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We investigate the convergence rate of multi-marginal optimal transport costs that are regularized with the Boltzmann-Shannon entropy, as the noise parameter ε tends to 0. We establish lower and upper bounds on the difference with the unregularized cost of the form Cε log(1/ε) + O(ε) for some explicit dimensional constants C depending on the marginals and on the ground cost, but not on the optimal transport plans themselves. Upper bounds are obtained for Lipschitz costs or locally semi-concave costs for a finer estimate, and lower bounds for C 2 costs satisfying some signature condition on the mixed second derivatives that may include degenerate costs, thus generalizing results previously in the two marginals case and for nondegenerate costs. We obtain in particular matching bounds in some typical situations where the optimal plan is deterministic.

Notations

In all the article, N ∈ N * denotes the dimension of the ambient space R N and m ∈ N is an integer such that m ≥ 2.

B d r (x)
open Euclidean ball of radius r centered at x in R d , dropping the supscript d when d = N ;

ω d d-dimensional volume of B d 1 (0); X i
a subset of R N for any index i ∈ {1, . . . , m} X product X 1 × . . . × X m whenever (X i ) 1≤i≤m is a family of m subsets of R N ; A -i product 1≤j≤m,j =i A j if A = A 1 × . . . × A m ⊆ X and i ∈ {1, . . . , m}; x i , x, x a point in X i , in some X j , j ∈ {1, . . . , m}, and in X respectively; x q (x i ) i∈q if q ⊆ {1, . . . , m} and x ∈ X; e i i-th coordinate map e i : x = (x 1 , . . . , x m ) → x i ;

A B A ⊆ K ⊆ B for some compact set K; |•| Euclidean norm on R N ; • norm on R N × . . . × R N defined by x = max 1≤i≤m |x i | if x = (x 1 , . . . , x m ); B r (x)
open ball of radius r centered at x ∈ (R N ) m for the above norm; C 0,1 loc (X) space of real-valued locally Lipschitz functions on X which is a sub-manifold of R N or (R N ) m ; [f ] C 0,1 (X)

Lipschitz constant of f : X → R where X is a subset of R N or (R N ) m for the above norms; C 1,1 loc (X) space of differentiable real-valued functions on X, a sub-manifold of R N or (R N ) m , with locally Lipschitz differential; P(X) space of probability measures on a metric space X;

• L p (µ)
L p norm induced by a measure µ, where p ∈ [1, +∞]; spt µ support of the measure µ; H s X s-dimensional Hausdorff measure on the metric space X endowed with the Borel σ-algebra (the subscript X will often be dropped);

M N (R)
space of real matrices of size N × N , endowed with the Frobenius norm induced by the scalar product A • B := Tr(A T B), for A, B ∈ M N (R); S N (R) subspace of real symmetric matrices of size N × N ; ∆ P simplex of P-uples t = (t p ) p∈P such that t p ≥ 0 for all p ∈ P and p∈P t p = 1.

Introduction

We consider a m-uple of probability measures µ i compactly supported on sub-manifolds X i ⊆ R N of dimension d i and a cost function c : X 1 × . . . × X m → R + . The Entropic Multi-Marginal Optimal Transport problem is defined as :

MOT ε := inf ˆX1 ×...×Xm c dγ + εEnt(γ| ⊗ m i=1 µ i ) | γ ∈ Π(µ 1 , . . . , µ m ) , (MOT ε )
where Π(µ 1 , . . . , µ m ) denotes the set of all probability measures γ having µ i as i-th marginal, i.e. (e i ) γ = µ i where e i : (x 1 , . . . , x m ) → x i , for every i ∈ {1, . . . , m}. The classical multi-marginal optimal transport problem corresponds to the case where ε = 0.

In the last decade, these two classes of problems (entropic optimal transport and multimarginal optimal transport) have witnessed a growing interest and they are now an active research topic. Entropic optimal transport (EOT) has found applications and proved to be an efficient way to approximate Optimal Transport (OT) problems, especially from a computational viewpoint. Indeed, when it comes to solving EOT by alternating Kullback-Leibler projections on the two marginal constraints, by the algebraic properties of the entropy such iterative projections correspond to the celebrated Sinkhorn's algorithm [START_REF] Sinkhorn | A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices[END_REF], applied in this framework in the pioneering works [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transport[END_REF][START_REF] Benamou | Iterative Bregman Projections for Regularized Transportation Problems[END_REF]. The simplicity and the good convergence guarantees (see [START_REF] Franklin | On the Scaling of Multidimensional Matrices[END_REF][START_REF] Marino | An Optimal Transport Approach for the Schrödinger Bridge Problem and Convergence of Sinkhorn Algorithm[END_REF]) of this method compared to the algorithms used for the OT problems, then determined the success of EOT for applications in machine learning, statistics, image processing, language processing and other areas (see the monograph [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF] and references therein).

As concerns multi-marginal optimal transport (MOT), it arises naturally in many different areas of applications, including economics [START_REF] Carlier | Matching for Teams[END_REF], financial mathematics [BHP13; DS14a; DS14b; Enn+22], statistics [BK18; CCG16], image processing [START_REF] Rabin | Wasserstein Barycenter and Its Application to Texture Mixing[END_REF], tomography [START_REF] Abraham | Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach[END_REF], machine learning [Haa+21; TJK22], fluid dynamics [START_REF] Brenier | The Least Action Principle and the Related Concept of Generalized Flows for Incompressible Perfect Fluids[END_REF] and quantum physics and chemistry, in the framework of density functional theory [START_REF] Buttazzo | Optimal-Transport Formulation of Electronic Density-Functional Theory[END_REF][START_REF] Cotar | Density Functional Theory and Optimal Transportation with Coulomb Cost[END_REF]. The structure of solutions to the multi-marginal optimal transport problem is a notoriously delicate issue, and is still not well understood, despite substantial efforts on the part of many researchers [GŚ98; Car03; CN08; Hei02; Pas11; Pas12; KP14; KP15; CDD15; CS16; PV21b; MP17; PV21a]; see also the surveys [START_REF] Pass | Multi-Marginal Optimal Transport: Theory and Applications[END_REF] and [START_REF] Marino | Optimal Transportation Theory with Repulsive Costs[END_REF]. Since MOT ε can be seen a perturbation of MOT 0 , it is natural to study the behaviour as ε vanishes. In this paper we are mainly interested in investigating the rate of convergence of the entropic cost MOT ε to MOT 0 under some mild assumptions on the cost functions and marginals.

In particular we are going to extend the techniques introduced in [START_REF] Carlier | Convergence Rate of General Entropic Optimal Transport Costs[END_REF] for two marginals to the multi-marginal case which will also let us generalize the bounds in [START_REF] Carlier | Convergence Rate of General Entropic Optimal Transport Costs[END_REF] to the case of degenerate cost functions. For the two marginals and nondegenerate case we also refer the reader to a very recent (and elegant) paper [START_REF] Malamut | Convergence Rates of the Regularized Optimal Transport : Disentangling Suboptimality and Entropy[END_REF] where the authors push a little further the analysis of the convergence rate by disentangling the roles of ´c dγ and the relative entropy in the total cost and deriving convergence rate for both these terms. Notice that concerning the convergence rate of the entropic multimarginal optimal transport an upper bound has been already established in [START_REF] Eckstein | Convergence Rates for Regularized Optimal Transport via Quantization[END_REF], which depends on the number of marginals and the quantization dimension of the optimal solutions to (MOT ε ) with ε = 0. Here we provide a improved, smaller, upper bound, which will depend only on the marginals, but not on the optimal transport plans for the un-regularized problem, and we also provide a lower bound depending on a signature condition on the mixed second derivatives of the cost function, that was introduced in [START_REF] Pass | On the Local Structure of Optimal Measures in the Multi-Marginal Optimal Transportation Problem[END_REF].

Our main findings can be summarized as follows: we establish two upper bounds, one valid for locally Lipschitz costs and a finer one valid for locally semi-concave costs. The proofs rely, as in [START_REF] Carlier | Convergence Rate of General Entropic Optimal Transport Costs[END_REF], on a multi-marginal variant of the block approximation introduced in [START_REF] Carlier | Convergence of Entropic Schemes for Optimal Transport and Gradient Flows[END_REF]. Notice that in this case the bound will depend only on the dimension of the support of the marginals. Moreover, for locally semi-concave cost functions, by exploiting Alexandrov-type results as in [START_REF] Carlier | Convergence Rate of General Entropic Optimal Transport Costs[END_REF], we improve the upper bound by a 1/2 factor, obtaining the following inequality for some

C * ∈ R + MOT ε ≤ MOT 0 + 1 2 m i=1 d i -max 1≤i≤m d i ε log(1/ε) + C * ε. (1.1)
We stress that this upper bound is smaller or equal than the one provided in [EN22, Theorem 3.8], which is of the form 1 2 (m-1)Dε log(1/ε)+O(ε) where D is a quantization dimension of the support of an optimal transport plan. Thus D must be greater or equal than the maximum dimension of the support of the marginals, and of course

m i=1 d i -max 1≤i≤m d i ≤ (m -1) max 1≤i≤m d i .
The inequality may be strict for example in the two marginals case with unequal dimension, as shown in Section 5.

For the lower bound, from the dual formulation of (MOT ε ) we have

MOT ε ≥ MOT 0 -ε log ˆ m i=1 X i e -E(x 1 ,...,xm) ε d ⊗ m i=1 µ i (x i ),
where E(x 1 , . . . , x m ) = c(x 1 , . . . , x m ) -⊕ m i=1 φ i (x i ) is the duality gap and (φ 1 , . . . , φ m ) are Kantorovich potentials for the un-regularized problem (MOT ε ) with ε = 0. By using the singular values decomposition of the bilinear form obtained as an average of mixed second derivatives of the cost and a signature condition introduced in [START_REF] Pass | Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation Problem[END_REF], we are able to prove that E detaches quadratically from the set {E = 0} and this allows us to estimate the previous integral in the desired way as in [START_REF] Carlier | Convergence Rate of General Entropic Optimal Transport Costs[END_REF] and improve the results in [START_REF] Eckstein | Convergence Rates for Regularized Optimal Transport via Quantization[END_REF] where only an upper bound depending on the quantization dimension of the solution to the un-regularized problem is provided. Moreover, this slightly more flexible use of Minty's trick compared to [START_REF] Carlier | Convergence Rate of General Entropic Optimal Transport Costs[END_REF] allows us to obtain a lower bound also for degenerate cost functions in the two marginals setting. Given a κ depending on a signature condition (see (PS(κ))) on the second mixed derivatives of the cost, the lower bound can be summerized as follows

MOT ε ≥ MOT 0 + κ 2 ε log(1/ε) -C * ε. (1.2) for some C * ∈ R + .
The paper is organized as follows: in Section 2 we recall the multi-marginal optimal transport problem, some results concerning the structure of the optimal solution, in particular the ones in [START_REF] Pass | Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation Problem[END_REF], and define its entropy regularization. Section 3 is devoted to the upper bounds stated in Theorem 3.2 and Theorem 3.7. In Section 4 we establish the lower bound stated in Proposition 4.2. Finally, in Section 5 we provide some examples for which we can get the matching bounds.

Preliminaries

Given m probability compactly supported measures µ i on sub-manifolds X i of dimension d i in R N for i ∈ {1, . . . , m} and a continuous cost function c : X 1 × X 2 × . . . × X m → R + , the multi-marginal optimal transport problem consists in solving the following optimization problem

MOT 0 := inf γ∈Π(µ 1 ,...,µm) ˆX c(x 1 , . . . , x m ) dγ (MOT)
where X := X 1 × X 2 × . . . × X m and Π(µ 1 , . . . , µ m ) denotes the set of probability measures on X whose marginals are the µ i . The formulation above is also known as the Kantorovich problem and it amounts to a linear minimization problem over a convex, weakly compact set; it is then not difficult to prove the existence of a solution by the direct method of calculus of variations. Much of the attention in the optimal transport community is rather focused on uniqueness ans the structure of the minimizers.

In particular one is mainly interested in determining if the solution is concentrated on the graph of a function (T 2 , . . . , T m ) over the first marginal, where (T i ) µ 1 = µ i for i ∈ {1, . . . , m}, in which case this function induces a solution à la Monge, that is γ = (Id, T 2 , . . . , T m ) µ 1 .

In the two marginals setting, the theory is fairly well understood and it is well-known that under mild conditions on the cost function (e.g. twist condition) and marginals (e.g. being absolutely continuous with respect to Lebesgue), the solution to (MOT) is unique and is concentrated on the graph of a function ; we refer the reader to [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF] to have glimpse of it. The extension to the multi-marginal case is still not well understood, but it has attracted recently a lot of attention due to a diverse variety of applications.

In particular in his seminal works [Pas11; Pas12] Pass established some conditions, more restrictive than in the two marginals case, to ensure the existence of a solution concentrated on a graph. In this work we rely on the following (local) result in [START_REF] Pass | On the Local Structure of Optimal Measures in the Multi-Marginal Optimal Transportation Problem[END_REF] giving an upper bound on the dimension of the support of the solution to (MOT). Let P be the set of partitions of {1, . . . , m} into two non-empty disjoint subsets: p = {p -, p + } ∈ P if p -p + = {1, . . . , m}, p -p + = ∅ and p -, p + = ∅. Then for each p ∈ P we denote by g p the bilinear form on the tangent bundle T X

g p := D 2 p -p + c + D 2 p + p -c where D 2 pq c := i∈p,j∈q D 2 x i x j c
for every p, q ⊆ {1, . . . , m}, and

D 2 x i x j c := α i ,α j ∂ 2 c x α i i x α k k dx α i i ⊗ dx α j j
, defined for every i, j on the whole tangent bundle T X. Define

G c := p∈P t p g p | (t p ) p∈P ∈ ∆ P (2.1)
to be the convex hull generated by the g p , then it is easy to verify that each g ∈ G c is symmetric and therefore its signature, denoted by (d + (g), d -(g), d 0 (g)), is well defined. Then, the following result from [START_REF] Pass | On the Local Structure of Optimal Measures in the Multi-Marginal Optimal Transportation Problem[END_REF] gives a control on the dimension of the support of the optimizer(s) in terms of these signatures.

Theorem 2.1 (Part of [Pas12, Theorem 2.3]). Let γ a solution to (MOT) and suppose that the signature of some

g ∈ G c at a point x ∈ X is (d + , d -, d 0 )
, that is the number of positive, negative and zero eigenvalues. Then, there exists a neighbourhood

N x of x such that N x spt γ is contained in a Lipschitz sub-manifold of X with dimension no greater than m i=1 d i -d + .
Remark 2.2. For the following it is important to notice that by standard linear algebra arguments we have for each

g ∈ G c that d + (g) ≤ m i=1 d i -max i d i .
This implies that the smallest bound on the dimension of spt γ which Theorem 2.1 can provide is max i d i .

Remark 2.3 (Two marginals case). When m = 2, the only g ∈ G c coincides precisely with the pseudo-metric introduced by Kim and McCann in [START_REF] Kim | Continuity, Curvature, and the General Covariance of Optimal Transportation[END_REF]. Assuming for simplicity that d 1 = d 2 = d, they noted that g has signature (d, d, 0) whenever c is non-degenerate so Theorem 2.1 generalizes their result since it applies even when non-degeneracy fails providing new information in the two marginals case: the signature of g is (r, r, 2d -2r) where r is the rank of D 2

x 1 x 2 c. Notice that this will help us to generalize the results established in [START_REF] Carlier | Convergence Rate of General Entropic Optimal Transport Costs[END_REF][START_REF] Eckstein | Convergence Rates for Regularized Optimal Transport via Quantization[END_REF] to the case of a degenerate cost function.

It is well known that under some mild assumptions the Kantorovich problem (MOT) is dual to the following sup m i=1 ˆXi

φ i (x i ) dµ i | φ i ∈ C b (X i ), m i=1 φ i (x i ) ≤ c(x 1 , . . . , x m ) . (MD)
Besides, it admits solutions (φ i ) 1≤i≤m , called Kantorovich potentials, when c is continuous and all the X i 's are compact, and these solutions may be assumed c-conjugate, in the sense that for every i ∈ {1, . . . , m}

∀x ∈ X i , φ i (x) = inf (x j ) j =i ∈X -i c(x 1 , . . . , x i-1 , x, x i+1 , . . .) - 1≤j≤m,j =i φ j (x j ). (2.2)
We recall the entropic counterpart of (MOT): given m probability measures µ i on X i as before, and a continuous cost function c :

X → R + the MOT ε problem is MOT ε = inf ˆX1 ×...×Xm c dγ + εEnt(γ| ⊗ m i=1 µ i ) | γ ∈ Π(µ 1 , . . . , µ m ) , (MOT ε )
where Ent(•| ⊗ m i=1 µ i ) is the Boltzmann-Shannon relative entropy (or Kullback-Leibler divergence) w.r.t. the product measure ⊗ m i=1 µ i , defined for general probability measures p, q as

Ent(p | q) =      ˆRd ρ log(ρ) dq if p = ρq, +∞ otherwise.
The fact that q is a probability measure ensures that Ent(p | q) ≥ 0. The dual problem of (MOT ε ) reads as

MOT ε = ε + sup m i=1 ˆXi φ i (x i ) dµ i -ε ˆX e m i=1 φ i (x i )-c(x) ε d ⊗ m i=1 µ i | φ i ∈ C b (X i ) , (MD ε ) which is invariant by (φ 1 , . . . , φ m ) → (φ 1 + λ 1 , . . . , φ m + λ m ) where (λ 1 , . . . , λ m ) ∈ R m and m i=1 λ i = 0, see [Léo14; NW22; MG20]
for some recent presentations. It admits an equivalent "log-sum-exp" form:

MOT ε = sup m i=1 ˆXi φ i (x i ) dµ i -ε log ˆX e m i=1 φ i (x i )-c(x) ε d ⊗ m i=1 µ i | φ i ∈ C b (X i ) ,
(MD ε ) which is invariant by the same transformations without assuming m i=1 λ i = 0. From (MOT ε ) and (MD ε ) we recover, as ε → 0, the unregularized multi-marginal optimal transport (MOT) and its dual (MD) we have introduced above. The link between multi-marginal optimal transport and its entropic regularization is very strong and a consequence of the Γ-convergence of (MOT ε ) towards (MOT) (one can adapt the proof in [START_REF] Carlier | Convergence of Entropic Schemes for Optimal Transport and Gradient Flows[END_REF] or see [BCN19; GKR20] for Γ-convergence in some specific cases) is that

lim ε→0 MOT ε = MOT 0 .
By the direct method in the calculus of variations and strict convexity of the entropy, one can show that (MOT ε ) admits a unique solution γ ε , called optimal entropic plan. Moreover, there exist m real-valued Borel functions φ ε i such that

γ ε = exp ⊕ m i=1 φ ε i -c ε ⊗ m i=1 µ i , (2.3) where ⊕ m i=1 φ ε i := (x 1 , . . . , x m ) → m i=1 φ ε i (x i )
, and in particular we have that

MOT ε = m i=1 ˆXi φ ε i dµ i (2.4)
and these functions have continuous representatives and are uniquely determined up a.e. to additive constants. The reader is referred to the analysis of [START_REF] Marino | An Optimal Transport Approach for the Schrödinger Bridge Problem and Convergence of Sinkhorn Algorithm[END_REF], to [START_REF] Nenna | Numerical Methods for Multi-Marginal Optimal Transportation[END_REF] for the extension to the multi-marginal setting, and to [BL92; BLN94; Csi75; FG97; RT98] for earlier references on the two marginals framework.

The functions φ ε i in (2.3) are called Schrödinger potentials, the terminology being motivated by the fact that they solve the dual problem (MD ε ) and are as such the (unique) solutions to the so-called Schrödinger system: for all i ∈ {1, . . . , m},

φ i (x i ) = -ε log ˆX-i e ⊕ 1≤j≤m,j =i φ ε j -c(x) ε d ⊕ 1≤j≤m,j =i for µ i -a.e. x i , (2.5)
where X -i = m 1≤j≤m,j =i X j . Note that (2.5) is a "softmin" version of the multi-marginal c-conjugacy relation for Kantorovich potentials.

Upper bounds

We start by establishing an upper bound, which will depend on the dimension of the marginals, for locally Lipschitz cost functions. We will then improve it for locally semiconcave (in particular C 2 ) cost functions.

Upper bound for locally Lipschitz costs

The natural notion of dimension which arises is the entropy dimension, also called information dimension or Rényi dimension [START_REF] Rényi | On the Dimension and Entropy of Probability Distributions[END_REF].

Definition 3.1 (Rényi dimension (following [START_REF] Young | Dimension, Entropy and Lyapunov Exponents[END_REF])). If µ is a probability measure over a metric space X, we set for every δ > 0,

H δ (µ) = inf    n∈N µ(A n ) log(1/µ(A n )) | ∀n, diam(A n ) ≤ δ, and X = n∈N A n    ,
where the infimum is taken over countable partitions (A n ) n∈N of X by Borel subsets of diameter less than δ, and we define the lower and upper entropy dimension of µ respectively by: dim R (µ) := lim inf

δ→0 + H δ (µ) log(1/δ) , dim R (µ) := lim sup δ→0 + H δ (µ) log(1/δ) .
Notice that if µ is compactly supported on a Lipschitz manifold of dimension d, then N δ (spt µ) ≤ d log(1/δ) + C for some constant C > 0 and δ ∈ (0, 1], where N δ (spt µ) is the box-counting number of spt µ, i.e. the minimal number of sets of diameter δ > 0 which cover spt µ. In particular, by concavity of t → t log(1/t), we have

H δ (µ) ≤ log N δ (spt µ).
(3.1)

We refer to the beginning of [CPT23, §3.1] for additional information and references on Rényi dimension.

The following theorem establishes an upper bound for locally Lipschitz costs.

Theorem 3.2. Assume that for i ∈ {1, . . . , m}, µ i ∈ P(X i ) is a compactly supported measure on a Lipschitz sub-manifold X i of dimension d i and c ∈ C 0,1 loc (X), then

MOT ε ≤ MOT 0 + m i=1 d i -max j∈{1,...,m} d j ε log(1/ε) + O(ε). (3.2)
Proof. Given an optimal plan γ 0 for MOT 0 , we use the so-called "block approximation" introduced in [START_REF] Carlier | Convergence of Entropic Schemes for Optimal Transport and Gradient Flows[END_REF]. For every δ > 0 and i ∈ {1, . . . , m}, consider a partition X i = n∈N A n i of Borel sets such that 1 diam(A n i ) ≤ δ for every n ∈ N, and set

µ n i :=      µ i A n i µ i (A n i ) if µ i (A n i ) > 0, 0 otherwise, then for every m-uple n = (n 1 , . . . , n m ) ∈ N m , (γ 0 ) n := γ 0 (A n 1 1 × . . . × A nm m )µ n 1 1 ⊗ . . . ⊗ µ nm m ,
and finally,

γ δ := n∈N m (γ 0 ) n .
By definition, γ δ ⊗ m i=1 µ i and we may check that its marginals are the µ i 's. Besides,

γ δ (A) = γ 0 (A) for every A = m i=1 A n i i where n ∈ N m , and for ⊗ m i=1 µ i -almost every x = (x 1 , . . . , x m ) ∈ m i=1 A n i i , dγ δ d ⊗ m i=1 µ i (x 1 , . . . , x m ) :=      γ 0 (A n 1 1 × . . . × A nm m ) µ 1 (A n 1 1 ) . . . µ m (A nm m ) if µ 1 (A n 1 1 ) . . . µ m (A nm m ) > 0 0 otherwise.
Let us compute its entropy and assume for simplicity that the measure µ m is the one such that dim R (µ m ) = max i∈{1,...,m} dim(µ i ):

Ent(γ δ | ⊗ m i=1 µ i ) = n∈N m ˆ m i=1 A n i i log γ 0 (A n 1 1 × . . . × A nm m ) µ 1 (A n 1 1 ) . . . µ m (A nm m ) dγ δ = n∈N m γ 0 (A n 1 1 × . . . × A nm m ) log γ 0 (A n 1 1 × . . . × A nm m ) µ 1 (A n 1 1 ) . . . µ m (A nm m ) = n∈N m γ 0 (A n 1 1 × . . . × A nm m ) log γ 0 (A n 1 1 × . . . × A nm m ) µ m (A nm m ) + m-1 j=1 n∈N m γ 0 (A n 1 1 × . . . × A nm m ) log(1/µ j (A n j j )) = n∈N m γ 0 (A n 1 1 × . . . × A nm m ) log γ 0 (A n 1 1 × . . . × A nm m ) µ m (A nm m ) + m-1 j=1 n j ∈N γ 0   j-1 i=1 X i × A n j j × m i=j+1 X i   µ j (A n j j ) log(1/µ j (A n j j )) ≤ m-1 j=1 n j ∈N µ j (A n j j ) log(1/µ j (A n j j )).
the last inequality coming from the inequality γ 0 (A n 1 1 × . . . × A nm m ) ≤ µ m (A nm m ). Taking partitions (A n j ) n∈N of diameter smaller than δ such that n j ∈N µ j (A

n j j ) log(1/µ j (A n j j )) ≤ H δ (µ j ) + 1 m-1 we get Ent(γ δ | ⊗ m i=1 µ i ) ≤ m-1 j=1 H δ (µ j ) + 1.
Since the µ i 's have compact support and c is locally Lipschitz, for δ small enough there exists L ∈ (0, +∞) not depending on δ such that [c] C 0,1 (A) ≤ L for every

A ∈ A := { m i=1 A n i i | n ∈ N m , µ 1 (A n 1 1 ) . . . µ m (A nm m ) > 0}.
Notice that the ∞-Wasserstein distance (with respect to the norm • ) 2 satisfies W ∞ (γ δ , γ 0 ) ≤ δ, thus taking γ δ as competitor in (MOT ε ) we obtain:

MOT ε ≤ ˆc dγ δ + ε j≤m-1 H δ (µ j ) + ε = MOT 0 + A∈A ˆA c d(γ δ -γ 0 ) + ε j≤m-1 H δ (µ j ) + ε ≤ MOT 0 + A∈A LW ∞ (γ δ A, γ 0 A)γ 0 (A) + ε j≤m-1 H δ (µ j ) + ε ≤ MOT 0 + Lδ + ε j≤m-1 H δ (µ j ) log(1/δ) log(1/δ) + ε. (3.3)
Taking δ = ε and recalling that the µ j 's are concentrated on sub-manifolds of dimension d j , which implies that H δ (µ j ) ≤ d j log(1/δ) + C * -1 m-1 for some C * ≥ 1 and for every j ∈ {1, . . . , m}, we get

MOT ε ≤ MOT 0 + j≤m-1 d j ε log(1/ε) + C * ε.
Remark 3.3. If the µ i 's are merely assumed to have compact support (not necessarily supported on a sub-manifold), the above proof actually shows the slightly weaker estimate

MOT ε ≤ MOT 0 + m i=1 dim R (µ i ) -max j∈{1,...,m} dim R (µ j ) ε log(1/ε) + o(ε log(1/ε). (3.4) 2
The Wasserstein distance of order p is defined here by W p p (µ, ν) := inf{ 

´ y-x p dγ(x, y) | γ ∈ Π(µ, ν)} for p ∈ [1, +∞) and by W∞(µ, ν) = inf{γ -ess sup(x, y) → y -x | γ ∈ Π(µ, ν)} for p = +∞.

Upper bound for locally semi-concave costs

We provide now a finer upper bound under the additional assumptions that the X i 's are C 2 sub-manifolds of R N , c is locally semi-concave as in Definition 3.4 (which is the case when c ∈ C 2 (X, R + )), and the µ i 's are measures in

L ∞ (H d i X i ) with compact support in X i . Definition 3.4. A function f : X → R defined on a C 2 sub-manifold X ⊆ R N of dimension d is locally semiconcave if for every x ∈ X there exists a local chart (i.e. a C 2 diffeomorphism) ψ : U → Ω where U ⊆ X is an open neighborhood of x and Ω is an open convex subset of R d , such that f • ψ -1 is λ-concave for some λ ∈ R, meaning f • ψ -1 -λ |•| 2
2 is concave on Ω.

Lemma 3.5 (Local semiconcavity and covering). Let : X → R + be a locally semiconcave cost function and (φ i ) 1≤i≤m ∈ ≤i≤m C (K i ) be a system of c-conjugate functions as in (2.2) defined on compact subsets K i ⊆ X i . We can find λ ∈ R, J ∈ N * and for every i ∈ {1, . . . , m} a finite open covering (U j i ) 1≤j≤J of K i together with bi-Lipschitz local charts ψ j i : U j i → Ω j i satisfying the following properties, having set Ω j := 1≤i≤m Ω j i i and ψ j := (ψ j 1 1 , . . . , ψ jm m ) for every j = (j 1 , . . . , j m ) ∈ {1, . . . , J} m :

(i) for every j ∈ {1, . . . , J} m , c • (ψ j ) -1 is λ-concave on Ω j , (ii) for every (i, j) ∈ {1, . . . , m} × {1, . . . , J}, φ i • (ψ j i ) -1 is λ-concave on Ω j i .
In particular, all the φ i 's are locally semiconcave.

Proof. For every i, by compactness of the K i 's we can find a finite open covering (U j i ) 1≤j≤J of K i and bi-Lipschitz local charts ψ j i : U j i → Ω j i such that for every j = (j 1 , . . . , j m ) ∈ {1, . . . , J} m , c

• (ψ j ) -1 -λ j |•| 2
2 is concave for some λ j ∈ R. We may assume that λ j = λ for every j, by taking λ := max{λ j | j ∈ {1, . . . , J} m }. Fix i ∈ {1, . . . , m}, j ∈ {1, . . . , J}, then for every k = (k ) =i ∈ {1, . . . , J} m-1 set k = (k 1 , . . . , k i-1 , j, k i+1 , . . .). Notice that for every y ∈ Ω j i ,

φ i • (ψ j i ) -1 (y) = inf (x ) =i ∈K -i c(x 1 , . . . , x i-1 , (ψ j i ) -1 (y), x i+1 , . . .) - : =i φ (x ) = min k=(k ) =i inf (y ) =i ∈Ω k -i c • (ψ k) -1 (y 1 , . . . , y i-1 , y, y i+1 , . . .) - : =i φ • (ψ k ) -1 (y ),
and we see that it is λ-concave as an infimum of λ-concave functions.

We are going to use an integral variant of Alexandrov Theorem which is proved in [START_REF] Carlier | Convergence Rate of General Entropic Optimal Transport Costs[END_REF].

Lemma 3.6 ([CPT23, Lemma 3.6]). Let f : Ω → R be a λ-concave function defined on a convex open set Ω ⊆ R d , for some λ ≥ 0. There exists a constant C ≥ 0 depending only on d such that: ˆΩ sup

y∈Br(x)∩Ω |f (y)-(f (x)+∇f (x)•(y -x))| dx ≤ Cr 2 H d-1 (∂Ω)([f ] C 0,1 (Ω) +λ diam(Ω)).
(3.5)

We may now state the main result of this section.

Theorem 3.7. Let c ∈ C 2 (X) and assume that for every i ∈ {1, . . . , m},

X i ⊆ R N is a C 2 sub-manifold of dimension d i and µ i ∈ L ∞ (H d i X i
) is a probability measure compactly supported in X i . Then there exists constants ε 0 , C * ≥ 0 such that for ε ∈ (0, ε 0 ]

MOT ε ≤ MOT 0 + 1 2 m i=1 d i -max 1≤i≤m d i ε log(1/ε) + C * ε. (3.6)
Proof. The measures µ i being compactly supported in X i , take for every i ∈ {1, . . . , m} an open subset U i of X i such that spt µ i ⊆ U i X i and define the compact set K i := Ūi . Take (φ i ) 1≤i≤m ∈ 1≤i≤m C (K i ) a m-uple of c-conjugate Kantorovich potentials and a transport plan γ 0 ∈ Π(µ 1 , . . . , µ m ) which are optimal for the unregularized problems (MD) and (MOT) respectively. In particular,

E := c -⊕ m i=1 φ i ≥ 0 on U = 1≤i≤m U i , E = 0 on spt γ 0 ⊆ U . (3.7)
For every i ∈ {1, . . . , m} we consider the coverings (U j i ) 1≤j≤J and bi-Lipschitz local charts ψ j i : U j i → Ω j i for j ∈ {1, . . . , J} provided by Lemma 3.5 and we notice by compactness that there exists open subsets Ũ j i U j i such that for a small δ 0 > 0, the δ 0 -neighbourhood of Ωj i := ψ j i ( Ũ j i ) is included in Ω j i for every j, and ( Ũ j i ) 1≤j≤J is still an open covering of K i . For δ ∈ (0, δ 0 ) we consider the block approximation γ δ of γ 0 built in the proof of Theorem 3.2, as well as some κ δ ∈ Π(γ 0 , γ δ ) such that sup (x 0 ,x)∈spt κ δ x 0 -x ≤ δ. For every j = (j 1 , . . . , j m ) ∈ {1, . . . , J} m , we set E j := E • (ψ j ) -1 , U j := m i=1 U j i i and Ũ j := m i=1 Ũ j i i , and we write:

ˆX c dγ δ -ˆX c dγ 0 = ˆU E dγ δ = ˆU×U E(x) dκ δ (x 0 , x) ≤ j∈{1,...,J} m ˆ(x 0 ,x)∈ Ũ j ×U E(x) dκ δ (x 0 , x) ≤ j∈{1,...,J} m ˆ(x 0 ,x)∈(U j ) 2 E j (ψ j (x)) dκ δ (x 0 , x).
Notice that for every j ∈ {1, . . . , J} m and γ 0 -a.e. x 0 ∈ U j , E j is differentiable at ψ j (x 0 ), or equivalently E is differentiable at x 0 . Indeed c is differentiable everywhere, and for every i ∈ {1, . . . , m} and j ∈ {1, . . . , J}, φ i • (ψ j i ) -1 is semi-concave thus differentiable L d i -a.e. hence φ i is differentiable µ i -a.e. on U j i because µ i H d i and ψ j i is bi-Lipschitz, which in turn implies that ⊕ m i=1 φ i is differentiable γ 0 -a.e. on U j because γ 0 ∈ Π(µ 1 , . . . , µ m ). Moreover, by (3.7) we have T ψ j (x 0 ) E j ≡ 0 for γ 0 -a.e. x 0 ∈ U j , where T y 0 f designates the first order Taylor expansion y → f (y 0 ) + ∇f (y 0 ) • (y -y 0 ) for any function f which is differentiable at y 0 . We may then compute:

ˆX c dγ δ -ˆX c dγ 0 ≤ j∈{1,...,J} m ˆ(x 0 ,x)∈(U j ) 2 E j (ψ j (x)) -T ψ j (x 0 ) E j ψ j (x) -ψ j (x 0 ) dκ δ (x 0 , x) = j=(j 1 ,...,jm) ˆ(x 0 ,x)∈(U j ) 2 c j (ψ j (x)) -T ψ j (x 0 ) c j ψ j (x) -ψ j (x 0 ) dκ δ (x 0 , x) - m i=1 ˆ(x 0 ,x)∈(U j i i ) 2 φ j i i (ψ j i i (x)) -T ψ j i i (x 0 ) φ j i i ψ j i i (x) -ψ j i i (x 0 ) d(e i , e i ) κ δ (x 0 , x) .
(3.8) Now, since c j is λ-concave on each Ω j := ψ j (U j ), whenever x 0 -x ≤ δ we have

c j (ψ j (x)) -T ψ j (x 0 ) c j ψ j (x) -ψ j (x 0 ) ≤ λ |ψ j (x) -ψ j (x 0 )| 2 2 ≤ mλL j 2 δ 2 , ( 3.9) 
where L j := max{Lip(ψ j ), Lip((ψ j ) -1 )}. Besides, we may apply Lemma 3.6 to each

φ j i i over Ω j i i to get ˆ(x 0 ,x)∈(U j i i ) 2 φ j i i (ψ j i i (x)) -T ψ j i i (x 0 ) φ j i i ψ j i i (x) -ψ j i i (x 0 ) ≤ ˆx0 ∈U j i i sup y∈B L j δ (ψ j i i (x 0 ))∩Ω j i i φ j i i (y) -T ψ j i i (x 0 ) φ j i i y -ψ j i i (x 0 ) d(e i , e i ) κ δ (x 0 , x) = ˆUj i i sup y∈B L j δ (ψ j i i (x 0 ))∩Ω j i i φ j i i (y) -T ψ j i i (x 0 ) φ j i i y -ψ j i i (x 0 ) dµ i (x 0 ) ≤ ˆΩj i i sup y∈B L j δ (y 0 )∩Ω j i i φ j i i (y) -T y 0 φ j i i y -y 0 d(ψ j i i ) µ i (y 0 ) ≤ µ i L ∞ (H d i ) L j C(L j δ) 2 H d i -1 (∂Ω j i i ) [φ j i i ] C 0,1 (Ω j i i ) + λ diam(Ω j i i )
≤C j δ 2 , (3.10) for some constant C j ∈ (0, +∞) which does not depend on δ. Reporting (3.9) and (3.10) in (3.8) yields

ˆX c dγ δ -ˆX c dγ 0 ≤ j∈{1,...,J} m mλL j 2 + C j δ 2 =: C δ 2 .
Finally, we proceed as in the end of the proof of Theorem 3.2, taking γ δ as competitor in the primal formulation (MOT ε ), so as to obtain

MOT ε -MOT 0 ≤ ˆX c dγ δ -ˆX c dγ 0 + ε i≤m-1 H δ (µ j ) + ε ≤ C δ 2 + ε i≤m-1 (d i log(1/δ) + C ),
where

C ∈ (0, +∞) is a constant such that H δ (µ i ) ≤ d i log(1/δ) + C -1. Taking δ = √ ε for ε ≤ δ 2 0 yields MOT ε -MOT 0 ≤ 1 2 m-1 i=1 d i ε log(1/ε) + (C + (m -1)C )ε,
and we obtain the desired estimate recalling that the index i = m was chosen merely to simplify notations.

Lower bound for C 2 costs with a signature condition

In this section we consider a cost c ∈ C 2 (X, R + ) where X = X 1 × . . . × X m and we will assume that for every i ∈ {1 . . . , m}, the measure µ i is compactly supported on a C 2 sub-manifold X i ⊆ R N of dimension d i . We are going to establish a a lower bound in the same form as the fine upper bound of Theorem 3.7, the dimensional constant being this time related to the signature of some bilinear forms, following ideas from [START_REF] Pass | On the Local Structure of Optimal Measures in the Multi-Marginal Optimal Transportation Problem[END_REF].

Lemma 4.1. Let c ∈ C 2 (X, R + ) and (φ 1 , . . . , φ m ) ∈ C (K 1 ) × • • • C (K m
) be a system of c-conjugate functions on subsets K i ⊆ X i for every i. We set E := c -φ 1 ⊕ . . . ⊕ φ m on K := K 1 × . . . × K m and we take x ∈ K as well as some g x ∈ {g(x) | g ∈ G c } of signature (d + , d -, d 0 ), G c being defined in (2.1). Then there exists local coordinates around x, i.e.

C 2 diffeomorphisms u = (u 0 , u -, u + ) : U ⊆ X → B d + ρ (0) × B d - ρ (0) × B d 0 ρ (0), U being an open neighborhood of x, such that if x, x ∈ B r (x) ⊆ U , E(x ) + E(x) 2 ≥ |u + (x ) -u + (x)| 2 -|u -(x ) -u -(x)| 2 -η(r)|u(x ) -u(x)| 2 (4.1)
where η(r) ≥ 0 tends to 0 as r → 0.

Proof. Let p = {p -, p + } ∈ P . For y ∈ i∈p ± K i , we set

φ p ± (y) := i∈p ± φ i (y i ).
We identify any x ∈ K with (x p -, x p + ). Since the φ i 's are c-conjugate, for x, x ∈ K it holds:

E(x ) = c(x p -, x p + ) -φ p -(x p -) -φ p + (x p + ) ≥ c(x p -, x p + ) -(c(x p -, x p + ) -φ p + (x p + )) -(c(x p -, x p + ) -φ p -(x p -)) = c(x p -, x p + ) -c(x p -, x p + ) -c(x p -, x p + ) + c(x p -, x p + ) -E(x).

Now we do computations in local charts

ψ i : U i ⊆ X i → ψ i (U i ) ⊆ R d i which are C 2 diffeomorphisms such that B R (x i ) ⊆ U i
for some R > 0 and ψ i (U i ) are balls centered at 0 for every i ∈ {1, . . . , m}. With a slight abuse, we use the same notation for points and functions written in these charts, and use Taylor's integral formula3 :

E(x ) + E(x) ≥ ˆ1 0 ˆ1 0 D 2 p -p + c(x s,t )(x p --x p -, x p + -x p + ) ds dt where x s,t := (x p -+ (1 -s)x p -, x p + + (1 -t)x p + ) for s, t ∈ [0, 1]. Since |D 2 p -p + c(x s,t ) - D 2 p -p + c(x)| ≤ η(r)
where η(r) is independent from p and tends to 0 as r → 0, and since by definition

D 2 c(x)(x p --x p -, x p + -x p + ) = 1 2 g p (x)(x -x, x -x), it holds: E(x) + E(x ) ≥ 1 2 g p (x)(x -x, x -x) -η(r) x -x 2 .
Taking g x = p∈P t p g p (x) for some (t p ) p∈P ∈ ∆ P and averaging the previous inequality yields:

E(x) + E(x ) ≥ 1 2 g x(x -x, x -x) -η(r) x -x 2 . (4.2)
Finally, we can find a linear isomorphism Q ∈ GL( m i=1 d i , R) which diagonalizes g x, such that after setting u := Q • (ψ 1 , . . . , ψ m ) and denoting u = (u + , u -, u 0 ) :

m i=1 U i → R d + × R d -× R d 0 , where (d + , d -, d 0 ) is the signature of g x, it holds: 1 4 g x(x -x, x -x) = |u + (x ) -u + (x)| 2 -|u -(x ) -u -(x)| 2 .
Reporting this in (4.2), we get the result by replacing η with Q -1 η and restricting u to

U := u -1 (B d + ρ (0) × B d - ρ (0) × B d 0 ρ (0)
) for some small ρ > 0.

We will use the following positive signature condition:

for every x ∈ X, d + c (x) ≥ κ where d ± c (x) := max d ± (g)(x) | g ∈ G c . (PS(κ))
Proposition 4.2. Let c ∈ C 2 (X) and assume that for every i ∈ {1, . . . , m},

X i ⊆ R N is a C 2 sub-manifold of dimension d i and µ i ∈ L ∞ (H d i X i
) is a probability measure compactly supported in X i . If (PS(κ)) is satisfied, then there exists a constant C * ∈ [0, ∞) such that for every ε > 0,

MOT ε ≥ MOT 0 + κ 2 ε log(1/ε) -C * ε. (4.3)
Proof. The measures µ i being supported on some compact subsets K i ⊆ X i , consider a family (φ i ) 1≤i≤m ∈ m i=1 C (K i ) of c-conjugate Kantorovich potentials. Taking (φ i ) 1≤i≤m as competitor in (MD ε ), we get the lower bound:

MOT ε ≥ m i=1 ˆKi φ i dµ i -ε log ˆK e -E ε d ⊗ m i=1 µ i = MOT 0 -ε log ˆK e -E ε d ⊗ m i=1 µ i ,
where E := c -⊕ m i=1 φ i on K = m i=1 K i as in Lemma 4.1. We are going to show that for some constant C > 0 and for every ε > 0, ˆK e -E/ε d ⊗ m i=1 µ i ≤ Cε κ/2 , which yields (4.3) with C * = log(C). For every x ∈ K, we consider a quadratic form g x ∈ {g(x) | g ∈ G c } of signature (κ, d -, d 0 ), which is possible thanks to (PS(κ)), and take a local chart4 u

x : U ⊆ X → B κ R (0) × B d - R (0) × B d + R ( 
0) as given by Lemma 4.1, such that (4.1) holds with η(r) ≤ 1/2 for every r such that B r (x) ⊆ U . Notice that u x is bi-Lipschitz with some constant L x on V

x := u -1 x (B κ R/2 (0)× B d - R/2 (0) × B d 0 R/2 (0)
). For every i ∈ {1, . . . , m} we may write µ i = f i H d i X i for some density f i : X i → R + . By applying several times the co-area formula [Fed96, Theorem 3.2.22] to the projection maps onto X i , we may justify that

H d X = ⊗ m i=1 H d i X i where d := i d i .
We set

E x := E • u -1 x : B κ R (0) × B d - R (0) × B d 0 R (0) → [0,
+∞] and we apply the area formula:

ˆVx e -E/ε d ⊗ m i=1 µ i = ˆVx e -E/ε ⊗ m i=1 f i dH d X = ˆBκ R/2 (0)×B d - R/2 (0)×B d 0 R/2 (0) e -E x/ε ⊗ m i=1 f i Ju -1 x dH κ ⊗ H d -⊗ H d 0 ≤ L x m i=1 µ i L ∞ (H d i X i ) ˆBκ R/2 (0)×B d - R/2 (0)×B d 0 R/2 (0) e -E x(u + ,u -,u 0 )/ε d(u + , u -, u 0 ). Now, for every (u -, u 0 ) ∈ B d - R/2 (0) × B d 0 R/2 (0), consider a minimizer of E x(•, u -, u 0 ) over Bκ R/2 (0) denoted by f + (u -, u 0 ). By (4.1) of Lemma 4.1, for every (u + , u -, u 0 ) ∈ B κ R/2 (0) × B d - R/2 (0) × B d 0 R/2 (0), E x(u + , u -, u 0 ) ≥ 1 2 (E x(f + (u -, u 0 ), u -, u 0 ) + E x(u + , u -, u 0 )) ≥ (1 -1/2)|u + -f + (u -, u 0 )| 2 = 1 2 |u + -f + (u -, u 0 )| 2 .
As a consequence we obtain: ˆBκ

R/2 (0)×B d - R/2 (0)×B d 0 R/2 (0) e -E x(u + ,u -,u 0 )/ε d(u + , u -, u 0 ) ≤ ˆBd - R/2 (0)×B d 0 R/2 (0) ˆBκ R/2 (0) e -|u + -f + (u -,u 0 )| 2 2ε du + d(u -, u 0 ) ≤ ε κ/2 ω d -ω d 0 R d -+d 0 ˆRκ e -|u| 2 /2 du = C xε κ/2
for some constant C x > 0 (which depends on x through R, d -and d 0 ). The sets {V x} x∈Σ form an open covering of the compact set Σ := {x ∈ K | E(x) = 0}, hence we may extract a finite covering V x1 , . . . , V xL and for every ε > 0:

ˆ L =1 V x e -E/ε d ⊗ m i=1 µ i ≤ ε κ/2 L =1 L x C x m i=1 µ i L ∞ (H d i X i ) = C 1 ε κ/2 ,
for some constant C 1 ∈ (0, +∞). Finally, since E is continuous and does not vanish on the compact set K := K \ L =1 V x , it is bounded from below on K by some constant C 2 > 0. Therefore, for every ε > 0,

ˆK e -E/ε d ⊗ 1≤i≤m µ i ≤ C 1 ε κ/2 + e -C 2 /ε ≤ Cε κ/2 ,
for some constant C > 0. This concludes the proof.

Examples and matching bound

We devote this section to applying the results we have stated above to several cost functions. For simplicity we can assume that the dimensions of the X i are all equal to some common d and the cost function c is C 2 . As in [START_REF] Pass | On the Local Structure of Optimal Measures in the Multi-Marginal Optimal Transportation Problem[END_REF] we consider, for the lower bound, the metric g such that t p = 1 2 m-1 -1 for all p ∈ P , we remind that P is the set of partition of {1, . . . , m} into two non empty disjoint subsets.

Example 5.1 (Two marginals case). In previous works [CPT23; EN22] concerning the rate of convergence for the two marginals problem, it was assumed that the cost function must satisfy a non degeneracy condition, that is D 2

x 1 x 2 c must be of full rank. A direct consequence of our analysis is that we can provide a lower bound (the upper bound does not depend on such a condition) for costs for which the non-degeneracy condition fails. Let r be the rank of D 2 x 1 x 2 c at the point where the non-degeneracy condition fails, then the signature of g at this point is given by (r, r, 2d -2r) meaning that locally the support of the optimal γ 0 is at most 2d -r dimensional. Thus, the bounds become Example 5.2 (Two marginals case and unequal dimension). Consider now the two marginals case but unequal dimensional, that is for example d 1 > d 2 . Then, if D 2

x 1 ,x 2 c has full rank, that is r = d 2 , we obtain a matching bound depending only on the lower dimensional marginal

d 2 2 ε log(1/ε) -C * ε ≤ OT ε -OT 0 ≤ d 2 2 ε log(1/ε) + C * ε,
for some constants C * , C * > 0. If µ 1 is absolutely continuous with respect to H d 1 on some smooth sub-manifold of dimension d 1 , then any optimal transport plan would be concentrated on a set of Hausdorff dimension no less than d 1 , and thus the upper bound given in [EN22, Theorem 3.8] would be d 1 2 ε log(1/ε) + O(ε), which is strictly worse than our estimate.

Example 5.3 (Negative harmonic cost). Consider the cost c(x 1 , . . . , x m ) = h( m i=1 x i ) where h is C 2 and D 2 h > 0. Assuming that the marginals have finite second moments, when h(x) = |x| 2 this kind of cost is equivalent to the harmonic negative cost that is c(x 1 , . . . , x m ) = -i<j |x i -x j | 2 (here | • | denotes the standard euclidean norm), see [START_REF] Marino | Optimal Transportation Theory with Repulsive Costs[END_REF] for more details. It follows now that the signature of the metric g is (d, (m -1)d, 0) thus the bounds between MOT ε and MOT 0 that we obtain are

d 2 ε log(1/ε) -C * ε ≤ MOT ε -MOT 0 ≤ 1 2 (m -1)d ε log(1/ε) + C * ε,
for some constants C * , C * > 0. We remark that it is known from [Pas12; DGN15] that a transport plan γ 0 is optimal if and only if it is supported on the set {(x 1 , . . . , x m ) | m i=1 x i = l}, where l ∈ R d is any constant and there exists solutions whose support has dimension exactly (m -1)d.

Example 5.4 (Gangbo-Święch cost and Wasserstein barycenter). Suppose that c(x 1 , . . . , x m ) = i<j |x i -x j | 2 , known as the Gangbo-Święch cost [START_REF] Gangbo | Optimal Maps for the Multidimensional Monge-Kantorovich Problem[END_REF]. Notice that the cost is equivalent to c(x 1 , . . . , x m ) = h( i<j x i ) where h is C 2 and D 2 h < 0,then the signature of g is ((m -1)d, d, 0) and we have a matching bound 

  Besides, notice that by taking m = 2 and d 1 = d 2 = d, one easily retrieves [CPT23, Proposition 3.1].

r 2 ε

 2 log(1/ε) -C * ε ≤ OT ε -OT 0 ≤ d 2 ε log(1/ε) + C * ε,for some constants C * , C * > 0. Notice that if D 2 x 1 ,x 2 c has full rank then r = d and we retrieve the matching bound results of [CPT23; EN22].

  1)d ε log(1/ε) -C * ε ≤ MOT ε -MOT 0 ≤ 1 2 (m -1)d ε log(1/ε) + C * ε.

We always consider the Euclidean distance over R N , but since the supports of the measures are compact and the sub-manifolds are Lipschitz, we may equivalently consider the intrinsic metric over the sub-manifolds: they are equivalent distances at small scale, i.e. for |y -x| ≤ δ0 for some δ0 > 0.

Any linear combination azi + byi will designate ψ -1 i (aψi(zi) + bψi(yi)).

Although U , R, d -and d 0 depend on x, we do not index them with x so as to ease notations.
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