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The approximate functional equation of some

Diophantine series

Fernando Chamizo∗ Bruno Martin†

July 13, 2022
continuity12

Abstract

We prove that a family of Diophantine series satisfies an approxi-
mate functional equation. It generalizes a result by Rivoal and Roques
and proves an extended version of a conjecture posed in their paper.
We also characterize the convergence points.

1 Introduction

Consider g : R −→ R an odd 1-periodic C1 function and f : R− Z −→ R a
1-periodic continuous function such that

(1.1) L = lim
x→0

(
f(x)− λ

x

)
exists (and it is finite) for some λ 6= 0. This means that the only singularities
of f , as a real function, are simple pole like singularities at the integers. For
(w,α) ∈ (R+)2, we introduce the Diophantine sum

(1.2) Φw(α) =

bwc∑
m=1

g(m2α)

m2
f(mα)

where Φw(α) is defined by continuity for α = p/q ∈ Q with q ≤ w. Note that
it makes sense because g(x) ∼ C(x−n) when x→ n ∈ Z. Note also that with
these assumptions, we have the uniform trivial bound g(m2α)f(mα)� m.

Motivated by a Diophantine approximation problem raised in [7], Rivoal
and Roques proved in [9] that when g(x) = sin(2πx) and f(x) = cot(πx),
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ΦN (α) satisfies an approximate functional equation for N ∈ Z+. Namely,
they show that

(1.3) GN (α) = ΦN (α)− αΦNα(1/α)− 1

πα

N∑
m=1

sin(2πm2α)

m3

has a limit whenN goes to infinity for each α ∈ (0, 1], and that it is uniformly
bounded in this interval. As a matter of fact, the last term could be replaced
by log(1/α). They conjecture that the limiting function is not only bounded
but continuous. The existence of this limiting function contrasts with the
fact, also proved for this choice of g and f in [9] (see also [7] for a weaker
result), that limN→∞ΦN (α) exists if and only if α is a Brjuno number, that
is, an irrational number such that the convergents pn/qn in its continued
fraction satisfy

∑
q−1n log qn+1 <∞.

As an aside, if we choose formally g as a constant, even replacing n2

by ns, approximate functional equations of similar kind (very explicit ones
in some cases) can be established, although the convergence conditions are
tighter (see [8], [2], [5]). These variants are related to some formulas of
Ramanujan for ζ at odd values (see [10]) and to previous works of Lerch (see
[6]). For other references and a historical account on approximate functional
equations, see [1, §3].

The proof of the existence of the limiting function given in [9] uses heav-
ily the additive properties of the sine function and the partial fraction ex-
pansion of the cotangent. We show here that this approximate functional
equation also holds with the general definition of ΦN as above and that it
can be deduced from a mainly combinatorial argument not depending on
the choice of f and g. We also prove the continuity of the limiting function
for α > 0 and its continuous extension to [0,∞), settling in particular the
conjecture posed in [9]. In the last section we apply a general result of [1]
for certain approximate functional equations to characterize completely the
convergence points of ΦN when N →∞.

Theorem 1.1. For N ∈ Z+ and α ∈ (0, 1] consider

GN (α) = ΦN (α)− αΦNα(1/α)− TN (α) with TN (α) =
λ

α

N∑
m=1

g(m2α)

m3

and ΦN as in (1.2). Then the sequence of functions {GN}∞N=1 is uniformly
bounded on (0, 1] and it converges uniformly on each compact interval I ⊂
(0, 1] to a continuous function G(α) = O

(
α log(2α−1)

)
.

Remark. The limit of TN (α) when N → ∞ can be taken separately
because the series converges but, as pointed out before, the separate exis-
tence of the limits of ΦN (α) and ΦNα(1/α) is not assured in general (see
Theorem 4.3). In [9], in the case g(x) = sin(2πx) and f(x) = cot(πx), the
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value G(0) = 0 is implicitly assigned. We prefer here to let it undefined and
to link it to the continuous extension through G(0+) = 0. Once we have
stated the convergence in (0, 1] the extension to α > 0 is rather easy.

Corollary 1.2. If we let α ∈ R+, G(α) = limGN (α) defines a continuous
function on R+ satisfying G(α) = O

(
α log(α−1+α)

)
. In particular G(0+) =

0 and G extends to a continuous function on [0,∞).

Notation. Given a real number x, ‖x‖ stands for the distance from x
to its nearest integer. Vinogradov’s notation A� B is employed here with
the same meaning as A = O(B).

2 Some reductions

We begin with some trivial remarks that eventually lead to some reductions
in the proofs of Theorem 1.1 and Corollary 1.2.

Lemma 2.1. If λ is as in (1.1), the series

∞∑
m=1

g(m2α)

m2

(
f(mα)− λπ cot(πmα)

)
converges uniformly to a continuous bounded function on R.

Proof. We know that f(x) − λ/x = O(1) and π cot(πx) − 1/x = O(x) for
x→ 0. Then f(x)− λπ cot(πx) is bounded in a neighborhood of 0 and, by
the 1-periodicity, it is bounded on R.

Lemma 2.2. Assume that Ω(α) = limN→∞
(
ΦN (α) − αΦNα(1/α)

)
is well

defined for a given α > 0. Then Ω(1/α) is also well defined and we have
Ω(α) + αΩ(1/α) = 0.

Proof. It follows easily from the definition of Ω(α).

Lemma 2.3. For f(x) = cot(πx) we have

ΦN (α) =
N∑
m=1

g(m‖mα‖)
m2

f(‖mα‖).

Proof. If ‖mα‖ = δ, there exists n ∈ Z such that mα − n = ±δ. Then
f(mα) = f(±δ) and g(m2α) = g(mn ±mδ) = f(±mδ). When taking the
product, the signs cancel because both functions f and g are odd.

The first two reductions and some simple manipulations with TN are
enough to conclude Corollary 1.2. We abbreviate limN→∞ TN as T .
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Proof of Corollary 1.2. By Lemma 2.1, it is enough to consider the case
f(x) = cot(πx). Theorem 1.1 assures the existence and the continuity of
G in (0, 1] which are reflected into [1,∞) thanks to Lemma 2.2. The con-
tinuous extension to [0,∞) follows from the bound G(α) = O(α log(2α)−1).
The only missing point is the bound G(α) = O(α logα) for large α. By
Lemma 2.2, for α > 0,

α−1G(α) = −G(α−1)− α−1T (α)− T (α−1).

By Theorem 1.1, G(α−1) → 0 when α → ∞ and α−1T (α) → 0 is obvious.
Finally, since g(x)/x is bounded we have

α

∞∑
m=1

g(m2/α)

m3
� 1 +

∑
m<
√
α

g(m2/α)α/m2

m
�

∑
m<
√
α

1

m
� logα,

showing that T (α−1) = O(logα) when α→∞.

3 Proof of the main result

The key argument to prove Theorem 1.1 is that the terms in αΦNα(1/α) are

almost completely canceled by the terms in
∑N

m=1
g(m‖mα‖)

m2 f(‖mα‖) such
that mα is close to a positive integer. The following elementary result will
be used to identify precisely these integers m. We remind the reader that
if y ∈ R is not a half-integer, then by + 1/2c gives the nearest integer to y.
Note that for any y ∈ R, y = by + 1/2c ± ‖y‖.

Lemma 3.1. For α ∈ (0, 1] fixed, the map rα : Z+ −→ Z+ given by the
formula rα(n) = bn/α + 1/2c is one-to-one and for m ∈ Im rα it can be
inverted with r−1α (m) = bmα+ 1/2c.

Proof. We can write m = rα(n) as m+ δ = n/α + 1/2 for some 0 ≤ δ < 1.
Eliminating n we have n = mα+ (δ − 1/2)α and so n is the nearest integer
to mα because |(δ−1/2)α| < 1/2 (the case (δ, α) = (0, 1) cannot occur since
it would imply m = n± 1/2). Consequently, n = bmα + 1/2c. This proves
that rα is injective, hence the conclusion.

An important, and still elementary, remark is that although rα may not
map [1, Nα] ∩ Z onto [1, N ] ∩ Im rα, the surjectivity only may fail for one
element.

Lemma 3.2. For N ∈ Z>1 and α ∈ (0, 1], let N∗ = N if r−1α ([1, N ]) ⊂
[1, Nα] and N∗ = N − 1 otherwise. Then

rα : [1, Nα] ∩ Z −→ [1, N∗] ∩ Im rα

is a bijection.
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Proof. Lemma 3.1 assures the injectivity. If N∗ = N the surjectivity and
the well-definition are obvious. If N∗ = N − 1, they follow because N∗ ≥
m ∈ Im rα implies N − 1 ≥ m = bn/α + 1/2c and n > Nα would give a
contradiction.

In the sequel, ψ is a fixed 1-periodic continuous even function such that
0 ≤ ψ ≤ 1, ψ(x) = 1 for x ∈ [−1/4, 1/4] and ψ(x) = 0 for x ∈ [3/8, 5/8].

In the following result, we quantify the cancellation phenomenon de-
scribed above between αΦNα(1/α) and ΦN (α). It is the main responsible
for the very existence of an approximate functional equation.

Lemma 3.3. Given n ∈ Z+, consider fn : (0, 1] −→ R given by

fn(α) =
n2

m2
g(m‖mα‖) cot(π‖mα‖)− αg(n‖n/α‖) cot(π‖n/α‖)

with m = rα(n). Then fn(α) = O(α) with an O-constant only depending
on g. Moreover, ψ(n/α)fn(α) is continuous and bounded on (0, 1].

Proof. Let us abbreviate δ = ‖mα‖. By Lemma 3.1, n = bmα+ 1/2c, then
m − n/α = ±δ/α and, since m = bn/α + 1/2c, we have ‖n/α‖ = δ/α.
It follows that fn(α) = n2g(mδ) cot(πδ)/m2 − αg(nδ/α) cot(πδ/α). Since
α cot(πδ/α)− α2 cot(πδ) = O(δ),

fn(α) = α2 cot(πδ)
(α−2n2

m2
g(mδ)− g(nδ/α)

)
+O(δ).

The relation m−n/α = ±δ/α implies α−2n2/m2 = 1+O
(
α−1m−1δ

)
. Since

g is differentiable, we also have g(mδ) − g(nδ/α) � |m − n/α|δ � δ2/α.
These bounds give

fn(α)� α2δ−1
(
α−1δ2 + α−1m−1δ

)
+ δ � α

as expected.

For the continuity, note that fn is a composition of continuous func-
tions except for the function α 7→ rα(n) giving m, which is discontinuous
when n/α is a half-integer. These discontinuities are eliminated by the fac-
tor ψ(n/α) because ψ vanishes at the half-integers.

Lemma 3.4. Given m ∈ Z+, the function

hm(α) =

{
1 if m 6∈ Im rα,

1− ψ
(
α−1‖mα‖

)
if m ∈ Im rα

is continuous on (0, 1].
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Proof. By definition, m ∈ Im rα means that n/α + 1/2 = m + δ for some
0 ≤ δ < 1 and some n ∈ Z+ and this is equivalent to

α ∈
∞⋃
n=1

( 2n

2m+ 1
,

2n

2m− 1

]
∩ (0, 1].

Note that α 7→ ψ
(
α−1‖mα‖

)
is continuous on (0, 1]. Hence, if we check

that both cases in the definition of hm coincide at the boundary points
α = 2n/(2m+1) and α = 2n/(2m−1) for 1 ≤ n < m then hm is continuous
by the pasting lemma. This is the same as checking that ψ

(
α−1‖mα‖

)
vanishes at α = 2n/(2m ± 1). Writing mα = n ∓ n/(2m ± 1), we have
α−1‖mα‖ = α−1n/(2m± 1) = 1/2 and ψ(1/2) = 0.

The proof of Theorem 1.1 is based on a rearrangement of the terms in
ΦN (α) − αΦNα(1/α) involving the functions fn and hm introduced in the
previous lemmas. In the rest of this section we assume f(x) = cot(πx) and
consequently λ = 1/π in the definition of TN . We can do it without loss of
generality by Lemma 2.1.

For w ∈ R+ and α ∈ (0, 1], we set

S(1)
w (α) =

bwc∑
n=1

ψ(n/α)
fn(α)

n2
,

S(2)
w (α) = α

bwc∑
n=1

(
1− ψ(n/α)

)g(n‖n/α‖)
n2

cot(π‖n/α‖),

S(3)
w (α) =

bwc∑
m=1

hm(α)
g(m‖mα‖)

m2
cot(π‖mα‖)

and we denote by S(j)(α) the corresponding infinite series.

Lemma 3.5. For N , N∗ and α as in Lemma 3.2, we have the decomposition

(3.1) ΦN∗(α)− αΦNα(1/α) = S
(1)
Nα(α)− S(2)

Nα(α) + S
(3)
N∗(α).

Proof. Let us set am = g(m‖mα‖) cot(π‖mα‖)/m2 and write am = bm+ cm
with bm = am if m ∈ Im rα and bm = 0 otherwise. With this notation,
according to Lemma 2.3, we have ΦN∗(α) =

∑N∗

m=1(bm + cm). Lemma 3.3
and Lemma 3.2 show that

N∗∑
m=1

bm − αΦNα(1/α) =

bNαc∑
n=1

fn(α)

n2
= S

(1)
Nα(α) +

bNαc∑
n=1

(
1− ψ

(n
α

))fn(α)

n2

= S
(1)
Nα(α)− S(2)

Nα(α) +

N∗∑
m=1

(
1− ψ

(r−1α (m)

α

))
bm
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where in the last sum, abusing of the notation, we assume that the undefined
values of r−1α (m) when m 6∈ Im rα are ignored because bm = 0. Using the
identity mα = r−1α (m) ± ‖mα‖ for m ∈ Im rα and recalling that ψ is even

and 1-periodic, the last sum is
∑N∗

m=1 hm(α)bm = S
(3)
N∗(α)−

∑N∗

m=1 cm.

Lemma 3.6. For each j ∈ {1, 2, 3}, the series S(j)(α) converges normally
to a continuous function on each compact interval I ⊂ (0, 1].

Proof. It is enough to check that the three functions ψ(n/α)fn(α),
(
1 −

ψ(n/α)
)

cot(π‖n/α‖) and hm(α) cot(π‖mα‖) are continuous and bounded
on each compact interval I ⊂ (0, 1]. For the first function, this is the content
of Lemma 3.3. For the second, it follows from the fact that ψ(x) = 1 when
‖x‖ ≤ 1/4. For the third, it follows from Lemma 3.4, noting that when
‖mα‖ < α/4, we have m ∈ Im rα and ψ

(
α−1‖mα‖

)
= 1 by the defining

properties of ψ.

Lemma 3.7. For N ≥ 1 and α ∈ (0, 1],

S
(j)
Nα(α)� α for j = 1, 2 and S

(3)
N (α)− TN (α)� α log(2α−1).

Proof. By Lemma 3.3, we have S
(1)
Nα(α) = O(α) and the same bound ap-

plies to S
(2)
Nα(α) because

(
1−ψ(n/α)

)
cot(π‖n/α‖) is uniformly bounded. It

remains to prove that

N∑
m=1

(
hm(α)

g(m2α)

m2
cot(πmα)− g(m2α)

παm3

)
= O(α log(2α−1)).

For m ≤ α−1/2, clearly m 6∈ Im rα and hence hm(α) = 1. Using cotx −
1/x = O(x), we obtain that the part of the sum corresponding to this
range is O(α log(2α−1)). On the other hand, in the complementary range
m > α−1/2, we have

∑
g(m2α)/m3 � α2 and it only remains to show that

the part of the sum involving hm is O(α log(2α−1)) in this complementary
range. We deduce it from the bounds

∑
m> 1

2
α−1

hm(α)
| cot(πmα)|

m2
�

∑
m> 1

2
α−1

‖mα‖>α/4

1

m2‖mα‖
�

∞∑
q=1

1

(qα−1)2

∑
k< 1

2
α−1

1

αk
.

The last inequality follows by writing m = qbα−1/2c + r with 0 ≤ r <
bα−1/2c and by noting that ‖mα‖ presents gaps of size α when r varies.
The last double sum amounts O(α log(2α−1)).

Proof of Theorem 1.1. Recall that we have defined T (α) = limTN (α). The
convergence is uniform, hence T is continuous on (0, 1]. On the other hand,
the trivial bound gives ΦN (α) − ΦN∗(α) � N−1. Hence, considering the
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decomposition (3.1), the uniform convergence of GN (α) on every interval
[a, b] ⊂ (0, 1] to

(3.2) G(α) = S(1)(α)− S(2)(α) + S(3)(α)− T (α)

follows from Lemma 3.6. The uniform boundedness of GN (α) on (0, 1] and
the bound G(α) = O(α log(2α−1)) are consequences of Lemma 3.7.

We can also state a result à la Hardy-Littlewood (cf. [3, Th. 2.128]).

Proposition 3.8. For N ≥ 1 and α ∈ (0, 1], we have

ΦN (α)−αΦNα(1/α) = TN (α)+G(α)+O
(

min
(
(Nα)−1, α log(2α−1)

)
+N−1

)
.

Proof. The trivial bound proves that ΦN (α)−TN (α) and ΦN∗(α)−TN∗(α)
differ in O(N−1) which is absorbed by the error term, then it is enough to
prove that ΦN∗(α) − αΦNα(1/α) − TN∗(α) − G(α) is � α log(2α−1) and
� (Nα)−1. Thanks to (3.1) and (3.2), it equals(
S
(1)
Nα(α)−S(1)(α)

)
−
(
S
(2)
Nα(α)−S(2)(α)

)
+
(
S
(3)
N∗(α)−TN∗(α)

)
−
(
S(3)(α)−T (α)

)
which is� α log(2α−1) according to Lemma 3.7. On the other hand, arrang-

ing the last two terms as
(
S
(3)
N∗(α)−S(3)(α)

)
+
(
T (α)−TN∗(α)

)
and following

the proof of Lemma 3.6, we have S
(j)
Nα(α)− S(j)(α) � (Nα)−1 for j = 1, 2,

S
(3)
N∗(α)− S(3)(α)� N−1 and trivially T (α)− TN∗(α)� N−2α−1.

4 Convergence

If we slightly strengthen the regularity requirements for g, it is possible
to characterize the convergence points of ΦN when N → ∞, extending [9,
Th. 2]. Namely, we impose in this section g ∈ C1,γ for some 0 < γ < 1. This
means that g′ satisfies locally the Hölder condition g′(y)−g′(x) = O

(
|y−x|γ

)
.

In fact it is enough to require it for x = 0.

The characterization of the convergence points is a quite direct applica-
tion of a general result in [1] on approximate functional equations (see [1,
Prop. 2] and [1, §6.2]). The point to be checked is a simple analytic fact.

Lemma 4.1. Let g be a bounded function in C1,γ for some 0 < γ < 1 with
g(0) = 0. Then

1

x

∞∑
m=1

g(m2x)

m3
− 1

2
g′(0) log

1

x

is a bounded function on (0, 1].
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Proof. We can restrict the sum to m < x−1/2 because the rest of the terms
give a bounded contribution to the function by the trivial estimate. On
the other hand, we know that g′(ξ) − g′(0) = O(|ξ|γ) and the mean value
theorem shows that g(t) = g(t) − g(0) = g′(0)t + O

(
tγ+1

)
for 0 ≤ t < 1.

Then ∑
m<x−1/2

g(m2x)/(m2x)

m
=

∑
m<x−1/2

g′(0)

m
+O

( ∑
m<x−1/2

xγm2γ−1
)
.

The first sum is g′(0) log x−1/2 +O(1) and the second is O(1).

The previous result shows that the case g′(0) = 0 is special and that in
fact, the sum in Theorem 1.1 could be omitted. The series appearing in the
next result is a model of what happens in this case under g ∈ C1,γ . The
purpose of introducing it here is to give a common treatment to g′(0) 6= 0
and g′(0) = 0 in the proof of Theorem 4.3 (in fact, the absolute convergence
in the latter case can be obtained as a quite direct consequence of it). A sec-
ondary reason is to show that an extra factor ‖n2x‖γ forces the convergence
everywhere of the series in [7, §4] (recall that

∥∥n‖nx‖∥∥ = ‖n2x‖).

Lemma 4.2. Let γ > 0. The series

∞∑
n=1

∥∥n‖nx‖∥∥γ+1

n2‖nx‖

converges for every x ∈ R and determines a bounded function, where the
terms with ‖nx‖ = 0 are defined (by continuity) as 0.

Proof. Of course, ‖nx‖ = 0 only occurs if x = a/q ∈ Q with q | n. On
the other hand,

∑q−1
n=1 ‖na/q‖−1 � q log q if q - n. Then subdividing the

range of n into blocks of length q the series for x = a/q is majorized by∑∞
k=1(qk)−2q log q, which converges and is uniformly bounded.
For x 6∈ Q, let S be the part of the series corresponding to q ≤ n < Q

with p/q and P/Q consecutive convergents in the continued fraction of x. It
is enough to prove S = O(q−σ) for some σ > 0 because the denominators of
the convergents grow exponentially [4, Th.12]. Replacing

∥∥n‖nx‖∥∥ by 1, the
terms in S with q - n contribute O

(
q−1 log(2q)

)
as shown in the proof of [2,

Prop.3.1] (where they are labeled S2 and S3) taking k = 1, s = 2. If q | n,
[2, Lem. 2.3] proves that n‖nx‖ ≤ 1 and n‖nx‖ ≥ 1 imply, respectively,
n�

√
qQ and n�

√
qQ because qQ‖nx‖ � n. Summing up,

S �
∑

q≤n�
√
qQ

q|n

(n2/qQ)1+γ

n2(n/qQ)
+

∑
√
qQ�n<Q
q|n

1

n2(n/qQ)
+

log(2q)

q
.

Writing n = kq, we obtain that each sum is O(q−1).
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Now, we are ready to decide about the convergence of ΦN when N →∞.
To keep the coherence with the previous parts, we state the result for positive
numbers, but the periodicity allows to extend it to R.

Theorem 4.3. Let f and g as in the introduction but imposing also g ∈ C1,γ

for some 0 < γ < 1. For x ∈ R+ and g′(0) 6= 0, the series

∞∑
m=1

g(m2x)

m2
f(mx)

converges if and only if x is a Brjuno number. On the other hand, it con-
verges for every x ∈ R+ if g′(0) = 0.

Proof. By the 1-periodicity of the series, we can restrict ourselves to x ∈
(0, 1]. And we can also suppose that f(x) = cot(πx) (see Lemma 2.1). In
this interval, the result for x irrational is an application of Proposition 2 in [1]
with (we rename g there as g∗ to avoid the clash of notation) a = θ = s = 1,
f(x, v) = Φv(x)− SG+H(x), g∗(x) = 1

2λg
′(0) log x−1 and H(x) the function

in Lemma 4.1 multiplied by λ. We have to check that

ε(x, v) = f(x, v)− xf(1/x, xv)− g∗(x)

satisfies the four conditions i), ii), iii) and iv) in [1, §4.1]. This is done in
[1, §6.2] for the case g(x) = sin(2πx) and f(x) = cot(πx) and the arguments
can be repeated almost word by word here. We refer the reader to look up
[1] for more details. Set η(x, v) = xΦxv(1/x)− xΦxbvc(1/x). We have1

ε(x, v) = Gv(x)−G(x)− λ

x

∑
m>v

g(m2x)

m3
− η(x, v),

and since η(x, v)� x
∑

xbvc<n≤xv n
−1 � v−1,

ε(x, y) = Gv(x)−G(x) +O(x−1v−2 + v−1).

Conditions i) and ii) follow from Theorem 1.1. The condition iii) is obvious
in our case. Finally, the condition iv) requires Φv(x)� log(v+2) if g′(0) 6= 0
and Φv(x) � 1 if g′(0) = 0. The first case follows since g(m2x)f(mx) �
g(m‖mx‖)/‖mx‖ � m and the second case, using g(t) = O

(
|t|γ+1

)
, follows

from g(m2x)f(mx)�
∥∥m‖mx‖∥∥γ+1

/‖mx‖ and Lemma 4.2.

It remains to consider x = a/q ∈ Q+. Lemma 4.2 covers the case
g′(0) = 0 as before. If g′(0) 6= 0 it is easy to check that it does not converge.
Note that g(m2x)f(mx) tends to λg′(0)m when q | m and remains bounded
otherwise giving a divergence as in the harmonic series (see [9, p.98]).

1The term η(x, v) was forgotten in [1, §4.1].
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