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ABSTRACT

In the state-of-the-art, the Probability of False Alarm (PFA)-
threshold relationship for the popular Matched Filter (MF) is
often derived assuming that unknown non-linear parameters
lie on a grid. However, these parameters vary continuously
in practice. This is known as the off-grid case. In this arti-
cle, an asymptotic PFA-threshold relationship for the popular
Matched Filter is derived in the off-grid case under complex
white Gaussian noise hypothesis using expected Euler char-
acteristics. This asymptotic relationship fits very well with
corresponding Monte-Carlo trials in the moderate to low PFA

regime.

Index Terms— Radar detection, Off-Grid, GLRT, Mat-
ched Filter, False Alarm Regulation

1. INTRODUCTION

Detection of signals embedded in noise is a classical prob-
lem encountered in many fields [1]. Signals that depend on
unknown parameters are usually dealt with using a General-
ized Likelihood Ratio Test (GLRT) where the unknown pa-
rameters are replaced with their Maximum Likelihood Esti-
mates (MLE) in the Likelihood Ratio Test. However, analyti-
cal MLE solutions are not always available. In this scenario,
those parameters are usually supposed to lie on a discrete set,
called the grid. Generally, this grid is chosen so as to have
statistically independent tests. However, the parameters of in-
terest have no reason to fall precisely on the grid. Thus, the
signals of interest will always be mismatched with the signals
under test. This off-grid mismatch may induce a loss in per-
formance. This is the case when the GLRT coincides with the
well-known Matched Filter, which can present up to a 3dB
loss per parameter dimension.

Detection under mismatched signal models has been ad-
dressed for mismatch lying in a cone [2], quadratically con-
strained mismatch [3], among other types of mismatch [4–6].

Whereas off-grid mismatch has been explored extensively
in sparse reconstruction [7, 8] and direction of arrival estima-
tion [9], it has received less attention in detection (see, for
example [10, 11]).

The most natural and efficient way to address the off-grid
issue is to consider the true GLRT where the unknown param-
eters lie on a continuous space instead of an unrealistic dis-
crete grid. There are two main issues with this procedure: it
can be computationally heavy and its theoretical test statistics
depend on the maximum of a continuum of non-independent
variables, which may be difficult to evaluate. In [11], we de-
rived a PFA-threshold relationship for the off-grid Normal-
ized Matched Filter. In this paper, our contribution focuses
on the case of the off-grid radar Matched Filter with respec-
tively one (Doppler or angle) and two (both Doppler and an-
gle) unknown parameters. Based on results on random Gaus-
sian fields [12], we propose a new asymptotic PFA-threshold
relationship in the case of complex circular white Gaussian
noise.

Section 2 presents the signal model and the off-grid GLRT
detector analyzed in this paper. In Section 3, we derive the
corresponding theoretical PFA-threshold relationship and its
validation with Monte-Carlo simulations in Section 4.

Notations: Matrices are in bold and capital, vectors in
bold. For any matrix A or vector, AT is the transpose of A
and AH is the Hermitian transpose of A. I is the identity ma-
trix and CN (µ,Γ) is the circular complex Normal distribu-
tion of mean µ and covariance matrix Γ. ⊗ is the Kronecker
product. ar and ai are the complex and imaginary parts of the
complex vector a.

2. PROBLEM FORMULATION

Our problem of interest is to detect a potential known signal
s(ξ) ∈ CN of unknown amplitude, depending on unknown
parameter ξ and embedded in noise. Formally, this reduces to
solving the following hypothesis testing problem:{

H0 : r = n ,
H1 : r = a s(ξ) + n ,

(1)

where n ∈ CN is the noise vector distributed according to a
complex circular Gaussian distribution n ∼ CN (0,Γ) with
known covariance matrix Γ and a ∈ C is the complex ampli-
tude of the target.
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Fig. 1: STAP detection performance for off-grid targets drawn
at random in a cell: (blue) oracle detection, (yellow) GLRT
(6) and (red) Matched Filter (4). PFA=10−6, N = 8, P = 4.

In the rest of the paper, the number of unknown parame-
ters will be fixed to one or two. In the case of a single param-
eter (e.g. Doppler shift ξ = θ and N pulses), the signal s(θ)
can generally be expressed as:

s(θ) =
1√
N

[
1, e2iπθ, . . . , e2iπ(N−1)θ

]T
(2)

In the case of two unknown parameters (ξ = (θ, µ)T ) as, for
example, for Space-Time Adaptive Processing (STAP), the
signal s(θ, µ) ∈ CNP can be represented by the joint Doppler
θ (N pulses) and the direction of arrival µ (P sensors) param-
eters as:

s(ξ) = s(θ)⊗ s(µ), (3)

where s(θ) ∈ CN and s(µ) ∈ CP are defined as in (2).
When ξ is known and the complex amplitude a is un-

known, the GLRT of this problem denoted as oracle GLRT
reduces to the well-known MF test [13, 14]:∣∣s(ξ)HΓ−1r

∣∣2
s(ξ)HΓ−1s(ξ)

H1

≷
H0

w2. (4)

In that case, the corresponding general PFA-threshold rela-
tionship is given by the following equation:

PFA = exp (−w2). (5)

Since the true target parameters are unknown, tests are gener-
ally evaluated for parameter ξ values lying on a discrete grid.
However, in reality, target parameters will rarely fall precisely
on the grid. For typical Fourier resolution grid spacing, loss
of the matched filter can reach up to 3dB per dimension (and
thus up to 6dB in STAP), degrading detection performance,
as illustrated in Figure 1.

The true GLRT solution, named off-grid GLRT or off-grid
MF, is to evaluate (4) for all ξ varying continuously in the
search domain D, referred as a cell (interval [k/N, (k+1)/N ]
in 1D) in the sequel:

max
ξ∈D

∣∣s(ξ)HΓ−1r
∣∣2

s(ξ)HΓ−1s(ξ)

H1

≷
H0

w2 . (6)

The resulting empirical detector performance is shown in Fig-
ure 1. It is close to the oracle GLRT (which perfectly knows
the position of targets) while the Matched Filter exhibits a de-
tection loss due to the off-grid targets. To guarantee a given
value of PFA, the off-grid GLRT requires setting the thresh-
old w2 in (6). For that purpose, we need to know the statistics
of the maximum of a non-independent random variable con-
tinuum. To our knowledge, there is no known solution to this
problem in our context. The aim of the next section is to fill
this gap in the white noise scenario (Γ = I).

3. AN ASYMPTOTIC PFA-THRESHOLD
RELATIONSHIP FOR THE OFF-GRID MATCHED

FILTER

In this section, we derive a new asymptotic PFA-threshold
relationship for the off-grid MF under white noise, using ex-
pected Euler characteristics: studies [12,15] provide a general
theoretical framework for solving this kind of problem.

3.1. Estimating the PFA for a single parameter steering
vector

In the case of range or Doppler detection, the MF response
can be seen as the following 1D random field Y (θ):

Y (θ) =
∣∣s(θ)Hr

∣∣2 . (7)

In order to use the results of [12], we need to introduce the
following Gaussian random field:

X(α, θ) = (γ1(θ) cosα+ γ2(θ) sinα )
T
r, (8)

where γ1(θ) =

[
sr (θ)
si (θ)

]
, γ2(θ) =

[
−si (θ)
sr (θ)

]
, r =

[
rr
ri

]
is a 2N -real-valued noise vector following a centered Gaus-
sian distribution of covariance I2N/2 and α is the phase of
the product s(θ)Hr in [0, 2π]. It can be shown [11] that
max

α∈[0,2π]
X(α, θ) =

√
Y (θ), so that the PFA to characterize

in this paper can be written as:

PFA = P
(
max
θ∈D

Y (θ) > w2

)
= P

(
max

α,θ∈[0,2π]×D
X(α, θ) > w

)
.

(9)
X is easily shown to be stationary and we denote by Λ the

covariance matrix of its gradient
[
∂X

∂α
,
∂X

∂θ

]
.

The excursion set Aw(X) associated with X for a thresh-
old w is defined as the set of parameters such that X(α, θ)
exceeds w [12]:

Aw(X) = {(α, θ), X(α, θ) > w} . (10)

In [16], it is shown that E(φ(Aw(X))), the expected Euler
characteristic of Aw(X) is a precise estimation of the proba-
bility of X(α, θ) exceeding w and so the desired PFA:

|PFA − E(φ(Aw(X)))| < O
(
exp

(
−cw2

))
, (11)
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(b) Two unknown parameters: in this case, T can be viewed as
a rectangular cuboid with two opposite faces stuck together.

Fig. 2: Representations of the search domains T .

for some c > 1. In this paper, we will not go into details
about the Euler characteristic φ(.) of a set: it is a topological
characterization of the set, and for 2D sets, it counts the num-
ber of connected components minus the number of holes. For
more details, readers can refer to the corresponding chapters
of [16]. Our first result is based on the following fundamental
theorem for random fields on R2:

Theorem 3.1 [12] Let X be a zero-mean, isotropic station-
ary Gaussian random field on the parameter space T ⊂ R2

with gradient covariance matrix Λ = λ I and assume that
∂T , defined as the boundary of T , is continuously differen-
tiable except at an at most finite number of points. Then

E(φ(Aw(X))) = |T | ρ2(w) +
|∂T |
2

ρ1(w) + φ(T )Ψ
(w
σ

)
,

(12)
where σ is the variance of X (constant since X is stationary),

ρk(w) =
exp(−w2/2σ2)λk/2

(2π)(k+1)/2σk
Hk−1

(w
σ

)
with Hk the k-th

Hermite polynomial and Ψ denotes the tail of the standard
Gaussian distribution functions. || denotes the volume.

Applying this general result to our specific problem, it can be
shown that the following corollary holds:

Corollary 3.1.1 The PFA-threshold relationship of the off-
grid MF tested on a cell D = [θ1, θ2] with steering vectors of
size N is:

PFA =

(√
π(N2 − 1)

3
(θ2 − θ1)w + 1

)
exp (−w2)

+ O(exp (−cw2)) for some c > 1. (13)

When D = [0, 1], only the first term in the parenthesis should
remain: this special case was given in [17] for Doppler detec-
tion.

As in the case of the off-grid NMF [11], the PFA of the
off-grid MF is expressed as the sum of a constant term, equal
to the PFA of the on-grid MF given in (5) and corresponding

to the behavior of the random field at the boundaries of the
search domain plus another term proportional to the length of
the cell.

Let us give a sketch of the proof of the previous corol-
lary. Our result is achieved when derivating the mean Eu-
ler characteristic of the excursion set of X defined in (10)
and apply (11) in order to get the PFA. First, note that in
our case σ2 = 1/2. The search domain for the target pa-
rameter θ is an interval D = [θ1, θ2]. Since for all θ ∈ D,
X(0, θ) = X(2π, θ), T is shaped akin to an hollow cylinder
in R3 as represented on Figure 2a: it has no boundaries along
the α-axis. It results |T | = 2π(θ2 − θ1), |∂T | = 4π and
φ(T ) = 0 since the Euler characteristic of a cylinder is zero.
As the attentive reader may have noticed, our process X is
not isotropic as required in the hypothesis of the theorem, but
what matters in this hypothesis is that X should be stationary
on ∂T and its gradient covariance matrix Λ should be propor-
tional to identity matrix i.e. Λ = λ I. It is possible to have
such a matrix Λ rewriting s in a centrosymmetric form and

using an adequate change of variables ν = π

√
N2 − 1

3
θ.

Note that we could derive this relationship only because
X is stationary under white noise. Unfortunately, this method
cannot be applied to colored noise.

3.2. Estimating the PFA for STAP detection

In the case of STAP detection, the MF test quantity can also
be rewritten as a Gaussian random field, now depending on
three unknown parameters (angle, Doppler shift, and phase):

X(α, ξ) = (γ1(ξ) cosα+ γ2(ξ) sinα )
T
r, (14)

where the vector s used in γ1 and γ2 is now the steering vec-
tor for STAP detection defined in (3), and r is a 2NP real-
valued noise vector. This calls for the use of Theorem 3.3.2
in [12], in which the mean Euler characteristic of sufficiently
”nice” random fields defined on a subset of R3 is given:

Theorem 3.2 [12] Let X meet the same conditions as in the-
orem 3.1, except it is now defined on T ⊂ R3 and ∂T is twice
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Fig. 3: Theoretical relationship (13) (resp. (16)) (red) along an empirical (blue) obtained under white noise using 5 107 Monte
Carlo draws with N = 10 (resp. N = 8 and P = 4). The on-grid relationship (5) (yellow) is shown for comparison purposes.

continuously differentiable except at edges or creases of finite
length and vertices where the edges meet. Then:

E(φ(Aw(X))) = |T | ρ3(w) +
|∂T |
2

ρ2(w)

+
H(∂T )

π
ρ1(w) + φ(T )Ψ

(w
σ

)
, (15)

where H(∂T ) is a curvature integral that equals the mean
curvature if ∂T is smooth and involves all of the mean cur-
vature, the lengths of the edges, and the angles between them
otherwise: details are given in Lemma 8 of [18]. The other
terms are defined as in Theorem 3.1.

Applying the previous theorem to X(α, ξ) leads to:

Corollary 3.2.1 The PFA-threshold relationship of the off-
grid MF for STAP detection tested on a cell D = [θ1, θ2] ×
[µ1, µ2] with steering vectors of size NP is:

PFA=
[π
6
∆θ∆µ

√
(N2 − 1)(P 2 − 1)

(
2w2 − 1

)
+

√
π

3

(
∆θ
√
N2 − 1 + ∆µ

√
P 2 − 1

)
w + 1

]
e−w2

+O(e−cw2

) for some c > 1, (16)

with ∆θ = θ2 − θ1 and ∆µ = µ2 − µ1.

Once again, when D = [0, 1]× [0, 1], only the first term in the
bracket remains.

Three terms appear in the developed formula: the first
term accounts for the acceptance zone inside the surface of
the 2D cell, while the second and third terms are the same as
in (13). The second term translates what happens at the edge
of the cells and is similar to what happens on a 1D cell. The
corners of the cell explain the last term that is, once again,
identical to the PFA for the on-grid MF given in (5).

To give an idea of the proof, the shape of the parameter
space is a bit more complicated in this case. The search do-
main for ξ is a 2D cell D = [θ1, θ2] × [µ1, µ2]. As X is
still periodic in α, T can be viewed as a rectangular cuboid
of dimensions 2π, ∆θ, ∆µ where its faces along the phase
axis are stuck together, as drawn in Figure 2b. This leads to
|T | = 2π∆θ∆µ and |∂T | = 4π(∆θ + ∆µ). The quantity
H(∂T )

π
is equal to the mean length of the four edges, i.e., 2π,

and finally, we have again φ(T ) = 0. The previous remark
on the isotropy of X still holds here.

4. NUMERICAL RESULTS

In order to verify (13) (resp. (16)), we computed an empir-
ical PFA-threshold relationship with 5 × 107 Monte Carlo
draws in the Fourier resolution cell [0, 1/N ] (resp. [0, 1/N ]×
[0, 1/P ]), with steering vectors of fixed size N = 10 (resp.
N = 8 and P = 4). The results are shown on Figure 3a (resp.
3b). In both cases, the relationship seems to be very accu-
rate, except for PFA close to one where there is a noticeable
mismatch.

5. CONCLUSION

In this work, we analyzed the statistics of the off-grid GLRT,
which is more robust to the presence of off-grid targets than
the classical Matched Filter. We have derived its PFA-
threshold relationship under white noise for Doppler or angle
and joint Doppler-angle STAP radar detection, but the rela-
tion is valid for all applications dealing with Fourier steering
vectors as can be widely encountered in spectral analysis.

The next natural step would be to derive a similar rela-
tionship for colored noise distribution. This, however, is more
involved due to the non-stationarity of the corresponding ran-
dom fields.



6. REFERENCES

[1] S. M. Kay, Fundamentals of statistical processing, Vol-
ume 2: Detection theory, Pearson Education India,
2009.

[2] O. Besson, “Detection of a signal in linear sub-
space with bounded mismatch,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 42, no. 3, pp.
1131–1139, 2006.

[3] A. De Maio, Y. Huang, D. P. Palomar, S. Zhang, and
A. Farina, “Fractional QCQP with applications in ML
steering direction estimation for radar detection,” IEEE
Transactions on Signal Processing, vol. 59, no. 1, pp.
172–185, 2010.

[4] F. Bandiera, D. Orlando, and G. Ricci, Advanced Radar
Detection Schemes Under Mismatched Signal Models,
Morgan & Claypool publishers, 2009.

[5] J. Liu and J. Li, “Robust detection in mimo radar with
steering vector mismatches,” IEEE Transactions on Sig-
nal Processing, vol. 67, no. 20, pp. 5270–5280, 2019.

[6] L. Besson, O. Scharf and S. Kraut, “Adaptive detection
of a signal known only to lie on a line in a known sub-
space, when primary and secondary data are partially
homogeneous,” IEEE Transactions on Signal Process-
ing, vol. 54, no. 12, pp. 4698–4705, 2006.

[7] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Com-
pressed sensing off the grid,” IEEE Transactions on In-
formation Theory, vol. 59, no. 11, pp. 7465–7490, 2013.

[8] M. Lasserre, S. Bidon, O. Besson, and F. Le Chevalier,
“Bayesian sparse Fourier representation of off-grid tar-
gets with application to experimental radar data,” Signal
Processing, vol. 111, pp. 261–273, 2015.

[9] J. Dai, X. Bao, W. Xu, and C. Chang, “Root sparse
Bayesian learning for off-grid DOA estimation,” IEEE
Signal Processing Letters, vol. 24, no. 1, pp. 46–50,
2016.

[10] J. Bosse, O. Rabaste, and J.-P. Ovarlez, “Adaptive sub-
space detectors for off-grid mismatched targets,” 2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 4777–4780, 2020.

[11] P. Develter, J. Bosse, O. Rabaste, P. Forster, and J.-P.
Ovarlez, “On the false alarm probability of the nor-
malized matched filter for off-grid target detection,”
in 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2022,
pp. 5782–5786.

[12] R. J. Adler, “On excursion sets, tube formulas and max-
ima of random fields,” Annals of Applied Probability,
pp. 1–74, 2000.

[13] L. L. Scharf and D. W. Lytle, “Signal detection in Gaus-
sian noise of unknown level: an invariance application,”
IEEE Transactions on Information Theory, vol. 17, pp.
404–411, July 1971.

[14] L. L. Scharf and B. Friedlander, “Matched subspace de-
tectors,” IEEE Transactions on Signal Processing, vol.
42, no. 8, pp. 2146–2157, 1994.

[15] D. O. Siegmund and K. J. Worsley, “Testing for a signal
with unknown location and scale in a stationary Gaus-
sian random field,” The Annals of Statistics, vol. 23, no.
2, pp. 608–639, 1995.

[16] R. J. Adler and J. E. Taylor, Random fields and geome-
try, vol. 80, Springer, 2007.

[17] SD Hayward, “Cfar detection of targets with unknown
doppler shifts,” Electronics Letters, vol. 39, no. 6, pp. 1,
2003.

[18] K. J. Worsley, “Estimating the number of peaks in a ran-
dom field using the Hadwiger characteristic of excursion
sets, with applications to medical images,” The Annals
of Statistics, pp. 640–669, 1995.


