-layer edges) them. Because animal populations and groups 

frequently contain social networks nested within a wider spatial network (Silk et al. 2018b; 

Webber et al. 2022), and multiple types of social interaction network can interact with one 

another within animal groups (Barrett et al. 2012; Beisner et al. 2015), multilayer networks 

have great potential as a tool in animal behaviour research (Finn et al. 2019). 

 There are two broad categories of multilayer network. Multiplex networks (typically) 

contain different sets of interactions between the same set of actors (Kivelä et al. 2014). For 

example, they could be applied in scenarios where a researcher was studying networks of 

agonistic behaviour, ritualized dominance interactions and submissive behaviours among the 

same set of individuals (Silk et al. 2019). Interconnected networks are most commonly used 

to represent systems in which layers contain different types of node. This could be different 

phenotypes (Silk et al. 2018c), but could also represent different species or combinations of 

species and spatial locations. For example, (Silk et al. 2018a) used an interconnected 

network to represent contact networks between wild European badgers Meles meles, 

domestic cattle Bos taurus and badger latrine locations. This enabled identification of likely 

inter- and intraspecific transmission pathways for Mycobacterium bovis, the causative agent 

of bovine tuberculosis. 



 The use of multilayer approaches has expanded greatly in recent years and there are 

now a wealth of tools available to analyse them, especially for multiplex networks. These are 

well summarized by (Finn et al. 2019; Finn 2021). muxViz provides a user-friendly interface 

for basic multilayer network analysis in R (De Domenico et al. 2015), with additional R 

packages tailored to multiplex network analysis including multinet (Magnani et al. 2021) and 

multiplex (Ostoic 2020). 

 

Higher-order network approaches 

All of the approaches discussed so far assume that interactions or associations are dyadic – 

that is that they occur between pairs of individuals. However, it is clear that this represents a 

simplification for many common types of social data (Musciotto et al. 2022). In some cases, 

explicitly incorporating higher-order interactions (i.e. those simultaneously occurring between 

more than two individuals) can change our understanding of the emergent properties of a 

system, for example the spread of pathogens or information (Iacopini et al. 2019, 2022; 

Noonan & Lambiotte 2021). Despite this, explicit higher-order representations of non-human 

animal social networks have been used only very rarely. 

There are three commonly-used ways to represent higher-order interactions in 

network science: hypergraphs, simplicial sets and simplicial complexes (Silk et al. 2022). 

Hypergraphs are a generalization of dyadic networks that enable (hyper)edges to connect 

any number of individuals (Battiston et al. 2020; Torres et al. 2021). For example, three 

individuals A, B and C observed together in a single group could all be connected with a 

single hyperedge (or hyperlink). Hypergraph representations of grouping-event based 

networks is discussed further in the section Case Study: Alternative network representations 

of animal groups.  

Simplicial sets represent an alternative mathematical representation of these 

interactions using set notation (Silk et al. 2022). Each simplex in a simplicial set represents 

either a node/individual (0-simplex), dyadic-interaction (1-simplex) or higher-order interaction 

(2-simplex, 3-simplex etc.). However, unlike hypergraphs simplicial sets avoid the sub-edge 

problem (Silk et al. 2022); it is possible to represent relationships between individuals in the 

absence of individuals themselves in simplicial set but not hypergraph representations. For 

example, imagine a scenario where the presence or outcome of a dominance interaction 

between individual A and individual D is influenced by an alliance between individuals A, B 

and C. In this case the 2-simplex (A,B,C) influences the 1-simplex (A,D) even in the absence 

of B and C. A hypergraph representation cannot capture this component of social structure 

(Fig. 2). 

A simplicial complex is a specific form of simplicial set which must contain all nested 

lower-order simplices. For example, if a simplicial complex contained the simplex (I,J,K) it 



must necessarily also contain the 2-simplices (I,J), (I,K), (J,K), and 1-simplices (I), (J) and 

(K). In a social context this represents an assumption that any larger interaction or group 

inevitably includes all possible sub-groups or interactions. While there are cases where this 

assumption will be met by real-world social behaviour, there are also many cases where not 

all subsets of individuals within a group can or will have interacted. Therefore, while 

mathematically convenient, simplicial complexes are likely to be less useful to animal 

behaviour research than either hypergraphs or simplicial sets. 

The power of using higher-order approaches in modelling pathogen spread (Bodó et 

al. 2016; Iacopini et al. 2019) and behavioural contagions (Noonan & Lambiotte 2021) has 

been clearly demonstrated by theoretical work. In behavioural disease ecology higher-order 

approaches may be particularly useful when there are non-linear dose-response curves (St-

Onge et al. 2021; Silk et al. 2022) and when there is considerable variation in group or 

aggregation size. For behavioural contagions, higher-order approaches can simplify the 

representation and modelling of complex contagions (Silk et al. 2022). This will be especially 

powerful when the presence of multiple demonstrators or receivers impacts social learning. 

However, descriptive measures of higher-order networks will also offer an information rich 

approach to classifying animal social networks that can extend insights beyond dyadic 

networks, particularly when studying networks based on co-occurrence in a group (see Case 

Study: Alternative network representations of animal groups). Incorporating hypergraph or 

simplicial set approaches may even shape how we consider the role of the social 

environment in indirect genetic effects (Fisher & McAdam 2017; Montiglio et al. 2018) if 

fitness is influenced by higher-order interactions. 

Widely accessible implementations of higher-order network approaches are still in 

their infancy, but there good overviews are provided by (Battiston et al. 2020; Torres et al. 

2021) and guide to available software for visualisation and basic analyses in R, Python and 

Julia is available in (Silk et al. 2022). 

 



   

Figure 2. a) Hypergraphs can be used to represent non-dyadic social relationships, 

associations or interactions (e.g. that between individuals A, B and C) to quantify their role in 

the structure of animal societies (in this case the interaction between individuals A and D. 

However, hypergraphs do not naturally represent scenarios when interactions or 

relationships can have an impact in the absence of the individuals involved. For example, in 

b) the non-dyadic social relationship between A, B and C can influence the interaction 

between A and D in the absence of individuals B and C. These scenarios are better captured 

using simplicial sets, which can include the 2-simplex (A,B,C) without necessarily including 

the 0-simplices (B) or (C). 

 

Case study: Alternative network representations of animal groups 

There is frequently no one single way to represent interactions as a social network. A good 

example is in considering possible network representations of animal social groups (Fig. 3). 

Traditionally in animal social network analysis researchers have used the Gambit of the 

Group assumption (Franks et al. 2010) that any pair (dyad) of individuals in a group have 

associated and therefore share a connection in a weighted social network. The weight of 

their connection is calculated as a function of the proportion of times they are observed 

together (with a variety of potential functions available; (Hoppitt & Farine 2018)). However, 

this representation is a simplification of a more complex network structure which can be 

captured as either: a) a bipartite network in which one set of nodes represents individuals 

and another set of nodes observed grouping events or aggregations with edges connecting 

individuals to the aggregations they occurred in; or b) a [weighted] hypergraph (or simplicial 

set) in which a hyperedge connects all of the individuals that occurred in each group. 

 Here we provide a case study (Supplementary Materials) in which three research 

teams study the same social system. Because they are asking different questions using the 

dataset they elect to use different network approaches to represent their dataset. Research 



Team 1 are interested in whether individual social relationships are assorted by different 

phenotypic traits. Because the goal of their study is to infer potential social relationships in 

the population (with the assumption that individuals with strong social relationships will be 

found together more often in groups) using a dyadic network representation distils relevant 

information conveniently and provides an effective way to answer their question. 

 However, in other contexts the weighted (dyadic) network represents a simplification 

that loses some information about the system. Research Team 2 are more interested in 

properties of the social groups themselves, specifically whether the social centrality (degree 

and strength) of individuals is better explained by the size of groups they occur in or the 

number of times they are in groups (i.e. not observed by themselves) and whether smaller 

groups tend to consist of subsets of larger groups (i.e. are they nested?). For questions such 

as these that are more related to the social decision-making of individuals then bipartite 

network and hypergraph representations are likely to be more suitable as they retain 

information about group size and composition. In this case, directly modelling the bipartite 

network could offer real potential, being sufficient to answer their first question and providing 

ideal tools (nestedness calculations from the ecological networks literature) to answer the 

second. 

The power of higher-order (e.g. hypergraph) approaches becomes valuable if the 

non-dyadic nature of interactions is likely to be important in some way, especially in studies 

of contagions, for example. Our third team are disease ecologists who are interested in the 

potential spread of an emergent pathogen through the population. Because of how it is 

transmitted they feel that the non-dyadic nature of social interactions in the system may 

contribute to its spread, and compare hypergraph and dyadic network outbreak models to 

assess its potential impact. For the set of parameters they consider, the importance of 

considering the non-dyadic nature of interactions is very evident (although if you change 

these parameters you will see how this changes according to the size of infectious dose and 

how this affects the transmission probability of the pathogen). 

Collectively, these examples illustrate the advantages of illustrating the same network 

data in different ways, in particular highlighting how it pays to start with the research question 

or hypothesis of interest, determine which features of the data are of most importance (and 

need to be maintained), and then select an appropriate method of representing the network. 

One thing to note is that the differences between representations can sometimes be 

conceptual more than practical, for example the group-by-individual matrix used to represent 

the bipartite network is equivalent to the incidence matrix for a hypergraph representation. It 

is also important to highlight that it is possible to answer the same question using different 

representations, for example phenotypic assortativity is apparent in the bipartite network (and 

analogously the hypergraph) representations as well as the dyadic one. Finally, it may also 



be that more some studies combining information from multiple representations is beneficial 

to addressing research goals. 

I have illustrated the example of group-based networks as it is conceptually intuitive, 

but a similar process is important to follow for other forms of data as well (e.g. association 

networks based on shared resource use, association networks based on co-capture data). 

 

 

 

Figure 3. Representations of the same set of animal groups as a) a bipartite network 

connecting individuals (black circles) to the grouping events (grey squares) they were 

recorded in; b) a hypergraph connecting individuals (black circles) with hyperedges 

according to the groups they were observed in; and c) a weighted network in which the 

weight of dyadic connections represents the number of groups two individuals were observed 

in together. Each of these approaches retains different levels of information about the social 

associations that occurred and lends itself naturally to different analytic approaches and 

research questions.   

 

 

Dynamic networks 

So far all of the network representations have been discussed in a static context, i.e. not 

considering the fact that interactions or relationships may change over time. However, most 

network data are dynamic and it can often be helpful to consider how social network 

structure and the position of individuals within it changes over time (Pinter-Wollman et al. 

2014; Farine 2017b). For example, when considering pathogen transmission or the spread of 

information and behaviours, the frequency with which interaction patterns change can be just 



as important as social structure in determining the outcome (Evans et al. 2020). There are 

two major ways to consider dynamic network data, as aggregated or snapshot static 

networks or as time-ordered networks ((Blonder et al. 2012); Fig. 4). 

 

Figure 4. A graphical representation of a time-ordered network using the R package 

timeordered. The start and end of interactions between dyads are indicated by grey 

horizontal lines and the time at which interactions occurred is indicated by their position on 

the vertical axis. The red line indicates the shortest possible path between individual 2 and 

individual 10 while accounting for the order interactions occur in. 

  

 The former represents a convenient approach as it facilitates the application of the 

same (or broadly similar) analytical tools as for static networks. Snapshot networks are a 

series of networks representing associations or interactions occurring at a series of specific 

points in time (e.g. the 1-metre proximity networks arising from successive scan samples of a 

group conducted every hour). For time-aggregated networks there is flexibility in the time 

periods over which interactions or associations are collated. Often the time periods used are 

discrete from each other (e.g. daily networks, seasonal networks), however it is also possible 



to generate time-aggregated networks based on overlapping windows (e.g. 3-monthly 

networks that run from January-March, February-April, March-May etc.). 

Basic descriptive network measures (whether at the network or individual level) can 

characterise the stability of overall social structure (Pinter-Wollman et al. 2014) and the 

consistency with which individuals occupy positions within it (Wilson et al. 2013). Because 

time-aggregated networks can also be considered as multiplex networks (with different layers 

representing different time periods), descriptive measures designed for multilayer networks 

may also have value for some research questions (Finn et al. 2019). Similarly, various 

statistical models have been designed that specifically analyse these time-aggregated (or 

snapshot) networks. For example, network autocorrelation models (Silk et al. 2017c), 

exponential random graph models (Lusher et al. 2012), and stochastic block models (Matias 

& Miele 2017) have all been extended to time-aggregated networks. They can be used to 

answer questions about individual traits, interactions/relationships and network community 

structure respectively, incorporating temporal variability and time-lagged variables. Further 

models designed specifically for time-aggregated networks are also available, e.g. stochastic 

actor-oriented models (Snijders et al. 2010; Fisher et al. 2017b). It is also possible to apply 

these statistical models in other ways, for example the epimodel R package (Jenness et al. 

2018) employs temporal exponential random graph models to facilitate simulations of 

network epidemiological models. When applying more complex statistical models to time-

aggregated networks generated from overlapping time windows (i.e. using subsets of 

observations that are not fully independent from each other) it is important to ensure this 

does not violate assumptions of the model being used. 

 However, while time-aggregated networks are appropriate for answering a wide 

range of questions in behavioural ecology, they represent a simplification of the true social 

structure of the data. Consequently, for some applications where the specific order of 

interaction sequences is important it is necessary to use time-ordered networks. Commonly 

encountered examples in behavioural ecology are in directed behavioural interaction within-

groups such as grooming and dominance interactions. For example, Elo ratings now often 

used to study dominance hierarchies in animal groups (Neumann et al. 2011; Sánchez‐Tójar 

et al. 2018; Neumann & Fischer 2022) exploit the information provided by the order 

interactions occur in. Using time-ordered networks might also be important when answering 

fine-scale questions about social contagions in networks. For example, retaining time-

ordered interactions is important when quantifying social transmission (Silk et al. 2017a; 

Gilbertson et al. 2018). Although tools to analyse time-ordered networks are scarcer than for 

time-aggregated networks, various approaches are available. Measures such as burstiness 

(Stehlé et al. 2010) can quantify the temporal distribution of interactions, which can be 

important in explaining complex social contagions (Evans et al. 2020), for example. 



Statistical models include relational event models for directed, time-order networks (Patison 

et al. 2015; Tranmer et al. 2015) and dynamic network actor models (Stadtfeld et al. 2017) 

for undirected relationships. The latter could be applied very naturally to study the dynamics 

of alliances within animal groups, and can be implemented in R using the package goldfish 

(Hollway & Stadtfeld 2022).  

 

Ego networks 

Ego networks represent only individuals (nodes) that a single focal individual associates, 

interacts or shares a social relationship with, along with the social connections between 

these neighbours (Fig. 5). If desired ego networks can be weighted, signed, multiplex, 

dynamic etc. in the same way as population or group-level networks (Liu et al. 2018; 

Rezaeipanah et al. 2020; Wang et al. 2020). The package egor (Krenz et al. 2022) provides 

tools for ego network representation, visualisation and analysis in R. While ego networks are 

commonly used in sociological research, this has not extended to animal behaviour. Ego 

network analyses and measures typically focus on how embedded an individual is within its 

network neighbourhood or the extent to which it acts as a bridge between different 

neighbourhoods (Butts 2008c). While many of these questions can be addressed using 

measures of individual social network position in group- or population-level networks, ego 

networks are well-suited to contexts where there are constraints on sampling intensity or 

wider population data are very sparse. The ego network approach is also well-suited to social 

network studies that use a focal follow approach (where networks are constructed based on 

successively following different individuals and recording their social associations and/or 

interaction partners) as in these cases the full network is constructed from separate ego 

networks from each focal follow anyway. As a result, while their applications in behavioural 

ecology will likely be more limited, ego networks are an approach to bear in mind when 

addressing questions about the social role of particular subsets of individuals especially if 

there are limitations that require lower levels of sampling. For example, assessing the 

consistency of an individual’s social environment can easily be assessed by calculating the 

stability of its egonetwork. Similarly, the redundancy of an ego within its egonetwork provides 

a good alternative measure of how embedded an individual is within its network. Both these 

aspects of the social environment have the potential to influence fitness-related traits. 

 



 

Figure 5. An illustration of a focal individual (red node) within a) its group-level network and 

b) its ego network. The use of ego network analysis can be used to focus on the immediate 

social neighbourhood of individuals or when it is prohibitive to sample the entire network.  

 

General recommendations for choosing between approaches 

With such diverse approaches available and many applicable to the same datasets, choosing 

the best representation is not always easy. However, there are a few general rules that can 

help: 

• The research question should always be central to driving the choice of network 

analyses applied, and this extends beyond how edges are defined (Carter et al. 2015; 

Farine & Whitehead 2015) to broader considerations around network representations. 

For example, higher-order networks provide valuable additional information when 

researchers are interested in the ecological or evolutionary effects of larger (non-

dyadic) interactions, i.e. non-dyadic effects. 

• Sampling constraints are important when selecting representations to use. More 

complex approaches such as multilayer and dynamic network analyses are more data 

hungry and require more time-intensive sampling. Ego network analyses can be 

helpful in situations with patchily distributed sampling effort. 

• Collecting “too much” data will only be an issue when making decisions about where 

to target resources (e.g. ego-networks of individuals in 20 social groups versus a full 

network of 2 social groups). In other contexts recording data in a way that may allow 

more complex representations to be used (e.g. recording frequency and duration of 



interactions, recording timings of interactions, etc.) will likely be worthwhile even if 

simpler network representations will probably be used in the long run. 

• Some newer approaches have less well-developed or widely accessible analytical 

tools (e.g. signed and higher-order networks) which may limit the analyses possible 

without developing functions or algorithms for yourself. 

• Some approaches (e.g. weighted multigraphs, higher-order approaches) will be more 

computationally-intensive than others, and should therefore only be used when they 

offer a clear advantage for answering a specific research question if computational 

resources are to be used responsibly. 

 

Conclusions 

Network analysis has a huge amount to offer behavioural ecology but frequently represents a 

major challenge to those encountering it for the first time. Fortunately, there are some 

valuable introductory papers to offer guidance on data collection, descriptive statistics and 

statistical modelling in networks (e.g. (Butts 2008c; Pinter-Wollman et al. 2014; Farine & 

Whitehead 2015; Cranmer et al. 2016; Farine 2017a; Silk et al. 2017c; Hart et al. 2021; 

Hobson et al. 2021b)). This overview complements that existing guidance by highlighting the 

diversity of the applied network analysis toolkit now available and drawing attention to the 

different ways to think about and represent animal networks. It reveals the power of 

considering alternative options to quantify networks in animal behaviour research and the 

potential value of newer approaches to answer key research questions related to social and 

spatial behaviour.  
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Network	Representations	Case	Study
Matthew	Silk

In	this	case	study	I	will	use	association-based	(gambit	of	the	group)	data	to	illustrate	the	value	of	using	different
network	representations	to	ask	different	research	questions.
I	will	first	simulate	a	data	set	of	observations	of	individuals	in	groups,	in	which	group	membership	is	determined	by	an	underlying	social	network
that	depends	on	various	phenotypic	traits.

I	will	then	set	up	three	research	teams,	each	with	different	questions,	that	will	analyse	this	data	set	in	different	ways.

Team	1	will	use	weighted	dyadic	networks	to	test	whether	individual	social	relationships	are	assorted	by	different	phenotypic	traits

Team	2	will	use	bipartite	networks	to:	a)	quantify	whether	differences	in	individual	gregariousness	are	better	explained	by	the	number	of	groups
they	occur	in	or	the	average	size	of	groups	that	they	occur	in;	and	b)	ask	if	different	social	groups	are	nested	(i.e.	smaller	social	groups	are	typically
subsets	of	larger	groups).

Team	3	are	interested	in	modelling	the	transmission	of	an	emerging	viral	disease	with	aerosol	transmission.	They	are	interested	in	the	importance
of	taking	into	account	nondyadic	(higher-order)	interactions	so	compare	insights	from	a	hypergraph	and	dyadic	network	modelling	approach.

The	first	step	is	to	set	a	seed	for	the	random	number	generator

set.seed(6)

The	next	step	is	to	load	the	R	packages	we	will	need	for	the	case	study	(it	may	be	that	you	need	to	install	some	of	these	packages	first)

library(igraph)
library(boot)
library(genNetDem)
library(asnipe)
library(assortnet)
library(bipartite)
library(vegan)
library(ergm)
library(latentnet)
library(sbm)

The	next	step	is	to	provide	additional	functions	that	are	needed	to	simulate	the	data.	The	functions	here	are	adapted	from	the	genNetDem	R
package	(https://github.com/NETDEM-project/genNetDem).	I	will	not	show	this	code	chunk	in	the	output.

I	can	then	simulate	the	data	set.

First,	the	individuals	and	their	traits.

#Population	size
n<-50

#Individual	identities
id<-seq(1,50,1)

#Trait	1	-	sex	(female	or	male)
sex<-sample(c("M","F"),50,replace=TRUE)

#Trait	2	-	size	(normally	distributed)
size<-rnorm(50,0,1)

#Trait	3	-	colour	(3-level	categorical)
colour<-sample(c("blue","orange","red"),50,replace=TRUE)

Second,	the	underlying	social	network.	I	will	simulate	an	underlying	network	in	which	there	is	assortment	by	colour	and	females	have	more
connections	than	males.

https://github.com/NETDEM-project/genNetDem


#Empty	adjacency	matrix
adj_mat<-matrix(0,nr=n,nc=n)

#Effect	sizes	for	edge	probabilities
b_prob<-0.05	#baseline	edge	probability
c_eff<-1.75	#effect	size	of	being	same	colour	on	edge	probability	(logit	scale)
s_eff<-0.5	#effect	size	of	being	female	on	edge	probability	(logit	scale)

#Generate	social	connections	(initially	binary)
for(i	in	1:(n-1)){
		for(j	in	(i+1):n){
				t_prob<-boot::inv.logit(boot::logit(b_prob)+
																														(colour[i]==colour[j])*c_eff+
																														((sex[i]=="F")*s_eff+(sex[j]=="F")*s_eff)/2)
				adj_mat[i,j]<-adj_mat[j,i]<-rbinom(1,1,t_prob)
		}
}

#Effect	sizes	for	edge	weights
b_weight<-0.2	#baseline	edge	weight
b_sd<-0.5	#variation	in	edge	weight
c_eff2<-1		#effect	size	of	being	same	colour	on	edge	weight	(logit	scale)
s_eff2<-0.25	#effect	size	of	being	female	on	edge	weight	(logit	scale)

for(i	in	1:(n-1)){
		for(j	in	(i+1):n){
				t_weight<-boot::inv.logit(rnorm(1,
																																				boot::logit(b_weight)+
																																				(colour[i]==colour[j])*c_eff2+
																																				((sex[i]=="F")*s_eff2+(sex[j]=="F")*s_eff2)/2,
																																				b_sd))
				adj_mat[i,j]<-adj_mat[j,i]<-adj_mat[i,j]*t_weight
		}
}

#Plot	to	check	that	the	simulation	is	generating	expected	results
net<-igraph::graph.adjacency(adj_mat,mode="undirected",weighted=TRUE)
par(mfrow=c(1,2),tcl=0.2,las=1)
par(mar=c(0,0,0,0))
plot(net,vertex.color=colour,edge.width=(E(net)$weight*10)^1.2)
par(mar=c(5,5,2,2))
boxplot(igraph::strength(net)~sex,xlab="Sex",ylab="Strength",las=1,cex.axis=1.25,cex.lab=1.5)

Third,	the	groups.	To	start	with	we	use	the	(adapted)	functionality	of	genNetDem	to	simulate	groups	with	a	mean	size	of	two	over	10	timesteps.
Every	individual	will	occur	at	each	timestep	but	will	sometimes	be	in	a	group	of	one	(alone).



#Simulate	the	groups
groups<-interaction_generation_simul(id=id,adj_mat=adj_mat,mean_group_size=2,
																																					n_ts=10,float=0.000000001,pm=50,pow=4)

#Check	that	the	group-based	network	is	similar	to	the	underlying	network	and	that	the
#effect	of	sex	is	maintained
int_mat<-asnipe::get_network(groups[[1]])

##	Generating		50		x		50		matrix

net<-igraph::graph.adjacency(int_mat,mode="undirected",weighted=TRUE)
par(mfrow=c(1,2))
par(mar=c(0,0,0,0),tcl=0.2,las=1)
plot(net,vertex.color=colour,edge.width=(E(net)$weight*10)^1.2)
par(mar=c(5,5,2,2))
boxplot(igraph::strength(net)~sex,xlab="Sex",ylab="Strength",las=1,cex.axis=1.25,cex.lab=1.5)

#Use	netlm	to	inspect	the	correlation	between	the	two	adjacency	matrices
sna::netlm(int_mat,adj_mat,diag=FALSE,nullhyp="qapspp")

##	
##	OLS	Network	Model
##	
##	Coefficients:
##													Estimate			Pr(<=b)	Pr(>=b)	Pr(>=|b|)
##	(intercept)	0.01905247	0.984			0.016			0.016				
##	x1										0.34118332	1.000			0.000			0.000				
##	
##	Residual	standard	error:	0.05531	on	2448	degrees	of	freedom
##	F-statistic:		1886	on	1	and	2448	degrees	of	freedom,	p-value:					0	
##	Multiple	R-squared:	0.4352			Adjusted	R-squared:	0.4349

Note	that	the	correlation	between	the	two	networks	is	relatively	good	(it	would	be	stronger	if	we	sampled	groups	for	longer)	and	that	assortment	is
still	apparent	(by	eye	at	least!),	but	we	lose	the	weaker	sex	effect,	or	at	least	the	medians	become	much	more	similar.

Now	we	have	our	data	set	we	can	follow	the	three	teams’	investigations	to	see	the	advantages	of	using	different	representations.

Our	three	teams	have	access	to	the	same	set	of	observations:

a.	 a	group-by-individual	matrix	of	the	observed	grouping	events	over	10	time	steps	(note	we	are	making	the	unrealistic	assumption	that	they
managed	to	observe	every	group).

b.	 individual-level	data	on	sex,	size	and	colour.

As	a	reminder	team	1	are	interested	in	whether	individual	social	relationships	are	assorted	by	different	phenotypic	traits.



When	answering	questions	related	to	underlying	social	relationships	within	the	population,	collapsing	the	bipartite	network	of	groups	and
individuals	to	a	dyadic	network	is	typically	helpful.

This	network	could	be	a	weighted	network	that	uses	association	indices	or	potentially	a	multigraph	in	which	each	edge	within	a	dyad	represents	an
observation	of	them	together	in	a	group.	Here	they	take	the	former	approach	using	the	R	package	asnipe	(https://cran.r-
project.org/web/packages/asnipe/asnipe.pdf)	for	convenience.	They	take	a	simple	approach	to	measuring	assortment	by	colour	using	the	R
package	assortnet	(https://cran.r-project.org/web/packages/assortnet/assortnet.pdf).

#They	first	generate	the	projected,	weighted	network	using	the	simple	ratio	index	for	edge	weightings
int_mat<-asnipe::get_network(groups[[1]])

##	Generating		50		x		50		matrix

#They	can	formally	test	for	assortment	using	the	assortnet	package
assortnet::assortment.discrete(int_mat,types=colour,weighted=TRUE,SE=TRUE)

##	$r
##	[1]	0.7016485
##	
##	$se
##	[1]	0.02224101
##	
##	$mixing_matrix
##														blue								red					orange								ai
##	blue			0.46095865	0.02778514	0.03560836	0.5243522
##	red				0.02778514	0.19317145	0.02785625	0.2488128
##	orange	0.03560836	0.02785625	0.16337040	0.2268350
##	bi					0.52435216	0.24881284	0.22683501	1.0000000

#They	can	then	plot	the	projected	network	to	look	for	assortment	visually
net<-igraph::graph.adjacency(adj_mat,mode="undirected",weighted=TRUE)
par(mar=c(0,0,0,0))
plot(net,vertex.color=colour,edge.width=(E(net)$weight*10)^1.2)

#As	I	have	simulated	our	data	I	can	also	test	what	the	assortment	by	colour	would	be	in
#the	underlying	network
#It	would	also	be	possible	to	repeat	this	test	with	more	or	fewer	timesteps	sampled
assortnet::assortment.discrete(adj_mat,types=colour,weighted=TRUE,SE=TRUE)

https://cran.r-project.org/web/packages/asnipe/asnipe.pdf
https://cran.r-project.org/web/packages/assortnet/assortnet.pdf


##	$r
##	[1]	0.7448817
##	
##	$se
##	[1]	0.02912628
##	
##	$mixing_matrix
##														blue								red					orange								ai
##	blue			0.43058245	0.02435121	0.04168590	0.4966196
##	red				0.02435121	0.16635611	0.01332123	0.2040285
##	orange	0.04168590	0.01332123	0.24434477	0.2993519
##	bi					0.49661956	0.20402855	0.29935189	1.0000000

As	an	example,	I	have	gone	as	far	as	is	necessary	to	show	that	the	dyadic	representation	is	an	effective	tool	to	test	these	types	of	question	for
association-based	data.	For	more	formal	analyses	homophily/assortment	by	phenotypic	traits	can	suit	statistical	inference	using	well-designed
permutation	tests	(https://doi.org/10.1111/brv.12775)	(e.g.	node	swaps	in	this	case	with	perfect	sampling).	However,	especially	with	less	even
sampling,	then	an	alternative	approach	would	be	to	use	dyadic	regressions.	Given	that	only	a	small	number	of	grouping	events	have	been
sampled,	a	method	that	incorporates	error	in	network	edge	weights	such	as	the	BISoN	framework	(https://doi.org/10.1101/2021.12.20.473541)
would	be	ideal.

As	a	reminder	team	2	are	more	interested	in	questions	related	to	groups,	both	what	aspects	of	group	decision	making	lead	individuals	to	be	more
spontaneous,	and	whether	smaller	groups	tend	to	be	subsets	of	larger	groups	in	this	fission-fusion	society.

For	questions	directly	related	to	groups	themselves	then	retaining	the	bipartite	network	is	often	helpful.	The	reasons	for	this	become	clear	when
they	plot	one	sampling	window	of	the	bipartite	network.

#Extract	the	group-by-individual	matrix	for	just	the	first	timestep
gbi_start<-groups[[1]][groups[[2]]<2,]

#Generate	a	bipartite	network	in	igraph
bipart<-igraph::graph_from_incidence_matrix(gbi_start,directed=FALSE)
layers<-V(bipart)$type+1

#Plot	network
plot(bipart,layout=layout.bipartite(bipart),vertex.label=NA,vertex.size=5,vertex.shape=ifelse(layers==1,"square",
"circle"),edge.width=2,vertex.color=c(rep("gray30",sum(layers==1)),colour))

Using	the	bipartite	projection	it	is	easy	to	tease	apart	how	a	tendency	to	be	found	in	large	groups	versus	small	groups	impacts	an	individual’s	social
network	position.	With	the	full	bipartite	network	we	can	examine	how	individuals	are	linked	through	groups	and	learn	more	about	how	groups	are
linked	(indirectly)	with	each	other.

With	this	in	mind	they	plot	the	full	bipartite	network	(note	the	different	format	here)

https://doi.org/10.1111/brv.12775
https://doi.org/10.1101/2021.12.20.473541


#Extract	full	group-by-individual	matrix
gbi_full<-groups[[1]]

#Generate	bipartite	network	in	igraph
bipart<-igraph::graph_from_incidence_matrix(gbi_full,directed=FALSE)
layers<-V(bipart)$type+1

#Plot	network
plot(bipart,vertex.label=NA,vertex.size=5,vertex.shape=ifelse(layers==1,"square","circle"),edge.width=1,vertex.co
lor=c(rep("gray30",sum(layers==1)),colour))

Team	2	starts	with	a	simple	analysis,	using	the	incidence	matrix	of	the	bipartite	network	to	calculate	the	number	of	groups	an	individual	occurs	in
(i.e.	number	of	times	they	were	not	alone	in	a	given	timestep)	and	the	mean	size	of	groups	that	an	individual	occurs	in.	Their	aim	here	is	to	see
whether	differences	in	gregariousness	(both	strength	and	degree	from	the	projected	dyadic	network)	are	best	explained	by	how	many	groups	an
individuals	is	in	or	the	size	of	these	groups.

#Extract	group-by-individual	matrix	without	lone	individuals
gbi_full2<-gbi_full[rowSums(gbi_full)>1,]

#Record	group	sizes	from	bipartite	network	for	each	individual
group_sizes<-list()
for(i	in	1:ncol(gbi_full2)){
		group_sizes[[i]]<-rowSums(gbi_full2[gbi_full2[,i]==1,])
}

#Calculate	the	number	of	groups	(of	more	than	one)	and	mean	group	size	for	each	individual
gn<-sapply(group_sizes,length)
gs<-sapply(group_sizes,mean)

#Calculate	the	strength	and	degree	for	each	individual	in	the	dyadic	network
str1<-colSums(int_mat)
deg1<-colSums(sign(int_mat))

#Scale	the	number	of	groups	and	mean	group	size	to	both	have	a	mean	of	zero	and	unit	variance
sc_gn<-scale(gn)
sc_gs<-scale(gs)

#Fit	models	for	both	strength	(Gaussian	linear	model)	and	degree	(Poisson	generalised	linear	model)	with	both	the	
number	of	groups	and	mean	group	size	as	explanatory	variables
str_mod<-lm(str1~sc_gn+sc_gs)
deg_mod<-glm(deg1~sc_gn+sc_gs,family="poisson")

They	look	at	the	model	summary	to	see	that	mean	group	size	is	more	important	(approximately	4x	as	important	by	comparing	the	effect	sizes	from
the	standardized	variables)	than	number	of	groups	in	explaining	an	individual’s	degree.

summary(deg_mod)



##	
##	Call:
##	glm(formula	=	deg1	~	sc_gn	+	sc_gs,	family	=	"poisson")
##	
##	Deviance	Residuals:	
##					Min							1Q			Median							3Q						Max		
##	-1.6163		-0.5708		-0.1645			0.5387			1.9634		
##	
##	Coefficients:
##													Estimate	Std.	Error	z	value	Pr(>|z|)				
##	(Intercept)		2.75788				0.03591		76.808		<	2e-16	***
##	sc_gn								0.04921				0.03624			1.358				0.174				
##	sc_gs								0.17409				0.03465			5.024	5.06e-07	***
##	---
##	Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1
##	
##	(Dispersion	parameter	for	poisson	family	taken	to	be	1)
##	
##					Null	deviance:	59.912		on	49		degrees	of	freedom
##	Residual	deviance:	31.922		on	47		degrees	of	freedom
##	AIC:	267.16
##	
##	Number	of	Fisher	Scoring	iterations:	4

They	find	the	same	thing	for	strength,	but	now	only	(approximately)	twice	as	important.

summary(str_mod)

##	
##	Call:
##	lm(formula	=	str1	~	sc_gn	+	sc_gs)
##	
##	Residuals:
##							Min								1Q				Median								3Q							Max	
##	-0.271323	-0.070420		0.005911		0.048769		0.285382	
##	
##	Coefficients:
##													Estimate	Std.	Error	t	value	Pr(>|t|)				
##	(Intercept)		1.81426				0.01541		117.76			<2e-16	***
##	sc_gn								0.26476				0.01566			16.91			<2e-16	***
##	sc_gs								0.54558				0.01566			34.85			<2e-16	***
##	---
##	Signif.	codes:		0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1
##	
##	Residual	standard	error:	0.1089	on	47	degrees	of	freedom
##	Multiple	R-squared:		0.9723,	Adjusted	R-squared:		0.9711	
##	F-statistic:	824.5	on	2	and	47	DF,		p-value:	<	2.2e-16

This	is	not	the	only	question	they	are	interested	in	related	to	groups.	They	also	suspect	that	due	to	the	tendency	for	individuals	to	assort	by	colour
(they	have	been	speaking	to	team	1)	that	the	bipartite	network	might	be	nested	so	that	small	groups	tend	to	be	subsets	of	larger	groups.	Given	this
could	have	important	ecological	and	evolutionary	consequences	they	are	keen	to	test	this	formally.

Fortunately,	it	is	easy	to	directly	calculate	the	nestedness	of	a	bipartite	network.	Here	we	calculate	the	nestedness	temperature	using	the	 vegan
package,	where	lower	values	indicate	a	more	nested	network.

nn<-vegan::nestedtemp(gbi_full2)

Unfortunately,	this	value	does	not	mean	very	much	on	its	own.	Therefore	they	decide	they	need	to	use	a	permutation	approach	to	see	whether	the
nestedness	value	they	calculate	for	the	observed	network	is	higher	than	you	would	expect	if	groups	were	formed	at	random.

Given	they	are	fortunate	and	have	no	major	sampling	limitations	or	spatial	constraints	on	interactions	they	choose	a	simple	datastream	permutation
in	which	individuals	are	swapped	between	groups	observed	on	the	same	day/at	the	same	time.

They	use	a	Markov	chain	approach	to	generate	their	reference	distribution	using	a	burn-in	of	500	swaps	(in	which	no	samples	are	taken)	and	a
thinning	interval	of	10	(saving	the	bipartite	network	every	10	swaps	after	this).	They	use	three	separate	Markov	chains	to	improve	the	reliability	of
their	analysis.	They	therefore	generate	a	reference	distribution	of	3000	permuted	networks	(the	R	objects	 rgbisA ,	 rgbisB 	and	 rgbisC ,	which
are	then	combined	into	the	overall	 rgbis 	list).

They	then	calculate	the	nestedness	of	all	of	the	bipartite	networks	in	their	reference	distribution	and	plot	the	histogram	of	this	reference	distribution
(with	each	colour	representing	a	different	chain).

##First	Markov	Chain

gbi_t<-gbi_full2
rgbis<-list()



day<-groups[[2]]

#The	burn-in	period	for	the	first	Markov	Chain
for(i	in	1:500){
		#sample	an	individual/grouping-event
		pind<-which(gbi_t>0,arr.ind=TRUE)
		tind1<-pind[sample(1:nrow(pind),1),]
		#record	the	day	on	which	that	individual/grouping-event	occurred
		td<-which(day==day[tind1[1]])
		#sample	a	second	individual/grouping-event	that	occurs	on	the	same	day
		pind2<-pind[which(pind[,1]%in%td),]
		tind2<-pind2[sample(1:nrow(pind2),1),]
		#If	additional	constraints	are	met	then	conduct	swap
		if(tind1[1]!=tind2[1]&tind1[2]!=tind2[2]){
				if(gbi_t[tind1[1],tind2[2]]==0&gbi_t[tind2[1],tind1[2]]==0){
						gbi_t2<-gbi_t
						gbi_t2[tind2[1],tind1[2]]<-gbi_t[tind1[1],tind1[2]]
						gbi_t2[tind1[1],tind1[2]]<-gbi_t[tind2[1],tind1[2]]
						gbi_t2[tind1[1],tind2[2]]<-gbi_t[tind2[1],tind2[2]]
						gbi_t2[tind2[1],tind2[2]]<-gbi_t[tind1[1],tind2[2]]
						gbi_t<-gbi_t2
				}
		}
}

#The	sampling	period	for	the	first	Markov	Chain
c<-1
for(i	in	1:10000){
		pind<-which(gbi_t>0,arr.ind=TRUE)
		tind1<-pind[sample(1:nrow(pind),1),]
		td<-which(day==day[tind1[1]])
		pind2<-pind[which(pind[,1]%in%td),]
		tind2<-pind2[sample(1:nrow(pind2),1),]
		if(tind1[1]!=tind2[1]&tind1[2]!=tind2[2]){
				if(gbi_t[tind1[1],tind2[2]]==0&gbi_t[tind2[1],tind1[2]]==0){
						gbi_t2<-gbi_t
						gbi_t2[tind2[1],tind1[2]]<-gbi_t[tind1[1],tind1[2]]
						gbi_t2[tind1[1],tind1[2]]<-gbi_t[tind2[1],tind1[2]]
						gbi_t2[tind1[1],tind2[2]]<-gbi_t[tind2[1],tind2[2]]
						gbi_t2[tind2[1],tind2[2]]<-gbi_t[tind1[1],tind2[2]]
						gbi_t<-gbi_t2
				}
		}
		#This	is	where	we	save	the	swaps.	Notice	we	only	save	every	10th	swap
		if(i%%10==0){
				rgbis[[c]]<-gbi_t
				c<-c+1
		}
}
rgbisA<-rgbis

####

##Second	Markov	Chain

gbi_t<-gbi_full2
rgbis<-list()
day<-groups[[2]]

#Burn-in
for(i	in	1:500){
		#sample	an	individual/grouping-event
		pind<-which(gbi_t>0,arr.ind=TRUE)
		tind1<-pind[sample(1:nrow(pind),1),]
		#record	the	day	on	which	that	individual/grouping-event	occurred
		td<-which(day==day[tind1[1]])
		#sample	a	second	individual/grouping-event	that	occurs	on	the	same	day
		pind2<-pind[which(pind[,1]%in%td),]
		tind2<-pind2[sample(1:nrow(pind2),1),]
		#If	additional	constraints	are	met	then	conduct	swap
		if(tind1[1]!=tind2[1]&tind1[2]!=tind2[2]){
				if(gbi_t[tind1[1],tind2[2]]==0&gbi_t[tind2[1],tind1[2]]==0){
						gbi_t2<-gbi_t
						gbi_t2[tind2[1],tind1[2]]<-gbi_t[tind1[1],tind1[2]]
						gbi_t2[tind1[1],tind1[2]]<-gbi_t[tind2[1],tind1[2]]
						gbi_t2[tind1[1],tind2[2]]<-gbi_t[tind2[1],tind2[2]]
						gbi_t2[tind2[1],tind2[2]]<-gbi_t[tind1[1],tind2[2]]
						gbi_t<-gbi_t2
				}



		}
}

#Sampling
c<-1
for(i	in	1:10000){
		pind<-which(gbi_t>0,arr.ind=TRUE)
		tind1<-pind[sample(1:nrow(pind),1),]
		td<-which(day==day[tind1[1]])
		pind2<-pind[which(pind[,1]%in%td),]
		tind2<-pind2[sample(1:nrow(pind2),1),]
		if(tind1[1]!=tind2[1]&tind1[2]!=tind2[2]){
				if(gbi_t[tind1[1],tind2[2]]==0&gbi_t[tind2[1],tind1[2]]==0){
						gbi_t2<-gbi_t
						gbi_t2[tind2[1],tind1[2]]<-gbi_t[tind1[1],tind1[2]]
						gbi_t2[tind1[1],tind1[2]]<-gbi_t[tind2[1],tind1[2]]
						gbi_t2[tind1[1],tind2[2]]<-gbi_t[tind2[1],tind2[2]]
						gbi_t2[tind2[1],tind2[2]]<-gbi_t[tind1[1],tind2[2]]
						gbi_t<-gbi_t2
				}
		}
		#This	is	where	we	save	the	swaps.	Notice	we	only	save	every	10th	swap
		if(i%%10==0){
				rgbis[[c]]<-gbi_t
				c<-c+1
		}
}
rgbisB<-rgbis

####

##Third	Markov	Chain

gbi_t<-gbi_full2
rgbis<-list()
day<-groups[[2]]

#Burn-in
for(i	in	1:500){
		#sample	an	individual/grouping-event
		pind<-which(gbi_t>0,arr.ind=TRUE)
		tind1<-pind[sample(1:nrow(pind),1),]
		#record	the	day	on	which	that	individual/grouping-event	occurred
		td<-which(day==day[tind1[1]])
		#sample	a	second	individual/grouping-event	that	occurs	on	the	same	day
		pind2<-pind[which(pind[,1]%in%td),]
		tind2<-pind2[sample(1:nrow(pind2),1),]
		#If	additional	constraints	are	met	then	conduct	swap
		if(tind1[1]!=tind2[1]&tind1[2]!=tind2[2]){
				if(gbi_t[tind1[1],tind2[2]]==0&gbi_t[tind2[1],tind1[2]]==0){
						gbi_t2<-gbi_t
						gbi_t2[tind2[1],tind1[2]]<-gbi_t[tind1[1],tind1[2]]
						gbi_t2[tind1[1],tind1[2]]<-gbi_t[tind2[1],tind1[2]]
						gbi_t2[tind1[1],tind2[2]]<-gbi_t[tind2[1],tind2[2]]
						gbi_t2[tind2[1],tind2[2]]<-gbi_t[tind1[1],tind2[2]]
						gbi_t<-gbi_t2
				}
		}
}

#Sampling
c<-1
for(i	in	1:10000){
		pind<-which(gbi_t>0,arr.ind=TRUE)
		tind1<-pind[sample(1:nrow(pind),1),]
		td<-which(day==day[tind1[1]])
		pind2<-pind[which(pind[,1]%in%td),]
		tind2<-pind2[sample(1:nrow(pind2),1),]
		if(tind1[1]!=tind2[1]&tind1[2]!=tind2[2]){
				if(gbi_t[tind1[1],tind2[2]]==0&gbi_t[tind2[1],tind1[2]]==0){
						gbi_t2<-gbi_t
						gbi_t2[tind2[1],tind1[2]]<-gbi_t[tind1[1],tind1[2]]
						gbi_t2[tind1[1],tind1[2]]<-gbi_t[tind2[1],tind1[2]]
						gbi_t2[tind1[1],tind2[2]]<-gbi_t[tind2[1],tind2[2]]
						gbi_t2[tind2[1],tind2[2]]<-gbi_t[tind1[1],tind2[2]]
						gbi_t<-gbi_t2
				}
		}
		#This	is	where	we	save	the	swaps.	Notice	we	only	save	every	10th	swap



		if(i%%10==0){
				rgbis[[c]]<-gbi_t
				c<-c+1
		}
}
rgbisC<-rgbis

#Combine	the	three	chains
rgbis<-c(rgbisA,rgbisB,rgbisC)

#Calculate	the	nestedness	of	networks	in	the	reference	distribution
null_nns<-lapply(rgbis,vegan::nestedtemp)

#Store	the	test	statistic	in	a	vector
null_nns_2<-numeric()
for(i	in	1:length(null_nns)){
		null_nns_2[i]<-null_nns[[i]]$statistic
}

#Plot	histogram	(separate	colour	for	each	reference	distribution	and	line	for	observed	nestedness)
hist(null_nns_2[1:1000],col=adjustcolor("red",0.4),breaks=seq(25,35,0.05),main="",xlab="Nestedness	temperature",x
axt="n",yaxt="n")
axis(side=2,pos=25,at=seq(0,35,5),las=1,tcl=0.2)
axis(side=1,pos=0,at=seq(25,35,1),las=1,tcl=0.2)
hist(null_nns_2[1001:2000],col=adjustcolor("blue",0.4),breaks=seq(25,35,0.05),add=TRUE,xaxt="n",yaxt="n")
hist(null_nns_2[2001:3000],col=adjustcolor("green",0.4),breaks=seq(25,35,0.05),add=TRUE,xaxt="n",yaxt="n")
lines(x=c(nn$statistic,nn$statistic),y=c(0,40),lwd=4)

By	adding	a	line	to	the	histogram	to	indicate	the	nestedness	of	their	observed	bipartite	network,	it	is	fairly	apparent	that	small	groups	are	more
nested	within	larger	groups	than	expected	by	chance.	However,	just	to	be	careful	they	test	this	formally.

sum(c(null_nns_2,nn$statistic)<nn$statistic)

##	[1]	0

The	calculated	P	value	is	between	0.025	and	0.975	indicating	that	(assuming	an	alpha	level	of	0.05)	there	is	no	evidence	that	the	nestedness	of
the	observed	network	differs	from	that	expected	at	random.

Team	3	are	disease	ecologists.	They	are	concerned	that	the	social	system	of	this	small	population,	in	particular	the	fact	it	forms	tight	social	groups,
makes	it	vulnerable	to	emergent	diseases.	Because	they	therefore	want	to	account	for	nondyadic	(higher-order)	interactions	they	compare	insights
from	a	hypergraph	and	dyadic	network	modelling	approach.

An	important	note	here	is	that	the	incidence	matrix	of	a	hypergraph	is	the	same	object	as	the	bipartite	network,	so	the	difference	is	more
conceptual	than	practical	when	we	code	the	example	below.



The	reason	that	team	3	want	to	utilize	a	hypergraph	approach	is	that	transmission	dynamics	can	often	be	different	in	higher-order	versus	dyadic
interactions.	For	more	information	on	why	this	is	the	case	we	would	refer	readers	to	the	papers	“Capturing	complex	interactions	in	disease	ecology
with	simplicial	sets”	(https://doi.org/10.1111/ele.14079)	and	“The	physics	of	higher-order	interactions	in	complex	systems”
(phttps://www.nature.com/articles/s41567-021-01371-4)

Here	team	3	assume	the	same	non-linear	dose-response	curve	as	use	in	“Capturing	complex	interactions	in	disease	ecology	with	simplicial	sets”
(https://doi.org/10.1111/ele.14079)	and	model	disease	dynamics	accordingly.	They	simulate	transmission	dynamics	through	the	hypergraph
representation	and	then	compare	the	results	to	the	dyadic	network	representation.

First	they	define	their	transmission	functions,	first	the	hypergraph	version	and	then	the	dyadic	network	version.

timestep_hyp<-function(classes,inc_mat,timer,dose){

		t_c<-classes
		
		for(i	in	1:nrow(t_c)){
				if(t_c$S[i]==1){
						t_vec<-inc_mat[inc_mat[,i]==1,]
						t_vec[i]<-0
						classes$I[i]<-rbinom(1,1,1/(1+exp(-10*(sum(t_c$I*t_vec)*dose-0.5)))-1/(1+exp(-10*(-0.5))))
				}
		}
		
		classes$S[classes$I==1]<-0
		
		timer[is.na(timer)==FALSE&timer>0]<-timer[is.na(timer)==FALSE&timer>0]-1
		timer[classes$I==1&t_c$I==0]<-5
		
		classes$I[is.na(timer)==FALSE&timer==0]<-0
		classes$R[is.na(timer)==FALSE&timer==0]<-1
		
		return(list(classes,timer))
		
}

###

timestep_net<-function(classes,network,timer,dose){
		
		t_c<-classes
		
		for(i	in	1:nrow(t_c)){
				if(t_c$S[i]==1){
						t_sum<-sum(t_c$I*network[i,])
						classes$I[i]<-rbinom(1,1,1-(1-(1/(1+exp(-10*(dose-0.5)))-1/(1+exp(-10*(-0.5)))))^t_sum)
				}
		}
		
		classes$S[classes$I==1]<-0
		
		timer[is.na(timer)==FALSE&timer>0]<-timer[is.na(timer)==FALSE&timer>0]-1
		timer[classes$I==1&t_c$I==0]<-5
		
		classes$I[is.na(timer)==FALSE&timer==0]<-0
		classes$R[is.na(timer)==FALSE&timer==0]<-1
		
		return(list(classes,timer))
		
}

To	better	illustrate	the	example,	we	are	going	to	assume	that	team	3	have	access	to	a	longer-term	data	set	(30	timesteps)	than	the	other	teams.
They	create	a	list	with	the	network	for	each	timestep.

groups<-interaction_generation_simul(id=id,adj_mat=adj_mat,mean_group_size=2,
																																					n_ts=30,float=0.000000001,pm=50,pow=4)

gbi_full<-groups[[1]]
day<-groups[[2]]

day_nets<-list()
for(i	in	1:max(day)){
		day_nets[[i]]<-asnipe::get_network(gbi_full[day==i,])
}

https://doi.org/10.1111/ele.14079
phttps://www.nature.com/articles/s41567-021-01371-4
https://doi.org/10.1111/ele.14079
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They	now	simulate	the	transmission	of	infection	across	the	two	different	versions	of	this	data	set,	starting	with	the	hypergraph	version.	Infection	is
seeded	in	the	first	5	individuals.	The	epidemiological	model	is	a	susceptible-infected-recovered	(SIR)	model	with	a	fixed	infection	period	of	five
days.

They	set	the	infection	dose	per	interaction	as	0.25	for	this	example	(feel	free	to	change	this	number	and	see	how	it	affects	the	results).

The	output	is	the	number	of	individuals	infected	by	the	epidemic	after	30	timesteps.

infe_h<-numeric()

dose<-0.25

for	(reps	in	1:1000){

		classes<-data.frame(S=rep(1,50),I=rep(0,50),R=rep(0,50))
		classes[1:5,1]<-0
		classes[1:5,2]<-1

		timer<-c(rep(5,5),rep(NA,45))

		for(i	in	1:max(day)){
				res<-timestep_hyp(classes=classes,inc_mat=gbi_full[day==i,],timer=timer,dose=dose)
				classes<-res[[1]]
				timer<-res[[2]]
		}

		infe_h[reps]<-sum(colSums(classes)[2:3])

}

They	then	re-model	the	disease	dynamics	but	using	the	dyadic	network	representation	instead.



infe_d<-numeric()

dose<-0.25

for(reps	in	1:1000){

		classes<-data.frame(S=rep(1,50),I=rep(0,50),R=rep(0,50))
		classes[1:5,1]<-0
		classes[1:5,2]<-1

		timer<-c(rep(5,5),rep(NA,45))

		for(i	in	1:max(day)){
				res<-timestep_net(classes=classes,network=day_nets[[i]],timer=timer,dose=dose)
				classes<-res[[1]]
				timer<-res[[2]]
		}

		infe_d[reps]<-sum(colSums(classes)[2:3])

}

They	then	graphically	compare	the	size	of	the	outbreaks	when	accounting	for	nondyadic	interactions	(blue)	with	the	the	dyadic	representation	(red)

hist(infe_d,col=adjustcolor("red",0.3),breaks=seq(0,50,1),ylim=c(0,500),main="",xlab="Outbreak	size",yaxt="n",xax
t="n")
axis(side=2,pos=0,at=c(0,100,200,300,400,500),las=1,tcl=0.2)
axis(side=1,pos=0,at=seq(0,50,5),las=1,tcl=0.2)
hist(infe_h,col=adjustcolor("blue",0.3),breaks=seq(0,50,1),add=TRUE,yaxt="n",xaxt="n")

And	finally,	they	can	also	examine	the	probability	the	outbreak	is	larger	when	nondyadic	interactions	are	accounted	for	using	a	resampling
approach.

test_stat<-0
for(i	in	1:10000){
		test_stat<-test_stat+(sample(infe_h,1)>sample(infe_d,1))
}
test_stat<-test_stat/10000
test_stat

##	[1]	0.9856

We	can	see	that	in	this	case	using	the	hypergraph	explanation	is	important	in	forecasting	the	expected	disease	dynamics	when	this	particular
pathogen	emerges	in	the	population.


