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Abstract

For x irrational, we study the convergence of series of the form
∑
n−sf(nx)

where f is a real-valued, 1-periodic function which is continuous, except for
singularities at the integers with a potential growth. We show that it is
possible to fully characterize the convergence set and to approximate the
series in terms of the continued fraction of x. This improves and generalizes
recent results by Rivoal who studied the examples f(t) = cot(πt) and f(t) =
sin−2(πt).

Keywords: Diophantine series, Lipschitz regularity, Approximate
functional equation
2020 MSC: 11J70, 26A15, 26A30

1. Introduction

The study of the convergence of series
∑∞

n=1 n
−sf(nx) with 1-periodic f

has a long tradition that can be traced back to early works by Riemann [1,
Mém.XII] and Dirichlet, when the theory of functions and harmonic analysis
began to emerge. The topic was taken up by Hardy and Littlewood (e.g.
[2]) and the research has continued until present times (see [3], [4] and their
references). As an aside, we mention that Hardy and Littlewood were partic-
ularly interested in the quadratic case

∑
n−sf(n2x) and even higher degree
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polynomial frequencies [5], [6]. In these cases we know that even when the
series converges everywhere, it may show intricate fractal and multifractal
properties [7], [8]. Here we focus on the linear case with a singular f inducing
a dense divergence set.

In some examples, a remarkable fact is that the convergence is linked to
Diophantine approximation properties that are better expressed in terms of
the continued fraction of x. In this paper we clarify this connection in a quite
general setting. Recall that each x ∈ R \Q can be expanded as a continued
fraction [a0; a1, a2, . . . ], where the aj are the partial quotients (we use the
standard notation as in the classic [9]). For j ≥ 0 we define

pj
qj

= [a0; a1, . . . , aj] and βj = |qjx− pj|. (1)

The fractions pj/qj are called the convergents of x. They give the best ra-
tional approximations of x, and βj quantifies the error which in fact is com-
parable to q−1j+1. We put β−1 = 1 to be consistent with the special definition
p−1/q−1 = 1/0, considered by some authors in order to force the validity of
the recurrence relations pj+1 = aj+1pj + pj−1 and qj+1 = aj+1qj + qj−1 even
for j = 0. We refer the reader to the beginning of §2 and to the references
[9], [10], [11] for the basic theory of continued fractions.

In [4] Rivoal studied the problem of convergence for

Φs(x) =
∞∑
n=1

cot(πnx)

ns
and Φ̂s(x) =

∞∑
n=1

1

ns sin2(πnx)

(we keep the original notation). The main results in [4] state that for
s > 2 and x ∈ R \ Q, the series Φs(x) and Φ̂s(x) converge if and only if∑∞

j=0(−1)jq−sj qj+1 and
∑∞

j=0 q
−s
j q2j+1 converge, respectively. It is conjectured

that the convergence criterion for Φs(x) extends to s > 1 (see the remarks
after [4, Th.1.1]).

These results were obtained employing approximate functional equations
relating partial sums of these functions at x and 1/x. By iteration, Rivoal
obtains the convergence criterions for Φs(x) and Φ̂s(x) and also identities for
these functions involving the convergents pj/qj. This elegant method was
initiated by Hardy and Littlewood in their work [6] on the quadratic case.
Unfortunately, there is a gap in the proof of the convergence criterion for
Φs(x). This is due to a slight mistake in the related approximate functional
equation, which has significant consequences on the argument (see §4).
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Here we follow a different approach that does not depend on functional
equations. It is somewhat simpler and applies to a general class of functions.
On the other hand it covers all ranges and provides a kind of basic numerical
approximation in the case of convergence in terms of the continued fraction.

Namely, we show in §3

Theorem 1.1. Let f : R \Z −→ R be a 1-periodic continuous function such
that tkf(t) = ck + O(t) for some k ∈ Z+ and ck 6= 0 when t → 0. Then the
series

S =
∞∑
n=1

n−sf(nx) with x ∈ R \Q

converges if and only if s > k and T =
∑∞

j=0(−1)kjq−sj β−kj converges.

Choosing f(t) = cot(πt) with k = 1 and f(t) = csc2(πt) with k = 2,
it follows that Φs(x) converges if and only if s > 1 and

∑∞
j=0(−1)jq−sj qj+1

converges, as well as Φ̂s(x) converges if and only if s > 2 and
∑∞

j=0 q
−s
j q2j+1

converges, thus extending Rivoal’s results (see Corollary 3.3).
Assuming a greater regularity around zero, we obtain a good approxima-

tion of S by a variant of T .

Theorem 1.2. With the notation of Theorem 1.1, if

tkf(t) =
k∑

m=1

cmt
k−m +O(tk) for some k ∈ Z+,

then there exists C = C(f, s), not depending on x, such that for any x in the
convergence set of S ∣∣∣S − ∞∑

j=0

q−sj P
(
(−1)jβ−1j

)∣∣∣ < C,

where P is the polynomial
∑k

m=1 ζ(s + m)cmt
m with ζ the Riemann zeta

function.

Although this approximation allows to evaluate S(x) with a certain preci-
sion when combined with truncation, it does not give the identities included
in Theorems 1 and 2 of [4]. A natural question is whether the repaired ap-
proximate functional equation (see Proposition 4.1) can give similar identities
by iteration. We address this problem in §4. We only consider Φs(x) to get
[4, (1.11)]
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Theorem 1.3. If Φs(x) converges, then

Φs(x) =
∞∑
j=0

(−1)jβs−1j−1cs
(
βj/βj−1

)
,

where cs(t) = π−1t−1ζ(s+ 1) + Ps(t) with

Ps(t) =
i

2

∫ 1/2+i∞

1/2−i∞
z−s cot(πz)

(
cot(πtz)− (πtz)−1

)
dz.

Note that the function under the integral sign satisfies the relation F (z) =
F (z). Hence, F (1/2+ it)−F (1/2− it) is pure imaginary and thus Ps defines
a continuous function [0, 1] −→ R. For quadratic irrationals only a finite
number of evaluations of cs is required since βj/βj−1 is periodic in j. Rivoal
proved [4, (1.8)] that for s an odd integer, π−stcs(t) is a polynomial of de-
gree s + 1, for instance c3(t) = π3(t3 − 5t + t−1)/90. A calculation shows
βj = (

√
2− 1)j+1 for x =

√
2− 1. This leads to the neat identities

∞∑
n=1

cot(πn
√

2)

ns
=

cs(
√

2− 1)

1 + (
√

2− 1)s−1
and

∞∑
n=1

cot(πn
√

2)

n3
=
π3
√

2

360
.

Actually, such identities can also be derived from the functional equation

Φ2m−1(z) + z2m−2Φ2m−1(1/z) (2)

= (−1)m(2π)2m−1
m∑
n=0

B2n

(2n!)

B2m−2n

(2m− 2n)!
z2n−1 (=(z) > 0,m ∈ Z≥2),

where Bk denotes the kth Bernoulli number. The origin of (2) can be traced
back to a famous identity by Ramanujan involving ζ(2m+1). Similar identi-
ties for special values of Dirichlet series have been extensively studied in the
literature: see for instance [12] and the references therein. We mention that
in his first letter to Hardy [13, p. 25], Ramanujan claimed that∑

n≥1

coth(nπ)

n7
=

19π7

56700

which follows from (2) with m = 4 and z = i. Besides that, the letter
contains similar formulas.
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Theorem 1.3 is convenient for numerical evaluations, especially when s is
an odd integer and βj decreases rapidly. For instance, x = 1− 2/(e+ 1) has
linearly growing partial quotients and truncating the series in Theorem 1.3
to j ≤ 14 we have

∞∑
n=1

1

n3
cot
( 2πn

e+ 1

)
= 0.386594538965623607320723960504631135387577 . . . ,

where all the displayed digits are correct. This is of course far beyond any
direct computation with the original series.

Continuing the study of Φs(x), once we know that the series can be ap-
proximated by a simple series involving continued fractions as in Theorem 1.2,
we can investigate the regularity of the difference. This problem is considered
in §5, and we prove the continuity and a certain Lipschitz property for

Φs(x)− π−1ζ(s+ 1)
∑

(−1)jq−sj βj,

see Theorem 5.1.

2. Auxiliary results on continued fractions

First of all, let us recall some basic facts about continued fractions.
When we approximate an irrational number by its convergents (1), the

error is given by the formula [10, (7.43)]

qjx− pj =
(−1)j

qj+1 + αj+1qj
with αj = [0; aj+1, aj+2, . . . ]. (3)

It is known that qj ≥ Fj+1 where Fm denotes the m-th Fibonacci number,
thus βj in (1) shows an exponential decay. To quantify Diophantine approxi-
mations, we find it convenient to introduce ‖t‖ for the distance from t to the
closest integer and ‖t‖∗ for its signed counterpart. In terms of the integral
part btc they are given by

‖t‖ =
∣∣t− bt+ 1/2c

∣∣ and ‖t‖∗ = t− bt+ 1/2c.

With this notation, we have βj = ‖qjx‖ if qj > 1, and βj = (−1)j(qjx− pj).
From (3) and the fact that qj increases with j, we deduce that

(−1)jqj+1‖qjx‖∗ ∈ (1/2, 1). (4)
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In particular, βj is comparable to q−1j+1. It is also known that the pj/qj are
the best approximations of the second kind. This means that

‖qjx‖ < ‖nx‖ for any qj < n < qj+1. (5)

Using the relation x = [a0; a1, . . . , aj +αj], with αj as in (3), it is possible
to show αj = (xqj − pj)/(pj−1 − xqj−1), which is valid even for j = 0 if we
accept the convention p−1/q−1 = 1/0. Note that α0 is the fractional part
of x. This formula for αj implies readily

βj =

j∏
k=0

αk for any j ≥ 0.

In the rest of this section we show some specific properties of the continued
fractions for our research. When we say that p/q and P/Q are consecutive
convergents we mean that p/q = pj/qj and P/Q = pj+1/qj+1 for some j.
On the other hand, we say that two real numbers are J-coincident if they
share the convergents pj/qj for j ≤ J . Equivalently, they share the partial
quotients a0, . . . , aJ .

The basic facts we need about J-coincident numbers are summarized in
the next simple result.

Lemma 2.1. Given x0 ∈ R \ Q, all the irrational numbers J-coincident
with x0 are exactly those lying in the interval with endpoints pJ/qJ and (pJ +
pJ−1)/(qJ + qJ−1) of length q−1J (qJ + qJ−1)

−1. If J is the largest integer such
that real numbers x and x0 are J-coincident, then x → x0 if and only if
J → +∞.

Proof. If x0 = [a0; a1, a2, . . . ], the irrational numbers J-coincident with x0
share the partial quotients {aj}Jj=0. So they form the set

I =
{

[a0; a1, . . . , aJ , t] : t ∈ R>1 \Q
}

which is an interval in R \ Q with extremes corresponding to t = ∞ giving
pJ/qJ , and to t = 1 giving (pJ + pJ−1)/(qJ + qJ−1) [10, (7.42)]. Its length is
obtained from pJqJ−1 − qJpJ−1 = (−1)J−1 [10, (7.27)]. From |x− x0| ≤ q−2J ,
we infer that x → x0 when J → ∞, and the converse follows from the fact
that the distance from x0 to the endpoints of I is larger than (qJ+1qJ+2)

−1

(see for instance [14, Proposition 4]).
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Lemma 2.2. Let p/q and P/Q be consecutive convergents of x. Then

Q‖nx‖ ≥ 1

2
|nP −mnQ| for q ≤ n < Q,

where mn is the nearest integer to nx.

Proof. We assume x 6= P/Q, otherwise the result is obvious. Using (3) with
qj = Q and qj+1 ≥ qj + qj−1, we get

‖nx‖ = |nx−mn| =
1

Q

∣∣∣nP −mnQ±
n

cQ+ q

∣∣∣
for some c > 1. Then the last fraction is less than 1. If |nP −mnQ| 6= 1, the
result is obvious. If |nP −mnQ| = 1, it follows from (5) and (4).

Lemma 2.3. Let p/q and P/Q be consecutive convergents of x 6= P/Q. Then
for 1 < q ≤ n < Q with q | n, we have

n‖nx‖−1∗ = ±q(Q+ αq),

where the sign is that of x−p/q, and α = [0; aj+2, aj+3, . . . ] with aj+2, . . . the
corresponding partial quotients of x if it is exactly j+1-coincident with P/Q.
The result also holds for q = 1 if n ≤ Q/2.

Proof. With this notation (3) reads ±(qx − p)−1 = Q + αq. The result
follows from multiplying by q/n because qQ/n ≥ 2 implies (nx− np/q)−1 =
‖nx‖−1∗ .

Lemma 2.4. If x0 and x1 are J-coincident, then∣∣α′j+1 − αj+1

∣∣ < 4q2j+1q
−2
J for j < J,

where αj+1 and α′j+1 are as in (3) using the partial quotients of x0 and x1,
respectively.

Proof. Defining f(t) = (pj+1 − qj+1x)/(xqj − pj), we have

f(x1) = α′j+1 and f(x0) = αj+1.

Let I be the interval of numbers J-coincident with x0. Then the mean value
theorem implies∣∣α′j+1 − αj+1

∣∣ ≤ |x0 − x1|max
t∈I
|tqj − pj|−2 < 4q2j+1q

−2
J ,

where we have used (4) and |I| ≤ q−2J , see Lemma 2.1.
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Lemma 2.5. Let x0, x1 ∈ R\Q. If p/q and P/Q are two common consecutive
convergents of x0 and x1, then for any q ≤ n < Q the nearest integer to
nx0 and the nearest integer to nx1 coincide. In fact, this integer m can be
expressed by m = bnP/Q+ 1/2c, except in the case in which n = Q/2 (with
Q even) and P/Q > p/q where we have m = (P − 1)/2.

Proof. The general theory [10, (7.42)] (see also Lemma 2.1 above) assures
that x0 and x1 belong to the open interval determined by P/Q and (P +
p)/(Q+q). We are going to check that all the values in this interval multiplied
by n have the same nearest integer. If we take this as granted,

m = b(nP/Q+ 1/2)+c or m = b(nP/Q+ 1/2)−c

depending on P/Q is the lower or the upper extreme of the interval, or
equivalently, whether P/Q < p/q or P/Q > p/q. Using that bx±c = bxc if
x 6∈ Z, and bx+c = x, bx−c = x− 1 if x 6∈ Z, we deduce the last part.

For the first part, write η = qP − pQ ∈ {−1, 1}. We have

ηx0, ηx1 ∈ I =
(
η
P + p

Q+ q
, η
P

Q

)
with |I| = 1

Q(Q+ q)
.

We may assume x0 > x1. If nx0 and nx1 have different closest integers, they
must be m and m−1 because n(x0−x1) < 1/2. Thus we have m−nx0 < 1/2
and nx1 − (m− 1) < 1/2, which implies

η
nP

Q
− n

Q(Q+ q)
< η
(
m− 1

2

)
< η

nP

Q
.

Multiplying by 2Q, subtracting 2ηnP and changing the sign, we obtain

0 < 2ηnP − η(2m− 1)Q <
2n

Q+ q
.

If 2 | Q we get a contradiction because the last term is less than 2. If 2 - Q
the only possibility is

2ηnP − η(2m− 1)Q = 1 with n >
Q+ q

2
.

This implies 2ηnP ≡ 1 (Q), and from ηqP −ηpQ = 1 we deduce q ≡ 2n (Q).
That gives q = 2n for n < Q/2, and q = 2n−Q for n > Q/2. This contradicts
the condition n > (Q+ q)/2.
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3. Convergence and approximation

The core of the proof of Theorem 1.1 is an approximation result for certain
model sums.

Proposition 3.1. Let p/q and P/Q be consecutive convergents of a real
number x and let v(t) = ‖t‖−1∗ or v(t) = ‖t‖−1. For k ∈ Z+, s ∈ R such that
s > k, we have∑

q≤n<Q

n−svk(nx) = ζ(s+ k)q−svk(qx) +O
(
qk−s log(2q)

)
(6)

where the O-constant only depends on s and k. Moreover, if the sum is
restricted to n < N (with N ≤ Q), then the equality holds adding the error
term O

(
qk−1QkN1−s−k).

We remark that the logarithmic factor in (6) is only needed for k = 1.
As a matter of fact, Kruse [15] studied sums of this kind for v(t) = ‖t‖−1

but we do not see how to deduce Proposition 3.1 from his results. Our
argument seems simpler anyway. The sums for v(t) = ‖t‖−1 also appear in
the classic work [16] (see also [17]).

Proof. Let S1, S2 and S3 be the contribution to the sum in (6) of the values
n, satisfying respectively q | n, q - n ≤ Q/2 and q - n > Q/2. Of course, for
q = 1 we put S2 = S3 = 0 because the sums are empty.

By (3) with qj = q,

S2 �
∑

q≤n<Q/2
q-n

n−s
∥∥np
q

∥∥−k � log(2q)
∑

l<Q/2q

(lq)−sqk � qk−s log(2q),

where we used
∑
‖np/q‖−k � qk log(2q) on each block of length q, since np

defines a reduced residue system modulo q. By Lemma 2.2,

S3 � Q−s
∑

Q/2<n<Q

Qk|nP −mnQ|−k � Qk−s logQ� qk−s log(2q),

since nP −mnQ are distinct integers modulo Q when n ∈ (Q/2, Q). If q 6= 1,
by Lemma 2.3 we have nv(nx) = qv(qx) in S1, and then

qsv−k(qx)S1 = qk+s
∑
l<Q/q

(lq)−s−k = ζ(s+ k) +O
(
(Q/q)1−s−k

)
.
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Considering
∑

q≤n<N n
−svk(nx) with N ≤ Q only leads us to replace Q/q by

N/q in the O-term. The result follows from ‖qx‖−k � Qk.
To deal with the remaining case q = 1, we decompose the sum of the

statement as S ′1 + S ′3, where S ′1 and S ′3 are the contributions of the terms
with n ≤ Q/2 and n > Q/2, respectively. As Lemma 2.3 still applies to
q = 1 when n ≤ Q/2, the sum S ′1 can be treated as S1 while S ′3 is bounded
the same way as S3.

The case s ≤ k of Theorem 1.1 follows from a simple argument.

Lemma 3.2. The series S in Theorem 1.1 is nowhere convergent for s ≤ k.

Proof. Dirichlet’s approximation theorem assures that ‖nx‖−1 > n infinitely
often. Since for ‖nx‖ small enough we have |f(nx)| � ‖nx‖−k by periodicity,
n−s|f(nx)| does not tend to 0 for s ≤ k.

of Theorem 1.1. By Lemma 3.2 we may assume s > k. If S converges,
then q−sj f(qjx) → 0. As f(qjx) � ‖qjx‖−k = β−kj for j large enough, we

have q−sj β−kj → 0 or equivalently q−sj qkj+1 → 0. The latter is obvious if
T converges. Thus, in both cases, the exponential decay of βj shows that
MJ =

∑
j≥J(q−sj β−k+1

j + qk−sj log qj) → 0 when J → ∞. Using f(t) =

f(‖t‖∗) = ck‖t‖−k∗ +O
(
‖t‖1−k

)
, Proposition 3.1 gives∑

qJ≤n<qJ+K

n−sf(nx) = ζ(s+ k)
∑

J≤j<J+K

(−1)jkq−sj β−kj +O(MJ).

Let SN =
∑

1≤n≤N n
−sf(nx). If S converges, this shows that {SN}∞N=1 defines

a Cauchy sequence and thus T converges. In the same way, if T converges,
then Sqj converge. By the last part of Proposition 3.1, if qj ≤ N < qj+1,

SN − Sqj � qk−sj log qj + qk−1j qkj+1N
1−s−k � qk−sj log qj + q−sj qkj+1.

This is o(1) because T converges and s > k. Hence, the convergence of Sqj
implies that of S.

Theorem 1.1 implies the convergence results in [4] in an extended range.

Corollary 3.3. The series
∑∞

n=1 n
−s cot(πnx) converges if and only if s > 1

and
∑∞

j=0(−1)jq−sj qj+1 converges. The series
∑∞

n=1 n
−s csc2(πnx) converges

if and only if s > 2 and
∑∞

j=0 q
−s
j q2j+1 converges.
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Proof. For the first series, use Theorem 1.1 with f(t) = cot(πt), k = 1 and
note that β−1j = qj+1 + O(qj) by (3). For the second series, take f(t) =
csc2(πt), k = 2 and note that 1/4 < q2j+1β

2
j < 1 by (4).

of Theorem 1.2. Suppose that S converges. Then Lemma 3.2 implies s > 1
and hence

∑
n−s <∞. Thus, the difference

S −
k∑

m=1

cm

∞∑
n=1

n−s‖nx‖−m∗

is uniformly bounded in x. According to Proposition 3.1 the contribution
to the innermost sum of qj ≤ n < qj+1 is ζ(s + m)(−1)jmβ−mj + O(qk−sj ).

As s > k, the exponential growth of qj shows that
∑
qk−sj is uniformly

bounded.

4. The functional equation approach

Let us consider the partial sums

Φs(x, t) =
∑
n≤t

cot(πnx)

ns

of Φs. In the approximate functional equation for Φs(x,N) stated in [4, (4.5)],
one should replace bNαc by b(N+1/2)αc. Although this seems to be a minor
difference, it is essential in the iteration process. Following the same steps as
in [4], and including a forgotten pole in the application of the residue theorem
we arrive at the correct functional equation. We repeat the argument and
take the opportunity to improve some estimates. In this way we get a better
error term. Let us state our version of the approximate functional equation
for Φs(x,N). Besides, we refer the reader to [18] for approximate functional
equations in the context of fractional integrals of modular forms.

Proposition 4.1. For x ∈]0, 1[\Q, N ∈ Z+ and s > 1, we have

Φs(x,N) + xs−1Φs

(
1/x, (N + 1/2)x

)
= cs(x) +Rs(x,N),

where cs is defined in Theorem 1.3 and

Rs(x,N)�
(
x−1 +N)N−s log(2N).

11



(cf. [4]). Consider

Fs(x, z) = πz−s cot(πz) cot(πxz),

which is a meromorphic function of z in C \ (−∞, 0]. Set K = N + 1/2. We
evaluate the complex integral of z 7→ Fs(x, z) on the rectangular path RN

determined by the sides C1 = [1/2− iN,K − iN ], C2 = [K + iN, 1/2 + iN ],
C3 = [K − iN,K + iN ] and C4 = [1/2 + iN, 1/2 − iN ]. The set of poles of
Fs(x, z) inside RN is

{k ∈ Z : 1 ≤ k ≤ N} ∪
{
kx−1 : 1 ≤ k ≤ (N + 1/2)x

}
.

By the residue theorem

Φs(x,N) + xs−1Φs

(
1/x, (N + 1/2)x

)
=

1

2πi

∫
RN

Fs(x, z) dz.

First, on the lines C1 and C2, we can use | cot(πz)| ≤ coth(π|=(z)|) �
1 + |=(z)|−1. Hence cot(πz) � 1 and cot(πxz)� 1 +x−1|z|−1. This gives for
j = 1, 2, ∫

Cj

Fs(x, z) dz � x−1N−s.

Now let us treat the contribution on C3. We know that∣∣ cot
(
π(K + iy)

)∣∣ =
∣∣ tanh(πy)

∣∣ and
|v|

1 + |v|
� | tanh v| ≤

∣∣ tan(u+ iv)
∣∣.

Then for z = K + iy with y ∈ [−N,N ],∣∣Fs(x, z)∣∣ ≤ π tanh(π|y|)
N s tanh(πx|y|)

� N−s
1 + x|y|
x(1 + |y|)

.

Thus if Nx ≤ 1, we have∫
C3

Fs(x, z)dz � x−1N−s
∫ N

0

dy

1 + y
� x−1N−s log(2N),

and if Nx ≥ 1,∫
C3

Fs(x, z)dz � x−1N−s
(∫ 1/x

0

dy

1 + y
+

∫ N

1/x

x dy
)
� N1−s log(2N).
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Setting

Js(x) =
1

2iπ

∫ 1/2−i∞

1/2+i∞
Fs(x, z) dz,

we have∫
C4

Fs(x, z) dz−Js(x)�
∫ ∞
N

y−s
∣∣ cot

(
πx(1/2 + iy)

)∣∣ dy � N1−s+x−1N−s,

where the last bound follows from cot
(
πx(1/2 + iy)

)
� 1 + x−1y−1. So far,

we have proved that

Φs(x,N) + xs−1Φs

(
1/x, (N + 1/2)x

)
= Js(x) +Rs(x,N)

for some Rs(x,N) satisfying the bound in the statement. It remains to show
Js(x) = cs(x). We can write Js(x) as

1

2ixπ

∫ 1/2−i∞

1/2+i∞

cot(πz)

zs+1
dz +

1

2i

∫ 1/2−i∞

1/2+i∞

cot(πz)

zs

(
cot(πxz)− 1

πxz

)
dz.

The first term is π−1x−1ζ(s + 1) by an application of the residue theorem
in the right half plane <(z) > 1/2. On the other hand, the second term
coincides with Ps(x) in Theorem 1.3.

Now we consider the iteration of this functional equation.

Lemma 4.2. For x ∈ R \Q, J ∈ Z≥0 and N ∈ Z+ we have

Φs(x,N) + (−1)Jβs−1J Φs

(
αJ+1, ϕJ+1

)
=

J∑
j=0

(−1)jβs−1j−1
(
cs(αj) +Rs(αj, ϕj)

)
,

where ϕ0 = N and ϕj =
⌊
αj−1(ϕj−1 + 1/2)

⌋
for j ≥ 1.

Proof. By periodicity, we have Φs(x,N) = Φs({x}, N) for x ∈ R \ Q with
{x} the fractional part of x. Note that {x} coincides with α0 and also that
{1/α0} = α1. Then Proposition 4.1 implies

Φs(x,N) + αs−10 Φs

(
α1, (N + 1/2)α0

)
= cs(α0) +Rs(α0, (N + 1/2)α0)

)
.

This is the case J = 0. On the other hand, if we subtract the cases J + 1
and J , and divide by (−1)Jβs−1J , we get

αs−1J+1Φs

(
αJ+2, ϕJ+2

)
+ Φs

(
αJ+1, ϕJ+1

)
= cs(αJ+1) +Rs(αJ+1, ϕJ+1),

which is Proposition 4.1 for x = αJ+1 and N = ϕJ+1. Therefore the result is
established by induction.

13



The idea is to apply the formula with N and J large, and to show that
the terms in Lemma 4.2 involving Rs and Φs

(
αJ+1, ϕJ+1

)
become negligible.

This requires some control of the behavior of ϕj for which we prove the
following result.

Proposition 4.3. With the notation of Lemma 4.2, for j ≥ 0

−5 < ϕj − βj−1(N + 1/2) < 2.

Proof. Define γ0 = γ1 = 0 and γj+1 = αj(γj + 1) for j ≥ 1. We are going to
show that

βj−1(N + 1/2)− γj − 1 < ϕj < βj−1(N + 1/2) + γj/2. (7)

We proceed by induction. For j = 0, this is trivial. For j ≥ 1, using the
upper bound as induction hypothesis, we get

ϕj+1 < αj
(
ϕj +

1

2

)
< αj

(
βj−1(N +

1

2
) +

1

2
(1 + γj)

)
= βj(N +

1

2
) +

1

2
γj+1.

In the same way, using the lower bound gives

ϕj+1 > αj
(
ϕj+

1

2

)
−1 > αj

(
βj−1(N+

1

2
)−(1+γj)

)
−1 = βj(N+

1

2
)−γj+1−1.

Setting αj = βj/βj−1 in the recurrence formula for γj, it is easy to see
that

γj = βj−1

j−2∑
k=0

β−1k .

Therefore, by (3) and qk+2 ≥ qk+1 + qk, we obtain

γj ≤ q−1j

j−2∑
k=0

(
qk+1 + qk

)
< q−1j

j∑
k=0

qk.

We have qk2
b(j−k)/2c ≤ qj since 2qk−2 < qk. Then γj < 4, and (7) implies the

result.

After these preparations, we are ready to prove the identity for Φs.
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of Theorem 1.3. Given N ∈ Z+, let J be the smallest integer such that

βJ(N + 1/2) < 6. (8)

This is well defined since J 7→ βJ decreases. In fact the decay is exponential
and J satisfies as a function of N

J = O
(

log(2N)
)

and lim
N→∞

J =∞.

By (8) and Proposition 4.3, ϕJ+1 < 8. Then the term βs−1J Φs

(
αJ+1, ϕJ+1

)
is

composed of at most seven terms, corresponding to n ≤ ϕJ+1. If aJ+2 ≥ 8,
then αJ+1 < 1/8, and each term is bounded by

βs−1J α−1J+1 = βsJβ
−1
J+1 � q−sJ+1qJ+2

which tends to zero by the convergence conditions (Corollary 3.3). Now
suppose aJ+2 < 8 and denote by dj the denominator of [0; aJ+2, . . . aj]. By
(4) and (5) applied to x = αJ+1, there exists j ≥ J + 2 such that dj ≤ 7 and
for all n ≤ 7, ‖nαJ+1‖−1 � dj+1 � aj+1. Then

βs−1J ‖nαJ+1‖−1 � q1−sJ+1qj+1q
−1
j = o

(
(qj/qJ+1)

s−1) = o
(
ds−1j

)
= o(1),

where we have used the convergence conditions again. It remains to prove

J∑
j=0

(−1)jβs−1j−1Rs(αj, ϕj)→ 0 as N →∞.

By (8), 6 ≤ βj−1(N + 1/2) for 0 ≤ j ≤ J , and the lower bound in Propo-
sition 4.3 assures that ϕj > βj−1(N + 1/2)/6 in this range. This and the
bound for Rs in Proposition 4.1 give

J∑
j=0

(−1)jβs−1j−1Rs(αj, ϕj)�
J∑
j=0

βs−1j−1
(
α−1j + βj−1N

)(
βj−1N

)−s
log
(
βj−1N

)
.

By the convergence condition, βsj−1β
−1
j � q−sj qj+1 → 0. Hence

α−1j = βj−1β
−1
j = ηjβ

1−s
j−1 with ηj → 0.
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Furthermore, J = O
(

log(2N)
)

and s > 1. Consequently, the last sum above
is

N−s
J∑
j=0

(
ηjβ

−s
j−1 +N

)
log
(
βj−1N

)
� N1−s log2(2N) +

J∑
j=0

ηj
(
βj−1N

)−1
.

Separating the contributions of j < J/2 and j ≥ J/2, and taking into account
the exponential decay of βj−1N � 1, one sees that the latter sum is

� (βbJ/2cN)−1 + max
j≥J/2

|ηj| = o(1).

This finishes the proof.

If we assume that q−sj qj+1 → 0, then the previous proof gives us the

identity Φs(x) =
∑∞

j=0(−1)jβs−1j−1cs
(
βj/βj−1

)
when either one of both sides

converges. The convergence of the right hand side is equivalent to that
of
∑∞

j=0(−1)jq−sj qj+1, which implies q−sj qj+1 → 0. On the other hand, if

Φs(x) converges, then cot(πqjx) = o(qsj ), which implies q−sj qj+1 → 0 because
π cot(πnx) − ‖nx‖−1∗ is uniformly bounded. In conclusion, we can assume
q−sj qj+1 → 0. Elaborating on this argument, we arrive at an independent
proof of the first part of Corollary 3.3.

5. Continuity and Lipschitz regularity

Due to Corollary 3.3, we know that the convergence set of Φs is

C =
{
x ∈ R \Q :

∑
(−1)jq−sj qj+1 converges

}
.

On the other hand, Theorem 1.2 shows that π−1ζ(s + 1)
∑∞

j=0(−1)jq−sj β−1j
gives an approximation of Φs(x) when x ∈ C. A simple but somehow sur-
prising fact is that the difference between the function and its approximation
makes sense beyond the convergence set, and is even continuous, in contrast
with the wild Diophantine behavior of Φs.

Somewhat deeper is that if we restrict ourselves to the convergence set C,
it is possible to show regularity in a local Lipschitz space. Recall that the
Lipschitz space Λµ is composed of functions satisfying

|f(x)− f(y)| ≤ K|x− y|µ

16



for every x and y, with K an absolute constant. On the other hand, given
x0, the local Lipschitz space Λµ(x0) consists of the functions satisfying the
same inequality with y = x0 but K may depend on x0.

Keeping in mind Theorem 1.3, another possibility, which we do not ex-
plore here, is to consider the regularity of the difference between Φs and∑

(−1)jβsj−1β
−1
j .

Theorem 5.1. For s > 1, let

∆(x) = lim
J→∞

( ∑
n<qJ

cot(πnx)

ns
− ζ(s+ 1)

π

J−1∑
j=0

(−1)jq−sj βj

)
.

Then ∆ : R \ Q → R is continuous. Given x0 ∈ C and 0 < µ < min(s −
1, 2)/(s2 + s), we have ∆ ∈ Λµ(x0).

The key aspect of the convergence set that allows to get a Lipschitz ex-
ponent is that when {qj}∞j=0 has a controlled growth, the separation between
two numbers cannot be less than a certain function of the last common qj.

Lemma 5.2. For x0 ∈ C and s > 1, there exists C = C(x0, s) > 0 such that

q
s(s+1)
J |x1 − x0| > C

for any J ∈ Z+ and any x1 ∈ R such that x0 and x1 are not (J+1)-coincident.

Proof. We may assume that x0 and x1 are J-coincident because {qj}∞j=0 is
increasing. The result is trivial for |x1 − x0| > C, and choosing C small
enough, |x1 − x0| ≤ C implies that J is as large as we want by Lemma 2.1.
In particular we can suppose qj+1 < qsj for j ≥ J by the convergence of∑∞

j=0(−1)jqj+1q
1−s
j .

Let us write γj = [aj; aj+1, . . . ] and γ̃j = [ãj; ãj+1, . . . ], where aj and ãj
are the partial quotients of x0 and x1, respectively. By the recurrence formula

for qj, we can write (3) for j = J as qJx − pJ = (−1)J
(
γJ+1qJ + qJ−1

)−1
.

Then

q2J |x1 − x0| =
|γJ+1 − γ̃J+1|

(γJ+1 + qJ−1/qJ)(γ̃J+1 + qJ−1/qJ)
≥ |γJ+1 − γ̃J+1|

4aJ+1ãJ+1

. (9)

We have aJ+1 6= ãJ+1 because x0 and x1 are not (J + 1)-coincident, and
aJ+1 < qs−1J because qJ+1 < qsJ . If |aJ+1 − ãJ+1| 6= 1, this and (9) ensures
that

q2J |x1 − x0| �
|aJ+1 − ãJ+1|
aJ+1ãJ+1

� 1

a2J+1

≥ q2−2sJ ,
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which is stronger than the stated result.
The remaining cases aJ+1 − ãJ+1 = ±1 are symmetric. We focus on the

case aJ+1 − ãJ+1 = −1, the positive sign case follows by replacing aJ+1 by
ãJ+1 and γJ+1 by γ̃J+1. We have

γJ+1 = [aJ+1; aJ+2, . . . ] and γ̃J+1 = [aJ+1 + 1; . . . ].

If aJ+2 6= 1, then |γJ+1− γ̃J+1| � 1 and q2J |x1−x0| � a−2J+1 ≥ q2−2sJ as before.
On the other hand, if aJ+2 = 1,

γ̃J+1 − γJ+1 > aJ+1 + 1−
(
aJ+1 +

1

1 + a−1J+3

)
>

1

2aJ+3

>
qJ+2

2qJ+3

.

Substituting in (9), we obtain

q2J |x1 − x0| �
qJ+2/qJ+3

(qJ+1/qJ)2
�

q1−sJ+2

q2s−2J

,

where we have used qj+1 < qsj for j = J and j = J + 2. Finally, the result
follows by using qJ+2 = qJ+1 + qJ < 2qJ+1 < 2qsJ .

The next auxiliary result essentially allows us to pass from π cot(πt) to
‖t‖−1∗ .

Lemma 5.3. Let s > 1 and suppose that u : [−1/2, 1/2] −→ R has a bounded
derivative. Then δ(x) =

∑∞
n=1 n

−su(‖nx‖∗) is continuous at every x0 ∈ R\Q.
For every x0 ∈ C, we have δ ∈ Λµ0(x0) with µ0 = (s− 1)/(s2 + s).

Proof. The series is normally convergent because s > 1 and u(‖nx‖∗) is
bounded. Thus the convergence is uniform, and the first part of the result
follows because the partial sums are continuous functions R \Q −→ R.

For the second part, given x close to x0, let J be such that they are
J-coincident but not (J + 1)-coincident. By Lemma 2.5, ‖nx‖∗ − ‖nx0‖∗ =
n(x− x0) for n < qJ . Then by the mean value theorem,

δ(x)− δ(x0)�
∑
n<qJ

n(x− x0)
ns

+
∑
n≥qJ

1

ns
�
(

log qJ + q2−sJ

)
|x− x0|+ q1−sJ .

Lemma 5.2 proves q1−sJ = O
(
|x − x0|µ0

)
and the other term is negligible

because by Lemma 2.1, qJ < |x− x0|−1/2. Then for 1 < s < 2 we have that
q2−sJ |x− x0| contributes O

(
|x− x0|µ0

)
and s/2 > µ0.
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Our last auxiliary result controls the variation of ‖nx‖−1∗ when evaluated
at J-coincident numbers.

Lemma 5.4. Let x0 ∈ R \ Q. Define Dn(x) = ‖nx‖−1∗ − ‖nx0‖−1∗ for any
x ∈ R \Q which is J-coincident with x0, and rj(n) = npj+1 − qj+1m with m
as in Lemma 2.5 for P/Q = pj+1/qj+1. Then, for every integer n satisfying
qj ≤ n < qj+1 for some 1 < j < J , we have

|Dn(x)| < (4qjqj+1)
2

nq2J
if qj | n and |Dn(x)| <

4nq2j+1

r2j (n)
|x− x0| if qj - n.

Proof. If qj divides n, then by Lemma 2.3 (note that j > 1 assures that
qj > 1) and Lemma 2.4,

n
∣∣Dn(x)

∣∣ = q2j
∣∣α′j+1 − αj+1

∣∣ < 4q2j q
2
j+1q

−2
J

which is the first bound.
Let us consider now the case qj - n. By Lemma 2.2, qj+1‖nx‖ > |rj(n)|/2.

Hence, substituting ‖nx‖∗ = nx−m in the definition of Dn(x),

∣∣Dn(x)
∣∣ =

n|x0 − x|
‖nx0‖‖nx‖

<
4nq2j+1

r2j (n)
|x− x0|,

and this finishes the proof.

of Theorem 5.1. By Lemma 5.3 applied to u(t) = π cot(πt)− t−1, it is suffi-
cient to prove the result for V = π∆− δ because µ0 ≥ µ. We have

V = lim
J→∞

VJ with VJ(x) =
∑
n<qJ

‖nx‖−1∗
ns

− ζ(s+ 1)
∑
j<J

(−1)jq−sj βj.

Given J and x0 ∈ R \ Q, for x ∈ R \ Q close enough to x0 so that they are
J-coincident, Proposition 3.1 implies that

∣∣V (x)−VJ(x)
∣∣ and

∣∣V (x)−VJ(x)
∣∣

are less than Cq1−sJ with C only depending on s. Then∣∣V (x)− V (x0)
∣∣ ≤ ∣∣VJ(x)− VJ(x0)

∣∣+ Cq1−sJ . (10)

The finite sum VJ is obviously continuous as a function R \Q −→ R. Thus
we have VJ(x)−VJ(x0)→ 0 as x→ x0. Choosing J sufficiently large, we get
V (x)−V (x0)→ 0 and this concludes the proof of the first part of the result.
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To prove V ∈ Λµ(x0), consider for each x 6= x0 close enough to x0 ∈ C
the integer J = J(x) such that x0 and x are coincident but not (J + 1)-
coincident. As x0 ∈ C we mat assume J > J0 > 1, where J0 is such that
qsj > qj+1 for every j ≥ J0. By Lemma 5.2, q1−sJ � |x−x0|(s−1)/(s

2+s) and this
exponent supersedes µ. Then by (10) we have to prove that VJ(x)−VJ(x0) =
O
(
|x− x0|µ

)
uniformly in x and consequently in J . We write

VJ(x)− VJ(x0) = L(x) +W1(x) +W2(x)

with L ∈ Λ1(x0) taking care of the terms 0 ≤ j < J0, and where

W1(x) =
J−1∑
j=J0

( ∑
qj≤n<qj+1

qj |n

Dn(x)

ns
− ζ(s+ 1)

qsj
Dqj(x)

)

and

W2(x) =
J−1∑
j=J0

∑
qj≤n<qj+1

qj -n

Dn(x)

ns
.

Here Dn is as in Proposition 5.4. Our goal is to show

W1(x) = O
(
|x− x0|µ

)
and W2(x) = O

(
|x− x0|µ

)
(11)

with O-constants not depending on x.
By Lemma 2.3, Dn(x) = n−1qjDqj(x) in the innermost sum of W1(x).

Then, by Lemma 5.4,

W1(x) =
J−1∑
j=J0

Dqj(x)

qsj

∑
k≥qj+1/qj

k−s−1 �
J−1∑
j=J0

q2j+1q
1−s
j

q2J

(qj+1

qj

)−s
=

J−1∑
j=J0

q2−sj+1qj

q2J

with an absolute constant. This is O
(
q1−sJ

)
, O
(
q1−sJ log qJ

)
or O

(
q−2J
)

accord-

ing to s < 3, s = 3 or s > 3 which we summarize as O
(
(log qJ)q

−min(s−1,2)
J

)
.

Lemma 5.2 shows q−1J = O
(
|x − x0|1/(s

2+s)
)
. By our hypothesis on µ, we

obtain the first bound in (11).
Proving the second bound of (11) follows similar lines. By Lemma 5.4,

W2(x)

|x− x0|
�

J−1∑
j=J0

∑
qj≤n<qj+1

q2j+1

ns−1r2j (n)
�

J−1∑
j=J0

q2j+1

qs−1j

∑
qj≤n<qj+1

1

r2j (n)
.
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As rj(n) ≡ npj+1 (qj+1), the rj(n) take distinct integer values. Therefore the
last sum is uniformly bounded. Thus, recalling qsj > qj+1,

W2(x)� |x− x0|
J−1∑
j=J0

q2j+1

q
1−1/s
j+1

� |x− x0|q1+1/s
J .

By Lemma 2.1, q2J |x−x0| < 1. Hence |x−x0|q1+1/s
J � |x−x0|(s−1)/(2s). Now

(11) follows from (s− 1)/(2s) > µ0 ≥ µ.
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