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Abstract

With recent advancements in space technology, there is a need to develop technologies to ensure a
sustainable environment for human survival. Among these, treatment of human and organic waste aboard
manned space missions is a challenging task for which supercritical water oxidation using hydrothermal
flames has been proposed as a possible solution. The critical step in readily adopting this technology from
established ground-based setups is scaling the process to microscale. In addition to the challenge of
physical realization of the microreactors at these high pressure and temperature (P > 22 MPa, T >
350 C) conditions, the need to explicitly analyze the process dynamics at microscale is inevitable owed to
the size of the reactors under consideration, the physics being significantly different from meso/mini scale
systems. One of the primary objectives is to identify the operating physical parameters for which
formation of hydrothermal flames can be obtained. Before proceeding with an expensive computational
or experimental approach to determine the exact ignition map, an initial estimate based on physical
arguments can help in providing insights into the process. We address this problem using homogeneous
ignition calculations to develop machine learning models to predict autoignition as well as ignition delay

time. The ingenuity of the work lies in defining autoignition criteria in relation to flow time scales expected
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at microscale. Various classification models were trained and tested for predicting autoignition and
regression models were demonstrated to predict the ignition delay time. While predicting autoignition is
a straightforward process, a two-step approach is proposed for ignition delay time. Finally, how machine
learning can be used more explicitly, particularly for understanding and designing efficient microreactors,
is presented which highlights that machine learning approach is not merely restricted to prediction but

can also have real implications on improving the process as a whole.

Keywords: Supercritical water oxidation, hydrothermal flames, machine learning, flame ignition,

microscale.

1. Introduction

Over the recent years, there has been an unprecedented growth in the space industry and it is envisioned
to have deep space missions involving humans in the near future. It is thus inevitable to develop
technologies which can aid in sustaining life aboard these missions. Among these, treatment of organic
and human waste and converting them back to reusable resources is identified as one of the essential
technologies. The generated by-products can be reused in some form thereby reducing the burden of
carrying additional resources during space launches. Tapping on the potential of supercritical water
oxidation (SCWO) with hydrothermal flames, this process has been proposed to meet the aforementioned
technological requirements [1, 2]. Hydrothermal flames are the flames which exist in supercritical (near
critical) water due to autoignition of organic matter. The phenomenon is attributed to reduction in
autoignition temperature of organic matter, which also acts as a fuel, in supercritical water conditions (
P > 22.1 MPa,T > 374 C ). While water is polar at ambient conditions, it becomes non-polar at
supercritical conditions. This facilitates dissolution of several non-polar gases such as oxygen, nitrogen, as
well as organic matter. With both organic matter and oxygen dissolved in supercritical water (SCW), it

provides a uniform medium for the oxidation of organic matter. In these conditions, when the
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concentration of organic matter (fuel) exceeds a certain limit, i.e. threshold concentration at a given
pressure and temperature, the oxidation reaction leads to autoignition and thus the formation of
hydrothermal flames. The motivation to use hydrothermal flames for SCWO are two folds. Firstly, it
permits the injection of reactants at lower temperature than the critical point of water which circumvents
the problems of clogging in the inlet section of the reactor — one of the major drawbacks of SCWO [3].
Secondly, a higher heat generated due to hydrothermal flames promote a faster reaction and
decomposition of waste, recalcitrant molecules, etc. This process has been successfully demonstrated for
ground-based applications [4-7]. An important constraint in readily adapting the designs and
understanding of hydrothermal flames from ground-based applications to the space sector is the size of
reactors under consideration. Most of the reactors for ground applications are at meso/mini scale with
the volume of reactor being of the order of a few liters. However, with volume and weight being a
limitation in space applications, it is inevitable to have a device with similar functionalities but which is
compact and light in weight. In pursuit of advancing the technology of SCWO using hydrothermal flames
for space applications, we have proposed to carry out this process at microscale [8]. We define this process
as uSCWO — H. The feasibility to realize such microreactors (made of sapphire) which can withstand such
harsh pressure and temperature conditions along with being chemically compatible with SCW has already
been demonstrated [8]. This was made possible due to patented developed technology to etch sapphire
[9]. In addition to fulfilling the criteria of compact design, working at microscale augments the SCWO
process capabilities by tapping the advantages of a classical microfluidic system, such as further

reductions in reaction time, more uniformity in the reactions, etc.

The need to develop this technology, as evident from the above discussion, necessitates an explicit study
of hydrothermal flames at microscale owing to differences in the physics with respect to meso/mini scale
reactors. One of the prime reasons can be ascribed to a high surface area to volume ratio in a typical

microsystem resulting in a higher heat transfer, which can eventually render a different behavior to
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hydrothermal flames when compared to meso/mini scale systems. Though, it can be argued that for utility
in space, the absence of any gravity can result in negligible heat loss due to natural convection, analysis
on the ground being the first step before moving to space applications necessitates such an investigation.
The second difference arises due to the small reactor volume which implies a large amount of heat being
generated in a smaller region. Consequently, the effect of heat constrained within the system will
significantly impact the flame dynamics. Thirdly, owing to low flow rates encountered at microscale, the
operating condition is primarily expected to be in laminar regime as compared to the majority of the

pertinent literature operating in turbulent regime for hydrothermal flames, for example in [4, 6].

In order to develop this technology, it is vital to identify operating regimes (flow rates, fuel & oxidizer
concentration, operating temperature, pressure) for which autoignition and thus, the formation of
hydrothermal flames can be attained. While development of an exact ignition map can be achieved from
experiments or high-fidelity numerical simulations, understanding autoignition conditions based on
homogeneous 0D calculations can aid in narrowing down the operational window to search upon the
optimum conditions. Homogeneous ignition analysis involves solving the reaction kinetics in time
assuming a zero-dimensional reactor using the reaction scheme for a given fuel under consideration. The
conventional utility of this approach is limited, such as predicting autoignition parameters (ignition delay,
maximum heat release etc.) for given set of operating conditions. However, it holds enormous potential
in the context of the present problem, which could be tapped by using data-driven models. For instance,
upon successful training the machine learning models, these can be used to predict the desired output
parameters for new operating conditions. Further, direct mapping of field parameters to ignition related
parameters can help to better understand the formation of ignition kernel, flame dynamics, design of

reactors, etc.

Machine learning over the recent years has garnered significant attention in diverse fields of physical

systems —fluids, thermal, and combustion. Brunton et al. [10] have presented an overview on how various
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machine learning methodologies can find their applicability in the various areas of fluid mechanics,
addressing a wide range of problems, such as modeling and controlling fluid flows. The authors described
how optimization performance as well as convergence time can be improved by posing several objectives
in fluid mechanics as optimization and regression problems. Brenner et al. [11] and Brunton [12] in their
recent articles have further provided insights into advancing fluid mechanics using machine learning.
Machine learning models have also been used to predict thermodynamic properties of pure fluids and
mixtures, equilibrium compositions in liquid-vapor flash calculations, heat transfer coefficients, etc. [13-
18]. In the context of combustion, Zheng et al. [19] reviewed the recent progress and applicability of
machine learning in combustion studies. The authors highlighted several key pertinent sub-domains
where machine learning could have significant impact, such as detection of combustion oscillations due
to thermoacoustic, investigating physiochemical properties of fuels and subsequently designing a new
generation of fuels, and reconstruction of cellular surface of gaseous detonation, to name a few. A more
comprehensive review has been recently presented by Zhou et al. [20]. The authors highlighted
developing relations between input parameters (temperature, pressure, species etc.) and output
parameters of interest (chemical kinetics etc.) for combustion simulations using various machine learning
models. Here again, feasibility of fuel design, predicting physical properties of fuel (such as density,
heating value), their ignition delay time, flash point, etc. using neural networks was presented. In addition,
the authors addressed the challenges of combining machine learning with combustion research and aptly
mentioned that one of the key challenge lies in judiciously framing the physical problem in the framework
of machine learning. This not only requires in depth understanding of the machine learning aspects, such
as data selection and pre-processing, appropriate choice of machine learning models, tuning the models,
etc., but most importantly, an in-depth understanding of the physical problem. In the context of the
current problem, relevant work in auto-ignition is scarce and only a few of them can be found in literature.

Pan et al. [21] used Support Vector Machine model to predict autoignition temperature of organic fuels
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based only on their molecular structure. The relationship was developed between autoignition
temperature in terms of descriptors which were selected using a genetic algorithm. This algorithm is
known to mimic natural selection evolutionary processes primarily, selection, gene crossover, and
mutation to obtain global optima solutions. The first step comprises of initially creating a population,
which is a set of individuals with each individual representing the solution that is to be solved. In order to
decide which individuals will be selected from the population, a fitness function is defined to evaluate the
fitness score. Using the fitness score, two pairs of individuals are selected with individuals having a higher
fitness score are more likely to be selected. Subsequently, offspring’s are created from genes (here gene
represents variables on which individuals are dependent) after selecting a crossover point. The offsprings
are continually added to the population and the algorithm terminates when convergence is attained, i. e.
when no new offspring significantly different from existing ones can be formed. A similar work has been
reported by Suleiman et al. [22] where using molecular weight along with the number of carbon,
hydrogen, and oxygen atoms as parameters, the authors were able to predict autoignition temperature
of organic energetic compounds using hybrid support vector regression. More recently, Shah et al. [23]
used Random Forest and deep learning algorithms to predict autoignition and flame properties (flame
speed, fuel octane ratings, ignition delay time ) in multicomponent fuels. Both the methodologies were
found to have high predictability even using a small data set. Cui et al. [24] developed models for ignition
delay using Back propagation neural network for n-butane/hydrogen mixtures. In addition, genetic
algorithm optimized back propagation model was also developed and performance of both were
compared over a wide range of operating conditions (pressures varying from 20 —25 bar, temperature
varying from 722 - 987 K, equivalence ratio from 0.5 - 15) and the performance metric (average correlation
coefficient) in case of the latter was found to be superior. Lehn et al. [25] used neural networks to predict
the laminar burning velocity using pressure, temperature, fuel/air ratio, and twelve molecular groups as

the input variables. Using sensitivity analysis to analyze the impact of functional groups, the laminar
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burning velocity was found to increase with unsaturation, which was coherent with observations in
literature. Cui et al. [26] used back propagation neural network to predict the ignition delay time in
surrogate fuels where data for training and validation was generated using 0-D ignition calculations. An
interesting result reported was comparison of computational time using 0D simulation and trained back
propagation neural network. While the former took 28 s for a single calculation, 176 cases were evaluated
in 3.2 s using the latter highlighting significant gain using neural networks. More recently, Huang et al.
[27] studied the impact of hydrogen addition on the ignition delay time for aviation fuel using artificial
neural network (ANN). It was found that a large local relative error occurs when the ignition delay time
was very small. In order to improve the performance, a sub-ANN model was developed by training on the
subset of data points corresponding to the poor predictions from the initial ANN. Thus, if the predicted
ignition delay time from the initial ANN was below the selected threshold of 103us, the sub-ANN was

used to update the output value.

In this work, we demonstrate the use of machine learning models to predict the autoignition
characteristics of ethanol as a model fuel for the formation of hydrothermal flames at microscale. Owing
to microscale dimensions under considerations, the ingenuity of the current work lies in defining
autoignition by accounting for residence (flow) time and subsequently developing machine learning
models to predict the output parameters — possibility of autoignition and ignition delay time.
Furthermore, we also highlight how these data driven models can be used to predict zone of formation of
the ignition kernel from real physical data, such as CFD simulations. This can eventually be used for
understanding the dynamics of hydrothermal flames as well as designing better microreactors. The prime
focus of the article is thus to exhibit how by using a simple homogeneous ignition calculation in
conjunction with machine learning models, initial estimate of autoignition conditions and corresponding
ignition delay time can be predicted for microscale SCWO process. We begin by describing the physical

problem and means of data generation. Subsequently, various machine learning algorithms are applied
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on the data to predict the autoignition condition as well as ignition delay time. Finally, we illustrate how
this approach can have physical implications for better understanding of the process dynamics for

development of this technology.

2. Problem description

The physical process to be investigated was described in the previous section. In order to provide readers
with more insights into the microfluidic process of SCWO, a schematic of the microreactor design

proposed for the aforementioned application is shown in Figure 1 (a).

The microreactor consists of two inlets feeding the system with oxidizer (H,O + H,0;) and fuel (H,O +
ethanol). Two serpentine microchannels help preheating the two fluids (and ensure for the oxidizing fluid
the decomposition of H,O, in H,0 and O,) before they are put in contact in the injector. While details have
been presented elsewhere [8], we present an example illustrating phenomenon of phase-change of water
at high pressure and temperature (Figure 1(b)) conditions supporting the feasibility to realize such
extreme conditions at microscale. For the current problem, the focus lies in the injection zone where fuel
and oxidizer streams mix with each other. The schematic of this current physical process under
consideration (injection zone) can thus be described as shown in Figure 2 and the long-term objective is

to obtain a sustainable hydrothermal flame in the presented microreactor.
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Figure 1: (a) Schematic of the microreactor system proposed to be used for uSCWO — H. (b) Microscopy image of

the injector head microfabricated in sapphire.

The elementary design considerations as well as experimental observations [8] provided insights into how
the considered physical dimensions (microscale reactor) could implicitly impact the phenomenon of
autoignition in the current system and thus finds relevance in the context of the present problem. This
can be explained as follows. Upon injection of the fuel (ethanol in the present case) and oxidizer into the

reactor (microchannel), the species mix with each other resulting in a chemical reaction.
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Figure 2: Schematic of microscale reactor for uSCWO — H.

Even though the reaction between fuel and oxidizer is omnipresent in these operating conditions,
autoignition will only occur under certain conditions governed by the coupled phenomena,
hydrodynamics, thermodynamics and chemical kinetics of the system. An important characteristic of the
autoignition is the ignition delay, which is defined as the time taken by a reacting mixture of a given
composition to auto-ignite. The ignition delay can thus be interpreted as the time when the first ignition
kernel may be expected to form. This ignition delay in the current problem can be related to the constraint
on the permissible autoignition conditions due to the scale of the reactor under consideration. It is evident
that in order to have hydrothermal flame at microscale, the ignition kernel needs to be formed within the
reactor channel. This implies that the ignition delay for a given mixture composition at a given pressure
and temperature should be less than the time taken by this reacting mixture element to flow through the
reactor microchannel. Failure to meet this criterion implies that even though the mixture is ignitable, it
will not serve the purpose for the given physical system under investigation. This is illustrated in Figure 3

where we define the flow timeas t; = L/u with L being the length of the channel and u the axial velocity.

10



207  The above explanation thereby substantiates presenting the schematic of the microreactor with physical

208 dimensions in the present homogeneous reaction/0D reactor study.

Reacting
element

_advection

advection

Ignition

— kernel
b wry g
209 —t

210 Figure 3: Schematic illustration of how ignition delay (t;;) being larger than flow residence time (t;) implies failure

211 of autoignition in uSCWO0 — H application.

212  Thus, despite considering homogeneous calculation in the present context, reference to the physical
213 system and hydrodynamics is self-explanatory as it will govern the criterion for deciding whether or not
214  we have autoignition. This forms one of the major differences in identifying autoignition conditions at
215 microscale in comparison to meso/mini scale reactors. Before proceeding further, it is worth mentioning
216  thatinareal scenario where hydrodynamics will be considered, the ignition limits (which will be presented
217 below) will be modified owing to several local dynamics playing their role. However, the utility of the
218 current approach lies in providing an initial estimate on the limits along with physical implications it can

219 have as discussed in §5.

220 3. Methodology

221 3.1 Data generation

11
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In order to develop a machine learning model, having reliable and sufficient data is of prime importance.
In the present work, data is generated using homogeneous ignition calculations based on a single step

reaction for oxidation of ethanol in SCW conditions as given in [8]:

C,HsOH + 30, » 2C0, + 3H,0 (1)

with reaction rate evaluated as,

Oscon = ~10'7%% exp (Z2) [ECOH]54[0,]°%% @)
The activation energy in the above expression is, E, = 214% [28]. The governing equations of

conservation of mass, species, and energy were solved in time using a simple first order Euler scheme. As
the physical system under consideration is at microscale, the relative change in pressure is expected to
be very small when compared to operating pressure which is greater than 22.1 MPa. Thus, homogeneous
calculations in the current work correspond to a constant pressure reactor system with density varying in
the system. Appendix 1 in the supplementary information presents the governing equations used for data
generation. The parameters (independent variables) considered were the mass fraction of ethanol (Y}),
mass fraction of oxygen (Y,), the temperature (T), and the pressure (P). Table 1 presents the range of
each parameter considered in the present work. The upper limit for fuel and oxygen concentration arises

due to the validity of reaction rate up to these limits as mentioned in [8].

Table 1: Range of input parameters considered

Parameter Range
Pressure (P) 225 - 250 bar
Temperature (T) 350 - 450 [C]
Fuel (ethanol) (Yz) 0.5 — 4.5 [ in percent]

12



238

239

240

241

242

243

244

245

246

247

248

249

250

Oxidizer (Y,) 0.5 —9.5[ in percent]

Each operating point, denoted by [Yf;, Y, ;, T;, P;] for it" data point, was randomly generated using
Python. The data set consists of 15000 data points. The entire data set, termed as data set 1, comprised
15000 data points and was used for training, validation, and testing various models. It is intuitive to expect
that once the models are trained, these can further be used to predict the output (autoignition or not,
ignition delay time) for new conditions not included in this data set, such as those coming from
experiments. This could further aid in testing the trained machine learning models. However, in the
absence any such data at present, another data set comprising 5000 data points was created which can
be considered as an example of data from experiments. We term this data set as external data set and
this is used only for testing the trained models. The objective of doing this is to further test the robustness
of the trained models. For each data point, the time taken for autoignition, i. e., ignition delay time, was
evaluated as the time when a sudden jump in the heat release rate is observed as shown for one case in

Figure 4.
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Figure 4: Representative case illustrating how ignition delay time was defined. The plot is for P = 250 bar, T =

400C, Y, = 2%,Y, = 95%

The output or dependent variables of interest are whether we have autoignition or not (I;), and if yes,
what is the ignition delay time (t;). While the former is a categorical variable, the latter represents a
continuous output variable. As per previous discussion, categorizing [; will depend on flow or
hydrodynamic time scales under consideration. Based on preliminary investigation on design aspects as
presented in [8], 1s is chosen as the upper limit in the present case. This corresponds to flow rates in the
range 5 — 100ul/min for channel dimensions of ~300um width and ~20 um etch depth and length
~2500 um. The time limit presented is thus the maximum tentative flow time in these conditions which
nevertheless can be adapted for different flow conditions in the future. Based on this criterion, the two
data sets comprised of 52% and 53.2 % cases corresponding to autoignition as shown in Figure 5, which

represents a well distributed data.
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Figure 5: Bar graph illustrating number of data points in the data sets (data set 1 and external) which correspond to

conditions of autoignition (blue bar) and which do not (dark red bar).

3.2 Data treatment & preprocessing

One of the initial steps before developing machine learning models is data preprocessing which includes
several aspects such as checking for any duplicate entries. Both the data sets, data set 1 and external data
set, were checked if any duplicate entries of operating conditions [Yf, Y,, T, P] were present and none was
found. In terms of the range of values of the individual parameters, there exists a large variation in their
magnitudes. Here mass fractions, owing to their definition, lie between 0 and 1, while temperature
(350 C — 450 C) and pressure (225 bar to 250 bar) are 0(102). Training the models directly on this
data can result in model inaccuracies due to bias towards features with larger values. Several standard
scaling methods, such as normalization (scaling between minimum and maximum value) and
standardization (scaling such that data exhibits properties of Gaussian distribution with zero mean and

unit variance), exist to address this issue. The primary objective of this step is to ensure that all the

15



279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

features are of the same order. In the present work, however, we resort to scaling based on physical
aspects of the problem — operating conditions. It is evident from the aforementioned range of the
variables that scaling is required primarily for temperature and pressure. As in supercritical water
oxidation, the critical point of water (T, ,, = 374 C) serves as a landmark to define the process, we scale
the feature temperature (T) as T = (T — T,,)/100. With temperatures varying from 350 C - 450 C,
this results in T being the same order as mass fractions. Similarly, pressure, which in the current scenario
varies from 22.5 — 25 MPa (225 bar — 250 bar), was scaled by 100. These scaling ensures that all the
variables (features) are now same ~0(1) in the current problem. The motivation to opt for the proposed
scaling is its simplicity in implementation. This will be particularly useful when using these models with
external data from physical analysis, such as from experiments or entire 2D/3D space from CFD
simulations, wherein the physical variables can be obtained in the proposed scaled manner and thus be
directly fed into the models for predicting autoignition and ignition delay time rendering ease of using
machine learning methodology for real process. For output parameters, I, was set to 1 when we had
autoignition else it was assigned the value of 0. In addition to identifying whether or not we have
autoignition, predicting the ignition delay time is also a parameter of interest. One of the key challenges
is how to describe ignition delay time when the input operating parameters corresponded to no
autoignition condition. This is because, in a physical sense, no autoignition implies that despite having left
the reacting mixture element for considerable long duration, we do not observe any sudden increase in
HRR. Thus, a very large value could be used to define no autoignition. However, in the present context no
autoignition is identified when t;;, > t; and thus, in principle, any value greater than t; could be assigned
to t;y . One of the primary concerns with this approach is that many data points with this same value
could create a bias towards this assigned value. Thus, errors may creep in during training and subsequent
testing. In order to minimize this, we assign value 0 to these instances. It is to be mentioned that assigning

0 does not have any physical meaning and is just an indicator of no-autoignition event. It may be argued
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that this may also create a bias towards lower values of ignition delay time, and this is what will be
explored in the subsequent section and an appropriate strategy to predict ignition delay time will be

discussed.

3.3 Machine learning models and performance criteria

The first part of the presented problem represents a classification problem wherein the objective lies to
predict whether we have autoignition. Various supervised machine learning models were trained to
predict the autoignition (I;) for a given set of input variables. These include logistic regression (Logistic),
Decision Tree (DT) [29], Random Forest (RF) [30], Support Vector Machine Classifier (SVC) [31], k-Nearest
neighbors (kNN) [32], and AdaBoost classifier (Ada). The motivation to use different models was to analyze
which model could well capture the desired trend and be subsequently used for further analysis. The
models were implemented in Scikit-learn [33] in Python 3.9. The performance of each model is known to
depend on several parameters and values of these parameters need to be tuned to have their optimum
values, the process known as hyperparameter tuning. The objective of this process is primarily to ensure
that the model achieves a global minimum, which may otherwise be skipped when considering the default
values. These optimal parameters were obtained by using the GridSearchCV function in Python using an
8-fold cross validation. A similar methodology was adopted for predicting ignition delay time. Since
ignition delay time is a continuous variable, here regression models were used, namely Ridge regression
[34], Decision Tree regressor, Random Forest regressor, k-nearest neighbor regressor, Adaboost, and
Gradient boost regressor (GB). While details of each model can be found in the cited reference, we briefly

describe each model in simple terms.

e Linear models: Ridge and logistic models form a part of generalized linear models. Logistic
regression is a classification algorithm used to predict the probability of an event. It is one of the

easiest models to implement, train, and test. The model assumes there is no or very minimal
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multicollinearity between the independent variables. The probability of an event (p) is converted

to odds (ratio of success and failure probability, p/(1 — p) ) on which a logit transformation is

applied. This is known as log of odds and is described by log (ﬁ) =L +Z{-‘=1Bi X;. The
coefficients (f;) are obtained by maximizing the log of likelihood. Ridge regression is a form of a
linear regression model where the model is penalized using sum of squared of the weights
(coefficients) in order to prevent overfitting. Here, the residual sum of squares can be evaluated
givenby >N (yp — )% + A XK BZ , where §, =YX, B;X; and Ais a parameter which governs
the severity of the penalization.

Tree based models: Decision Tree, Random Forest, AdaBoost, and GradientBoost models fall
under the category of Tree Based models. In these models, a tree like structure is developed based
on certain conditions applied on the input variables and a decision is made to predict the output.
Thus, the prediction can be obtained using simple if-else conditions rendering these models quite
intuitive to interpret. These kinds of models can be used both for classification as well as
regression problems.

Decision Tree is the simplest model in this category. Starting with the base of the tree, also termed
as the root node, the data is split into branches leading to decision nodes. The terminal node
where a decision is made, are called the leaves of the tree. Usually, the tree is not allowed to grow
to its full depth to prevent overfitting and some parts of the tree are removed, the process being
termed as pruning.

Random Forest comprises of several decision tress operating collectively to predict the output.
The trees are developed by bootstrapping the data and each tree predicts an output.
Subsequently, the output with maximum number of votes is taken to be the model prediction.
Random Forest forms a part of ensemble models, i. e. the models where several models (trees in

this case) are generated and the output is governed collectively from these models. While
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Random Forest operates in parallel, averaging out error over all trees, AdaBoost and
GradientBoost work sequentially to reduce the errors. In these models, the errors in the previous
models (trees) are corrected in the successive models. In Adaboost, only a single split is
permissible in each tree resulting in two leaf nodes and the trees are called stumps. Initially, equal
weight is assigned to each data set and the weights are adjusted while developing subsequent
stumps. This is attained by assigning a higher weight to incorrectly classified data point in order
to correct in subsequent classification. Unlike Adaboost, no limitation is posed on the number of
leaves and splits in GradientBoost algorithm. The peculiarity of latter method is that leaf nodes
predict residuals and with addition of tree, the residuals are reduced.

k-Nearest Neighbor It is a form of non-parametric (i. e. it does not assume any form of mapping
function between input and output) and supervised learning classifier which uses proximity
between data set to classifications. “k” signifies how many neighbors will be used to predict the
output. The proximity is calculated in terms of distance metrics, the most common being the
Euclidean distance. These models are easy to implement and have very few parameters to hyper-
tune. However, it fails to perform well with the increase in dimensionality of the data.

Support Vector Machine (Classifier) This method can be used both for classification and
regression analysis, the former being used in the current study. It sorts the data into respective
classes by defining margins / hyperplanes between the classes. In the case of linearly separable
data, the best decision boundary (hyperplane) is identified as the one which has the largest
distance from the classes. The points nearest to the hyperplane, termed as support vectors, are
used to evaluate the distance. In the case of non-linearly separable data, data is transformed to
higher dimensions using kernels, such as polynomial, radial basis, in order to define linear decision

boundary.
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Several metrics exist to quantify the performance of machine learning models [35], such as the absolute
error (MAE), the mean squared error (RMSE), and the coefficient of determination (R?) for regression
problems and accuracy, F1-score, etc., for classification problems. In the present case, performance of
classification models was evaluated in terms of accuracy, which is defined as the ratio of correct
predictions to total predictions while R?> was opted for regression analysis and can be defined
mathematically by (where symbols have their usual meanings),

210 — )’ (3)

R2=1 4
YN O — )2

3.4 Training, cross validation, and testing of models

The various machine learning models were built on data set 1 by dividing it into training and testing
subsets in the ratio of 9: 1. Here, 10 % of the data was reserved for final testing (termed as final test data
henceforth) and none of these data points were used at any stage during the training/validation process

to make sure that performance metrics obtained for each model are fair by all means.
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Figure 6: Schematic of procedure adopted in the current work for training, validation, and testing machine learning

models.

The other 90 % of the data served two purposes. Firstly, it was used to obtain hyper-tuned parameters
using GridsearchCV function with 8-folds cross-validation. Hypertuned parameters for all the models are
presented in Appendix 2. Once the tuned parameters were obtained, this data set was split into train and
test in the ratio of 85 % and 15 % for training and testing, respectively. The latter is termed as test data
henceforth. Subsequently, models were trained with best preforming parameters and tested on this 15%
data (test data). Finally, these models were tested on the initial 10 % data (final test data) in addition to

the external data. A schematic of this procedure is illustrated in Figure 6.
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Figure 7: Schematic of the flow process for predicting autoignition and ignition delay time from input variables. For
predicting ignition delay time, two methods are proposed (see text below). Models are evaluated based on accuracy

as well as R? for autoignition and ignition delay time prediction, respectively.

As mentioned previously, the two objectives of interests are to predict whether there is autoignition and
ignition delay time. Figure 7 lllustrates a schematic of these two objectives highlighting the inputs,
predicted variables, and performance metrics. While training/testing the models for whether we have
ignition or not is pretty straightforward, it is not so evident for ignition delay time. The complexity arises
because in the entire data, there are cases which do not correspond to autoignition and for which the
values have been set to zero. Here, two different approaches are possible. Firstly, models can be trained
(and hyper-tuned) using the entire data set i. e. including zero as ignition time for no autoignition cases.
This implies that predicting ignition time will be independent of whether we have ignition or not. In the

second approach, the models for predicting ignition time can be trained only using the real ignition delay
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time data, i. e. data points corresponding to autoignition cases. These methodologies lead to two different
possibilities of predicting the output variable on an entirely new data set (external data set). For the sake
of clarity, these are termed as method 1 (M1), where models are developed on the entire data set, and
method 2 (M2), where models are developed only using the actual ignition delay time. The advantage of
former lies in its simplicity to predict the output as in case of the latter, two models need to be developed
and used, one for predicting autoignition and second for predicting the ignition time where the outcome
of first model (classification) will have influence on the overall outcome of the second model (regression).
However, the first method could be prone to more error due to manual bias introduced. We thereby test
both these approaches and compare the performance metrics of the models, which are presented in the

next section.

4 Results and discussions

In this section, the performance of various machine learning models is presented. However, before that,
we do some data analysis of the results from homogeneous ignition calculation to understand how the
data behaves and if the output yields meaningful results. This will further aid in ensuring that proposed

implications of using machine learning models can be successfully applied as described in §5.

4.1. Data Analysis

We first try to seek the effect of various independent parameters on whether we have ignition or not. It
can be seen from Figure 8 that with increase in temperature, the likelihood of autoignition increases.
Here, for the sake of clarity, only 20% of the data points from data set 1 were plotted by selecting every
5t data point. The trend in Figure 8 can be explained as increase in temperature represents a higher heat
release and thus a faster reaction rate, which results in a smaller autoignition time. This is further

supported from the ignition delay plot as shown in Figure 9. Further, both the outputs seem to be affected

more by the oxidizer (oxygen) percentage as compared to fuel concentration while there is a very little
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432 impact of pressure. This can be inferred from Figure 8 and Figure 9 where the trend for autoignition as
433 well as ignition delay remains nearly flat with fuel percentage while it exhibits a non-linear trend (nearly

434  exponential) with oxygen percentage.

| Autoignition Yes @ No |

435

436 Figure 8: Scatter plot illustrating dependence of various input parameters on output variable (I;). Green and red
437 dashed lines illustrate the trend of ignition likelihood with fuel and oxidizer concentration, respectively (left) and

438 pressure and oxidizer concentration (right) with temperature.

24



439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

Oxygen [in%]

Figure 9: Ignition delay plot as function of various parameters.

From a process engineering perspective, this trend is thereby advantageous as we have the possibility of
autoignition without much varying of the fuel concentration. This implies that we can nearly keep this
parameter constant when attempting to seek autoignition conditions in real experiments and focus more

on adapting the oxidizer concentration.

4.2 Performance of various machine learning models

Different models presented in the above section were first tested for the classification problem of
predicting autoignition. Figure 10 illustrates the performance metrics of different models for predicting
I;. The metrics presented for each model correspond to three different test data sets as was explained in
§3.4. In most of the cases, the performance metrics for all the three test cases remain nearly the same
illustrating that the models were trained, have a small variance and were not overfitted. While the
performance metrics of all the models seem to be quite satisfactory, Random Forest is able to make
predictions most accurately. The performance is slightly better than Decision Tree, which as a similar
approach, but Random Forest goes a step further to bootstrap random samples and eventually predicts

the outcome for the tree with highest votes. Averaging over all the trees subsequently averages out the
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variance in each tree thereby optimizing the bias and variance of the model in this classification problem.
The performance of the support vector machine classifier (SVC) is also comparable with that of Random
Forest. This can be ascribed to very clear distinguishment between the classification variable, i. e. whether
there will be autoignition or not, and this model is known to perform quite well in such cases. Further,
this can also be attributed to no overlapping classes in the present case as each instance of input

parameter is assigned only a single class.
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Il External data
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%, [

R
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Figure 10: Accuracy of different models for the classification problem of identifying whether we have autoignition

or not. For abbreviations, refer to the table after the conclusion.

The second part of the problem is to predict the ignition delay time. As was explained previously, here
two different approaches are followed. We first present the results with method 1, i. e. where ignition
time is predicted independently of whether we have ignition or not. Figure 11 shows the performance

metrics of various models used in this case. Here, it can be seen that except Random Forest most of the
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models perform quite poorly in predicting the ignition time. The objective to illustrate these not so
convincing results is to highlight that if not dealt with and applied appropriately, despite their enormous
potential, machine learning models can result in very poor outcomes. One possible reason in the current
case could arise due to training the models with exact numerical value and expecting the prediction to be
exact, which is very unlikely especially within the limits of numerical accuracy. One means to improve the
performance could be to classify the ignition delay time within certain ranges to make bins. This would
reduce the error as instead of predicting the exact value, we have a certain tolerance to the exact value.
This could also explain why Random Forest performs better as compared to other models. Nevertheless,
the poor performance of most of the models could primarily arise due to imposition of zero as ignition
time for no autoignition cases. These cases, which even in training set seem to have incurred manual bias,
further worse the model performance owing to likelihood of predicted values being close to zero which

otherwise would resemble no autoignition condition.
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Figure 11: R? values for different models for predicting ignition delay using method 1 as described in the text.
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In order to be coherent with physical reasoning that ignition delay is to be predicted only when
autoignition is predicted, we test method 2 as was described previously. The models in this approach are
trained using only the data points which correspond to autoignition and thus all the cases corresponding
to I; = 0 are excluded. This results in 7891 data points from data set 1. The rest of the procedure to
define the training/validation, testing, and final test data is the same as in the previous case and explained
in Figure 6. The only difference was that the number of data points were reduced. Hyper tuning of the
parameters was performed as in the previous case using 8-fold cross-validation. Figure 12 shows
performance metrics of different models on various test data sets. Here, for testing the external data,
data points corresponding to only autoignition were used which comprised 2659 data points from the

total 5000.
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Figure 12: R? values for different models for predicting ignition delay using method 2 as described in the text.
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Comparing the performance of various models using method 1 ( where we used the entire data to predict
autoignition irrespective of autoignition and as shown in Figure 10), the performance of all the models is
significantly better using method 2 as can be seen in Figure 12 (i. e. predicting ignition delay time in a two-
step process, firstly predicting autoignition and if found to occur, only then predict the ignition delay time).
This shows that there was a substantial effect of inaccuracies that arose due to accounting for imposed
ignition delay time in no autoignition cases. It may be argued that using some other value instead of zero
could improve the performance using method 1. However, this may not make a large difference because
there will be a significant percentage of the population with the same (hypothetical) ignition time delay
which introduces manual bias in the data set itself. Therefore, in order to predict the ignition delay, the
second approach seems to be more reasonable, given the condition that autoignition is well known. Thus,
if the operating parameter is known to yield autoignition, we can calculate the ignition delay time quite
precisely with various regression models as shown in Figure 12. However, in such case, attention must be
paid as the error in the output would be a combined error due to two models, firstly due to predicting

autoignition and subsequently in ignition delay time.

As a final step, we tested this approach to check how well the machine learning models as presented so
far could find their utility in a real application. Here, the external data set serves as the test case while a
more realistic case is presented in the next section. The input data (external data) is first tested for
whether we have ignition or not. Subsequently, the data points for which autoignition is predicted are
passed as input to the models predicting the ignition delay time. Let us define this output as V;. For the
remaining data points, i.e. for which no autoignition was predicted, the corresponding output ignition
delay time was set to zero to be coherent with how non ignition is defined in input data. Let us define this
output as V,. It is to be noted here that zero as ignition time serves no purpose for model development
and is just a numerical value to complete the output vector. These two sets (V;,V,) are combined to

obtain the final predicted ignition delay time output (9) and this is eventually compared with true values
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(). As Random Forest had the best performance for predicting autoignition, this model was used in the
initial step of predicting for autoignition. Subsequently, all the aforementioned models were tested, and
their performance metrics are shown in Figure 13. It can be seen that there is a significant improvement
over the model performance as compared to method 1. We further present a comparison between actual
values and predicted ones for three different models. This is shown in Figure 14 where in an ideal case all

the points should like on y = x straight line.
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Figure 13: R? values for different models for predicting ignition delay for external data set.
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This thereby presents that a two-model sequential approach needs to be followed to predict the desired

output parameters with satisfactory accuracy.
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Figure 14: Comparison between actual and predicted values of ignition delay on external data set using methods as

described in the text using three different models as mentioned therein.

As a final step, we finally analyzed the importance of various features on the model outputs. While this
was briefly presented in the above section based on graphical visualization, here we used feature
importance metrics available in Random Forest algorithm. Figure 15 presents the feature importance
metrics in case of autoignition as well as ignition delay. It can be observed that temperature plays one of
the major roles in governing the outcome of both the parameters followed by oxygen mass fraction. While
there is a small difference in the extent to which these features are important, the overall trend remains
the same and is coherent with physical understanding of the physical process considered in the present

work.
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Figure 15: Feature importance metrics for autoignition and ignition delay time.

So far, we have highlighted how homogenous ignition calculations coupled with tentative flow time scale
can be used to build data-driven machine learning models, which when trained judiciously can predict
whether we can have autoignition as well as ignition delay time for a given set of operating parameters.
However, a more important question which arises here is how these models can be further used to
develop understanding as well improving the SCWO process at microscale. We discuss this aspect in next

section.

5 Potential implication of ML models

In this section, we present a perspective on how these models and the approach in general can be used
to better understand and improve upon SCWO process apart from the default utility in predicting the
autoignition as well as ignition delay time. One of utilities of this approach is that the trained models can
be used to map the flow field (in terms of temperature, fuel concentration, etc.) at a given time from CFD
simulations to predict where in the flow domain autoignition is likely to occur and what could be the
corresponding ignition delay time. This can provide insights into the probable region in the domain where
ignition kernel could form, an essential and important aspect in understanding the flame dynamics. In

order to explain this in a more qualitative way, we perform CFD simulations for the schematic shown in
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558 Figure 2. Owing to symmetry in the domain (as highlighted in the figure) only half of the domain is
559  simulated. The modeling approach is similar to the one described in [36] and is not been described here
560 in detail as the prime objective is to demonstrate the described implication without any quantitively
561 interpretations. Figure 16 shows an example of the generated 2D field of fuel and oxygen concentration
562 along with temperature contours. It is to be mentioned that since the objective lies in predicting the
563 autoignition condition, we are not concerned about what happens after the ignition using this
564 methodology. The input data is fed to the machine learning model following which regions where ignition
565 is likely to happen is identified. For the given configuration, it is likely that ignition will happen in regions
566  dominated by oxidizer concentration which is expected. Mapping the ignition delay time on this contour
567 plot shows regions with small ignition delay time thereby highlighting the likely regions for the formation

568  of an ignition kernel.
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571 Figure 16: lllustration of how ML models can assist in predicting ignition kernel region. 2D field generated from
572 simulation. (a) Fuel mass percentage (b) Oxygen mass percentage (c) Temperature [in C] (d) Machine learning model

573 prediction of autoignition zone (yellow) and ignition delay time.
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Further implications of this methodology are briefly described as follows. In a real scenario, autoignition
will depend on how the flow field evolves and thus hydrodynamics is bound to play an important role.
When the fuel and the oxidizer are injected into the reactor microchannel, the temperature of the mixture
element will start to increase due to the reaction as the fluid element advects downstream. Thus, even if
we started with conditions corresponding to probability of no ignition as per homogeneous calculation,
the conditions can eventually change as the fluid element is advected and thus we can have conditions
leading to autoignition later in time. In such a scenario, it will be intuitive to have the design of reactors,
such as extending flow paths, using bluff bodies, etc. to alter hydrodynamics and mixing dynamics, which
ensure that such conditions are attained as close as possible to the inlet region. Thus, rather than running
a large number of simulations or experiments, mapping the simulation fields from several designs to
predict ignition as illustrated previeusly—can significantly aid in designing efficient microreactors.
Furthermore, a similar mapping can be done for ignition delay time. This can provide insights for better
understanding the impact of hydrodynamics on the autoignition phenomenon. Besides, the methodology
can be extended in analyzing the impact of various process parameters, such as minimum inlet
temperature at which ignition can occur, minimum fuel and oxidizer concentration for wide range of
physical dimensions of the microreactor. A more important implication would lie in 3D analysis of the
system. Owing to the small scale of the system, running a 3D simulation can be computationally very
expensive. This may lead to limiting the parametric space of various geometric parameters to be explored
and thus constraint optimum microreactor design. However, extending the methodology from 2D
systems, an initial estimate can be made in 3D design configurations. Thus, the implications of the current
approach of developing machine learning models are not only restricted to the trivial application of
predicting autoignition conditions but can significantly improve the understanding and design
considerations of microreactor in uSCWO — H. The presented approach will be used in the future with

real simulation data to understand the dynamics of hydrothermal flames at microscale.
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6 Conclusion and perspectives.

Machine learning based models were trained and tested to predict autoignition for a given set of
operating parameters (in terms of pressure, temperature, and fuel and oxidizer concentration) leading to
the formation of hydrothermal flames for supercritical water oxidation at microscale for its application in
the space industry. The autoignition criteria was defined in relation to residence time of the fluid/reacting
element in the microreactor. Thus, despite homogeneous reaction cases which may always yield
autoignition, this was restricted in the present case owing to limitation by flow time scales involved.
Among several classification models, Random Forest and Support Vector Machine were able to predict
outcomes with high accuracy. Subsequently, regression models were used to predict ignition delay time
where a two-step sequential strategy consisting of first predicting autoignition followed by ignition delay
time for the corresponding cases. The developed approach was further tested on an example of a simple
model system with 2D simulation to highlight the potential of using Machine Learning models beyond
simple prediction of autoignition and ignition delay time. Several further implications and utility of the
machine learning methodology were presented in the context of present problem highlighting how it can
assist in understanding the onset of hydrothermal flames at microscale and eventually design efficient
microreactors. As a future perspective, it is intended to couple the hydrodynamics of jets or co-axial flow
to account for more intricate hydrodynamic time scales into the machine learning models. This will further

improve the predictability of these models.
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Abbreviation Name

Ridge Ridge regression model
DT Decision Tree

RF Random Forest

kNN k-nearest neighbor

Ada AdaBoost

GB Gradient Boost

SVC Support vector classifier
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