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Abstract 

This paper presents a comparison among efficient techniques for uncertainty quantification on 

the RAE2822 airfoil whose shape is affected by uncertain geometrical parameters. Transonic 

conditions are considered with focus on estimating the statistics of the aerodynamic coefficients 

predicted by RANS simulations and using a far-field drag analysis of the computed flow field. 

Generalized polynomial chaos expansion with least-square approximation is employed for sto-

chastic surrogate modelling. Two different kind of approaches enabling the high-dimensional-

ity of the uncertainty space are investigated: ‘compressed sensing’ through Least Angle 

Regression and Basis Pursuit Denoising methods, and the ‘gradient enhanced’ formulation of 

the least-square approach exploiting the adjoint capabilities of modern CFD solvers.   

 

Keywords: transonic airfoil, CFD, geometric uncertainty, polynomial chaos, compressed 

sensing, adjoint gradient-enhancement.  
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1 INTRODUCTION 

During the last decades, computing power has largely increased, contributing to make Compu-

tational Fluid Dynamics (CFD) a quite mature tool for industrial design, widely exploited for var-

ious applications, especially in the aeronautical sector. However, the awareness of discrepancies 

between the ideal conditions of numerical simulations and the real ones has motivated the increas-

ing attention towards sensitivities of classical optimal shapes to uncertain parameters robust design 

techniques [9] and robust design techniques [10]. 

These uncertainties are usually of two kinds: epistemic and aleatory. The first one originates in 

our lack of knowledge in the modelling of the physical phenomena. In this context, Uncertainty 

Quantification (UQ) can help making our physical models more reliable. The second type is related 

to the variability in shape or flow conditions and although it cannot be controlled, it still needs to 

be considered in the design process. For example, deviations of real aerodynamic shapes from their 

reference design are often encountered, not only due to manufacturing tolerances but also to tem-

porary and permanent degradation of aerodynamic surfaces along their lifespan. 

Consequently, to be able to provide a robust aerodynamic shape by numerical optimization, 

uncertainties must be integrated in the design process. The state of the art of shape optimization 

provides, with the adjoint approach, the capability to tackle high dimensional design space [11]. 

However, on the other hand, the number of uncertain inputs can also become significantly large 

and, today, for such complex cases treated with High-Fidelity (HiFi) CFD, designers are strug-

gling with what is known as the “curse of dimensionality”. This curse represents the main bot-

tleneck for the widespread application of UQ techniques in the industrial framework.  

The main focus of this paper will be on efficient polynomial chaos techniques which can 

afford a reduced number of expensive CFD computations: compressed sensing (Least Angle 

Regression [3], Basis Pursuit Denoising [12]) and adjoint-gradient enhanced variants [8], [9] of 

the standard least-square approximation. Their implementation will mainly rely on the func-

tionalities already available in the open-source toolboxes OpenTURNS [5] 

(http://openturns.github.io/) and eQuadrature [4] (https://equadratures.org/). These techniques 

will be compared on the a realistic design test case represented by a transonic airfoil whose 

shape design parameters are considered uncertain with focus on efficiently estimating the sta-

tistics associated with its aerodynamic coefficients.   

2 METHODOLOGY 

Polynomial Chaos Expansion is a well establish approach [1] to derive a surrogate model ap-

proximating a function of interest 𝑓(𝒙) in the form of multivariate polynomials 𝐻𝒋(𝒙): 

 

𝑓(𝒙) = ∑ 𝑐𝒋𝐻𝒋(𝒙),

∞

𝒋

 
 

(1) 

 

where 𝒙 is a d-dimensional vector of independent random variables, j the multi-index associ-

ated with univariate polynomials and 𝑐𝒋 the polynomial coefficients. The polynomial expansion 

 {Hj(x)}
j=0

∞
 is chosen as a complete orthogonal basis with respect to the inner product associated 

with the joint Probability Density Function (PDF) of 𝒙, 𝜌(𝒙): 

 

〈𝐻𝒋, 𝐻𝒌〉 =  ∫ 𝐻𝒋(𝒙) 𝜌(𝒙)𝐻𝒌(𝒙) =  𝛿𝒋,𝒌, (2) 

 

http://openturns.github.io/
https://equadratures.org/
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with (𝒙) =  ∏ 𝜌𝑖(𝑥𝑖)
𝑑
𝑖=1  , 𝜌𝑖

(𝑥𝑖) being the marginal probability density function characterizing 

the ith uncertain variable 𝑥𝑖. Different truncation rules, e.g. total order or a hyperbolic cross [1], 

can be applied to Eq. (1), resulting in a different definition of the multi-index set 𝐽 spanned by 

j: 

𝑓(𝒙) = ∑ 𝑐𝒋𝐻𝒋(𝒙).

𝐽

𝒋

 

 

(3) 

 

In the present paper, the total order rule is adopted by fixing a common maximum degree 𝑝 for 

all the polynomial terms: 

 

|𝒋| =  ∑ 𝑗𝑖

𝑑

𝑖=1

 ≤ 𝑝, 
 

(4) 

 

which leads to a total number n of polynomial terms (and hence of coefficients) to be deter-

mined given by n =  (p + d)! (p! d!)⁄ . The PCE coefficients can be computed by various meth-

ods. In particular, when considering non-intrusive techniques, the different approaches can be 

essentially divided into two families: i) Spectral projection methods, where the coefficients are 

computed by the numerical approximation of the projection of 𝑓(𝒙) on the orthogonal polyno-

mial basis using classical Gauss quadrature and their more efficient sparse versions [13]. ii) 

Collocation methods, where the PCE coefficients are computed by fitting Eq. (1) to a given 

number of collocation points in the uncertain space, to best reproduce the exact function value: 

 

[
𝐻𝟎(𝒙1) … 𝐻𝒏(𝒙1)

⋮ ⋱ ⋮
𝐻𝟎(𝒙𝑁) ⋯ 𝐻𝒏(𝒙𝑁)

] (

𝑐𝟎

⋮
𝑐𝒏

) =  (
𝑓(𝒙1)

⋮
𝑓(𝒙𝑁)

), 
 

(5) 

 

that can be written as 𝐴𝒄 = 𝒃 in compact form. Oversampling up to 2n is often employed to 

satisfy the full-rank condition for the above matrix, resulting in a classical Least Square Ap-

proximation (LSA) of the PCE solution. This is equivalent to seek an approximation for the 

PCE coefficients in the form of an l2-minimization problem: 

 

𝒄 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝐴𝒄 − 𝒃‖2. (6) 

2.1 Gradient-enhanced LSA  

When gradient information is available, it can be used to introduce additional equations for 

the considered collations points while reducing their number in order to achieve full rank. In 

this case, the LSA system in Eq. (6) assumes the following form: 

 

[
𝐴(0)

⋮

𝐴(𝑑)

] (

𝑐𝟎

⋮
𝑐𝒏

) = (
𝒃(0)

⋮

𝒃(𝑑)

), 
 

(7) 

   

with:  
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𝐴(𝑗) = [
𝐻𝟎

(𝑗)
(𝒙1) ⋯ 𝐻𝒏

(𝑗)(𝒙𝑁)

⋮ ⋱ ⋮

𝐻𝟎
(𝑗)

(𝒙1) … 𝐻𝒏
(𝑗)(𝒙𝑁⋯)

] ,             𝒃(𝑗) = (
𝑓(𝑗)

(𝒙1)

⋮

𝑓(𝑗)
(𝒙𝑁)

), 

 

(8) 

 

Where 𝐴(0) =  𝐴  and𝐴(0) =  𝐴 𝐻𝒌
(𝑗)

 =  𝜕𝐻𝒌 𝜕𝑥j⁄  for 𝑗 ≥ 1𝑗 ≥ 1. Since the gradient at each 

collocation point provides d additional scalar information, the total number of samples can be 

ideally reduced by the same factor with respect to the standard LSA formulation. However, 

attention has to be paid to accuracy issues in computing the derivative information, as often 

occurs for adjoint solvers employed in CFD applications. In order to reduce the sensitivity from 

numerical noise affecting the gradient accuracy, a null-space method has been proposed in [2] 

showing how this approach can achieve improved accuracy, especially for standard deviation, 

on a turbomachinery test case. The same method as implemented in the eQuadratures toolbox 

is employed here to compute the solution of the Gradient-Enhanced LSA problem (LSA-GE) 

presented in Eq. (7).          

2.2 Compressed sensing techniques  

When dealing with very limited amount of data (e.g. as a direct consequence of expensive 

function evaluations) resulting in an underdetermined system for Eq. (1), an alternative solution 

can be sought in a sparse form, i.e. by minimizing the number of non-zero entries of 𝒄: 

 

𝒄 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝒄‖0   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ‖𝐴𝒄 − 𝒃‖2  ≤ 휀, (9) 

 

where 휀 ≥  0 is a given tolerance on the interpolation condition and ‖𝒄‖0 denotes the l0 norm 

of 𝒄. Indeed, although real PCE models are not truly sparse, they are expected to be compress-

ible, i.e. to feature a rapid decay in the magnitude of the coefficients at increasing order of the 

expansion, with most of the variance being captured by a few terms. This provides the rational 

behind the compressed sensing approach. Unfortunately, the cost of solving Eq. (9) grows ex-

ponentially with d and a convex relaxation based on l1-minimization is often considered in 

practice. When 휀 = 0 this is also referred to as Basis Pursuit Denoising (BPDN) which leads to 

solve the following problem: 

 

𝒄 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝒄‖1   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ‖𝐴𝒄 − 𝒃‖2  = 0, (10) 

 

using convex optimization algorithm. Besides convex optimization solvers, greedy methods 

have also been proposed to find a sparse PCE solution [1]. In these methods regressors are 

added to the model one by one according to some selection criterion, to find a heuristic solution 

to the burdensome l0 minimization problem. An example is represented by LARS [3] where the 

regressors are added according to their correlation with the current residual and the PCE coef-

ficients are then updated using a least angle strategy. It should be noted that LARS with the 

LASSO (Least Absolute Shrinkage and Selection Operator) modification can be interpreted as 

a l1-optimization solver. Both techniques, BPDN and LARS will be considered in the present 

study. In particular, for LARS, the implementation available in the open-source library Open-

TURNS [5] is employed.   

3 THE RAE2822 TEST CASE 

The considered test case is represented by the compressible viscous flow around the 

RAE2822 airfoil at transonic conditions: Mach number of 0.725, Reynolds number of 6.5e6, 
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and angle of attack of 2.55°: these conditions corresponds to the AGARD test case 7 [15]. The 

RANS solution is computed by using the elsA software [6] (ONERA-SAFRAN property) on a 

structured grid with a CH topology featuring a total of ~8e5 cells and near-wall resolution of 

𝑦+~ 1.0. The CFD solution is converged down to 7 orders of magnitude in the decrease of the 

residual. The employed mesh and the computed Mach field are illustrated in Figure 1. 

 

  
Figure 1: Computed Mach field for the transonic flow around the RAE2822 (right) and employed structured 

mesh (left). 

   

A far-field drag analysis [7] is applied to CFD results in order to extract the different phenom-

enological sources of drag. In particular, the far-field estimation of the total drag coefficient 

CDff and the wave drag coefficient, CDw, are considered as Quantity of Interest (QoI) for the 

present UQ analysis, in addition to the lift, CL, and pitching moment, CMy, coefficients. Cor-

responding values for the reference airfoil geometry and the considered flight conditions are 

reported in Table 1.  

 

 

CL CDff CDw CMy 

0.8076 139.37 24.20 -0.09465 
Table 1: Computed values of the aerodynamic coefficients for the RAE2822 airfoil at considered transonic con-

ditions. Drag coefficient values are reported in drag counts. 

 

3.1 Uncertain shape parameterization 

The airfoil shape is parameterized by means of both camber and thickness parameters at five 

different positions uniformly distributed along the chord, i.e. at 16.7%, 33.3%, 50%, 66.7%, 

83.3%, as illustrated in Figure 2. The deviation of each parameter from its corresponding base-

line value is assumed to follow a zero-mean β distribution. The convention used to define the 

probability density function of the β distribution is recalled Eq. (11):  

 

𝑓𝑋(𝑥) =
(𝑥−𝑎)𝛼−1(𝑏−𝑥)𝛽−1

(𝑏−𝑎)𝛼+𝛽−1𝐵(𝛼,𝛽)
       with 𝑥 ∈ [𝑎, 𝑏] and 𝐵 being the Euler’s β function 

(11) 

 

For all camber parameters the same value of variance is employed. The same assumption ap-

plies to the thickness parameters. Two different levels of amplitude, namely Ω1 and Ω2 are 
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considered for the uncertain perturbations: the associated sets of β-PDF parameters are reported 

in Table 2, while a representation of the envelope of the resulting airfoil shape is illustrated in 

Figure 3 and Figure 4 for Ω1 and Ω2 cases, respectively. Not surprisingly, the envelope is wider 

for Ω2 and as a consequence, the pressure coefficient distribution shows quite large deviations 

from the reference results, especially affecting the shock position on the suction side of the 

airfoil, as illustrated in Figure 4. For each realization of the uncertain design parameters, a mesh 

deformation process is used to adapt the baseline airfoil mesh and re-run CFD computations for 

both primal and adjoint analysis.  

 

 
Figure 2: RAE2822 baseline airfoil geometry (light blue line) and position of the control points used to modify 

the camber and thickness laws (orange makers and line). 

 

 
 

standard  
deviation 

shape pa-

rameter 

α=β 

lower bound 

(a) 

upper 

bound (b) 

Ω1 
camber 0.5E-3 4 -1.5E-3 +1.5E-3 

thickness 1.0E-2 4 -3.0E-2 +3.0E-2 

Ω2 
camber 3.0E-3 4 -9.0E-3 +9.0E-3 

thickness 6.0E-2 4 -18.0E-2 +18.0E-2 
Table 2: β-PDF parameters for camber and thickness uncertain design variables. 

 

 

 
Figure 3: Airfoil shape envelope (left) and corresponding variations of the pressure coefficient distribution 

(right) for the DoE associated with the uncertain set Ω1.    
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Figure 4: Airfoil shape envelope (left) and corresponding variations of the pressure coefficient distribution 

(right) for the DoE associated with the uncertain set Ω2. 

4 UQ RESULTS AND DISCUSSION 

The comparison of UQ methods presented in this section is limited to second-order PCE 

approximation, as often adopted in robust optimization study for realistic applications [2]. For 

the considered 10 uncertain parameters, this results in a total of 66 coefficients to be computed. 

The standard LSA solution is employed here as a reference to asses the accuracy of the results 

obtained by LSA-GE, LARS and BPDN with a limited amount of data as well their potential 

gain in terms of efficiency. The reduced number of samples is defined as a minimum needed to 

attain a prescribed precision computed by the Q2 criteria. The efficiency gain is heuristically 

defined as the ratio between the number of samples used by LSA and their reduced number 

required by the other techniques, also including adjoint computations. In particular, we assume 

that the cost of computing a gradient for a single aerodynamic coefficient equals the one of a 

standard CFD run as done by [2] and [8]. However, for some complex applications, this as-

sumption could lead to underestimate the effective cost of adjoint CFD computations, which 

are known to be less robust than primal ones.  

 

For the two sets of uncertain amplitudes, Ω1 and Ω2, a DoE is generated using 1024 samples 

distributed according to a Sobol sequence. For each airfoil shape realization, a CFD evaluation 

of CDff, CDw, CL, CMy and the associated adjoint computations are carried out, resulting in a 

total of 5024 CFD runs. All the 1024 function evaluations are employed to feed the LSA prob-

lem. The values of mean and standard deviation estimated by using standard LSA for the dif-

ferent aerodynamic coefficients are reported in Table 3. 

 

 QoI Mean Sigma 

Ω1 

CDff (d.c.) 139.92 3.99 

CDw (d.c.)  25.12 2.88 

CL 0.80866 6.02E-03 

CMy -0.09495 1.84E-03 

Ω2 

CDff (d.c.) 146.80 24.49 

CDw (d.c.) 29.97 17.32 

CL 0.80289 3.69E-02 

CMy -0.09481 1.13E-02 
Table 3: Reference values of mean and standard deviation obtained by using standard LSA. 
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4.1 Mean and variance estimation  

The comparison of mean and variance estimations obtained by the enhanced LSA methods 

for CDff, CDw, CL and CMy is summarized in Table 4-8, 5-9, 6-10 and 7-11, respectively. All 

the meta-models show very good accuracy on the mean estimations while the accuracy is re-

duced for the variance up to a difference of ~7% with respect to the LSA reference value. For 

the Ω1 case, efficiency gains are greater for CDff and CMy while almost halve for CDw and CL. 

LARS method achieves the largest gain for each coefficient except for the wave drag. The gain 

is almost doubled for CDff and CL with respect to LSA-GE. BPDN achieves a performance 

similar to that of LARS for CDw and CMy. A similar behavior is also observed for the Ω2 case, 

with LARS and BPDN showing a noticeably better performance than LSA-GE, with an effi-

ciency gain which is improved by a factor ranging from ~2 up ~4 with respect to LSA-GE. The 

resulting PDFs are also compared in Figure 5 and Figure 6 for case Ω1 and Ω2, respectively. 

For case Ω1 we can observe that all the PDF functions are substantially symmetric except for 

the pitching moment coefficient. The differences among the different methods are quite limited. 

The obtained best fitting using analytical PDF laws are reported in Table 8, using the Open-

TURNS notation. Differently from case Ω1, for case Ω2 CDff and CDw PDFs are characterized 

by a non-negligible skewness while those of CL and CMy are almost symmetric as confirmed 

by fitting results shown in Table 13. In addition, compared to case Ω1, larger discrepancies are 

observed among the different methods, especially in CDff and CDw. For CDw, we also observe 

a non-physical tail of the PDF at values lower than 0.      

 

PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference 139.92 - 3.99 - - 1023 - 

LSAGE 139.97 0.03% 4.21 5.51% 0.979 30 17.1 

LARS 139.79 -0.09% 4.02 0.86% 0.977 33 31.0 

BPDN 139.76 -0.11% 3.96 -0.84% 0.975 42 24.4 
Table 4: Comparison of the different methods on the estimation of the CDff statistics for uncertain set Ω1. 

 

 

PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference 25.12 - 2.88 - - 1023 - 

LSAGE 25.18 0.25% 2.88 0.18% 0.934 66 7.8 

LARS 25.07 -0.21% 2.75 -4.34% 0.926 188 5.4 

BPDN 25.14 0.10% 2.81 -2.37% 0.924 182 5.6 
Table 5: Comparison of the different methods on the estimation of the CDw statistics for uncertain set Ω1. 

 

 

PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

difference 
Q2 

DoE 

size 

Perfor-

mance gain 

LSA-reference 0.809 - 6.02E-03 - - 1023 - 

LSAGE 0.809 0.01% 5.86E-03 -2.68% 0.958 66 7.8 

LARS 0.808 -0.03% 5.98E-03 -0.66% 0.957 69 14.8 

BPDN 0.809 0.01% 6.11E-03 1.48% 0.949 132 7.8 
Table 6: Comparison of the different methods on the estimation of the CL statistics for uncertain set Ω1. 
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PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference -0.095 - 1.84E-03 - - 1023 - 

LSAGE -0.095 0.05% 1.86E-03 0.84% 0.964 35 14.6 

LARS -0.095 -0.08% 1.71E-03 -7.22% 0.963 41 25.0 

BPDN -0.095 -0.03% 1.75E-03 -5.33% 0.951 43 23.8 
Table 7: Comparison of the different methods on the estimation of the CMy statistics for uncertain set Ω1. 

 

 

 
Figure 5: Comparison of the histogram of the training data and the PDFs resulting from the different PCE meth-

ods for the case Ω1.  

 

QoI Mean Sigma Skewness Fitted PDF Fitted PDF Parameters 

CDff 139.92 3.99 0.203 LogNormal μ =-5.23, σ=7.44e-2, γ=8.64e-3 

CDw 25.12 2.88 0.232 Dirichlet α=[75.98, 30174.1] 

CL 0.8087 6.02E-03 0.08103 Beta α=5.51, β=5.79, a=0.79, b=0.83 

CMy -0.09495 1.84E-03 -0.224 Beta α=6.78, β=4.51, a=-0.103, b=-0.0897 
Table 8: Parameters of the fitted distributions obtained by the LSA reference PCE method for the case Ω1 

 

 

PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference 146.80 - 24.13 - - 1024 - 

LSAGE 146.52 -0.19% 24.45 1.29% 0.985 66 7.8 

LARS 146.22 -0.40% 23.74 -1.63% 0.975 92 11.1 

BPDN 146.46 -0.24% 24.24 0.45% 0.976 93 11.0 
Table 9: Comparison of the different methods on the estimation of the CDff statistics for uncertain set Ω2. 
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PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference 29.97 - 16.76 - - 1024 - 

LSAGE 29.50 -1.58% 16.42 -2.04% 0.939 66 7.8 

LARS 29.12 -2.86% 16.48 -1.65% 0.937 54 19.0 

BPDN 29.76 -0.71% 16.48 -1.65% 0.930 77 13.3 
Table 10: Comparison of the different methods on the estimation of the CDw statistics for uncertain set Ω2. 

 

 

PCE method Mean 

Mean 

differ-

ence 

Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference 0.803 - 3.69E-02 - - 1024 - 

LSAGE 0.803 -0.01% 3.51E-02 -4.91% 0.965 66 7.8 

LARS 0.805 0.31% 3.70E-02 0.26% 0.953 30 34.1 

BPDN 0.805 0.29% 3.60E-02 -2.43% 0.954 27 37.9 
Table 11: Comparison of the different methods on the estimation of the CL statistics for uncertain set Ω2. 

 
 

PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference -0.095 - 1.12E-02 - - 1024 - 

LSAGE -0.095 0.31% 1.13E-02 0.24% 0.952 29 17.7 

LARS -0.095 0.02% 1.09E-02 -2.95% 0.984 35 29.3 

BPDN -0.095 -0.05% 1.05E-02 -6.59% 0.958 35 29.3 
Table 12: Comparison of the different methods on the estimation of the CMy statistics for uncertain set Ω2. 

 
 

 
Figure 6: Comparison of the histogram of the training data and the PDFs resulting from the different PCE meth-

ods for the case Ω2.  

 

 



Q. Bennehard, J. Peter and M. Carini 

QoI Mean Sigma Skewness 
Fitted Dis-

tribution 
Distribution Parameters 

CDff 146.79 24.13 0.748 LogNormal μ =-4.86, σ=0.295, γ=6.578e-3 

CDw 29.96 16.76 0.692 Beta α=2.71, β=6.43, a=-4.65e-4, b=1.12e-2 

CL 0.8029 3.68E-02 -0.0527 Beta α=5.12, β=4.95, a=0.678, b=0.923 

CMy -0.094812 1.12E-02 0.01716 Beta α=5.53, β=5.03, a=-0.135, b=-0.0584 

Table 13: Parameters of the fitted distributions obtained on the LSA reference PCE method for the case Ω2. 

4.2 Sensitivity analysis 

The sensitivity analysis based on PCE first order and total Sobol indices is presented in Fig-

ure 7 and Figure 8, for case Ω1 and Ω2, respectively. These results indicate that the camber 

variable at 83% of the chord has the greatest influence on the variance of CL and CMy while all 

thickness variables have a negligible effect. Conversely, for both drag coefficients, the most 

influent design variables are represented by thickness and camber at 17% followed by those at 

the 33% of the chord. A lower contribution is also observed for the camber at the 83% of the 

chord. All thickness variables, except the last one, show a non-negligible contribution to the 

variance of CDw, which is not surprising from physical viewpoint.  When analyzing interaction 

effects, we can observe that for case Ω1, they are almost negligible: minor deviations of total 

Sobol index from first order ones are only observed for the wave drag coefficients. The differ-

ences between the considered PCE methods are also very limited. On the contrary, for case Ω2, 

relevant interaction effects are observed also for the far-field drag coefficient.  

 

 
Figure 7: Comparison of the Sobol indices obtained from the different PCE methods for the case Ω1. 
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Figure 8: Comparison of the Sobol indices obtained from the different PCE methods for the case Ω2. 

 

5 CONCLUSIONS 

This work treats two uncertainty quantification problems in dimension d=10. Four methods 

of computing a polynomial chaos expansion have been compared. The main purpose is to try 

to minimize the computational cost required to accurately estimate the mean and variance of 

four aerodynamic coefficients on a transonic airfoil. It is shown that ‘gradient enhanced’ and 

‘compress sensing’ methods present significant performance gain when compared to the stand-

ard least square approximation. More precisely, the LARS method, which looks for a sparse 

PCE, achieve the most significant gain across all the test cases. In addition, it was found that 

the gain provided by LSA-GE method was sometimes lower than d, especially when dealing 

with larger variance of the uncertain parameter in test case Ω2.  

The achieved reduction in the size of the DoE by means of these advanced PCE techniques 

pave the way to a robust shape optimization using HiFi computations, building a polynomial 

chaos expansion at each step of the optimization. Further improvements are necessary, e.g. by 

combining these techniques with the dimension reduction of the uncertain design space, in order 

to further reduce the cost of the UQ surrogate model.   
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