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Snow and cloud classification in historical SPOT
images: An image emulation approach for training a
deep learning model without reference data

Zacharie Barrou Dumont, Simon Gascoin, and Jordi Inglada

Abstract—The lack of revisit in long-term satellite time series
such as Landsat is an issue to assess ecosystems response to snow
cover variations in mountains. A recent release of the SPOT 1-5
satellite images collection by the SPOT World Heritage (SWH)
program offers the opportunity to increase the temporal revisit
of Landsat from 1986 to 2015 at 20 m resolution. However,
spectral and radiometric limitations of these images hinder the
application of well-established pixel-wise methods to extract the
snow cover area. As a work-around, deep learning techniques
such as convolutional neural networks can incorporate both
spectral and spatial information to classify every pixel as snow,
cloud, or snow-free. However, the lack of reference data poses a
challenge to the implementation of such data-driven approaches.
Here, we develop an emulator of SPOT images which takes as
input Sentinel-2 images. As a result, an emulated SPOT image
can be paired with a reference snow map generated from its
source Sentinel-2 image to train a deep learning model able
to process actual SPOT images. We follow this approach to
train a U-Net and evaluate different training strategies. We
apply the different models to classify actual SPOT images for
which we have reference data for validation. The method yields
high precision in detecting snow, with minimal false snow pixel
identification. This is at the cost of overestimating cloud pixels
around clouds and highly saturated areas. The results confirm
the potential of this method to generate time series of snow cover
maps using the SWH collection.

Index Terms—snow cover, image classification, SPOT World
Heritage, Sentinel-2, U-Net, deep learning.

I. INTRODUCTION

HE snow cover area (SCA), defined as the spatial ex-

tent of the snow cover on the land surface [1], is an
important variable to understand hydrological and ecological
processes in mountainous regions. In particular, mountain soil
and vegetation properties are largely driven by seasonal snow
cover duration and snow melt-out date [2]-[6]. Therefore, in-
formation on the spatial-temporal variability of the snow cover
area over long time periods is critical to study the response
of mountain ecosystems to climate change. In addition, high
resolution observations are needed since the mountain snow
cover varies at spatial scales typically of 100 m or below due
to topographic heterogeneity [7].

The Landsat program provides the opportunity to map the
extent of snow cover at decametric resolutions (60-30 m)
since 1972 with theoretical revisit times of 16 to 8 days [8].
However, the theoretical revisit time is not always guaranteed
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due to technical obstacles, mission constraints and cloud cover
[9], [10]. Considering that the cloud cover probability often
exceeds 50% in temperate mountainous regions [11], [12],
such revisit time enables approximately one observation per
month or less, which is insufficient to characterize the seasonal
evolution of the snow cover [13].

The United States Geological Survey also provides free ac-
cess to the data acquired by the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) instrument on
the Terra satellite, which has been capturing images since 2000
with resolutions of 15 to 90 meters. The ASTER instrument
does not, however, allow systematic acquisitions and only
collects an average of 8 minutes of data per 99-minute Sun-
synchronous orbit, i.e. 650 scenes per day [14].

The French Space Agency (Centre National d’Etudes Spa-
tiales, CNES) led the SPOT (Satellites Pour 1’Observation de
la Terre) program (https://spot.cnes.fr/) by launching five
Earth observation satellites between 1986 and 2002. The SPOT
satellites observed the Earth in the visible and infrared bands
with spatial resolutions of 10 and 20 meters. Accessible for
free since 2015, nearly 20 millions of SPOT 1 to 5 products
from acquisitions between 1986 and 2015 can be obtained
through the SPOT World Heritage (SWH) program at the 1A
processing level (without orthorectification) [15].

Because SPOT image acquisitions were performed on a
demand basis rather than systematically, it is challenging to
determine the average revisit frequency. However, SWH can
significantly increase the number of available observations. For
example, SPOT products account for approximately half of the
acquisition dates over the French Alps and Pyrenees that could
be obtained from Landsat and ASTER only over 1996-2005
[16].

Although higher level products or processing algorithms are
readily available to extract snow cover maps from Landsat and
Sentinel-2 missions [17], [18], there is no equivalent for SWH.
Well-established methods for snow/cloud discrimination on
Landsat and Sentinel-2 images primarily rely on pixel-based
spectral signatures such as the Normalized Snow Difference
Index (NDSI) [18], [19] or spectral unmixing [20]. Both
approaches take advantage of the specific spectral properties
of snow cover surfaces, highly reflective in the visible but not
in the shortwave infrared wavelengths (SWIR, typically 1.6
um), whereas clouds tend to have a higher reflectance in the
SWIR [21]. SWH data are encoded in 8-bits, with only 256
different reflectance values per band, and often saturate when
clouds or snow are present. This saturation, combined with the
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TABLE I
SPATIAL RESOLUTIONS OF SATELLITE MISSIONS

Spatial resolution (m)

Mission Visible SWIR Period
Sentinel-2 10 20 2015-present
SPOT1-3 20 - 1986-2009

SPOT4 20 20 1998-2013

SPOTS 10 20 2002-2015

lack of SWIR band in SPOT 1-3 products, makes it difficult
to differentiate snow from clouds with a per-pixel approach.
A solution to overcome these issues is to use deep learning
approaches which can take into account both the spectral and
spatial information to segment a satellite image into snow,
clouds and ground [22], [23].

Despite the slow uptake of deep learning methods in the
remote sensing field, there has been a rapid increase in
the number of studies utilizing these techniques [24]. Deep
learning has been used for various remote sensing tasks, such
as road detection, sea-land detection, land cover mapping and
cloud detection. In particular, Convolutional Neural Networks
(CNNs) have emerged as a highly effective tool in remote
sensing image classification (semantic segmentation in deep
learning terminology). A significant advantage of CNNs over
previous methods is their ability to automatically extract
features, which used to be a manual task. Specifically, a CNN
architecture developed for biomedical image segmentation, U-
Net [25] was used to develop a cloud detection algorithm for
Landsat 8 imagery trained on annotations from the Fmask
processor and has shown increased performances compared
to the processor itself [26]. However, the lack of reference
snow cover maps corresponding to SWH images impedes the
implementation of such approaches.

In this work, we present a novel approach for training a U-
Net to generate thousands of snow cover maps from SPOT
images at 20 m resolution. We developed an emulator of
SPOT images which takes as input a Sentinel-2 image. As
a result, the emulated SPOT image (pseudo-SPOT) can be
paired with a reference snow map generated from its source
Sentinel-2 image. We used this approach to train the U-Net
over the Pyrenees. The trained U-Net can then be used to
segment actual SPOT images into a snow, clouds and ground
map. The advantage of this method is twofold: the ability
to do snow detection with highly-saturated images without a
SWIR band, making it most useful when processing SPOT
1-3 images, and the ability to train and use a U-Net model
over any region covered by SWH images thanks to the global
coverage of Sentinel-2. The method is evaluated by testing the
U-Net’s performances in learning from pseudo-SPOT4 images
and inferring on real SPOT4 images. SPOT4 images have a
SWIR band which we can use to generate reference maps
using a pixel-based approach.

1I. DATA
A. SPOT

Each SPOT had two identical instruments. The first gener-
ation SPOT1 to 3 were equipped with twin High Resolution

in the Visible (HRV) instruments with green, red and near-
infrared bands at 20 meter spatial resolution. SPOT4 was
equipped with identical instruments (HRV-IR) excepted for
an additional short-wave-infrared band (SWIR) at the same
resolution. The SPOT5 High Geometrical Resolution (HRG)
twin instruments had the same characteristics as HRV-IR
excepted for an improved spatial resolution of ten meters
for the three visible bands (Table I). The swath of SPOT
multispectral sensors was 60 km.

SPOT pixel values were encoded in 8 bits (only 256
different values). The conversion from the instrument outputs
to radiance values was done via a ground controlled preset
gain chosen depending on the context of the image acquisition
to optimize the image dynamics. This radiometric gain was
generally adjusted for vegetation surfaces and therefore often
saturates over snow and clouds.

We used SPOT images at the 1C processing level (ortho-
rectified and top-of-atmosphere reflectance) available from the
Theia catalog (https://www.theia-land.fr/product/spot-world-
heritage-fr/). The images are distributed as integers in milli-
reflectances (reflectance x 103) in 16-bit unsigned integer but
actually contain only 256 values.

B. Sentinel-2

The Sentinel-2 mission is a constellation of two satellites
(2A and 2B). Both Sentinel-2 A and B use the same Multi
Specral Imager (MSI) with thirteen bands in the visible and
infrared ranges and with spatial resolutions of 10, 20 and 60
meters [27]. Following the launch of Sentinel-2B in 2017, the
Sentinel-2 mission observes the global land surface with a
revisit time of 5 days (Table I).

In this work, we use Sentinel-2 products at level-1C to
match the processing level of the SWH data. Sentinel-2 level-
1C imagery is projected on a grid of 100x100km?2 tiles
defined by the Military Grid Reference System (MGRS). MSI
sensitivity allows precise radiometric measurements over a
large range of reflectance and therefore saturated pixels are
very rare even over bright clouds or snow covered surfaces.

We also use level-2B products from Theia, providing a
classification of the land surface at 20 m resolution into four
classes: snow, no snow, cloud (including cloud shadow) and
no data. The Theia snow products are generated using the
MAJA and LIS software [18]. MAJA performs the atmo-
spheric correction and cloud detection to generate level-2A
products [28], which are then used as input to LIS to perform
the snow detection. The performance of the snow detection
using the MAJA-LIS pipeline was assessed on the French
Alps and Pyrenees with an accuracy of 94% (kappa 0.83)
[18]. A more comprehensive evaluation was conducted at pan
European scale and yielded comparable results [29]. However,
where transparent or semi-transparent clouds are present, LIS
conservatively classifies them as cloud pixels, although they
could be visually identified as snow [30].

C. Auxiliary data

We also use a digital elevation model (DEM) and a tree
cover density map (TCD) in our processing workflow. The
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DEM was sourced from the Copernicus global 30 m digital
elevation model [31]. The TCD was obtained from the Coper-
nicus Land Monitoring Service. It was derived from Sentinel-
2 data and is available at 20 m resolution with pixel values
ranging from 0% to 100% [32].

III. METHODS
A. Sen-2-SPOT

To extract the snow cover area from SPOT images, we
aim to use the U-Net architecture, a fully convolutional seg-
mentation network which can be trained to extract contextual
features from an image and localize them, generating an output
image with pixel-wise annotation [25]. The U-Net should
classify every valid pixel of a SPOT image in one of the
following classes: ground (snow-free), snow or cloud. The
main challenge is the lack of reference data to train the
network since we do not have reference cloud/snow cover
maps generated from SPOT images. We could find Landsat
images (and their associated snow/cloud mask) acquired on the
same day as some SPOT images, but even a time difference of
a few minutes remains too large with respect to the variability
of the cloud cover. Hence, to differentiate snow and cloud
with the U-Net, it is imperative to generate reference data
at the exact time the SPOT image was taken. As a solution,
we developed a tool (Sen-2-SPOT) which emulates a SPOT
data from a Sentinel-2 data, allowing us to make use of the
corresponding Sentinel-2 cloud/snow cover map as reference
data to train the U-Net from pseudo-SPOT data.

Sen-2-SPOT works in three main steps. First, it computes
reflectance values for each pseudo-SPOT band by combining
Sentinel-2 spectral band reflectances (Section III-A1). Then,
it reduces the image dynamic by clamping the pseudo-SPOT
reflectances between a minimum and maximum reflectance
(Section III-A2). Last, it performs the radiometric compression
to 8-bit encoding (Section III-A3). Sen-2-SPOT can emulate
a SPOT image of any sensor from SPOTI1 to SPOTS. It was
designed to output image patches of any size, which can be
directly ingested into the U-Net training.

Figure 1 schematizes the process of (i) emulating a pseudo-
SPOT image patch from a Sentinel-2 image patch, (ii) passing
the pseudo-SPOT patch through a U-Net to segment it into
snow, ground and cloud classes using the Theia snow products
as reference data to optimize the network weights.

1) Spectral bands combination: The spectral ranges of the
HRV-IR bands overlap the spectral ranges of Sentinel-2. For
example, the SPOT green band (0,54 - 0,58 1 m) overlaps both
the Sentinel-2 blue band (0,46 - 0,525 1 m) and the Sentinel-2
green band (0,54 - 0,58 1 m) (see Fig. 2). Here, we use a first-
order approach to estimate SPOT reflectance from Sentinel-
2 data assuming a constant instrument sensitivity for each
band. For each SPOT band, the pipeline finds the Sentinel-
2 bands with overlapping spectral ranges and averages the
corresponding reflectance using the overlapping band width
as weight:

2 X
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Where i is the SPOT band to estimate and j an overlapping
Sentinel-2 band. R is the reflectance value of a pixel and X;;
is the overlapping band width between 7 and j.

Only the Sentinel-2 red band overlaps the SPOT red band, so
the reflectances are equal. The SPOT NIR band is overlapped
by the Sentinel-2 bands 7 (vegetation), 8 (NIR) and 8A
(narrow NIR) but, since the overlaps of 7 and 8A are covered
by the overlap of 8, only the Sentinel-2 NIR band 8 is used.
Hence, the value of the SPOT NIR band is equal to the one
of the Sentinel-2 band 8.

2) Radiometric clamping: In contrast with images captured
by modern sensors such as Sentinel-2 MSI, SPOT images are
prone to saturation, especially over bright areas like clouds and
snow covered surfaces. Given the lack of objective criteria
to determine the saturation value, i.e. the reflectance above
which a pseudo-SPOT image should be saturated, we adopted
an empirical approach to estimate it from a large number
of SPOT images. We parsed every SPOT product available
over the Pyrenees from the SWH level 1C collection available
and extracted the saturation values of the green, red and NIR
reflectance bands from the metadata. The number of images
is 271, 1281, 132, 776 and 683 for SPOT 1 to 5 respectively.
A statistical model of the saturation values per spectral band
was built separately for every SPOT sensor.

Figure 3 shows a scatter plot between the saturation values
of the NIR and red bands for SPOT4. The data are also
classified by bins of saturation values in the green band. The
distribution follows multiple linear relationships, indicating
that the saturation of the NIR and red bands are related,
and the same observation can be drawn with the other band
combinations. Therefore, we generate a trivariate Gaussian
kernel density estimation (GKDE) from the distribution. We
use the gaussian_kde function of the scipy Python library
(Version 1.10.1) [33]. For a distribution of size n, the prob-
ability density function for a saturation vector of size d = 3
T = (Tgreen, Treds Tnir) " 1S Written as:

. 1 & R
f(x)—m;K(H (z i)

with H = hl,

Where [, is the identity matrix. gaussian_kde uses a Gaus-
sian kernel K to smooth the data, and a bandwidth parameter
h to determine the width of the kernel. The bandwidth controls
the trade-off between bias and variance in the estimation, with
a smaller bandwidth leading to a higher variance and a larger
bandwidth resulting in a higher bias.

Figure 3 (center) displays the 2D projection of the den-
sity function between NIR and red values. We use a small
bandwidth = 0.1 to ensure that the GKDE will fit the shapes
of the multiple linear relations and keep a probability of 0
between them. When processing a Sentinel-2 image, the Sen-
2-SPOT pipeline will randomly sample a set of saturation
values from this probability density. Fig. 3 (right) illustrates
how the sampling of 500 data points reproduces a similar
distribution to that of SPOT4.

We apply the same process to estimate the minimum
reflectance values from the metadata files and generate a

)
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Fig. 4. Above: Sentinel-2 image patch with a histogram of the red band.
Below: saturated pseudo-SPOT4 image patch with a histogram of the red
band.

B. U-Net

1) Architecture: We use the same U-Net architecture as
described in [25]. A U-Net is composed of two symmetric
paths for encoding and decoding. At the encoding path, the
network takes an input patch with C' channels and passes it
through five steps of convolution with a downsampling using
a 2 x 2 maximum pooling between each step. An encoding
step is described as:

o A first convolution layer with 64 x 2¢ x C; kernels of size
3x3 bringing the number of channels to C;;1 = 64 x 2°.
Where ¢ € [0..4] is the step number.

e A batch normalization

o A rectified linear unit (ReLU) activation function, bring-
ing negative values to zero

o A repeat of the three previous steps

The decoding path consists of four steps of convolution
with a bilinear upsampling followed by a skip connection
with the encoder before each step. A skip connection involves
concatenating the output of the convolution layers from an
encoding step with the features generated by the corresponding
decoding input, enabling the transfer of raw information from
the former to the latter (as illustrated by the crop and copy
operations in Fig. 1). A decoding step brings the number of
channels to C; 11 = 1024/2% (with i € [0..3] the decoding step
number). The last step ends with a final convolution layer with
a 1 x 1 kernel generating a patch with one channel for each
class.

During the training phase, it is important to ensure that
input data is normalized or standardized to a consistent scale
before being passed through the network. Hence, for each
channel, we normalize the dataset used for the training by
subtracting the mean from band and dividing the result by
the standard deviation. In addition, because dense tree canopy
impedes snow detection performances with optical satellite
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sensors [34], we mask pixels with a tree cover density greater
than 50%.

2) Input features: An input patch is formed by the con-
catenation of the pseudo-SPOT image green, red and NIR
bands, and two additional bands: a digital elevation model
(DEM) and a hillshade layer giving the pixel illumination at
the acquisition time. The DEM was included because the snow
cover area is largely influenced by elevation. The hillshade was
included because the surface reflectance of the snow cover
at the acquisition time is highly correlated to the hillshade
contrary to clouds. By providing these contextual features, the
model should be better equipped to discriminate cloud and
snow areas.

The elevation is extracted from the Copernicus DEM and
resampled to 20 m using bilinear interpolation. The hillshade
was calculated from the DEM and from the sun azimuth (¢)
and zenith (6) angles at acquisition time given in the image
metadata:

HillSha’dePixel = 255(COS 0 cos Spixel (5)
+ sin 0sin Spiger €08 (¢ — Apigel))
Spizel = arctan (%)2 + (%)2 ©)
dz dz
Apizel = arctan2 (d—y — %) %

The slope S of a pixel is calculated from the horizontal %
and vertical g—z rates of elevation change in a 3-by-3 window
centered on the pixel. The aspect A is the orientation of the
slope.

3) Loss: Table II shows how the classes can be unbalanced
in the training dataset, with the snow class being the minority.
Hence, when comparing the output of the U-Net with the
reference data, we calculate the loss for one batch using a
weighted cross entropy function :

I 2
L= WiRi;log(Pi)) ®)
i=1 j=0
. #train
th =
with 1 H#Htraing ©

With j € [0,1,2] the class (3 being a mask), ¢ the pixel,
W the weight, R the target (true) probability 1 or 0, P the
predicted probability, and I the amount of pixels in the batch.
We calculate the weight for the class j by dividing the number
of pixels in the training dataset with the number of pixel of
class j in the training dataset.

4) Training: An input patch has a size N x N x C' with
N = 572 pixels and C' = 5 channels (3 pseudo-SPOT bands,
1 DTM band and 1 hillshade band). The U-Net is trained
iteratively with batches of 11 patches at each iteration. The
training dataset is run through the U-Net multiple times (one
time being an epoch) in random order.

For each model, 90% of the training dataset is used to
actually train the U-Net while the other 10% is used to
follow the evolution of the loss after each epoch. The initial
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Fig. 5. Step 1: light training of the U-Net model. Step 2: heavy training from
the best checkpoint of step 1

parameters of a neural network impact if and how well the
training will converge toward a minimum in the loss curve. In
this work, the training is done in two steps (Fig. 5).

o The first step is a preliminary short training repeated 10
times with the same split of the training set but with
different weights initialization (seeds). The trainings last
40 epochs each and use a learning rate of 0.01. At the
end of each epoch we save a checkpoint of the network’s
weights and biases and of the training and evaluation
losses. In this step, we use a high learning rate to “look”
for the checkpoint where the U-Net can converge to a
state with minimum loss.

« The second step is a more intensive and time-consuming
training starting from the checkpoint found in step 1. Step
2 uses a lower learning rate of 0.0001 for 200 epochs.
A checkpoint is saved after each epoch and we keep the
one with the lowest evaluation loss.

C. Evaluation of the model

1) Evaluation of the model training strategy: Using Sen-2-
SPOT allows us to test several strategies to train the model.
In particular, we intend to evaluate the best strategy to obtain
a robust model to classify SPOT images over a large region
such as the Pyrenees mountain range.

We evaluate five models: four “local” models which are
trained and tested separately from data extracted over one of
the Sentinel-2 tiles covering the French Pyrenees (30TXN,
30TYN, 31TCH and 31TDH) and another model (referred to
as PYR) trained and tested from the combination of the same
four training datasets and therefore covering the whole French
Pyrenees (PYR) (Table II).

To train and test these models, we randomly select 12
Sentinel-2 images per tile, i.e. one image per month between
2016 and 2019, for a total of 46 images. The random selection
was done with the following conditions: (i) a minimum of ten
days between two images of the same tile, (ii) no simultaneous
acquisitions between two adjacent tiles to avoid duplicate data
in the overlapping regions, (iii) a cloud coverage below 90%,
and (iv) the relative orbit numbers of the Sentinel-2 images for
the tiles 30TXN, 30TYN, 31TCH and 31TDH are respectively
94, 51, 51 and 8. That last condition ensures that only complete
images (no nodata in the image edges) are selected.

We divided the input Sentinel-2 data into patches. However,
the output patches from the U-Net will have a reduced size of
388 pixels due to repeated convolutions. Consequently, patches

30TXN 31TDH

i . \ R S

| | : i s

B0TYN. " AICH
[ Tuile s2

Elévation

[1 1000- 1500 m

[ 1500-2000 m

I 2000- 2500 m

I >2500m

Fig. 6. Distribution of 80 Sentinel-2 patches across the Pyrenees (> 1000
m)

are extracted from input Sentinel-2 images with an overlap of
184 pixels between them.

To reduce the amount of unnecessary data outside of the
Pyrenees (without any mountainous features relevant for the
training) we use the DEM resampled to 20 m to filter the
patches and only keep those covering or partially covering
regions above 1200 meters of altitude. As an example, Fig. 6
shows 80 patches distributed among four Sentinel-2 products
(one for each tile). Tiles 30TXN and 31TDH, situated at the
extremities, cover both smaller portions of the Pyrenees above
1200 meters. Table II shows the distribution of unmasked
snow and cloud pixels used in the training and testing sets
between the four tiles. Even after filtering for high elevations,
the total distribution is still uneven with approximately half
the pixels being either snow or clouds and two times more
clouds than snow pixels. Tiles 30TXN and especially 31TDH
have a noticeably smaller sample size (Fig. 6).

We randomly split the data into two sets, which are used
to train and test the U-Net model with pseudo-SPOT data,
with the respective ratios of 80% and 20%. These ratios are
imposed for each Sentinel-2 image. We evaluate each model by
computing the confusion matrix metrics for the snow, cloud
and ground labels using those 20% testing data. Given that
the testing datasets are greatly imbalanced, the F1 score is
a suitable measure in such cases for evaluating a classifier’s
performances for a specific label. For each tile, we computed
the F1 scores of each label snow, cloud and ground. We also
computed the precison and recall scores of the snow label
for each month of the year. The Cohen’s kappa coefficient
expresses with only one value the overall agreement between
two classifications. While the kappa might not be as useful as
other methods when comparing different datasets [35] or when
evaluating a classifier on an imbalanced dataset, we use it to
compare, for each tile, the local model and the PYR model.

2) Evaluation using actual SPOT data: In the previous
section we rely on Sentinel-2 data for training and validation.
To make sure that the Sen-2-SPOT/U-Net pipeline is efficient
to classify actual SPOT data, we create a validation dataset
from actual SPOT4 data. Using SPOT4 allows us to generate
a reliable reference dataset by supervised classification of the
image since SPOT4 images have a SWIR band. For the same
Sentinel-2 tiles as above, we select four level 1C SPOT4
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TABLE II
DISTRIBUTION OF TRAINING (TOP TABLE) AND TESTING (BOTTOM TABLE)
PIXELS ACROSS THE FOUR TILES 30TXN, 30TYN, 31TCH, 31TDH OVER
THE PYRENEES

Tiles

Training datasets 300N 30ryN 31TcH 31tDH O@!

Nb of pixels 5.2¢7 10.9¢7 8.5¢7 3e7 27.7¢7
% of snow pixels 11.8 16 23.8 14.6 17.4
% of cloud pixels 28.6 35.5 29.1 26 31.2

Testing dataset

Nb of pixels 1.3e7 2.9¢e7 2.2e7 0.8¢e7 7.2e7
% of snow pixel 14.3 16.6 239 12.1 17.9
% of cloud pixel 28.2 34.1 31.8 31.6 32

120
2| 614291,20528 20010539 il
30TXN 30TYN 31TCH: 31TDH

Fig. 7. Map of the four SPOT4 images used for the inference test.

products (Fig. 7). The selected products contain a mixture
of snow, ground and cloud pixels, including regions where
clouds and snow are overlapping. Figure 8 shows an example
of how the SWIR band (b) helps differentiate between clouds
(white color) and snow (cyan color), as both the snow and
cloud covers are entirely saturated in the green and red bands
as seen from a manually generated saturation map (a). In (c),
the SWIR band is replaced with the NIR band and both clouds
and snow are the same color.

The supervised classification of the selected SPOT4 images
is done by manual selection of snow, cloud and ground
samples from color composites using the SWIR band. We
use 50% of the samples to run a Gaussian mixture model
to classify the entire image. This procedure is repeated for
each SPOT4 product. The classification is evaluated both
visually and using the confusion matrix computed from the
remaining 50% samples that were not used for the training
(results not shown here for the sake of brevity). If necessary,
the classification is refined by adding new samples. Table III
shows the distribution of classified snow and cloud pixels for
each tile.

Heavy saturation, transparent clouds and SPOT4 images
being encoded in 8 bit pixels made the classification chal-
lenging. A visual inspection of the four images has shown
that this is especially the case in areas of transition between
snow and ground and between snow and clouds where, in both
cases, pixels tends to be miss-classified as clouds. On the other
hand, pixels are rarely miss-classified as snow. For this reason,
we focus this evaluation of the U-Net’s performances on the
classification of snow pixels only. For each image we compute
the Precision and Recall of the snow label.
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I Green; Red; NIR

Fig. 8. Zoom on the 20120528 SPOT4 image with (a) a manually generated
saturation map (b) a false color with the Green, Red and SWIR bands (c) the
Green, Red, and NIR bands.

TABLE III
DISTRIBUTION OF SPOT4 PIXELS ACROSS THE FOUR TILES 30TXN,
30TYN, 31TCH, 31TDH OVER THE PYRENEES

Tiles
SPOT4 dataset 3,0\ 30TYN 31TCH 31TDH O
Nb of pixels 1.1e7 3.7¢7 2.8¢e7 1.8e7 9.3¢e7
% of snow pixel 6.5 13.0 21.1 73.6 25.8
% of cloud pixel 34 332 10.7 4.4 18.1
IV. RESULTS

A. Evaluation of the model training strategy

Figure 9 shows, for the local and PYR models respectively,
the confusion matrix between the reference labels from LIS
and the predicted labels from the U-Net on the pseudo-SPOT
datasets over the combined four Pyrenean tiles.

Both (a) and (c) show similar performances: for each label,
the amounts of true snow, true ground and true clouds are one
or two orders of magnitude larger than the amount of false
detections. In (a), between snow pixels and cloud pixels, the
U-Net has twice the amount of falsely predicted snow than of
falsely predicted cloud.

Figures 9 (b) and (d) show, for the local and PYR models
respectively, the kappa and F1 scores for each tile. Despite
a larger training dataset, the PYR model only brings a slight
increase of both kappa and F1 performances for the 30TXN,
30TYN, and 31TCH tiles. On the contrary, we notice a more
marked improvement over the 31TDH tile, which has the
lowest performances with both the kappa, the snow F1 and the
cloud F1 scores below 0.75. As seen in Table II, the 31TDH
training dataset is notably smaller than the other datasets,
which reduces the effectiveness of the locally trained model
31TDH while the PYR model relies more on its training over
the other tiles.

The tile 30TYN also shows significantly lower scores than
30TXN and 31TCH despite being the tile with the largest
dataset. To better understand the factors behind the results of
Fig. 9, Fig. 10 shows, for each month of the year and for each
tile, the kappa, snow precision score and snow recall score
of the PYR model. The snow scores have less weight on the
kappa in the warmer months (June to October) as there is little
snow compared to the rest of the year (a negligible amount of
snow can produce extremely low or high scores).
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(a) Local models (b) Local models
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Fig. 9. For the ground, snow and cloud labels, confusion matrices (left)
and per-tile performance metrics (right) of the local models 30TXN, 30TYN,
31TCH, and 31TDH (a)(b) and of the PYR model (c)(d) on the testing pseudo-
SPOT4 dataset.
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Fig. 10. Precision and recall for the snow class and kappa score of the PYR
model over each tile for each month of the year.

In colder months, low precision scores happen when the U-
Net retrieves snow pixels in regions where LIS did not detect
them. This happens especially when LIS detected clouds where
there are none, for example in February for the tile 31TDH
and in December for the tile 30TYN. Figure 11 shows a patch
of the December product of tile 30TYN, where both the local
and PYR models retrieve snow pixels (purple) from falsely
detected clouds (green) and from missed snow cover in shadow
areas (red circle).

Where clouds are present, the U-Net generates larger cloud
covers in comparison to LIS, reducing the recall score of the
snow label. Figure 12 shows a patch of the February product
of tile 30TYN, where both the local and PYR models have a
coarser cloud cover than LIS.

B. Evaluation using actual SPOT data

Figures 13 (a) and (c) show, for the local and PYR models
respectively, the confusion matrix between the reference labels
generated with manual classification and the predicted labels

Labels
= Snow
= Clouds

0 750 1500m
—

Snow in shadows

Fig. 11. Patch of December over the 30TYN tile: (a) False color green, red,
SWIR of the Sentinel-2 patch (b) LIS classification (c) False saturated color
green, red, NIR of the pseudo-SPOT4 patch (d) U-Net classification with the
local model (e) U-Net classification with the PYR model.

Labels
= Snow
Clouds

0 7501500m
-—

Fig. 12. Patch of February over the 30TYN tile: (a) False color green, red,
SWIR of the Sentinel-2 patch (b) LIS classification (c) False saturated color
green, red, NIR of the pseudo-SPOT4 patch (d) U-Net classification with the
local model (e) U-Net classification with the PYR model.

from the U-Net on the SPOT4 datasets over the combined
four Pyrenean tiles. For (a), we ran the local models over
their respective tile and summed the respective confusion
matrices together. The recall and precision of the snow label
are respectively 0.46 and 0.97 for the local models and
respectively 0.44 and 0.98 for the PYR model.

From (b) and (d), where each tile correspond to one SPOT4
image, we do not observe the same performance improvements
from the PYR model over SPOT4 images as we did over
pseudo-SPOT4 images. With the exception of 30TYN, the
PYR model improves the snow precision slightly across the
dataset at the cost of a loss of snow recall. Figures 14, 15, and
16 show comparative maps of the manual classification, local
model prediction and PYR model prediction for, respectively,
the tiles 30TXN, 30TYN, and 31TCH. We also display the
TCD masks, as the pixels corresponding to a TCD > 50%
were not included in the analysis. In each case, the U-Net
enlarges the detected clouds, including the cloud shadows,
with a buffer. There is a stronger effect from the PYR model,
losing both true and false snow pixels which explains the
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Fig. 13. Ground, snow and clouds labels confusion matrices (left) and per-tile
snow label performance metrics (right) of the local models 30TXN, 30TYN,
31TCH, and 31TDH (a)(b) and of the PYR model (c)(d) on the testing SPOT4
dataset.

improvement of the snow precision and loss of snow recall.
The tile 31TDH is not displayed as it is heavily masked by
high TCD and does not provide additional information to the
results:

o 30TXN: Figure 14 displays an image with sparse clouds
above and next to snow-covered areas. The local model
correctly classifies most of the snow with a precision
of 0.88 and recall of 0.78. The PYR model has a snow
precision of 0.94 and a snow recall of 0.63.

e 30TYN: Figure 15 displays a heavily saturated image
with a mix of clouds and snow difficult to differentiate
without the SWIR band. Compared to the reference, the
U-Net classifies most of the image as clouds, resulting
in a very low recall of 0.034 (local). The PYR model
retrieves more snow without error, augmenting the recall
to 0.1 without lowering the precision (both models at
0.93).

e 31TCH: We observe a behavior similar to 30TXN. Figure
16 displays an image with clouds mostly above borders
between snow and no-snow areas. The local model cor-
rectly classifies most of the snow with a precision of 0.95
and recall of 0.71. The PYR model has a snow precision
of 0.96 and a snow recall of 0.64.

V. DISCUSSION

When tested on pseudo-SPOT4 images, both the local and
PYR models showed high agreement with LIS, with the lowest
kappa being close to 0.7. Those results show that the less
computationally intensive local models are sufficient for tiles
with significant snow cover. The PYR model trained over
the entire French Pyrenees only improves the results on tile
31TDH where snow pixels are rare. Yet, the performance on
this tile remains lower than the performance of the other tiles,
suggesting that the information brought from the other tiles
does not completely compensate for the lack of local training
data.
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Fig. 14. SPOT4 20100614 image section over the 30TXN tile: (a) False color
green, red, SWIR (b) Supervised classification (c) False color green, red, NIR
(d) U-Net classification with the local model (e) U-Net classification with the
PYR model.

Labels

= Snow
= Clouds
TCD
->50%
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Fig. 15. SPOT4 20120528 image section over the 30TYN tile: (a) False color
green, red, SWIR (b) Supervised classification (c) False color green, red, NIR
(d) U-Net classification with the local model (e) U-Net classification with the
PYR model.

Labels

= Snow
= Clouds
TCD
=->50%

0 25 skm
-——

Fig. 16. SPOT4 20010530 image section over the 31TCH tile: (a) False color
green, red, SWIR (b) Supervised classification (c) False color green, red, NIR
(d) U-Net classification with the local model (e) U-Net classification with the
PYR model.
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Fig. 17. For the 30TYN pseudo-SPOT4 testing dataset, bar plots of the local
model (blue) and LIS (orange) of the percentage of pixels detected as snow
across the hillshade values.

The LIS algorithm (as discussed in section II-B), which
generates snow and cloud maps at the operational scale from
Sentinel-2 data, was designed to minimize false snow positives
at the cost of overestimating the cloud mask since cloud pixels
can be filled by temporal interpolation [18], [30]. The U-Net
reproduces this behavior, with an overall precision of 95% at
the cost of overestimating the amount of clouds. When tested
on independent and actual SPOT4 data, we also observe that
the local models yield high precisions in snow detection while
overestimating the cloud cover. However, the PYR model does
not improve the performances over the SPOT4 dataset as it
did over the pseudo-SPOT4 dataset, suggesting that a locally
trained model might be a good approach to process more
SPOT images.

Another interesting observation from the results is the
detection of snow pixels by the U-Net in less illuminated areas
compared to LIS. From the pseudo-SPOT4 testing 30TYN
dataset, Fig. 17 shows for both the local U-Net model (blue)
and LIS (orange) a bar plot of the percentage of pixels detected
as snow across 17 equal ranges of hillshade values. The local
model detects more snow pixels than LIS, and the difference
gets bigger as the hillshade value gets lower. Inside the ]0,15]
range, hillshade values of 1 corresponds to areas with no
direct sunlight. In those areas the U-Net model detected 1.5
times more snow pixels than LIS. Those results hint at the
potential capacity of the model to retrieve missing snow pixels
in mountain shadows (as seen in Fig. 11) as an improvement
over the reference data.

VI. CONCLUSION

Emulating SPOT images from Sentinel-2 data (Sen-2-
SPOT) enables to train a deep learning model (U-Net) to
extract the snow cover area from historical SPOT images. We
find that the trained U-Net performs well despite the frequent
saturation of SPOT bands over cloud and snow surface, and
the absence of a SWIR band (SPOT1-3). This is due to the fact
that the U-Net takes advantage of the spatial context around
each pixel to determine its class in contrast with standard

pixel-based classifications. The training can be performed
separately by Sentinel-2 tile, although a more robust model
might be obtained in areas with scarce snow cover by using
neighbouring tiles. The U-Net outputs a confidence value for
the detected class, and that confidence value can potentially
be used to generate a pixel quality flag with the snow map.
However, more work should be done on the interpretation of
those values, as high confidence values are often given to false
clouds.

We performed an additional test (not shown here) by remov-
ing the green and red (which are the most prone to saturation)
and keeping only the NIR band, elevation and hillshade with
the same dataset. The results show that this reduces the number
of false cloud pixels (and therefore increases true snow). But
it also increases the number of false ground in snow covered
areas, which is more problematic for future analysis of the
SNOW cover maps.

In theory, this approach has no geographical limitations
since Sentinel-2 can be used to produce snow cover maps
anywhere. However, the method does not work in forest
regions due to the inability of optical sensors to observe the
snow underneath dense canopies. In addition, it was designed
and tested for mountain regions where the elevation plays a
first-order role in the spatial distribution of the snow cover
at the pixel level. It should be less effective in flat regions
where the pixel elevation has less importance than the subpixel
topography like arctic regions. It may be possible to further
improve the model by feeding additional auxiliary data to
the U-Net such as snow cover probability maps or gridded
meteorological data.

Once the training is done, the inference is fast and can be
applied to large volumes of data. Therefore, it can be used
to generate high resolution time series of snow cover maps
from the SPOT World Heritage collection over entire mountain
ranges like the Pyrenees or the Alps. This pipeline can also
be applied to reconstruct the snow cover from other satellite
missions with similar spatial and spectral characteristics like
Landsat.
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