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Abstract
Recent years have seen a surge of interest in
Quantum machine learning, methods to har-
ness the power of quantum technology in sol-
ving high complexity problem’s are quickly
developed in a variety of domains. Implemen-
ting a gate-based quantum algorithm on a
noisy intermediate quantum device (NISQ)
presents several challenges related to the fact
that these devices have limited quantum re-
sources and there are noisy. In this paper, we
propose a new way to represent Bayesian net-
works on quantum circuit. The proposed ap-
proach will reduce depth and size of the quan-
tum circuit necessary to implement Quantum
Bayesian network (QBN) on a quantum com-
puter. Experimental study showing the effi-
ciency of the proposed approach is also pre-
sented.

Introduction
Quantum algorithms are typically expressed

in terms of quantum circuits, which describe a
computation as a sequence of elementary quan-
tum logic gates acting on qubits. There are
many ways of implementing a given algorithm
with an available set of elementary operations,
and it is advantageous to find an implementa-
tion that uses the fewest resources especially
on near-term device (NISQ machine) (Preskill
2018)(Leymann and Barzen 2020). The depth
and width of the quantum circuit is key for
evaluating the potential of its successful execu-
tion on that particular machines. Optimizing
those tow metrics when implementing quan-
tum Bayesian Networks will be the aim of our

work. take into account that the depth re-
present the number of gates to be performed
sequentially, and the width is the number of
qubits it actually manipulates.

The first tentative to define Quantum Baye-
sian networks were introduced by Tucci (Tucci
1995) as an analog to classical Bayesian net-
works. He proposed that the conditional pro-
babilities in a classical Bayesian networks can
be represented using quantum complex am-
plitudes. Tucci argued that there could be
infinite possible quantum Bayesian networks
for a given classical Bayesian network. Fol-
lowing Tucci ideas, Moreira & Wichert (Mo-
reira and Wichert 2016) proposed quantum-
like Bayesian networks, where the marginal
and conditional probabilities were represented
using quantum probability amplitudes. To de-
termine the parameters of a quantum Bayesian
network, a heuristic method was used which
considered similarity between two dimensional
vectors corresponding to the two states of the
random variables. In 2014 (Low, Yoder, and
Chuang 2014) discussed the principles of quan-
tum circuit design to represent a Bayesian net-
work with discrete nodes that have two states,
and also discussed the circuit design for imple-
menting quantum rejection sampling for infe-
rence and recently, Borujeni et al. (Borujeni
et al. 2021), proposed Compositional Quan-
tum Bayesian Network (C-QBN) to represent
a discrete Bayesian network and discuss the
decomposition of complex gates using elemen-
tary gates such that they can be implemented
on available quantum computing platforms. In



this paper, we optimize the circuit construc-
tion of Compositional Quantum Bayesian net-
work by reducing the width and the depth. We
reuse the qubit that represent a variable from
the Bayesian network once it doesn’t step in
the calculation of another event in the chain
rule also we will eliminate the redundancy of
not gate in the circuit.

This paper is organized as follows : we will
first introduce Quantum computing then the
impact of hardware on quantum algorithms.
Then it moves to present classical and quan-
tum Bayesian networks mainly the work of Bo-
rujeni et al. on Quantum Bayesian networks
and her approach named (C-QBN) and finally
details the proposed method for optimizing a
quantum circuit to represent a Bayesian net-
work.

Basic quantum computation
Quantum computers can solve some com-

putational problems exponentially faster than
classical computers, which may lead to seve-
ral applications in field of machine learning. To
store and manipulate the information, they use
their own quantum bits also called ‘Qubits’ un-
like other classical computers which are based
on classical computing that uses binary bits 0
and 1 individually (Hey 1999).

Instead of using high and low voltages to
represent the 1’s and 0’s of binary data, we
generaly use the two spin states of an electron,
|1⟩ and |0⟩.

The time evolution of a quantum system
is usually approximated by the Schroedinger
equation. The superposition property of quan-
tum mechanics means that the general state
may be written as a superposition of eigens-
tates (Schrödinger 1926). In the case of the 2-
states quantum system the general state may
be written as :

|Ψ⟩ = α|0⟩.β|1⟩ (1)

According to the standard interpretation of
quantum mechanics, any measurement (of spin
or polarization) made on this state will always
yield one of the two eigenvalues with no way of
knowing which one. If we prepare an ensemble
of identical systems then quantum mechanics
assures us that we will observe result 1 with

probability |α|2 and result 0 with probability
|β|2. Normalization of the state to unity gua-
rantees :

|α|2 + |β|2 = 1
Information stored in a 2-states quantum

system is called a quantum bit or qubit : be-
sides storing classical 1 and 0 information there
is also the possibility of storing information as
a superposition of 1 and 0 states.

To represent the state of a qubit, we can
use the Bloch sphere. For instance, if we have
a qubit that is initially prepared in state |1⟩
and then apply the NOT operator (also known
as the Pauli-X gate), we will find the qubit in
state |0⟩. This operation corresponds to a ro-
tation of the qubit state vector by 180 degrees
around the X-axis of the Bloch sphere (Figure
1).

The reversible logic gates used in classi-
cal computing (such as AND, OR, and NOT)
have quantum analogues that are implemented
using unitary operators that act on the basis
states of a qubit. These quantum gates are also
reversible and can be used to perform quantum
computations. The basic quantum gates in-
clude : The Hadamard gate, which creates a su-
perposition of the |0〉 and |1〉 states. The Pauli
gates which have four different types : RX , RY

and RZ gates corresponding to the three axes
of the Bloch sphere (X, Y , and Z), and the
identity gate. The RX gate, also known as the
NOT gate, flips the value of a qubit from |0〉
to |1〉 or vice versa. The RY gate is similar to
the RX gate, but also introduces a phase shift
around the Y-axis. The CNOT gate, which en-
tangles two qubits and flips the second if the
first is in the |1〉 state. The Measurement gate,
which is used to extract classical information
from a quantum state by collapsing a qubit to
one of its possible classical states.

These gates form the basis for constructing
more complex quantum circuits.

The selection of gates for a quantum circuit
depends on the specific problem being solved
and the algorithm being employed.

The impact of hardware on quantum algo-
rithms is significant, as the performance of a
quantum algorithm is ultimately limited by
the quality and capabilities of the underlying
quantum hardware. These hardware limita-



Figure 1 – Bloch sphere

tions can affect the performance of quantum
algorithms in several ways that can be sum-
marized as follows :
Number of qubits and the available gate
set on the hardware can limit the size and com-
plexity of the quantum circuits that can be
implemented efficiently. Certain quantum al-
gorithms require a large number of qubits or
a specific gate set to perform optimally. If the
hardware lacks the required number of qubits
or gate set, the algorithm may not be imple-
mentable or may produce suboptimal results.
Coherence time of the qubits determines
how long they can maintain their quantum
state before they decohere and become classi-
cal. Longer coherence times are generally bet-
ter for implementing quantum algorithms, as
they allow for more operations to be perfor-
med before the quantum state is lost. If the
coherence time is too short, the algorithm may
not be able to be implemented or may perform
poorly.
Connectivity of the qubits on the hardware
determines how easy it is to implement certain
types of quantum circuits, such as those invol-
ving entanglement. If the qubits are not well-
connected, it may be difficult or impossible to
implement certain algorithms efficiently.
Error rates of the gates and measurements
on the hardware can limit the accuracy and
reliability of the quantum computation. High
error rates can lead to a loss of coherence and
errors in the final result of the algorithm.

Therefore, as quantum hardware continues
to improve, it is expected that the performance
and applicability of quantum algorithms will
also improve. This is why the development of
high-quality and scalable quantum hardware
is one of the key challenges in the field of

quantum computing. Additionally, the design
of new and efficient quantum algorithms that
can take advantage of the unique properties of
the hardware is also an active area of research.

One of the techniques to cushion the impact
of hardware on quantum algorithm is to re-
duce the size of quantum circuit(depth and
width). The depth refers to the number of
layers of gates that must be applied sequen-
tially to transform the input state into the de-
sired output state and the width refers to the
number of qubits or quantum bits that are in-
volved in the computation.

The relationship between depth and width
of a quantum circuit depends on the specific
computation being performed. In general, in-
creasing the width of a quantum circuit tends
to increase its depth. This is because more
qubits typically require more gates to inter-
act with each other, and this interaction often
takes place over multiple layers.

Due to the multiple factor explained earlier,
the depth d and width w must be controlled. In
practice, the following formula from (Willsch
et al. 2017) approximates the limits of execu-
ting a quantum algorithm on a given quantum
computer where ϵ is the error rate of the quan-
tum computer :

d.w <
1
ϵ

(2)

As the formula indicates, the depth d or
the width w must be small. For example, if
an algorithm requires 7 qubits (w = 7) and
it should run on a quantum computer (ibmq-
jakarta) with an error rate of about ϵ ≃ 8.220e-
3, then d must be less than 18 , i.e. the algo-
rithm must terminate after no more than 18
sequential steps, otherwise the result would be



far too inaccurate.

Quantum Bayesian networks
In this section, we first introduce classical

Bayesian networks and then their most recent
quantum representation proposed by Borujeni
et al. (Borujeni et al. 2021).

Classical Bayesian networks
Bayesian networks (Pearl 1988a), are among

the most powerful probabilistic graphical mo-
dels representing knowledge and reasoning un-
der uncertainty. Bayesian networks are widely
used in artificial intelligence, machine learning,
and decision analysis for tasks such as diagno-
sis, prediction, and decision-making under un-
certainty. They can be used to model complex
systems and make predictions about the beha-
vior of those systems, even in the presence of
missing or noisy data.

Formally, a Bayesian network BN =<
G, P > has two components :
The graphical component composed of a direc-
ted acyclic graph (DAG) G = (V, E), where
G is a DAG with nodes (or vertices V ) repre-
senting variables and edges E representing the
dependencies between variables.
The numerical component P composed of a set
of conditional probability distributions PXi =
P (Xi | Pa(Xi)) for each node Xi ∈ V in the
context of its parents Pa(Xi). The set of all
these conditional probability tables P is used
to define the joint probability distribution over
all variables in the network using a chain rule
expressed as :

P (X1.....Xn) =
n∏

i=1
P (Xi|Pa(Xi)) (3)

Example 1 Figure 2 shows an example of a
Bayesian network with four binary nodes V =
A, B, C, D that we will use in the rest of the
article.

Inference is a crucial task in Bayesian net-
works that involves calculating probabilities of
interest based on observations or evidence. The
two most common types of inference are com-
puting marginal probabilities of a subset of va-
riables and conditional probabilities of a subset

A

C
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B

Figure 2 – A 4-nodes Bayesian network

of variables given evidence about another sub-
set of variables. Inference is an optimization
problem that involves manipulating the joint
probability distribution of the Bayesian net-
work, which can be computationally expensive
for large and complex networks. It has been
proven that this problem is NP-hard (Cooper
1990).

The problem of inference in Bayesian net-
works has been an active research area for
decades, leading to many proposed algo-
rithms and techniques for efficient computa-
tion of probabilities (Pearl 1988b)(Lauritzen
and Spiegelhalter 1988) .

Compositional Quantum Bayesian
networks C-QBN

Recently, (Borujeni et al. 2021) introduced
a systematic method for designing a quan-
tum circuit to represent a discrete Bayesian
network. This method (outlined by Algorithm
1) is mainly based on mapping each variable
in a Bayesian network to one or more qubits
(depending on its cardinality). Then, it com-
putes associated gates (via the Gates function)
by first calculating the probability amplitudes
of the qubit states from conditional probabi-
lities, and then by obtaining the probability
amplitudes of the associated quantum states
through the application of rotational gates.
In this representation four gates are used :
Hadamard gates X (green), Pauli gates RY

(purple), CNOT gates and measurement gates
(black).

Note the use of extra qubits (ancilla bits)
that are not part of the input or output of a



quantum circuit but are instead used to per-
form intermediate computations that help to
improve the efficiency and accuracy of quan-
tum algorithms. The use of ancilla bits is a
common technique in quantum computing.

Algorithm 1: Transformation of a BN
into a QC
Input : BN =< G = (V, E), P >
Output: A quantum circuit QC
QC ← an empty quantum circuit
for each X in topological order of V do

Create a qubit qX

AX ← empty
for each Y in Pa(X) do

Create ancilla_qubit ax

Add ax to AX
end
for i in |Dom(Pa(X))| − 2 do

Create ancilla_qubit ax

Add ax to AX
end
GX ← Gates(X, PX , qX , Ax)
Add GX to QC

end
for each X in V do

Measure(qX , QC)
end

Example 2 To illustrate Algorithm 1, we re-
consider the Bayesian network of Figure 2.
This generates a five-qubit circuit represented
in Figure 4. Qubits q0, q1, and q2and q3 are as-
sociated to A, B, C, D, respectively, while q4
is the ancilla qubit associated to the decompo-
sition on the rotation gate relative to the node
D which has 2 parents.

The resulting quantum circuit can then be
used to compute the joint probability of any
configuration, or the marginal probability of a
subset of variables, by assigning the correspon-
ding values as input of the quantum circuit.

In the proposed method, each node X in the
Bayesian network is mapped onto a qubit in a
quantum circuit. As mentioned earlier, qubits
are a scarce resource in quantum computing,
and reducing the number of qubits required to
represent the network can provide a significant

advantage in representing more complex net-
works and performing more sophisticated ana-
lyses. This is the main idea that we propose in
the following section.

Optimized representation of
quantum Bayesian networks

In this section, we present an optimized Al-
gorithm that reduces the size of a given quan-
tum Bayesian network circuit compared to Al-
gorithm 1.

The idea is to take advantage of the struc-
ture of the DAG in the given Bayesian network
to measure and reuse the qubit that represents
a node midway through, by using the stan-
dard measurement gate before applying fur-
ther quantum gates. This allows us to reuse
a qubit after computing the probability ampli-
tude of all its child nodes.

The optimized version, outlined by Algo-
rithm 2, starts by initializing an empty quan-
tum circuit QC and creating a list Palist that
contains all the parents of each node. This list
will serve as an indicator to know if there are
still nodes that have not been mapped to the
circuit and that require the presence of their
parents to calculate their probability ampli-
tude. Otherwise, the qubit relative to this node
will be measured and added to Availablelist to
be reused for another variable. Then, it ite-
rates over the nodes in V in a topological or-
der. For each node X, it computes the num-
ber of extra qubits n needed by the quantum
gates to represent its probability distribution.
It also computes the number of qubits k re-
quired to represent the probability distribution
even with the reuse of the reinitialized qubits
in Availablelist.

If the node has no parents, it creates a new
qubit for it and computes the quantum gates
that implement the node’s probability distri-
bution GX(X, PX , qX , AX). Then If Pa(X) is
already in Pa_list, the algorithm checks if
Available_list is empty. Then it creates a new
qubit and build its gates. Or it uses a qubit
from Available_list.

After that, we update the Palist and the
Available_list, and perform mid-circuit mea-
surement if needed, based on the requirements
of the not-yet-built nodes, with regard to the



presence of their parent nodes, to compute
their probability amplitude. Finally, we mea-
sure all the qubits that have not yet been mea-
sured in V and add these measurements to QC.
The resulting quantum circuit can be used to
compute the joint probability distribution of
the Bayesian network BN.
Example 3 Given the BN in Figure 2,
let us consider the following topologically
order [A, B, C, D]. We have Pa_list =
[Pa(A), Pa(B), Pa(C), Pa(D)] = [A, B, C].
We start by considering node A, which is bi-
nary and root node. Since A has no parents,
we allocate only one qubit, denoted q0, to build
its gates and add them to the quantum circuit.
We do not make any modifications to the avai-
lable Parent list Pa_list.
Next, we move to the variable B. Similar to A,
we allocate one qubit q1 and build its gates.
Then, we handle variable C which is a parented
node with Pa(C) = A. To compute its gates,
we need the values from A gates because the
values expressed by its conditional probability
table (P (C | A) are based on A. After com-
puting the probability amplitudes of the qubits
q2 and adding the gates to the circuit, we de-
lete A from Pa_list and add its relative qubit
to Available_list because no further nodes in
the topological list are dependent on it. This al-
lows us to apply a measurement gate to q0 then
a reset gate, enabling its reuse to map another
variable and reducing the global width of the
circuit.
Finally, we move to the last node D, which has
two parents. This requires the use of an extra
ancilla qubit (q3), which is added to the node
itself, and only one qubit from Available_list
is added to the circuit 4. This will act on global
width of the final circuit by reducing it from 5
qubits using Algorithm 1 to 4 qubits using our
algorithm.

Experiments
To evaluate the effectiveness of our algo-

rithm, we analyze the Bayesian network shown
in Figure 5, which consists of 10 binary nodes.
It is worth noting that this network was pre-
viously used in (Borujeni et al. 2021), where
Algorithm 1 required 12 qubits to transform

Algorithm 2: Optimized transforma-
tion of a BN into a QC
Input : BN =< G = (V, E), P >
Output: A quantum circuit QC
Pa_list←

⋃
X∈V Pa(X)

Available_list← {}
QC ← an empty quantum circuit
for each X in topological order of V do

n← extra_qubit(Pa(X))
k ← n− |Available_list|
if k > 0 then

Create k qubit(s) AX

end
/* check if we need to add

additional qubits */
if Pa(X) /∈ Pa_list then

Create a qubit qX

GX ←Gates(X, PX , qX , Ax)
else

if Available_list = {} then
Create a qubit qX

GX ← Gates(X, PX , qX , Ax)
else

GX ←Gates(X, PX , qX , Ax)
Delete(Available_list,qX)

end
end
if Count(Pa_list, Pa(X)) = 1 then

Measure(qP a(X), QC)
Reset(qP a(X),AX)
Add(Available_list, qP a(X), AX)

else if Count(Pa_list, Pa(X)) > 1
then

Delete(Pa_list, Pa(X))
Reset(AX)
Add(Available_list, AX)

else
Reset( AX)
Add(Available_list, AX)

Add GX to QC
end
for each not measured X in V do

Measure(qX , QC)
end



Figure 3 – Quantum circuit of Bayesian network of Figure 2

Figure 4 – Optimized Quantum circuit of Bayesian network of Figure 2



it into a quantum circuit, while our optimi-
zed version only needs 6 qubits. Our main ob-
jective is to assess the accuracy of our model
in terms of marginal probabilities. To achieve
this, we compare the results obtained through
an exact inference algorithm applied to the
original Bayesian network with those obtai-
ned by measuring the quantum circuits ge-
nerated by Borujeni’s algorithm and our op-
timized approach. We use the mps method
from Qiskit Aer, an open-source quantum cir-
cuit simulator (Qiskit contributors 2023), to si-
mulate the quantum circuits and also execute
them on a real quantum machine with 7 qubits
(IBM_Perth).

X6

X7

X8 X9X5

X4X3 X1

X10X2

Figure 5 – A 10-node Bayesian network (Ta-
vana et al. 2018)

We ran the Bayesian network circuit five
times on a simulator without any hardware
noise and on a real quantum computer, each
with 20,000 shots. The mean values of a se-
lection of marginal probabilities are presented
in Table 1. To investigate the effect of width
reduction of QBN circuits using the two ap-
proaches described in Algorithm 1 and 2, we
computed the root mean square error (RMSE)

expressed by :

RMSE =

√√√√∑N
i=1

(
P (Xi = 0)− P̂ (Xi = 0)

)2

N

where N is the number of nodes in the Bayesian
network, P (Xi = 0) is the exact probability
computed from the full joint distribution, and
P̂ (Xi = 0) is the probability from the quantum
circuit. This measure will indicate the extent to
which a set of marginal probabilities computed
with a simulator and a real quantum computer
deviates from the exact values.

Table 1 shows that the RMSE of the op-
timized circuit is lower than the one genera-
ted by Algorithm 1 (3% versus 7%). This im-
provement is particularly noteworthy given the
size of the initial network, and is attributed to
the efficient reuse of qubits enabled by our ap-
proach.

Note that the circuit generated by Algo-
rithm 1 exceeded the 7 qubits available on the
real quantum machine we used, and thus could
not be executed. Therefore, we only tested the
optimized circuit generated by Algorithm 2.

Clearly, the reduction in the width of the
quantum circuit has the potential to improve
the error rate as it reduces the number of phy-
sical qubits required to implement the circuit.
This, in turn, minimizes the complexity of the
hardware and mitigates some sources of errors.

Conclusion and perspectives
We have proposed an optimized version to

design a quantum circuit to represent Baye-
sian networks based on C-QBN approach. Our
approach takes advantage of the structure of
the DAG in Bayesian networks to measure and
reuse the qubit that represents a node midway
through, by using the standard measurement
gate before applying further quantum gates.
This allows us to reuse a qubit after compu-
ting the probability amplitude of all its child
nodes.

This technique has been shown to reduce the
width of the quantum circuit even on small
networks, as demonstrated by the example
with 10 nodes, where it resulted in a reduc-
tion of half the number of qubits required to



Table 1 – Exact, then mean values of marginal probabilities of the 10 node Bayesian network on
the simulator with the two approaches and on IBM_perth quantum computer

Marginal Exact
probability

Simulator Quantum computer
IBM_perth
Algorithm2Algorithm 1 Algorithm 2

P(X1 = 0) 0.431 0.44085 0.4549 0.6506
P(X2 = 0) 0.863 0.86655 0.86755 0.56695
P(X3 = 0) 0.976 0.97615 0.9736 0.69965
P(X4 = 0) 0.570 0.56265 0.5487 0.5758
P(X5 = 0) 0.527 0.5285 0.51815 0.52205
P(X6 = 0) 0.980 0.9806 0.981 0.8842
P(X7 = 0) 0.977 0.97685 0.9784 0.89905
P(X8 = 0) 0.026 0.02565 0.02845 0.7006
P(X9 = 0) 0.956 0.9564 0.95545 0.5072
P(X10 = 0) 0.240 0.46165 0.3312 0.46385

RMSE 7% 3% 30%

implement the QBN circuit. As a result, the re-
duction in the number of required qubits leads
to a simplification of the hardware and helps
to alleviate certain sources of errors.

While our first experiments with two
examples showed promising results, further in-
vestigation on more complex Bayesian net-
works is needed to fully evaluate the effective-
ness of our technique in reducing the width of
quantum circuits. As access to quantum hard-
ware with larger numbers of qubits becomes
available under certain conditions, we plan to
test our approach on more challenging pro-
blems. In addition, we will investigate the po-
tential benefits of reducing the number of qu-
bits required for implementing a quantum cir-
cuit, which could provide additional resources
for improving the overall reliability of the com-
putation. One approach we will explore is in-
tegrating error correction techniques directly
into the circuit design, which could further re-
duce error rates.
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