Thomas Marchal 
  
Hugues Alexia De Brauer 
  
Hugues Deniau 
  
Bénédicte Cuenot 
  
Renaud Mercier 
  
Jean-Franc ¸ois Boussuge 
  
Efficiency of high-order strong discontinuous spectral methods in combustion

Keywords: Spectral Difference method, Combustion, High-Order method, p-adaptation

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The development of Large Eddy Simulations (LES) to simulate flame/turbulence interactions has gained a lot of interest in the combustion community [START_REF] Poinsot | Theoretical and numerical combustion[END_REF][START_REF] Gicquel | Large eddy simulations of gaseous flames in gas turbine combustion chambers[END_REF]. LES need accurate spatial discretization with low dissipation and dispersion properties that can be achieved using high-order (HO) discontinuous methods. Such methods have been shown to perform high accuracy on unstructured meshes while keeping a compact stencil [START_REF] Wang | High-order CFD methods: current status and perspective[END_REF][START_REF] Hirsch | Tilda: Towards industrial LES/DNS in Aeronautics[END_REF]. These methods also have the capability to locally tune the accuracy of the solution by adapting the number of computation points and, thus, reduce the computational cost. The present work investigates the feasibility and interest of using an HO discontinuous method for combustion simulations in terms of accuracy of the results and computational time consumption.

Among HO discontinuous methods, the Discontinuous Galerkin (DG) method [START_REF] Reed | Triangular mesh methods for the neutron transport equation[END_REF] is the most famous and oldest one. This method is based on the resolution of the weak integral form of the Navier-Stokes equations (NSE) and has been widely used and studied over the last fifty years [START_REF] Cockburn | Runge-Kutta discontinuous Galerkin methods for convection-dominated problems[END_REF][START_REF] Renac | Aghora: a high-order DG solver for turbulent flow simulations[END_REF]. Another route for HO discontinuous methods is to directly solve the strong form of the NSE. The Spectral Difference (SD) method initially presented by Kopriva and Kolias [START_REF] Kopriva | A conservative staggeredgrid chebyshev multidomain method for compressible flows[END_REF][START_REF] Kopriva | A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method[END_REF] is based on this approach. The method was developed to solve inviscid [START_REF] Liu | Spectral Difference method for unstructured grids I: basic formulation[END_REF][START_REF] Wang | Spectral Difference method for unstructured grids II: extension to the Euler equations[END_REF] and viscous problems [START_REF] May | A Spectral Difference method for the Euler and Navier-Stokes equations on unstructured meshes[END_REF][START_REF] Sun | High-order multidomain Spectral Difference method for the Navier-Stokes equations on unstructured hexahedral grids[END_REF] on both structured and unstructured meshes and has been tested on canonical non-reacting test cases [START_REF] Mohammad | Large eddy simulation of flow over a cylinder using high-order Spectral Difference method[END_REF][START_REF] Liang | High-order accurate simulation of low-mach laminar flow past two side-by-side cylinders using Spectral Difference method[END_REF]. Yet, whether it be with the DG or the SD method, only few combustion cases have been studied using HO discontinuous methods. Some reactive test cases have been performed using the DG method [START_REF] Lv | Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion[END_REF][START_REF] Lv | High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows[END_REF][START_REF] Billet | A Runge Kutta discontinuous Galerkin approach to solve reactive flows on conforming hybrid grids: the parabolic and source operators[END_REF]. Recently, Marchal et al. [START_REF] Marchal | Extension of the Spectral Difference method to combustion[END_REF] succeeded in simulating one and two-dimensional laminar flames with the SD method by developing a stable algorithm and adapting boundary conditions for reacting flows to the SD framework. These simulations, together with the simulation of a 1D planar detonation test case by Gupta et al. [START_REF] Gupta | Numerical investigation of sustained planar detonation waves in a periodic domain[END_REF], are to the authors' knowledge, the only combustion cases calculated with the SD discretization reported in the literature. Moreover, studies on the performance of the SD method in terms of computational cost and accuracy on pure aerodynamic applications [START_REF] Liang | A comparison of computational efficiencies of Spectral Difference method and Correction Procedure via Reconstruction[END_REF][START_REF] Cox | Accuracy, stability, and performance comparison between the Spectral Difference and Flux Reconstruction schemes[END_REF] concluded that the method is a good compromise among other HO methods. However, this conclusion may not hold for reacting flows as the number of equations to be solved is increased and additional requirements in terms of accuracy have to be considered.

In addition to their good performance on the accuracy of the results, HO discontinuous methods have the capability to locally increase the polynomial degree of the solution only in regions of interest. This feature is called p-adaptation (or p-refinement) and has been applied in pure aerodynamic simulations either with the DG or the SD [START_REF] Hirsch | Tilda: Towards industrial LES/DNS in Aeronautics[END_REF] method. Results showed a reduction of almost 50% of the number of computation points for a p-adapted simulation com-pared to a simulation with a constant polynomial order for a similar accuracy. A significant reduction of the computational time between 25% to 50% was observed [START_REF] Hirsch | Tilda: Towards industrial LES/DNS in Aeronautics[END_REF] demonstrating that HO discontinuous methods coupled with p-adaptation may be very competitive to reduce the computational time. Thinking of flames, which are very local phenomena requiring high numerical accuracy, the potential of padaptation is very attractive. Nonetheless, there is no study even in the recent literature, of the application of p-adaptation to combustion.

The present work studies both the interest of using the high-order SD method and the possibility of applying p-adaptation on combustion applications. The paper is organized as follows. Section 2 briefly recalls the equations solved to describe combustion phenomena and presents the SD formulation as well as the p-adaptation technique. Then, Section 3 studies the influence of the polynomial degree and of the p-adaptation on the accuracy of the results and the computational cost using a 2D laminar burner case. Finally, conclusions are drawn in Section 4.

The SD method applied to combustion

The governing equations

In this work, the two-dimensional reacting compressible NSE for a multi-species mixture with Ns species are considered. The equations write

∂U ∂t + ∂E ∂x + ∂F ∂y = S ( 1 
)
where t is the time, U is the vector of conservative variables, E and F contain the sum of convective and diffusive fluxes of U in the x and y directions, respectively, and S is the source term vector containing the heat release rate and the net chemical rates of each species. The expressions of U, E, F and S can be found in [START_REF] Marchal | Extension of the Spectral Difference method to combustion[END_REF]. The species diffusive flux uses the Hirschfelder and Curtiss approximation [START_REF] Poinsot | Theoretical and numerical combustion[END_REF] along with a constant Schmidt number for each species [START_REF] Marchal | Extension of the Spectral Difference method to combustion[END_REF].

The mixture is assumed to behave like an ideal gas.

Principle of the SD discretization on quadrilateral elements for reacting flows

Let's consider a computational domain Ω divided into Ne unstructured quadrilateral elements. The SD method transforms each element Ωe of Ω into a standard quadrilateral element Λ = {(ξ, η) ∈ [0, 1] 2 } by the use of an isoparametric transformation [START_REF] Sun | High-order multidomain Spectral Difference method for the Navier-Stokes equations on unstructured hexahedral grids[END_REF]. Eq. ( 1) is then solved in Λ for the variable U = |J|U where |J| is the Jacobian determinant of the isoparametric transformation. The SD method assumes that in Λ the vector U varies as a polynomial of degree p in each direction ξ and η. The order of accuracy of the method is then p + 1. Thus, changing the order of the scheme simply consists in modifying p with no change of the stencil. The SD method uses two sets of points placed in Λ: the solution points (SP) and the flux points (FP). The polynomial of degree p that reconstructs U is built on p + 1 SP in each direction ξ and η where U has to be known. These p + 1 points are the Gauss-Chebyshev points of the first kind [START_REF] Sun | High-order multidomain Spectral Difference method for the Navier-Stokes equations on unstructured hexahedral grids[END_REF]. The fluxes are evaluated on p + 2 FP in each direction. The p interior FP are the Gauss-Legendre points and the two remaining FP are located at boundaries of Λ [START_REF] Sun | High-order multidomain Spectral Difference method for the Navier-Stokes equations on unstructured hexahedral grids[END_REF].

As described in [START_REF] Marchal | Extension of the Spectral Difference method to combustion[END_REF], the SD method processes as follows for the space discretization. First, the values of U are extrapolated from SP to FP. Then, The fluxes are computed from U at interior FP. At element boundaries, the FP of neighboring elements coincide. Thus, at these FP two different values of the convective and diffusive fluxes are available. To ensure the continuity of the flux and, thus, the conservation of the numerical scheme, unique fluxes are computed at these FP using a HLLC Riemann solver [START_REF] Batten | On the choice of wavespeeds for the HLLC Riemann solver[END_REF] to compute the interface convective fluxes and a centered scheme to compute the interface diffusive fluxes as in [START_REF] Sun | High-order multidomain Spectral Difference method for the Navier-Stokes equations on unstructured hexahedral grids[END_REF]. After this step, the flux polynomials are built at FP and differentiated along the ξ and η directions, respectively. Finally, the derivatives of flux polynomials are evaluated at SP ending the SD space discretization process. Eq. ( 1) is integrated in time at SP using the three-stage and third-order total variation diminishing Runge-Kutta (RK) scheme of Gottlieb and Shu [START_REF] Gottlieb | Total variation diminishing Runge-Kutta schemes[END_REF]. However, in the case of a multispecies mixture, the usual SD formulation consisting in the extrapolation of the conservative variables U from SP to FP is not stable and creates pressure oscillations. It has been shown in [START_REF] Marchal | Extension of the Spectral Difference method to combustion[END_REF] that replacing U by the primitive variables Q for this step of the procedure renders the scheme stable. The values of Q are, thus, computed from U at SP, and extrapolated from SP to FP. This method named as the TUPY approach.

The mortar element method for p-adaptation

When using p-adaptation, the polynomial degree of each element, noted pe, can differ from one element to another. Interfaces between two elements of different degrees have FP placed at different locations. Fig. 1 illustrates this situation for an interface between a left element with pL = 1 and a right element with pR = 2. Kopriva proposed to solve this problem by using a mortar element method [START_REF] Kopriva | A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method[END_REF] where a fictive interface M , called mortar, is introduced to compute interface fluxes. In the general case, the mortar degree pM is equal to max (pL, pR), thus pM = 2 in the example of Fig. 1. Three main steps describe the mortar element treatment [START_REF] Hirsch | Tilda: Towards industrial LES/DNS in Aeronautics[END_REF]: 3.

1. Q L is projected on M to get Q M,L and Q M,R = Q R since pM = pR. 2. A Riemann problem is solved between states Q M,L and Q M,R to get fluxes on Mortar FP noted F M .
F M is projected back on ΩL to get F L and F R = F M since pM = pR.
Kopriva demonstrated that this method is conservative [START_REF] Kopriva | A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method[END_REF]. This treatment is the only difference between a computation at constant degree p and a computation using p-adaptation.

Degrees of Freedom

A fair comparison between the SD method and other numerical methods is ensured by keeping the same number of degrees of freedom (DOFs) in space for all simulations. The DOFs correspond to the locations where the solution is known and stored after the temporal integration. In the present work, DOFs are cell nodes for the finite volume (FV) and finite element (FE) AVBP solver [START_REF] Schonfeld | Steady and unsteady flow simulations using the hybrid flow solver AVBP[END_REF], used as a reference code, while they are SP for the SD method. In Λ where U varies as a p-degree polynomial, the number of SP noted NSP is given by NSP = (p + 1) 2 . Consequently, if all quadrilateral elements of Ω have the same degree p, the number of DOFs (total number of SP) is

DOFs = Ne × NSP = Ne (p + 1) 2
(2)

Results

The SD method has been implemented in the code JAGUAR (proJect of an Aerodynamic solver using General Unstructured grids And high ordeR schemes) jointly developed by CERFACS and ONERA and validated on many academic test cases [START_REF] Marchal | Extension of the Spectral Difference method to combustion[END_REF][START_REF] Veilleux | Extension of the Spectral Difference method to simplex cells and hybrid grids[END_REF][START_REF] Fiévet | Strong compact formalism for characteristic boundary conditions with discontinuous spectral methods[END_REF]. Some of the results obtained with JAGUAR are compared with results obtained with the AVBP solver developed by CERFACS, which is one of the reference codes in combustion. All the simulations with AVBP are performed using either the Lax-Wendroff (LW) FV scheme [START_REF] Lax | Systems of conservation laws[END_REF] (second-order in space and time) or the Two-step Taylor Galerkin (TTGC) FE scheme [START_REF] Colin | Development of high-order Taylor-Galerkin schemes for LES[END_REF] (third-order in space and time) for convective fluxes, and a FE scheme of order 2 [START_REF] Colin | Development of high-order Taylor-Galerkin schemes for LES[END_REF] for diffusion fluxes. These AVBP schemes are referred to as low-order (LO) methods. It should be mentioned that no artificial viscosity was employed in AVBP calculations to have fair comparison with JAGUAR which does not use artificial viscosity either. Finally, all computations are run on 36 Intel processors Xeon Gold 6140 (Skylake).

In the following, a reference case used for comparison is first presented. Simulations with constant order p are then studied. The impact of p-adaptation is finally investigated.

Presentation of the test case

The test case considered here is a 2D burner configuration already presented in [START_REF] Marchal | Extension of the Spectral Difference method to combustion[END_REF]. The geometry and the boundary conditions are summed up in Fig. 2. Methane and air are premixed at an equivalence ratio 

u (y) = u0 1 - y 2 l 2 0 ; v = 0 (3) 
where u and v are the velocity components in the x and y directions, respectively, u0 = 4 m.s -1 and l0 = 0.65 mm. The inlet temperature is set to 300 K and the outlet pressure is imposed to 101325 Pa. All boundary conditions are set following the methodology described in [START_REF] Marchal | Extension of the Spectral Difference method to combustion[END_REF]. The chemical mechanism of methane-air combustion is the two-step scheme CH4/Air-2S-BFER proposed and validated in [START_REF] Franzelli | A two-step chemical scheme for kerosene-air premixed flames[END_REF].

Reference case

Since no analytical solution for the considered 2D burner case is available, a reference simulation using a very fine discretization is performed. The computational domain shown in Fig. 2 is discretized using 4576 uniform quadrilateral elements and a polynomial degree of p = 6 (order 7) inside each of them. Consequently, the total number of DOFs in the computational domain is 224224 as given by Eq. ( 2). The quadrilateral elements have the same characteristic size ∆ = 1.32 × 10 -4 m which gives a characteristic distance between the DOFs of ∆DOFs = ∆/ (p + 1) = 1.88 × 10 -5 m (4)

The methane-air flame thickness using the mechanism CH4/Air-2S-BFER at ϕ = 0.8 is δ 0 l = 4.30 × 10 -4 m. Thus, the number of computation points in the flame front is n f = 23 which is sufficient to consider the case as a reference solution. Two simulations are run with JAGUAR and AVBP, respectively, using almost the same number of DOFs. A converged steady solution is obtained after a physical time of t f = 15 ms. Fig. 3 shows the steady 2D field of heat release rate obtained with both solvers, of which Fig. 4 plots a y-cut at x = 12 mm. The results show that both codes reproduce the same flame shape and structure when the space discretization is very fine. Therefore, the present solution is considered as a reference and will be used for comparison with all calculations performed with JAGUAR and AVBP in what follows. 

Influence of p on the accuracy of the solution in constant p cases

Typical values of n f in 3D LES combustion cases range between 5 and 10 depending on the stiffness of the chemistry. For a uniform quadrilateral mesh, Eq. ( 4) highlights the fact that for a SD discretization multiple couples of values of ∆ and p, or equivalently Ne and p, give almost the same ∆DOFs and, hence, the same n f . In other words, a simulation with a small Ne but a large p has approximately the same number of DOFs than a simulation with a large Ne but a small p, provided that they verify Eq. (2). Thus, the following question arises: for a given number of DOFs (or a given n f value), is it better, in terms of accuracy and performance to use large elements with high values of p or small elements with small values of p? This question has already been answered for aerodynamic cases: large Ne combined with high p values lead to lower computational time and more accurate results [START_REF] Wang | High-order CFD methods: current status and perspective[END_REF]. For reacting case, the question remains open and first answers are given by the analysis below.

As a first step, this question is addressed in terms of the accuracy of the solution. Simulations of the 2D burner case are run using JAGUAR until t = t f using polynomial degrees from p = 2 to p = 6. Different values of Ne and p are used in order to keep approximately 30900 and 20100 DOFs in the computational domain. Values of Ne, p, ∆DOFs and n f are summed up in Tabs. 1 and 2 for each DOFs case.

One way to compare calculation results is to compute the L2-error of the 2D heat release rate field for each case with respect to the reference simulation. This error can be defined following the methodology proposed in recent HO workshops [START_REF] Wang | High-order CFD methods: current status and perspective[END_REF]:

ϵ ωT = DOFs i=1 ωT,i -ωinterp T,i,ref 2 /DOFs 1/2 (5)
ωT,i is the heat release rate value at SP i of the considered solution and ωinterp T,i,ref is the heat release rate value at SP i from the reference solution interpolated on the considered solution mesh. Fig. 5 shows the evolution of ϵ ωT / ωmax T,ref with respect to p for the two numbers of DOFs considered, where ωmax T,ref = 3.7 × 10 9 W.m -3 is the maximum of heat release rate in the reference solution. The values obtained with AVBP using the LW and TTGC schemes are also plotted in the figure. As expected, the error de- creases when the number of DOFs increases for both JAGUAR and AVBP simulations. For a given number of DOFs, the error decreases with the order of the numerical scheme also for both codes. For JAGUAR, the same error at high number of DOFs and low p is recovered with the low number of DOFs and high p. This means that for reacting flows as well, large elements with high p give more accurate results. This result is probably due to the polynomial basis that better describes the flow and flame quantities in the cell when p is high than a piecewise linear function corresponding to low p cases. Note that the error with JAGUAR is always lower than the error with AVBP except at p = 2 where the results are comparable showing the impact of using HO methods.

Influence of p on the computational cost in constant p cases

The computational cost with respect to the polynomial degree is now assessed. More precisely two quantities are of interest:

1. The iteration cost per DOFs noted κ.

2. The real time taken to simulate 1 ms of physical time noted τ .

Tabs. 1 and 2 show the values of κ and τ for each simulation whose errors were computed in Section 3.3. Values of κ and τ obtained with AVPB are indicated in the table captions. For both numbers of DOFs, τ values of JAGUAR is almost constant when the polynomial degree increases. This indicates that even in reacting multi-species cases, the order of the SD method can increase with almost no change of the iteration cost. In comparison, in the DG method, increasing p entails the use of more expensive quadrature rules [START_REF] Yu | On the accuracy and efficiency of discontinuous Galerkin, Spectral Difference and Correction Procedure via Reconstruction methods[END_REF] leading to an increase of κ. The same reasoning applies to the comparison with LO methods for which increasing the order of the scheme often results in an increase of the iteration cost. The comparison between the LW and TTGC schemes (order 2 and 3 in space, respectively) of AVBP is a good proof of that: the TTGC scheme is 2.5 times more expensive than the LW scheme [START_REF] Colin | Development of high-order Taylor-Galerkin schemes for LES[END_REF] as also observed in Tabs. 1 and 2. Nevertheless, τTTGC is still lower than all τ obtained with JAGUAR. This means that the SD method seems more expensive than LO methods. However, it must be noted that JAGUAR is a new code where coding has not been optimized as much as in AVBP. The iteration cost per DOFs is not sufficient to evaluate the computational cost of the simulations as the time steps computed for each simulation differ from one another. Actually, all HO methods suffer from Courant-Friedrichs-Lewy (CFL) restrictions that are more constraining than for LO methods. For instance, in the SD method, the CFL limit scales as (p + 1) -1 [START_REF] Vanharen | Revisiting the spectral analysis for highorder spectral discontinuous methods[END_REF] and becomes more restrictive as p increases. In this work, for p = {2, 3, 4, 5, 6}, CFL values were set to 0.36, 0.32, 0. These CFL values were chosen from the experience in using the RK scheme of Gottlieb and Shu [START_REF] Gottlieb | Total variation diminishing Runge-Kutta schemes[END_REF] with JAGUAR and are close to the stability limit for each p. Finding the exact CFL limit is out of the scope of this paper and will not change the analysis conducted here. Consequently, this CFL condition has an impact on computational time as can be observed in Tabs. 1 and 2 where τ increases with p. For instance, τ (p = 6) /τ (p = 2) = 1.55, meaning that the p = 6 case takes 55% more of real time to simulate 1 ms than the p = 2 case. Because the TTGC scheme (and also the LW one) is classically used with a CFL of 0.7: τ (p = 6) /τTTGC = 2.3 meaning that the p = 6 case takes 2.3 times more than the TTGC scheme to reach the same final simulated time. For p = 4 (order 5), the ratio τ (p = 4) /τTTGC is 1.7. These differences in computational time between the SD method and LO methods are high but probably lower than the differences between the DG method and LO methods since the CFL limit for DG varies as (2p + 1) -1 [START_REF] Cockburn | Runge-Kutta discontinuous Galerkin methods for convection-dominated problems[END_REF].

p
Combined with the accuracy analysis conducted in Section 3.3, for the same level of error, it is faster to use less DOFs with high p rather than more DOFs with low p. For instance, p = 2 in 30900 DOFs case and p = 4 in 20100 case have the same error but the first one has a return time for the results which is 67% higher than the second one. As a summary, JAGUAR has a κ which is a little bit higher than the one of the TTGC scheme of AVBP but κ does not change when p increases. However, CFL restrictions for HO methods still make their computational cost high compared to LO methods. This computational cost issue can be strongly reduced if p-adaptation is considered as is shown in Section 3.5.

The p-adaptation method applied to the 2D burner

In the previous sections, the SD method was shown to be more accurate with higher polynomial degrees without altering the iteration cost per DOFs. However, the overall computational cost is still high compared to other methods because of the CFL constraints. Increasing the CFL limit is difficult but reducing the number of DOFs of the computational domain is possible without altering the accuracy of the results. This method consists in locating the DOFs in regions of interest only by adapting the polynomial degree in the mesh elements. Therefore, computations are run with a varying polynomial degree that changes according to user-defined criteria.

To illustrate this methodology, the 2D burner case is considered with the mesh composed of Ne = 1236 quadrilateral elements and p = 4 in all elements. The objective is now to simulate the same case with p = pmax = 4 only in near-flame elements and p = pmin = 2 elsewhere. The polynomial degree pe within each element is set according to a sensor value θe ∈ [0, 1] as:

pe = pmin + INT tanh α θe (pmax -pmin) (6)
where INT stands for the integer function and α is a smoothing parameter to avoid sharp degree transitions between elements as done in DG [START_REF] Hirsch | Tilda: Towards industrial LES/DNS in Aeronautics[END_REF]. It is set to α = 100 in this work.

A first step is the computation of θe that identifies the region of interest. A classical sensor already used in non-reactive cases is employed. This sensor is based on the magnitude of the density gradient ∇ρ [START_REF] Hirsch | Tilda: Towards industrial LES/DNS in Aeronautics[END_REF]:

θe = 1 Ve Ωe |∇ρ| dVe and θe = θe max Ω (θe) (7) 
where θe is the sensor value associated to the element Ωe and Ve is its volume. As in pure aerodynamic cases [START_REF] Hirsch | Tilda: Towards industrial LES/DNS in Aeronautics[END_REF], a first simulation at uniform p = 2 in all elements is performed that computes the sensor. This simulation at p = 2 on a mesh initially designed for p = 4 does not give good results but is sufficient to get acceptable values of θe. A second simulation is then run from the beginning but using the values of θe and Eq. ( 6) to set the varying polynomial distribution illustrated in Fig. 6. As can be observed, the flame region is mainly composed of elements with pe = 4 surrounded by a zone of elements at pe = 3 and the remaining elements where source terms and gradients are no more observable are at pe = 2. This polynomial distribution does not well follow the 2D heat release field since the sensor is based on |∇ρ| and not on ωT but it is sufficient to show the possibilities of doing p-adapted simulations in combustion. As for the computational cost, Tab. 3 shows the values of the number of DOFs, κ and τ for the three calculations of Fig. 8. The gain in the number of DOFs in the varying 2 ≤ p ≤ 4 case compared to the uniform p = 4 simulation is of about 56% for a similar accuracy of the result and the computational time is divided by 2. Even adding the cost of the computation at uniform p = 2 (needed for the sensor evaluation), there is still a gain of 33% of the computational time. Similar observations were done in pure aerodynamic computations either with the DG or SD methods [START_REF] Hirsch | Tilda: Towards industrial LES/DNS in Aeronautics[END_REF].

These simulations show that the p-adaptation does not solve the issue of CFL restrictions because the varying 2 ≤ p ≤ 4 case is run at a CFL of 0.28 which is the CFL used at constant p = 4 case. This explains the still important difference in τ between the uniform These first results demonstrate the capability of the SD method to perform combustion simulations using p-adaptation. Although the CFL constrains is not resolved, the SD method can easily perform local discretization refinement, i.e., to significantly accelerate simulations without loosing accuracy or modifying the mesh. It is therefore easy to make it adaptative and to optimize it during one simulation.

Conclusions

The present study investigates the potential of the SD method to simulate combustion problems in terms of accuracy of the results and computational cost. The results show that increasing the order of the numerical scheme improves the accuracy without increasing the iteration cost as opposed to LO methods and weak HO discontinuous methods such as the DG method. It is also highlighted that, as for pure aerodynamic cases, using large elements with high p values is better in terms of accuracy and performance for the same level of error than using small elements with low p values. However, like other HO methods, the SD method suffers from CFL limitations that become more and more restrictive as p increases. Although these limitations are lighter than in the DG method, it entails that the SD method with a uniform degree p in all mesh elements is still between 2 to 3 times more expensive than LO methods. This limitation is overcome with the use of p-adaptation that drastically reduces the number of DOFs by putting high values of p only in regions of interest. Even if the time step is identical between the uniform p and the varying p cases, the computational cost is reduced by a factor 2 for the same accuracy of the results. Therefore, with padaptation the computational cost of the SD method is found comparable to LO methods showing the possibility to increase the numerical order and improve the results at no extra computational cost.

To the authors' knowledge, it is the first time that padaptation is applied to a reacting flow test case with very encouraging results. This work is a first necessary step of the development of p-adaptation methods before applying it to more realistic configurations such as 3D turbulent flames. Many improvements can still be made to further improve the performance of the SD method. A dynamic sensor methodology that updates the local p distribution in real time during the computation would avoid pre-calculations and be adapted to non-steady cases. Another sensor built on heat release rate or temperature gradient, which seem more adapted to combustion phenomena, should also be tested. Local time stepping with adapted load balancing would further increase the performance of the SD method. Compared to h-adaptation, that is mesh refinement by element splitting, p-adaptation allows to perform local refinement easily compared to LO methods as it avoids re-meshing. The optimum use of hp-refinement for combustion is the next challenge and is left for future work.
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 1 Fig. 1: Illustration of the mortar element method at an interface between a left element with p L = 1 and a right element with p R = 2. Red circles represent SP and blue squares represent FP in the ξ direction.
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 2 Fig. 2: Computational domain and boundary conditions for the 2D burner case. ϕ = 0.8 and enter the burner inlet at x = 0 with a parabolic profile given by
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 34 Fig. 3: Comparison of the steady 2D heat release rate field between JAGUAR (bottom) and AVBP (top) for the 2D burner case.

Fig. 5 :

 5 Fig. 5: Evolution of ϵ ωT / T,ref with respect to p for two numbers of DOFs. The values obtained with the LW and TTGC schemes at these numbers of DOFs are also shown.
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 6 Fig. 6: Polynomial degree distribution for a calculation with p min = 2 and pmax = 4 on the mesh with 1236 elements.

Figs. 7

 7 Figs. 7 and 8 show respectively the steady 2D heat release rate field and its y-cut at x = 12 mm obtained with the p-adapted simulation. Comparison of the profile is done with uniform p simulation at p = 2 and p = 4 on the same mesh. The flame structure is well retrieved for the p-adapted case. An improvement of the uniform p = 2 solution is clearly seen in Fig. 8: the mesh is not adapted to p = 2 in the flame zone where n f = 4 whereas locally switching to p = 4 in the flame zone gives n f = 8 resulting in better results. In terms of accuracy, the normalized L2-error of the 2D heat release rate field for the padapted simulation is ϵ ωT / ωmax T,ref = 8.7 × 10 -3 and is close to the error value of 8.1 × 10 -3 obtained for the uniform p = 4 case in Section 3.3.
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 748 Fig. 7: Steady 2D heat release rate field obtained with a polynomial order distribution 2 ≤ p ≤ 4 on the mesh with 1236 elements.

p = 2

 2 case (run at a CFL of 0.36) and the varying 2 ≤ p ≤ 4 case, although the DOFs are closed. However, p-adaptation significantly reduce the number of DOFs used and, hence, the computational time.

Table 1 :

 1 Values of κ [µs/ite/DOFs] and τ [s] for JAGUAR simulations with different values of Ne and p to keep the number of DOFs around 30900 (∆ DOFs = 5.09 × 10 -5 m and n f = 8). Values obtained with AVBP for 31067 DOFs are: κ LW = 2.8 µs/ite/DOFs, κ TTGC = 6.3 µs/ite/DOFs, τ LW = 106 s and τ TTGC = 239 s.

		2	3	4	5	6
	Ne 3437 1930 1236 860 632
	κ	8.5	7.7	7.4	7.3	7.1
	τ	361	371	407	471 558

Table 2 :

 2 28, 0.24 and 0.20. Values of κ [µs/ite/DOFs] and τ [s] for JAGUAR simulations with different values of Ne and p to keep the number of DOFs around 20100. (∆ DOFs = 6.31 × 10 -5 m and n f = 6). Values obtained with AVBP for 19884 DOFs are: κ LW = 2.8 µs/ite/DOFs, κ TTGC = 6.4 µs/ite/DOFs, τ LW = 57 s and τ TTGC = 128 s.

	p	2	3	4	5	6
	Ne 2230 1256 804 558 410
	κ	8.2	7.5	7.4	7.2	7.2
	τ	182	190	216 247 292

Table 3 :

 3 Values of DOFs, κ [µs/ite/DOFs] and τ [s] for JAGUAR simulations of the 2D burner on the same mesh but with different polynomial distributions within elements.

		p = 2 2 ≤ p ≤ 4 p = 4
	DOFs 10944	13444	30900
	κ	8.3	7.9	7.4
	τ	96	199	407