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A R T I C L E  I N F O   

Keywords: 
Navigation 
Environmental features 
Virtual environments 
Space syntax 

A B S T R A C T   

Despite extensive research on navigation, it remains unclear which features of an environment predict how 
difficult it will be to navigate. We analysed 478,170 trajectories from 10,626 participants who navigated 45 
virtual environments in the research app-based game Sea Hero Quest. Virtual environments were designed to 
vary in a range of properties such as their layout, number of goals, visibility (varying fog) and map condition. We 
calculated 58 spatial measures grouped into four families: task-specific metrics, space syntax configurational 
metrics, space syntax geometric metrics, and general geometric metrics. We used Lasso, a variable selection 
method, to select the most predictive measures of navigation difficulty. Geometric features such as entropy, area 
of navigable space, number of rings and closeness centrality of path networks were among the most significant 
factors determining the navigational difficulty. By contrast a range of other measures did not predict difficulty, 
including measures of intelligibility. Unsurprisingly, other task-specific features (e.g. number of destinations) 
and fog also predicted navigation difficulty. These findings have implications for the study of spatial behaviour in 
ecological settings, as well as predicting human movements in different settings, such as complex buildings and 
transport networks and may aid the design of more navigable environments.   

1. Introduction 

Some environments are famously hard to navigate. Patients in 
Homey Hospital (USA) reportedly avoided leaving their rooms for fear 
of getting lost (Peponis, Zimring, & Choi, 1990). The Seattle Central 
Library, while being widely acclaimed for its aesthetics, is renowned for 
being difficult to navigate (Carlson, Hölscher, Shipley, & Dalton, 2010; 
Kuliga et al., 2019). In a recent incident in Australia, a man died after 
getting lost in a rarely-used stairwell in a shopping mall, and he was only 
found three weeks later (Jeffrey, 2019). Poor building design has real- 
world consequences. But what factors make an environment hard to 
navigate? This is a key question in the study of human navigation, and 
yet so far, the existing work within the cognitive sciences has failed to 

provide a clear answer. 
The shift in cognitive science toward real-world approaches has 

resulted in a renewed focus on the impact of environmental factors on 
spatial cognition. Wiener and Mallot (2003) found that region- 
connectivity influences navigation behaviour, in line with hierarchical 
theories of route planning. In their study of exploration patterns, Brunec, 
Nantais, Sutton, Epstein, and Newcombe (2023) analysed integration, a 
space syntax measure of how well connected a path is within its overall 
surroundings and found that those participants who spent more time in 
regions of high integration formed more accurate cognitive maps. 
However, most existing studies employ only a single or a few environ-
mental metrics. This is a big setback because there is no consensus on 
which metrics impact navigation behaviour. Moreover, an important 
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aspect in the study of navigation are computational models, which again 
often involve few environmental metrics (e.g. obstacles in Edvardsen, 
Bicanski, & Burgess, 2020, or information cost at decision points in 
Lancia, Eluchans, D’Alessandro, Spiers, & Pezzulo, 2023). If we want to 
evaluate whether computational models reproduce human navigational 
patterns in a given environment, we need to further our understanding 
of precisely how that environment affects human navigation, and this 
step requires advancing our knowledge of the impact of different envi-
ronmental metrics. 

Previous research on the navigability of environments has come from 
a variety of disciplines ranging from psychology to architecture. To date, 
a series of environmental factors have been hypothesised to impact 
navigation behaviour, including: entropy of path orientations (Batty, 
Morphet, Masucci, & Stanilov, 2014), connectivity of paths (Li & Klip-
pel, 2012, 2016), interconnection density (Slone, Burles, & Iaria, 2016), 
visibility (He, McNamara, & Brown, 2019; Li & Klippel, 2012) and 
intelligibility of the paths/streets (Barton, Valtchanov, & Ellard, 2014; 
Hillier, 1996). Farr et al. (2012) reviewed existing research on envi-
ronmental factors that affect navigation and listed city layout, colour 
and light, maps, signage, visibility, inter-connection density and space 
syntax measures. Another research study included differentiation, visual 
access, layout complexity and signage as environmental factors that 
affect navigation performance (Montello, 2005). Another review article 
(Wolbers & Hegarty, 2010) identified the following environmental cues: 
discrete environmental objects, global orientation cues, geometric 
structure of the environment and symbolic representations were 
mentioned. Despite the large number of candidates, it is not clear yet 
which environmental factors help people more or make it harder to 
complete a navigation task. 

Four main approaches have been used to study how the environment 
impacts navigation and spatial behaviour. These are: a) examining GPS 
trajectory data in real-world environments collected as part of daily 
activities such as running (e.g. Bongiorno et al., 2021), b) GPS trajec-
tories from participants navigating real-world environments (e.g. Cou-
trot et al., 2019), c) testing navigation in the physical lab setting (e.g. 
Hamburger & Knauff, 2011), and d) testing with virtual reality (VR) 
environments (e.g. Brown, Gagnon, & Wagner, 2020; Ekstrom, Spiers, 
Bohbot, & Shayna Rosenbaum, 2018; Javadi et al., 2019; Slone, Burles, 
Robinson, Levy, & Iaria, 2015). A challenge with studying navigation in 
the real-world is that environmental features are hard to separate 
experimentally, and, as a result of their interaction, it is hard to deduce 
their impact on the difficulty of navigating an environment (Carlson 
et al., 2010; Jeffery, 2019; Montello, 2007). A good example is Haq and 
Girotto (2003) study, in which they examined wayfinding in two sepa-
rate hospital buildings in the U.S. to understand the relationship be-
tween wayfinding and intelligibility. While they found that 
intelligibility was a good predictor of success in mapsketching and 
pointing tasks, these results did not translate to wayfinding perfor-
mance. The more intelligible environment was arranged around a very 
long corridor (with many decision points) along which most of the 
destinations were located. Small wayfinding errors would therefore 
result in participants having to retrace their steps, and thus incurring 
redundant decision point use (i.e. passing a decision point not required 
to complete the wayfinding task) and repeat decision point use (i.e. 
passing the same decision point twice). Furthermore, when participants 
became disoriented, they wandered around, increasing their exposure to 
the environment and potentially affecting their performance in the 
mapsketching task (Haq & Girotto, 2003). Results of another wayfinding 
experiment highlighted that analysing performance in only two envi-
ronments was a significant limitation, because a host of unaccounted 
factors (e.g. the rectilinearity of the street network) could account for 
the differences in the studied measures (Long & Baran, 2012). Recent 
research exploring when patients with dementia become lost in real- 
world situations helps to extend beyond two environments (Puthusser-
yppady, Coughlan, Patel, & Hornberger, 2019; Puthusseryppady, Man-
ley, Lowry, Patel, & Hornberger, 2020), but lacks the capacity for 

systematic comparison of variables that can be achieved in lab experi-
ments. Previous studies in the lab and in virtual settings have compared 
a small number of environments while measuring a small number of 
environmental features. For instance, Slone et al. (2015) compared two 
virtual layouts systematically varying in one objective measure of plan 
complexity, the interconnection density (Li & Klippel, 2012; O’Neill, 
1991; Slone et al., 2016). They found that more complex layouts were 
harder to navigate. The difficulty in assessing a given variable is that in 
the real-world it may interact with a plethora of other environmental 
features to determine the navigability of an environment. It is possible 
that when included with a range of other metrics across many envi-
ronments the impact of a given metric becomes minimal. 

To address the question of which factors are most important in 
spatial navigation, it is ideal to measure environmental features in a 
variety of environments, and then analyse wayfinding performance 
across many participants to account for individual differences in per-
formance. This is a challenge because the time taken to test many en-
vironments may be longer than a standard experiment and testing many 
participants with such a test is difficult. Here, we surmounted these 
challenges by calculating 58 spatial metrics to examine the trajectories 
of over 10,000 participants navigating 45 virtual environments in the 
mobile video game Sea Hero Quest (SHQ) (Coutrot et al., 2018; Spiers, 
Coutrot, & Hornberger, 2021). The gamification of experiments is a 
powerful tool for data acquisition. It has the potential to provide a large 
data set, especially if the game/experiment is designed to be fun and 
interactive (De Leeuw, De Maeyer, & De Cock, 2020). Moreover, 
gamified studies allow for the collection of data from large samples from 
different parts of the world, which is what SHQ was designed for 
(Morgan, 2016). However, previous studies stated that game worlds do 
not take into account the configurational preconceptions of their envi-
ronments in full and game environments should be designed using 
different techniques, including space syntax (Biyik & Surer, 2020). This 
is also addressed during the design process of SHQ. Previous work has 
used SHQ to study the relationship between sleep duration and spatial 
navigation performance (Coutrot et al., 2022b), the environment and 
navigation (Coutrot et al., 2022a), the relationship between gender 
differences in navigation and countrywide gender inequality (Coutrot 
et al., 2018), and spatial navigation strategies (West et al., 2022). The 
richness and volume of this data set allowed us to study different com-
binations of environmental features and their impact on wayfinding. 
Analysing the data with a variable selection method, we isolated eight 
spatial metrics that best explained navigability. 

2. Material and methods 

2.1. Participants 

Between May 2016 and March 2019, 3,881,449 participants from 
every country downloaded and completed at least the first level of the 
game. 60.8% of the participants entered their demographics (age, 
gender, and nationality). The profile of the participants who played only 
the first levels of the game is likely quite different from the participants 
who completed all 45 wayfinding levels. To avoid selection biases and to 
be able to compare the levels with one another, we used the subsample 
of participants who completed all the levels in the game and provided 
demographics for the further analysis (to see the proportion of the total 
number of players per level, see Appendix B). As a result of this sampling 
process, 10,626 participants were included in the analysis. Among them, 
5219 were male (age: M = 41.89 years, SD = 15.95 years) and 5407 
were female (age: 41.98 years, SD = 16.32 years). 

2.2. Task 

In Sea Hero Quest, participants navigate a boat through a series of 
virtual environments (for an extensive description, see Coutrot et al., 
2018; Spiers et al., 2021). The wayfinding task was designed with 
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consideration of Wiener et al. ‘s taxonomy of human wayfinding tasks 
(2009) to involve wayfinding with path planning. The wayfinding per-
formance in SHQ has been shown to be predictive of real-world navi-
gation performance (Coutrot et al., 2019). 

Participants navigated through 45 different levels. Level progression 
was linear, so participants needed to complete level N in order to access 
level N + 1. At the beginning of each level, participants were presented a 
map showing a series of goal locations. They had to navigate to the goal 
locations in the indicated order (i.e., they needed to reach goal 1 first, 
then goal 2, etc). Participants could study the map and, after clicking the 
close button, the map disappeared and participants started to navigate 
(Fig. 1). They used four commands during the game to move the boat: 
they tapped right to turn to the right, tapped left to turn to the left and 
swiped up to speed up, and swiped down to stop the boat. This was 
explained in the first levels of the game. If goals were not encountered in 
the required order, participants had to return from one goal to another in 
order to complete the task. The task was marked as complete once all 
goal locations had been visited in the appropriate order and the 
participant received between one and three stars depending on how 
quick they completed the level. If the participant took longer than a set 
time, an arrow indicated the direction to the goal along the Euclidean 
line to aid navigation. The results were uploaded on a server as soon as 
participants completed a level. If they were offline, then the data was 
stored on their device and sent when they were online again. 

2.3. Level design 

The levels were designed to vary in terms of spatial configuration, 
the number of goal locations, visibility conditions (i.e., fog versus clear 
environments), themes (e.g. arctic environment, swamps, etc), and 
landmark saliency (for more information about landmarks see Yesiltepe 
et al., 2020; Yesiltepe et al., 2020, Yesiltepe, Conroy Dalton, Ozbil 
Torun, Hornberger, & Spiers, 2020, Yesiltepe et al., 2020; Yesiltepe, 
Conroy Dalton, Ozbil Torun, Hornberger, & Spiers, 2020; Yesiltepe, 
Dalton, Torun, Noble, et al., 2020; Yesiltepe, 2021; Yesiltepe et al., 
2019; Yesiltepe, Conroy Dalton, & Ozbil Torun, 2021). Some levels also 
used partially occluded maps (see Fig. 1), such that participants did not 
have a full preview of the environment, just the start locations and the 
arrangement of goals. 

The levels were designed to have specific and controlled degrees of 
complexity that varied across levels. To this aim, we employed O’Neill’s 
‘interconnection density’ measure (ICD). As we mentioned, ICD is the 
average number of choices at decision points. In graph terms, ICD is the 
sum of the degrees of all decision points, divided by the total number of 
decision points in the graph. The reason we used ICD is that it has been 
found to be strongly correlated with the degree of perceived complexity 
of building layouts (r = 0.78, p < .01) (O’Neill, 1991). 

We generated layouts with a specific number of decision points and 
connections, resulting in a specific ICD measure for each layout. We 
produced a series of layouts varying in ICD values, and then analysed 
each potential layout to measure its intelligibility. Intelligibility is 
defined as the correlation between how well connected a space is (linked 
to the metric of degree centrality) and how accessible it is, which is 
expressed using a variation of the graph measure closeness centrality 
(Hillier, Burdett, Peponis, & Penn, 1987). In this process, intelligibility 
served as a fitness function for inclusion in the game levels. We selected 
the final layouts so that they formed three groups varying in intelligi-
bility: highly intelligible (0.8–0.85), averagely intelligible (0.5), and 
highly unintelligible (0.15–0.2). The game was designed such that levels 
with lower intelligibility values were generally encountered later in the 
game, and we expected these levels to be harder to complete and that 
they would result in higher difficulty scores. The bottom part of Fig. 1 
includes the difficulty of each level, which shows that the later levels are 
on average harder to navigate compared to the first wayfinding levels. 

Once all the layouts were selected, they were transformed into the 
game levels by the game design company Glitchers Ltd. Another analysis 

was undertaken after the game design process to ensure that they 
retained the correct levels of intelligibility, post-transformation. At the 
final stage, each level was user-tested by the design team and the sci-
entific and architectural team to ensure it was suitable. For example, if a 
level was too easy/hard to complete the navigation task, then the level 
was revised by adding/removing deadends and simplifying/increasing 
what was estimated by the design team for complexity of the layout. All 
our environmental analyses for 58 metrics were completed only after the 
environment design was finalised and converted into game 
environments. 

2.4. Environment analysis 

To analyse the environmental configuration of each of the 45 levels, 
we employed 58 separate metrics (for a detailed description of each of 
the metrics, see Appendix A Table A1, and see Appendix A Table A.2. to 
see the results of our calculation for 58 metrics), which, based on pre-
vious studies, were all potentially linked to navigation performance. The 
metrics fall into four families: task-specific metrics; space syntax rela-
tional metrics; space syntax geometric metrics; and general geometric 
metrics. 

Task-specific measures correspond to those features that are not 
intrinsic to the spatial layout itself but that instead depend on the task 
that was set for participants to complete. These include: (a) the number 
of destinations (i.e. the number of goal locations the participant must 
reach before the task is marked as complete), (b) the weather (i.e. the 
presence or absence of fog within a level), map occlusion (i.e. whether or 
not the map is partially occluded) and the (c) shortest route (i.e. the 
shortest path passing all of the goal locations in the correct order from 
the starting point). In principle, tasks are made easier if goals are placed 
in a sequence that matches their ordering, while they are made more 
difficult if the shortest route between subsequent goals involves a lot of 
backtracking and crossing of previous routes. Other task related mea-
sures included map condition (occluded map vs clear map). 

Space syntax relational metrics and space syntax geometric metrics 
were developed using space syntax (see Appendix C.1-C.11. for the 
images we prepared to illustrate some of the space syntax metrics for 
each level), a set of techniques designed to measure the spatial config-
uration of built environments (Hillier & Hanson, 1984). These methods 
are based on the analysis of either lines of sight/movement (drawn ac-
cording to inter-visibility between two points) or points/grids. This in-
cludes axial and segment analysis —which are line-based—, and 
visibility graph analysis (VGA) and isovist analysis —which are based on 
points/grids. Axial analysis is based on drawing lines of sight, which 
relate the visibility and movement through navigable spaces. A segment 
is a line that transects the space between two junctions/decision points 
(Al-Sayed, Turner, Hillier, Iida, & Penn, 2014; Hillier & Iida, 2005). VGA 
is based on the visibility of each point (or grid) from the rest of the 
environment (Jiang & Claramunt, 2002; Turner, Doxa, O’Sullivan, & 
Penn, 2001). Isovists measure the set of visible sub-spaces from a specific 
point. 

The space syntax analysis of the levels followed several stages. First, 
the layouts of all 45 levels were collected as .png files, in the form of 
solid-void versions of the layouts: black for barriers to navigation and 
white for navigable space (Fig. 2a). These were then converted to .dxf 
files to produce editable versions of the layouts. We used Depthmap X 
0.50 to run the space syntax analysis (Varoudis, 2012). Axial maps were 
automatically generated with the software and the fewest-line layouts 
were used. In order to create segment maps of the layouts, the edges of 
navigable spaces were first defined with points in ArcMap, and Voronoi 
polygons were generated using those points. These Voronoi polygons 
were used to define segment maps, with the edges of the polygons 
shaping the segment lines. Once the segment maps and the axial maps 
had been created, we computed axial and segment analysis to generate 
the space syntax measures. VGA analysis was also automatically 
generated (Fig. 2b). The resulting space syntax measures are either 
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Fig. 1. Navigation Task Sea Hero Quest. Top row: Example maps shown to participants at the start of 5 of the 45 wayfinding levels tested. Each map is from a 
different themed region in the game. Maps show starting location (blue arrow) and checkpoints (red circles) to be navigated to in the order indicated by the numbers 
in the circles. Participants touched the close icon to close the map after studying the map (self-paced). Middle row: Views from the first-person view navigation period 
of the task. Tapping left or right of the boat allowed for steering. Stars at the top given an indication of time remaining to obtain 3, 2 or 1 star reward. Number of 
check-points reached is indicated top right. Middle map (level 38) shows an example of a map where the layout is obscured in the map image. Note: Levels with an 
obscured map layout were not consistently linked to levels with fog in the navigation phase. Bottom: Scaled difficulty of the levels is shown across time. The 45 
wayfinding levels of the game were distributed across the 75 levels of the game which included other features of the game (see Spiers et al., 2021). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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relational or geometric. 
Geometric space syntax measures are axial number of lines, axial line 

length and the ratio of the isovist view area (from the start point) to the 
total area. These measures focus on geometric characteristics of the 
defined spaces. Relational metrics, on the other hand, include all syn-
tactic measures that analyse the relationship between each space and all 
others, and they rely on an underlying graph-representation (decision 
points and edges) for their calculation. In brief, each of the space syntax 
relational measures are as follows: Connectivity measures the number of 
other lines that each line is connected to (Hillier & Hanson, 1984). 
Integration is a measure of centrality which calculates how accessible 
each segment is from the rest of the system in terms of the number of 
direction changes (which is strongly related to closeness centrality). 
Integration can be calculated at different radii from the centre of the 
environment, with the largest radius corresponding to a measure of 
global integration. Intelligibility is the correlation between global inte-
gration and connectivity, and it is generally understood to indicate how 
easy it is to comprehend the layout (Hillier, 1996; Hillier, Burdett, et al., 
1987). Separate measures of integration, connectivity and intelligibility 
were produced using both line-based analysis (e.g. Seg_Connectivity) 
and VGA analysis (e.g. VGA_Connectivity). Metric choice measures the 
possibility for each segment to be selected as a part of the shortest route 
between origin and destination (Al-Sayed et al., 2014; Hillier & Hanson, 
1984). Here, we used both choice and normalised choice, which adjusts 
choice values according to the depth of each segment in the system so 
that different environments can be compared (Hillier, Yang, & Turner, 
2012). Finally, metric reach measures the total street length that can be 
reached from an origin to all possible directions up to a certain distance 
threshold (Peponis, Bafna, & Zhang, 2008), and directional reach mea-
sures the total street length captured with a specific number of direction 

changes (Ozbil & Peponis, 2007). 
In addition to space syntax measures, we employed the following 

general geometric measures, which were calculated employing methods 
outside of space syntax techniques: number of decision points (# of 
decisionpoint), the area of navigable spaces (area_moveable spaces), the 
number of dead ends for both axial (# of_deadends axial map) and 
segment maps (# of deadends_seg-map), the number of rings (# of rings), 
average segment length (avrg_segmnt_length), maximum segment length 
(max_sgmnt_length), total segment length (total segment length), and 
entropy. Here, we included segment length as an equivalent to street 
length, which, as mentioned in the background section, was hypoth-
esised to be important for environmental layout complexity (Boeing, 
2018). Number of rings corresponds to the number of rings in the envi-
ronment, where circularity relates to a loop leading back to a prior 
location. Entropy is theoretically connected to many complexity metrics 
(Boeing, 2018, 2019), so that the higher the entropy, the more complex 
–i.e. less ordered– the network. To calculate entropy, we used the 
following formula: 

Equation 1. Entropy formula. 

H = −
∑36

i=1
P(oi)log(P(oi) ) (1) 

In the formula, H represents entropy, i indexes the bins and P(oi) 
represents the proportion of segment orientations that fall in the ith bin. 
This formula is based on Shannon’s entropy and was originally defined 
to compute the Street Network Entropy (SNE) in a city street network 
(Boeing, 2018; Coutrot et al., 2022a). To calculate the entropy, segment 
lines were used and the Douglas and Peucker (1973) was used to 
simplify the line made of the connected segments (Fig. 2c). For all game 
levels, maximum offset tolerance was used between the original and the 

Fig. 2. a: The procedure to create segment maps. Images from left to right: screenshot of the map of level 46, black and white image showing navigable spaces (in 
white), and segment map created from the same file using Voronoi polygons b: Illustrations of 3 space syntax analyses. Left and in middle: line-based maps; right: 
point/grid based analysis, see text for more details c: Simplified segment map and a rose plot of the segments’ bearings. The rose plots are used to calculate street 
network entropy. 
All the images show the layout of level 46. 
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simplified line of three pixels. 

2.5. Task difficulty 

To quantify the navigation difficulty score, we used the 10,626 tra-
jectories we recorded for each level. Participants’ trajectories, i.e., the 
path they used, were recorded by sampling the participants’ coordinates 
in the environment with a rate of 2 Hz. The length of the trajectory was 
then calculated. The difficulty score for each level was calculated by 
subtracting the minimum trajectory length from the median trajectory 
length and then normalising it with the minimum trajectory length. The 
minimum trajectory corresponds to the optimal trajectory for a given 
level. Hence, the difference between the median and the minimum 
trajectories shows how far the median performance is from being 
optimal. We divided this difference by the minimum trajectory length to 
normalize the difficulty score according to the size of the level. Without 
this step, this difference would be proportional to the size of the level 
rather than to its navigation difficulty. We computed the difficulty score 
for each level, and for different demographics. We computed the diffi-
culty score for Male vs Female participants, and for Younger (below the 
median age, 40 y.o.) vs Older (above 40 y.o.) participants. 

Equation 2. Difficulty score formula. 

Difficulty Score =(median(trajectory length) − min(trajectory length) )
/min(trajectory length)

(2) 

Equipped with the spatial metrics outlined in previous sub-sections 
and with the difficulty score, we can now rephrase our central 
research question as follows: Which spatial metrics (including task- 
specific metrics) best explain how difficult a level is? The challenge to 
answer this question empirically is that we had as many as 58 metrics 
(some of which were strongly correlated) and 45 levels. This multi-
collinearity means that we could not simply apply a standard regression 
to predict difficulty from metrics. We applied a principal component 
analysis (PCA), but the interpretation of its loadings was not straight-
forward, as highlighted in the results sections. Rather, we used a 
shrinkage and variable selection method for regression models: the Least 
Absolute Shrinkage and Selection Operator (LASSO) regression (Tib-
shirani, 1996). LASSO is similar to standard regression, but it penalises 
the number of predictors, leading to a sparser and more interpretable 
model. The formula for the LASSO regression is as follows: 

Equation 3. Lasso regression formula. 

Llasso(ß̂) =
∑n

i=1

(
yi − xT

i ß̂
)2

+ λ
∑m

j=1
∣ß̂ j∣ (3) 

Where ß are the coefficients (i.e., the importance) of the selected 
metrics x in predicting the difficulty, i is the level number, yi is the 
difficulty score of the ith level, and λ penalises the number of variables 
(the higher λ, the sparser the model). The selected metrics x are nor-
malised (z-score) to be on the same scale. The penalisation variable λ is 
determined with 10-fold cross validations for different values of λ. We 
chose the λ corresponding to the minimum cross-validation error plus 
one standard deviation. 

We bootstrapped the LASSO regression 1000 times to generate 95% 
confidence intervals for each coefficient. We first ran the LASSO 
regression for each of the four families of metrics and selected the 
metrics with non-zero coefficients. 

- For task-specific features, the metrics selected were: number of des-
tinations and weather.  

- For general geometric features, the metrics selected were: number of 
decision points, area of navigable spaces, number of circles, and Entropy.  

- For space syntax geometric features, the metrics selected were: 
number of axial lines, and isovist view area from the start/total.  

- For space syntax relational features, the metrics selected were: axial 
choice, axial integration, VGA connectivity, segment integration, and 

metric reach for a threshold of 25 units (MR 25). We used 25, 50, 75, 
100 units based on the size of all environments. 25 units mean 0.5 cm 
here. 

We then ran a second LASSO regression for all the selected metrics 
from each family. We also generated a correlation matrix with all the 
selected metrics in the four families. 

Finally, we explored whether different demographics affected the 
selection of metrics. To this end, we re-ran the whole analysis outlined 
above for Male and Female participants, and for Younger (below the 
median age, 40 y.o.) and Older (above 40 y.o.) participants separately. 

3. Results 

3.1. Principal component analysis 

Our primary aim was to understand which spatial metrics best 
explain how difficult a virtual environment is to navigate. As a first 
approach, we ran a Principal Component Analysis (PCA) on the 58 
metrics of the 45 levels. The first component of the PCA (C1) explained 
40% of the variance, and the second component (C2) explained 18% of 
the variance (Appendix D). The first component was strongly and 
positively correlated with difficulty (r = 0.74, p < .001), and the second 
component was weakly and negatively correlated with difficulty (r =
− 0.25, p = .12). As mentioned in the methods section, the issue with the 
Principal Component Analysis is that with 58 metrics, interpreting the 
loadings is not straightforward. In contrast, a Lasso regression allows us 
to select a limited number of important variables, which is much more 
useful when addressing our central question. 

3.2. Lasso regression 

We plotted all of the resulting metrics, together with difficulty, in a 
correlation matrix (Fig. 3). The correlation matrix shows that the diffi-
culty of levels is positively correlated with the number of decision points 
(r = 0.76, p < .001), number of circles (r = 0.76, p < .001) and number 
of destinations (r = 0.74, p < .001). There is a negative correlation 
between the difficulty and isovist view area from the start/total (r =
− 0.54, p < .001), weather (r = − 0.48, p < .001; i.e. worse performance 
with fog) and segment integration (r = − 0.41, p < .05). The results show 
that several geometric (general) and task specific features correlated 
with difficulty. 

We then ran another LASSO regression including all the selected 
metrics from each family (Fig. 4a). Weather and segment integration were 
selected with negative coefficients, and number of destinations, number of 
decision points, area of navigable spaces, number of circles, entropy and 
metric reach were selected with positive coefficients. 

3.3. Effects of demographics 

We re-ran the Lasso regression to separately predict the level diffi-
culty computed for Male and Female participants, then for Younger 
(below 40 y.o.) and Older (above 40 y.o.) participants. Younger and 
older participants were defined considering median age as a cut-off 
point. This resulted in different sets of coefficients for each de-
mographic (see Fig. 4b and Fig. 4c, respectively, but also see Appendix E 
for the Lasso coefficients for the selected metrics across age groups). For 
several metrics, there was a difference in the resulting coefficients but 
not in whether these were positive or negative (e.g. area of navigable 
space has a higher coefficient for Older than for Younger participants). 
Notably, there were some metrics that were selected only for one de-
mographic profile but not for the others. Number of decision points and 
axial integration were selected for Female but not for Male participants. 
Finally, axial integration was selected for Older but not for Younger 
participants. 
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4. Discussion 

In this study, we aimed to understand the factors that make an 
environment hard to navigate. We used an online app-based navigation 
test with a variety of virtual environments and a large sample of par-
ticipants to determine which environmental features best explain navi-
gability. We measured 58 spatial metrics —divided into four families— 
and, using a Lasso regression, we found the set of metrics from each 
family that best explained navigation difficulty. Re-applying the Lasso 
regression for the selected metrics returned a final selection of eight 
metrics. Several of these are consistent with past predictions of factors 
that make environments difficult to navigate (e.g. number of decision 
points, the presence of fog, area of navigable spaces, and metric reach), 
other factors were more nuanced and relate to the complexity of the path 
structure of an environment (e.g. entropy, number of circles and segment 
integration). Critically, we also discovered that several other predicted 
metrics, such as intelligibility, did not predict difficulty. Thus, our re-
sults indicate that perceived ‘complexity’ of an environment alone is 
insufficient to predict how difficult it will be to navigate. Instead, spe-
cific geometric features of an environment need to be measured. We also 
discovered differences between socio-demographic groups. For 
example, the number of decision points was more predictive of navi-
gational performance among female participants than among male 
participants, and among younger participants than among older ones. 
These findings help to explain why some environments are more 

difficult to navigate than others and provide design principles for 
navigable environments. Below we discuss the theoretical importance of 
each of the selected metrics. We then discuss an interesting finding of the 
current study: some variables (axial integration and number of decision 
points) had an impact on difficulty only for certain demographics in our 
sample. Finally, we discuss limitations of our study related to the use of 
mobile testing, the inclusion of participants, and the impact of land-
marks on navigation. 

4.1. Theoretical import of the selected metrics 

It is hardly disputable that the more complex an environment is, the 
harder it is to navigate. The challenge is how to measure that complexity 
(Boeing, 2019). Street network entropy had been previously hypoth-
esised to be a good measure of the complexity of spatial configuration 
(Batty, 2005; Batty et al., 2014). This is exactly what we find using SHQ: 
the higher the path network entropy of an environment, the harder it is 
to navigate that environment. Entropy is an informational measure of 
unpredictability, and our study shows that it also predicts wayfinding 
difficulty (Barhorst-Cates, Chiara Meneghetti, Zhao, & Creem-Regehr, 
2021). This is also consistent with results from a recent study that 
showed that people who grew up in more entropic environments (e.g. 
rural environments or organic cities) are better at navigating more 
entropic game levels in SHQ than people who grew up in less entropic 
environments (e.g. griddy cities like Chicago) (Coutrot et al., 2022a). 

Fig. 3. Correlation matrix with all the metrics that met threshold for significant correlation with difficulty using our Lasso approach. Each data point represents a 
wayfinding level. The line represents the least square regression line, the number next to it the correlation and the number on the right shows the p values. His-
tograms show the metrics distribution. 
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Our results suggest that growing up in more entropic environments 
provides greater challenge for wayfinding thus training navigation 
abilities compared to growing up in environments with more organised 
grid-like layout. 

The impact of entropy on wayfinding difficulty connects the present 
findings with recent information-theoretic approaches to the study of 
navigation (Lancia et al., 2023). Previous experimental work has 
employed information theory measures to model the saliency of 
different decision points when processing route directions (Takemiya, 
Richter, & Ishikawa, 2012), the capacity of grid cells in spatial memory 
(Mathis, Herz, & Stemmler, 2012), agent-signage interaction (Dubey, 
Thrash, Kapadia, Hoelscher, & Schinazi, 2021), or the cognitive cost of 
shortcuts (Lancia et al., 2023), to name but a few examples. Our findings 
advance this line of work by showing that the information-theoretic 
measure of street network entropy captures much of what makes an 
environment difficult to navigate. Moreover, because we used the Lasso 
regression to account for entropy as well as other potential predictor, 
our results are more robust than previous studies employing a single 
environmental metric. Furthermore, as entropy is a measure of 

unpredictability, this finding links with predictive approaches to spatial 
cognition. If, as recent models of hippocampal and prefrontal function 
suggest (e.g. Brunec & Momennejad, 2022; Stoianov, Maisto, & Pezzulo, 
2022), navigation depends on hierarchically nested predictions of the 
environment, it is congruent that the predictability of the environment 
(i.e. street network entropy) becomes a key factor in navigation 
difficulty. 

Our novel finding that segment integration is a key determinant of 
what makes an environment difficult to navigate may help explain some 
prior brain dynamics during navigation. Segment integration, which is 
linked to the closeness centrality of paths, measures how accessible each 
segment of a path is from the rest of the system. Using neuroimaging, we 
have previously found that the right anterior hippocampus tracked the 
changes in segment integration of the streets entered during navigation 
in London (Javadi et al., 2017). Given the central importance of the 
hippocampus in navigation guidance (Nyberg, Duvelle, Barry, & Spiers, 
2022) our new results may explain why segment integration is tracked 
by the hippocampus during navigation. Previous behavioural studies 
have also shown a link between wayfinding and segment integration. 

Fig. 4. Lasso coefficients for the selected metrics 
from each family (a), coefficients for Males and Fe-
males (b), and coefficients for different Younger and 
Older participants (c). The Lasso computation was 
bootstrapped 1000 times, and the boxplots represent 
the distribution of the coefficients across these itera-
tions. In the boxplots, the horizontal bar represents 
the sample median, the hinges represent the first and 
third quartiles, and the whiskers extend from the 
hinges to the largest/lowest value no further than 
±1.5 * IQR from the hinge (where IQR is the inter-
quartile range).   
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Peponis et al. (1990) and Willham (1992) found high correlations be-
tween wayfinding behaviour and local integration values. More 
recently, Haq, Hill, and Pramanik (2009) found local integration to be 
an effective predictor of both exploration and wayfinding. As for global 
integration values, such as the one we employed, Emo, Hölscher, 
Wiener, and Dalton (2012) tasked participants with a search task and 
found global integration to be the most effective measure of spatial 
configuration when explaining their path choices. Our results go beyond 
past studies showing integration is not only a good predictor of trajec-
tories (Hillier, Ann Penn, Hanson, & Xu, 1993; Penn, 2003), but also 
help predict how difficult an environment is to navigate. 

The findings here also speak to the use of line-based vs grid-based 
analyses. In isovist and visibility graph analyses, navigable space is 
represented with grids and the relationship between grids are investi-
gated. Previous studies comparing the two approaches discovered that 
grid-based analysis produces a better correlation with movement 
(Desyllas & Duxbury, 2001). While that might remain the case for pre-
dicting pedestrian movement, our findings show that line-based analysis 
(in our case segment integration) is better at predicting navigation diffi-
culty. One of the reasons for the disparities in results could be the 
environment studied in the 2001 study. Instead of multiple layouts, only 
one urban area, the area around St Giles Circus in Central London, was 
studied. Furthermore, pedestrian flow was sampled for 5-min intervals 
every hour from morning to evening. The differences in methods and 
case studies could explain the disparity in results. 

Richter (2009) had previously hypothesised that the more branches 
there are at a given decision point, the more difficult it is to navigate that 
intersection. Here, we find evidence supportive of the impact of decision 
points on difficulty, in that we found the number of decision points is a key 
metric to explain navigational difficulty. In addition, the inclusion of the 
number of circles in the set of significant factors is interesting because it 
has been the subject of debate. Some architects considered that ringiness 
might aid navigation, as it makes it easier for people to remediate their 
wrong turns (see also Natapov, Kuliga, Dalton, & Hölscher, 2020). This 
idea, which was not supported by empirical evidence, led to the con-
struction of many newly built nursing homes in the shape of a contin-
uous path around an inside courtyard. When Marquardt and Schmieg 
(2009) tested the hypothesis empirically, they discovered an effect in the 
opposite direction: circular floor plans hampered orientation. This can 
be explained with architectural differentiations: a circular path without 
salient objects can cause many locations to appear similar to other lo-
cations, causing confusion. Hence, the relationship between simplicity 
of plan configurations and orientation needs to be considered (Weisman, 
1981). Our findings support the argument that ringiness—the presence 
of rings within the environment/spatial layout—makes an environment 
more difficult to navigate (Hillier, Hanson, & Graham, 1987). Ringiness 
in Sea Hero Quest paths provided participants with alternate routes (e. 
g., they could take one route to a destination and another one to go 
back). Furthermore, when combined with the other environmental 
factors, such as the presence of fog or the absence of salient objects, it 
may be more difficult for participants to recover from any wrong de-
cisions. Therefore, the more rings an environment has, the more navi-
gational choices participants have. This could cause confusion and make 
it harder for people to complete the wayfinding task. Furthermore, en-
vironments with many rings will require more circumnavigation of a 
region. Such circumnavigation has been found to distort representation 
of travel time and Euclidean distance between locations (Brunec, Javadi, 
Zisch, & Spiers, 2017). Such distortions may play a role in leading to 
more errors in navigation. 

In the context of this experiment, the metric weather indicates the 
presence/absence of fog, and by extension, the degree of visibility 
within a level. Unsurprisingly fog leads to worse navigation. The 
importance of weather makes sense when we consider the importance of 
vision for human navigation (Ekstrom, 2015). In addition, if it is foggy, it 
is more difficult for participants to see environmental cues and use them 
to inform and navigate. The inclusion of the number of destinations in the 

final list is also not altogether surprising either, given that goals were not 
generally encountered in the order of passage. This results in a higher 
demand to keep multiple goals in mind and more back-tracking, both 
features of navigation found to drive increased activity in the prefrontal 
cortex (Javadi et al., 2019; Patai & Spiers, 2021). An increase in the 
number of destinations corresponds to an increase in the ‘intrinsic 
cognitive load’ (Sweller, 2010) of the task itself, which in turn is argued 
to increase wayfinding difficulty (Armougum, Orriols, Gaston- 
Bellegarde, Joie-La Marle, & Piolino, 2019; Giannopoulos, Kiefer, Rau-
bal, Richter, & Thrash, 2014). We also found that the larger the area of 
navigable spaces, the more difficult that level was to navigate. This 
finding is consistent with evidence that participants who travel longer 
distances tend to make larger directional errors (Ishikawa, Fujiwara, 
Imai, & Okabe, 2008). We note that by including minimum trajectory 
length in the calculation, we normalised the difficulty score according to 
the area of each level, to avoid larger environments resulting automat-
ically in higher difficulty scores due the very fact of being larger. 

The two other measures of complexity that made the final Lasso se-
lection were metric reach and segment integration, which originate in 
space syntax methods. Metric reach captures the density of paths and 
path connections accessible from each individual path segment (Peponis 
et al., 2008). The higher the metric reach of an environment, the more 
complex it is. Metric reach has previously been found to be a good pre-
dictor of pedestrian movement (Ozbil, Yesiltepe, & Argin, 2015). Here, 
we find that it is also a good predictor of wayfinding difficulty. More-
over, prior studies have suggested intelligibility would be an important 
factor for predicting difficulty (Conroy, 2001; Hillier, 2012; Kim, 1999). 
Yet, we found no relationship between it and difficulty. This may be 
because other variables manipulated here, such as the number of deci-
sion points, may have a more dramatic effect on difficulty and these can 
be high in environments which score high on intelligibility. 

4.2. The impact of the variables on different socio-demographic groups 

Finally, our analysis stratified participants by gender and age. 
Notably, we found a roughly equal proportion of men and women in the 
pool of participants who completed the 45 levels, similar to the pro-
portion who initially downloaded the game. This is interesting because 
on average men perform better at navigating in SHQ (Coutrot et al., 
2018). Thus, this suggests that perseverance in completing the game was 
not solely a function of navigation skill, but also of participants’ deter-
mination. Even if participants became disoriented or made incorrect 
decisions during navigation, they could retrace their steps and complete 
the navigation tasks. There were a few differences between groups in our 
lasso analysis. Axial integration was selected for Female and Older par-
ticipants but not for Male or Younger participants. Axial lines are 
determined in terms of visibility, following the “line of sight” concept 
(Hillier & Hanson, 1984). This implies that female participants and older 
participants are more sensitive to length of the view in an environment. 
Additionally, we found female, but not male, participants were impacted 
by the number of decision points. It is unclear why this is. Female par-
ticipants tend to be more likely to re-use prior learned routes or follow 
route strategies (Boone, Maghen, & Hegarty, 2019; Fields & Shelton, 
2006; Marchette, Bakker, & Shelton, 2011). It may be that increasing the 
number of decision points makes determining a route (e.g. left, then right, 
etc) more difficult, but more research would be useful to replicate this 
finding and explore it further. 

4.3. Limitations and future directions 

Our study contains a number of limitations that are useful to 
consider. Firstly, although we have shown navigation in Sea Hero Quest 
predicts real-world navigation (Coutrot et al., 2019) and that flat-screen 
VR is a good approximation to the real-world for spatial memory (Zisch 
et al., 2022) there are many differences in our experiment to real-world 
navigation. Navigation in physical environments typically provides a 
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wide field of view while it can be more restricted in virtual environ-
ments, which can cause difficulty of spatial learning (Barhorst-Cates, 
Rand, & Creem-Regehr, 2019). In addition, idiothetic information is 
available and the control of movement is different. Thus, it will be useful 
to use the findings from this study to make predictions about the navi-
gational difficulty of real-world environments. Due to constraints in 
creating a coherent video game we were limited in the extent to which 
we could make environments that were extreme for particular proper-
ties. For example, it would be useful to contrast an extremely griddy to 
maximally entropic environment to show the extent of the impact of 
street network entropy on navigation. A similar approach could be taken 
for the other variables, such as the impact of regional boundaries on 
navigation (Griesbauer, Manley, McNamee, Morley, & Spiers, 2022), 
and extended to other animals and artificial agents (de Cothi et al., 
2022). Finally, the participants who entered our analysis were those that 
completed all the levels. Further research may be useful to explore 
different sampled groups of participants. It would also be useful to 
explore how different environmental features impact the performance of 
participants using different strategies to navigate (e.g. a counting- 
dependent strategy vs. a landmark-dependent strategy, as in (West 
et al., 2022; Garg et al., 2023). 

5. Conclusion 

In conclusion, we find the key elements that determine the naviga-
bility of an environment, in other words, navigational difficulty, are: 
entropy, segment integration (closeness centrality of paths), number of 
decision points, number of rings, weather, number of destinations, area of 
navigable spaces, and metric reach. Further empirical work could look at 
environments that vary along our proposed key environmental features. 
Researchers could also study the way in which the proposed set of key 
environmental features interact with other important elements for 
navigation, such as visibility. Finally, further analysis could be carried 
out to understand in detail why particular metrics did not pass the se-
lection process, such as intelligibility, which had previously been 
hypothesised to predict difficulty (Conroy, 2001; Hillier, 2012; Kim, 
1999). Overall, our findings are relevant for psychology and neurosci-
ence, and they can also inform future urban planning and architectural 
design. Built environments can be designed considering these factors in 
order to help people find their way. 
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Spiers, H. (2020). In J. Šķilters, N. S. Newcombe, & D. Uttal (Eds.), Redefining global 
and local landmarks: When does a landmark stop being local and become a global one? BT 
- spatial cognition XII (pp. 111–121). Cham: Springer International Publishing.  

Yesiltepe, D., Ozbil Torun, A., Coutrot, A., Hornberger, M., Spiers, H., & Conroy 
Dalton, R. (2020). Computer models of saliency alone fail to predict subjective visual 
attention to landmarks during observed navigation. Spatial Cognition and 
Computation.. https://doi.org/10.1080/13875868.2020.1830993 

Zisch, F. E., Newton, C., Coutrot, A., Murcia, M., Motala, A., Greaves, J., … Spiers, H. J. 
(2022). Comparable human spatial memory distortions in physical, desktop virtual 
and immersive virtual environments. BioRxiv. https://doi.org/10.1101/ 
2022.01.11.475791 

D. Yesiltepe et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0340
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0340
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0340
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0345
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0345
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0345
https://doi.org/10.1016/j.tics.2021.02.010
https://doi.org/10.1016/j.tics.2021.02.010
https://doi.org/10.1177/0013916502238864
https://doi.org/10.1068/b33088
https://doi.org/10.1177/0013916590225001
https://doi.org/10.1177/0013916590225001
https://doi.org/10.3233/JAD-190244
https://doi.org/10.1038/s41598-020-74915-y
https://doi.org/10.1038/s41598-020-74915-y
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0380
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0380
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0380
https://doi.org/10.1111/ejn.13218
https://doi.org/10.1177/0013916514533189
https://doi.org/10.1111/tops.12590
https://doi.org/10.1016/j.pneurobio.2022.102329
https://doi.org/10.1016/j.pneurobio.2022.102329
https://doi.org/10.1007/s10648-010-9128-5
https://doi.org/10.1007/s10648-010-9128-5
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0410
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0410
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0410
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0415
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0415
https://doi.org/10.1068/b2684
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0425
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0425
https://doi.org/10.1177/0013916581132004
https://doi.org/10.1177/0013916581132004
https://doi.org/10.1162/jocn_a_01956
https://doi.org/10.1080/13875860902906496
https://doi.org/10.1207/s15427633scc0304_5
https://doi.org/10.1207/s15427633scc0304_5
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0450
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0450
https://doi.org/10.1016/j.tics.2010.01.001
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0460
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0460
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0460
https://doi.org/10.1007/s10339-021-01012-x
https://doi.org/10.1007/s10339-021-01012-x
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0470
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0470
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0470
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0470
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0480
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0480
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0480
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0480
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0485
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0485
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0485
http://refhub.elsevier.com/S0010-0277(23)00077-X/rf0485
https://doi.org/10.1080/13875868.2020.1830993
https://doi.org/10.1101/2022.01.11.475791
https://doi.org/10.1101/2022.01.11.475791

	Entropy and a sub-group of geometric measures of paths predict the navigability of an environment
	1 Introduction
	2 Material and methods
	2.1 Participants
	2.2 Task
	2.3 Level design
	2.4 Environment analysis
	2.5 Task difficulty

	3 Results
	3.1 Principal component analysis
	3.2 Lasso regression
	3.3 Effects of demographics

	4 Discussion
	4.1 Theoretical import of the selected metrics
	4.2 The impact of the variables on different socio-demographic groups
	4.3 Limitations and future directions

	5 Conclusion
	Ethics
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


