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France.
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Abstract
We provide a rigorous analysis of training by variational inference (VI) of Bayesian neural networks
in the two-layer and infinite-width case. We consider a regression problem with a regularized evi-
dence lower bound (ELBO) which is decomposed into the expected log-likelihood of the data and
the Kullback-Leibler (KL) divergence between the a priori distribution and the variational posterior.
With an appropriate weighting of the KL, we prove a law of large numbers for three different train-
ing schemes: (i) the idealized case with exact estimation of a multiple Gaussian integral from the
reparametrization trick, (ii) a minibatch scheme using Monte Carlo sampling, commonly known
as Bayes by Backprop, and (iii) a new and computationally cheaper algorithm which we introduce
as Minimal VI. An important result is that all methods converge to the same mean-field limit. Fi-
nally, we illustrate our results numerically and discuss the need for the derivation of a central limit
theorem.
Keywords: Bayesian neural networks, variational inference, mean-field, law of large numbers,
infinite-width neural networks.
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1. Introduction

Deep Learning has led to a revolution in machine learning with impressive successes. However,
some limitations of DL have been identified and, despite, many attempts, our understanding of DL
is still limited. A long-standing problem is the assessment of predictive uncertainty: DL tends to be
overconfident in its predictions Abdar et al. (2021), which is a problem in applications such as au-
tonomous driving (McAllister et al., 2017; Michelmore et al., 2020), medical diagnosis (Kendall
and Gal, 2017; Filos et al., 2019), or finance; cf Krzywinski and Altman (2013); Ghahramani
(2015). Therefore, on the one hand, analytical efforts are being made to thoroughly investigate
the performance of DL; and on the other hand, many approaches have been proposed to alleviate
its shortcomings. The Bayesian paradigm is an attractive way to tackle predictive uncertainty, as
it provides a framework for training uncertainty-aware neural networks (NNs) (e.g. Ghahramani
(2015); Blundell et al. (2015); Gal and Ghahramani (2016)).

Thanks to a fully probabilistic approach, Bayesian Neural Networks (BNN) combine the im-
pressive neural-network expressivity with the decision-theoretic approach of Bayesian inference,
making them capable of providing predictive uncertainty; see Blundell et al. (2015); Michelmore
et al. (2020); McAllister et al. (2017); Filos et al. (2019). However, Bayesian inference requires
deriving the posterior distribution of the NN weights. This posterior distribution is typically not
tractable. A classical approach is to sample the posterior distribution using Markov chain Monte
Carlo methods (such as Hamilton-Monte-Carlo methods). There are however long-standing diffi-
culties, such as the proper choice of the prior and fine-tuning of the sampler. Such difficulties often
become prohibitive in large-dimensional cases,(Cobb and Jalaian, 2021). An alternative is to use
variational inference, which has a long history (Hinton and Camp, 1993; MacKay, 1995; MacKay
et al., 1995). Simpler methods that do not require exact computation of integrals over the variational
posterior were then developed, e.g. first by Graves (2011) thanks to some approximation and then
by Blundell et al. (2015) with the Bayes by Backprop approach. In the latter, the posterior distribu-
tion is approximated by a parametric distribution and a generalisation of the reparametrization trick
used by Kingma and Welling (2014) leads to an unbiased estimator of the gradient of the ELBO;
see also Gal and Ghahramani (2016); Louizos and Welling (2017); Khan et al. (2018). Despite
the successful application of this approach, little is known about the overparameterized limit and
appropriate weighting that must be assumed to obtain a nontrivial Bayesian posterior, see Izmailov
et al. (2021). Recently, Huix et al. (2022) outlined the importance of balancing in ELBO the inte-
grated log-likelihood term and the KL regularizer, to avoid both overfitting and dominance of the
prior. However, a suitable limiting theory has yet to be established, as well as guarantees for the
practical implementation of the stochastic gradient descent (SGD) used to estimate the parameters
of the variational distribution.

Motivated by the need to provide a solid theoretical framework, asymptotic analysis of NN has
gained much interest recently. The main focus has been on the gradient descent algorithm and its
variants (Rotskoff and Vanden-Eijnden, 2018; Chizat and Bach, 2018; Mei et al., 2018; Sirignano
and Spiliopoulos, 2020; Descours et al., 2022). In much of these works, a mean-field analysis
is performed to characterize the limiting nonlinear evolution of the weights of a two-layer NN,
allowing the derivation of a law of large numbers and a central limit theorem for the empirical
distribution of neuron weights. A long-term goal of these works is to demonstrate convergence
toward a global minimum of these limits for the mean field. Despite some progress in this direction,
this is still an open and highly challenging problem; cf Chizat and Bach (2018); Chizat (2022);
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Chizat et al. (2022). Nevertheless, this asymptotic analysis is also of interest in its own right, as
we show here in the case of variational inference for Bayesian neural networks. Indeed, based on
this asymptotic analysis, we develop an efficient and new variant of the stochastic gradient descent
(SGD) algorithm for variational inference in BNN that computes only the information necessary to
recover the limit behavior.

Our goal, then, is to work at the intersection of analytical efforts to gain theoretical guarantees
and insights and of practical methods for a workable variational inference procedure. By adapting
the framework developed by Descours et al. (2022), we produce a rigorous asymptotic analysis of
BNN trained in a variational setting for a regression task. From the limit equation analysis, we first
find that a proper regularisation of the Kullback-Leibler divergence term in relation with the inte-
grated loss leads to their right asymptotic balance. Second, we prove the asymptotic equivalence of
the idealized and Bayes-by-Backprop SGD schemes, as both preserve the same core contributions to
the limit. Finally, we introduce a computationally more favourable scheme, directly stemming from
the effective asymptotic contributions. This scheme is the true mean-field algorithmic approach, as
only deriving from non-interacting terms.

More specifically, our contributions are the following:

• We first focus on the idealized SGD algorithm, where the variational expectations of the
derivative of the loss from the reparametrization trick of Blundell et al. (2015) are computed
exactly. More precisely, we prove that with the number of neurons N → +∞, the sequence
of trajectories of the scaled empirical distributions of the parameters satisfies a law of large
numbers. This is the purpose of Theorem 2. The proof is completely new: it establishes
directly the limit in the topology inherited by the Wasserstein distance bypassing the highly
technical Sobolev space arguments used in Descours et al. (2022).

The idealized SGD requires the computation of some integrals, which in practice prevents a di-
rect application of this algorithm. However, we can prove its convergence to an explicit nonlinear
process. These integrals are usually obtained by a Monte Carlo approximation, leading to the Bayes-
by-Backprop SGD, see Blundell et al. (2015).

• We show for the Bayes-by-Backprop SGD (see Theorem 3) that the sequence of trajectories
of the scaled empirical distributions of the parameters satisfies the same law of large numbers
as that in Theorem 2, which justifies such an approximation procedure. Note that each step of
the algorithm involves the simulation of O(N) Gaussian random variables, which can make
the associated gradient evaluation prohibitively expensive.

• A careful analysis of the structure of the limit equation (11) allows us to develop a new
algorithm, called Minimal-VI SGD, which at each step generates only two Gaussian random
variables and for which we prove the same limiting behavior. The key idea here is to keep
only those contributions which affect the asymptotic behavior and which can be understood
as the mean-field approximation from the uncorrelated degrees of freedom. This is all the
more interesting since we observe numerically that the number weights N required to reach
this asymptotic limit is quite small which makes this variant of immediate practical interest.

• We numerically investigate the convergence of the three methods to the common limit behav-
ior on a toy example. We observe that the mean-field method is effective for a small number
of neurons (N = 300). The differences between the methods are reflected in the variances.
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The paper is organized as follows: Section 2 introduces the variational inference in BNN, as well
as the SGD schemes commonly considered, namely the idealized and Bayes-by-backprop variants.
Then, in Section 3 we establish our initial result, the LLN for the idealized SGD. In Section 4 we
prove the LLN for the Bayes-by-backprop SGD and its variants. We show that both SGD schemes
have the same limit behavior. Based on an analysis of the obtained limit equation, we present in
Section 5 the new minimal- VI. Finally, in Section 6 we illustrate our findings using numerical ex-
periments. The proofs of the mean-field limits, which are original and quite technically demanding,
are gathered in the supplementary paper.

Related works. Law of Large Numbers (LLN) for mean-field interacting particle systems, have
attracted a lot of attentions; see for example Hitsuda and Mitoma (1986); Sznitman (1991); Fer-
nandez and Méléard (1997); Jourdain and Méléard (1998); Delarue et al. (2019); Del Moral and
Guionnet (1999); Kurtz and Xiong (2004) and references therein. The use of mean-field particle
systems to analyse two-layer neural networks with random initialization have been considered in
Mei et al. (2018, 2019), which establish a LLN on the empirical measure of the weights at fixed
times - we consider in this paper the trajectory convergence, i.e. the whole empirical measure pro-
cess (time indexed) converges uniformly w.r.t. Skorohod topology. It enables not only to use the
limiting PDE, for example to study the convergence of the weights towards the infimum of the loss
function (see Chizat and Bach (2018) for preliminary results), but is is also crucial to establish the
central limit theorem, see for example Descours et al. (2022). Rotskoff and Vanden-Eijnden (2018)
give conditions for global convergence of GD for exact mean-square loss and online stochastic gra-
dient descent (SGD) with mini-batches increasing in size with the number of weights N . A LLN
for the entire trajectory of the empirical measure is also given in Sirignano and Spiliopoulos (2020)
for a standard SGD. De Bortoli et al. (2020) establish the propagation of chaos for SGD with dif-
ferent step size schemes. Compared to the existing literature dealing with the SGD empirical risk
minimization in two-layer neural networks, Descours et al. (2022) provide the first rigorous proof
of the existence of the limit PDE, and in particular its uniqueness, in the LLN.

We are interested here in deriving a LLN but for Variational Inference (VI) of two-layer Bayesian
Neural Networks (BNN), where we consider a regularized version of the Evidence Lower Bound
(ELBO).

2. Variational inference in BNN: Notations and common SGD schemes

2.1. Variational inference and Evidence Lower Bound

Setting. Let X and Y be subsets of Rn (n ≥ 1) and R respectively. For N ≥ 1 and w =
(w1, . . . , wN ) ∈ (Rd)N , let fNw : X→ R be the following two-layer neural network: for x ∈ X,

fNw (x) :=
1

N

N∑
i=1

s(wi, x) ∈ R,

where s : Rd × X → R is the activation function. We work in a Bayesian setting, in which we
seek a distribution of the latent variablew which represents the weights of the neural network. The
standard problem in Bayesian inference over complex models is that the posterior distribution is
hard to sample. To tackle this problem, we consider Variational Inference, in which we consider a
family of distributionQN = {qNθ ,θ ∈ ΞN} (where Ξ is some parameter space) easy to sample. The
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objective is to find the best qNθ ∈ QN , the one closest in KL divergence (denoted DKL) to the exact
posterior. Because we cannot compute the KL, we optimize the evidence lower bound (ELBO),
which is equivalent to the KL up to an additive constant.

Denoting by L : R ×R → R+ the negative log-likelihood (by an abuse of language, we call
this quantity the loss), the ELBO (see Blei et al. (2017)) is defined, for θ ∈ ΞN , (x, y) ∈ X×Y, by

Elbo(θ, x, y) := −
∫

(Rd)N
L(y, fNw (x))qNθ (w)dw −DKL(qNθ |PN0 ),

where PN0 is some prior on the weights of the NN. The ELBO is decomposed into two terms:
one corresponding to the Kullback-Leibler (KL) divergence between the variational density and the
prior and the other to a marginal likelihood term. It was empirically found that the maximization of
the ELBO function is prone to yield very poor inferences (Coker et al., 2022). It is argued in Coker
et al. (2022) and Huix et al. (2022) that optimizing the ELBO leads as N → ∞ to the collapse of
the variational posterior to the prior. Huix et al. (2022) proposed to consider a regularized version of
the ELBO, which consists in multiplying the KL term by a parameter which is scaled by the inverse
of the number of neurons:

ENlbo(θ, x, y) := −
∫

(Rd)N
L(y, fNw (x))qNθ (w)dw − 1

N
DKL(qNθ |PN0 ), (1)

A first objective of this paper is to show that the proposed regularization leads to a stable asymp-
totic behavior and the effect of both the integrated loss and Kullback-Leibler terms on the limiting
behavior are balanced in the limit N →∞. The maximization of ENlbo is carried out using SGD.

The variational family QN we consider is a Gaussian family of distributions. More precisely,
we assume that for any θ = (θ1, . . . , θN ) ∈ ΞN , the variational distribution qNθ factorizes over
the neurons: for all w = (w1, . . . , wN ) ∈ (Rd)N , qNθ (w) =

∏N
i=1 q

1
θi

(wi), where θ = (m, ρ) ∈
Ξ := Rd × R and q1

θ is the probability density function (pdf) of N (m, g(ρ)2Id), with g(ρ) =
log(1 + eρ), ρ ∈ R.

In the following, we simply write Rd+1 for Rd ×R. In addition, following the reparameterisa-
tion trick of Blundell et al. (2015), q1

θ(w)dw is the pushforward of a reference probability measure
with density γ by Ψθ (see more precisely Assumption A1). In practice, γ is the pdf ofN (0, Id) and
Ψθ(z) = m+ g(ρ)z. With these notations, (1) writes

ENlbo(θ, x, y) = −
∫

(Rd)N
L
(
y,

1

N

N∑
i=1

s(Ψθi(z
i), x)

)
γ(z1) . . . γ(zN )dz1 . . . dzN −

1

N
DKL(qNθ |PN0 ).

Loss function and prior distribution. In this work, we focus on the regression problem, i.e. L is
the Mean Square Loss: for y1, y2 ∈ R, L(y1, y2) = 1

2 |y1 − y2|2. We also introduce the function
φ : (θ, z, x) ∈ Rd+1 × Rd × X 7→ s(Ψθ(z), x). On the other hand, we assume that the prior
distribution PN0 write, for all w ∈ (Rd)N , PN0 (w) =

∏N
i=1 P

1
0 (wi), where P 1

0 : Rd → R+ is
the pdf of N (m0, σ

2
0Id), and σ0 > 0. Therefore DKL(qNθ |PN0 ) =

∑N
i=1 DKL(qθi |P 1

0 ) and, for
θ = (m, ρ) ∈ Rd+1,

DKL(q1
θ |P 1

0 ) =

∫
Rd

q1
θ(x) log(q1

θ(x)/P 1
0 (x))dx =

‖m−m0‖22
2σ2

0

+
d

2

(g(ρ)2

σ2
0

− 1
)

+
d

2
log
( σ2

0

g(ρ)2

)
.
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Note that DKL has at most a quadratic growth in m and ρ.
Note that we assume here a Gaussian prior to get an explicit expression of the Kullback-Leibler

divergence. Most arguments extend to sufficiently regular densities and are essentially the same for
exponential families, using conjugate families for the variational approximation.

2.2. Common SGD schemes in backpropagation in a variational setting

Idealized SGD. Let (Ω,F ,P) be a probability space. Consider a data set {(xk, yk)}k≥0 i.i.d. w.r.t.
π ∈ P(X× Y), the space of probability measures over X× Y. For N ≥ 1 and given a learning rate
η > 0, the maximization of θ ∈ Rd+1 7→ ENlbo(θ, x, y) with a SGD algorithm writes as follows: for
k ≥ 0 and i ∈ {1, . . . , N}, {

θk+1 = θk + η∇θENlbo(θk, xk, yk)

θ0 ∼ µ⊗N0 ,
(2)

where µ0 ∈ P(Rd+1) and θk = (θ1
k, . . . , θ

N
k ). We now compute∇θENlbo(θ, x, y).

First, under regularity assumptions on the function φ (which will be formulated later, see A1
and A3 below) and by assumption on L, we have for all i ∈ {1, . . . , N} and all (x, y) ∈ X× Y,

∫
(Rd)N

∇θiL
(
y,

1

N

N∑
j=1

φ(θj , zj , x)
)
γ(z1) . . . γ(zN )dz1 . . . dzN

= − 1

N2

N∑
j=1

∫
(Rd)N

(y − φ(θj , zj , x))∇θφ(θi, zi, x)γ(z1) . . . γ(zN )dz1 . . . dzN (3)

= − 1

N2

[ N∑
j=1,j 6=i

(y − 〈φ(θj , ·, x), γ〉)〈∇θφ(θi, ·, x), γ〉+ 〈(y − φ(θi, ·, x))∇θφ(θi, ·, x), γ〉
]
,

where we have used the notation 〈U, ν〉 =
∫
Rq U(z)ν(dz) for any integrable function U : Rq → R

w.r.t. a measure ν (with a slight abuse of notation, we denote by γ the measure γ(z)dz). Second,
for θ ∈ Rd+1, we have

∇θDKL(q1
θ |P 1

0 ) =

(
∇mDKL(q1

θ |P 1
0 )

∂ρDKL(q1
θ |P 1

0 )

)
=

( 1
σ2
0
(m−m0)

d
σ2
0
g′(ρ)g(ρ)− dg

′(ρ)
g(ρ)

)
. (4)

In conclusion, the SGD (2) writes: for k ≥ 0 and i ∈ {1, . . . , N},
θik+1 = θik −

η

N2

N∑
j=1,j 6=i

(
〈φ(θjk, ·, xk), γ〉 − yk

)
〈∇θφ(θik, ·, xk), γ〉

− η

N2

〈
(φ(θik, ·, xk)− yk)∇θφ(θik, ·, xk), γ

〉
− η

N
∇θDKL(q1

θik
|P 1

0 )

θi0 ∼ µ0.

(5)

We shall call this algorithm idealised SGD because it contains an intractable term given by the in-
tegral w.r.t. γ. This has motivated the development of methods where this integral is replaced by an
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unbiased Monte Carlo estimator (see Blundell et al. (2015)) as detailed below.

Bayes-by-Backprop SGD. The second SGD algorithm we study is based on an approximation, for
i ∈ {1, . . . , N}, of

∫
(Rd)N (y − φ(θj , zj , x))∇θφ(θi, zi, x)γ(z1) . . . γ(zN )dz1 . . . dzN (see (3)) by

1

B

B∑
`=1

(
y − φ(θj ,Zj,`, x)

)
∇θφ(θi,Zi,`, x) (6)

where B ∈ N∗ is a fixed integer and (Zq,`, q ∈ {i, j}, 1 ≤ ` ≤ B) is a i.i.d finite sequence
of random variables distributed according to γ(z)dz. In this case, for N ≥ 1, given a dataset
(xk, yk)k≥0, the maximization of θ ∈ Rd+1 7→ ENlbo(θ, x, y) with a SGD algorithm is the following:
for k ≥ 0 and i ∈ {1, . . . , N},

θik+1 = θik −
η

N2B

N∑
j=1

B∑
`=1

(
φ(θjk,Z

j,`
k , xk)− yk

)
∇θφ(θik,Z

i,`
k , xk)−

η

N
∇θDKL(q1

θik
|P 1

0 )

θi0 = (mi
0, ρ

i
0) ∼ µ0,

(7)
where η > 0 and (Zj,`k , 1 ≤ j ≤ N, 1 ≤ ` ≤ B, k ≥ 0) is a i.i.d sequence of random variables
distributed according to γ.

3. Law of large numbers for the idealized SGD

Assumptions and notations. When E is a metric space and I = R+ or I = [0, T ] (T ≥ 0),
we denote by D(I , E) the Skorohod space of càdlàg functions on I taking values in E and
C(I , E) the space of continuous functions on I taking values in E. The evolution of the pa-
rameters ({θik, i = 1, . . . , N})k≥1 defined by (5) is tracked through their empirical distribution νNk
(for k ≥ 0) and its scaled version µNt (for t ∈ R+), which are defined as follows:

νNk :=
1

N

N∑
i=1

δθik
and µNt := νNbNtc, where the θik’s are defined (5). (8)

Fix T > 0. For all N ≥ 1, µN := {µNt , t ∈ [0, T ]} is a random element of D([0, T ],P(Rd+1)),
where P(Rd+1) is endowed with the weak convergence topology. For N ≥ 1 and k ≥ 1, we
introduce the following σ-algebras:

FN0 = σ(θi0, 1 ≤ i ≤ N) and FNk = σ(θi0, (xq, yq), 1 ≤ i ≤ N, 0 ≤ q ≤ k − 1). (9)

Recall q1
θ : Rd → R+ be the pdf ofN (m, g(ρ)2Id) (θ = (m, ρ) ∈ Rd+1). In this work, we assume

the following.

A1. There exists a pdf γ : Rd → R+ such that for all θ ∈ Rd+1, q1
θdx = Ψθ#γdx, where

{Ψθ, θ ∈ Rd+1} is a family of C1-diffeomorphisms over Rd such that for all z ∈ Rd,
θ ∈ Rd+1 7→ Ψθ(z) is of class C∞. Finally, there exists b : Rd → R+ such that for all multi-
index α ∈ Nd+1 with |α| ≥ 1, there exists Cα > 0, for all z ∈ Rd and θ = (θ1, . . . , θd+1) ∈
Rd+1, ∣∣∂αΨθ(z)

∣∣ ≤ Cαb(z) with for all q ≥ 1, 〈bq, γ〉 < +∞, (10)

where ∂α = ∂α1
θ1
. . . ∂

αd+1

θd+1
and ∂αjθj is the partial derivatives of order αj w.r.t. to θj .

7
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A2. The sequence {(xk, yk)}k≥0 is i.i.d. w.r.t. π ∈ P(X × Y). The set X × Y ⊂ Rd × R is
compact. For all k ≥ 0, (xk, yk) ⊥⊥ FNk , where FNk is defined in (9).

A3. The activation function s : Rd × X → R belongs to C∞b (Rd × X) (the space of smooth
functions over Rd × X whose derivatives of all order are bounded).

A4. The initial parameters (θi0)Ni=1 are i.i.d. w.r.t. µ0 ∈ P(Rd+1) which has compact support.

Note that A1 is satisfied when γ is the pdf ofN (0, Id) and Ψθ(z) = m+g(ρ)z, with b(z) = 1+
|z|. With these assumptions, for every fixed T > 0, the sequence ({θik, i = 1, . . . , N})k=0,...,bNT c
defined by (5) is a.s. bounded:

Lemma 1 (Uniform bound on the parameters) Assume A1→A4. Then, there exists C > 0 such
that a.s. for all T > 0, N ≥ 1, i ∈ {1, . . . , N}, and 0 ≤ k ≤ bNT c, |θik| ≤ Ce[C(2+T )]T .

Lemma 1 implies that a.s. for all T > 0 and N ≥ 1, µN ∈ D([0, T ],P(ΘT )), where

ΘT = {θ ∈ Rd+1, |θ| ≤ Ce[C(2+T )]T }.

Law of large numbers for (µN )N≥1 defined in (8). The first main result of this work is the
following.

Theorem 2 Assume A1→A4. Let T > 0. Then, the sequence (µN )N≥1 ⊂ D([0, T ],P(ΘT ))
defined in (8) converges in probability to the unique deterministic solution µ̄ ∈ C([0, T ],P(ΘT )) to
the following measure-valued evolution equation: ∀f ∈ C∞(ΘT ) and ∀t ∈ [0, T ],

〈f, µ̄t〉 − 〈f, µ0〉 = −η
∫ t

0

∫
X×Y

〈
φ(·, ·, x)− y, µ̄s ⊗ γ

〉〈
∇θf · ∇θφ(·, ·, x), µ̄s ⊗ γ

〉
π(dx, dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µ̄s

〉
ds. (11)

The proof of Theorem 2 is given in Appendix A. We stress here the most important steps and
used techniques. In a first step, we derive an identity satisfied by (µN )N≥1, namely the pre-limit
equation (28); see Sec. A.1. Then we show in Sec. A.2.2 that (µN )N≥1 is relatively compact in
D([0, T ],P(ΘT )). To do so, we check that the sequence (µN )N≥1 satisfies all the required as-
sumptions of (Jakubowski, 1986, Theorem 3.1) when E = P(ΘT ) there. In Sec. A.2.3 we prove
that every limit point of (µN )N≥1 satisfies the limit equation (11). Then, in Section A.2.4, we
prove that there is a unique solution of the measure-valued equation (11). To prove the uniqueness
of the solution of (11), we use techniques developed in Piccoli et al. (2015) which are based on
a representation formula for solution to measure-valued equations (Villani, 2003, Theorem 5.34)
together with estimates in Wasserstein distances between two solutions of (11) derived in Piccoli
and Rossi (2016). In Section A.2.4, we also conclude the proof of Theorem 2. Compared to (De-
scours et al., 2022, Theorem 1), the fact that ({θik, i = 1, . . . , N})k=0,...,bNT c defined by (5) are
a.s. bounded allows to use different and more straightforward arguments to prove (i) the relative
compactness in D([0, T ],P(ΘT )) of (µN )N≥1 (defined in (8)) (ii) the continuity property of the
operator m 7→ Λt[f ](m) defined in (35) w.r.t. the topology of D([0, T ],P(ΘT )) and (iii) (µN )N≥1

has limit points in C([0, T ],P(ΘT )). Step (ii) is necessary in order to pass to the limit N → +∞

8
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in the pre-limit equation and Step (iii) is crucial since we prove that there is at most one solution
of (11) in C([0, T ],P(ΘT )). It is worthwhile to emphasize that, as N → ∞, the effects of the
integrated loss and of the KL terms are balanced, as conjectured in Huix et al. (2022).

To avoid further technicalities, we have chosen what may seem restrictive assumptions on the
data or the activation function. Note however that it readily extends to unbounded set X, and also
unbounded Y assuming that π as polynomial moments of sufficiently high order. Also, RELU (or
more easily leaky RELU) may be considered by using weak derivatives (to consider the singularity
at 0), and a priori moment bounds on the weights.

4. LLN for the Bayes-by-Backprop SGD

The sequence {θik, i ∈ {1, . . . N}}k=0,...,bNT c defined recursively by the algorithm (7) is in general
not bounded, since ∇θφ(θ,Z, x) is not necessarily bounded if Z ∼ γ(s)dz. Therefore, we cannot
expect Lemma 1 to hold for {θik, i ∈ {1, . . . N}}k=0,...,bNT c set by (7). Thus, the sequence {θik, i ∈
{1, . . . N}}k=0,...,bNT c is considered on the whole space Rd+1.
Wasserstein spaces and results. For N ≥ 1, and k ≥ 1, we set

FNk = σ
(
θi0,Z

j,`
q , (xq, yq), 1 ≤ i, j ≤ N, 1 ≤ ` ≤ B, 0 ≤ q ≤ k − 1

})
. (12)

In addition to A1→A4 (where in A2, when k ≥ 1, FNk is now the one defined in (12)), we assume:

A5. The sequences (Zj,`k , 1 ≤ j ≤ N, 1 ≤ ` ≤ B, k ≥ 0) and ((xk, yk), k ≥ 0) are independent.
In addition, for k ≥ 0,

(
(xk, yk),Z

j,`
k , 1 ≤ j ≤ N, 1 ≤ ` ≤ B

)
⊥⊥ FNk .

Note that the last statement of A5 implies the last statement of A2. We introduce the scaled empirical
distribution of the parameters of the algorithm (7), i.e. for k ≥ 0 and t ≥ 0:

νNk :=
1

N

N∑
i=1

δθik
and µNt := νNbNtc, where the θik’s are defined (7). (13)

One can no longer rely on the existence of a compact subset ΘT ⊂ Rd+1 such that a.s. (µN )N≥1 ⊂
D([0, T ],P(ΘT )), where µN = {t ≥ 0 7→ µNt } is defined in (13). For this reason, we will work in
Wasserstein spaces Pq(Rd+1), q ≥ 0, which, we recall, are defined by

Pq(Rd+1) =
{
ν ∈ P(Rd+1),

∫
Rd+1

|θ|qν(dθ) < +∞
}
. (14)

These spaces are endowed with the Wasserstein metric Wq, see e.g. (Santambrogio, 2015, Chapter
5) for more materials on Wasserstein spaces. For all q ≥ 0, (µN )N≥1 ⊂ D(R+,Pq(Rd+1)). The
second main results of this work is a LLN for (µN )N≥1 defined in (13).

Theorem 3 Assume A1→A5. Let γ0 > 1 + d+1
2 . Then, the sequence (µN )N≥1 defined in (13)

converges in probability inD(R+,Pγ0(Rd+1)) to a deterministic element µ̄ ∈ D(R+,Pγ0(Rd+1)),
where µ̄ ∈ C(R+,P1(Rd+1)) is the unique solution in C(R+,P1(Rd+1)) to the following measure-
valued evolution equation:∀f ∈ C∞b (Rd+1) and ∀t ∈ R+,

〈f, µ̄t〉 − 〈f, µ0〉 = −η
∫ t

0

∫
X×Y

〈
φ(·, ·, x)− y, µ̄s ⊗ γ

〉〈
∇θf · ∇θφ(·, ·, x), µ̄s ⊗ γ

〉
π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µ̄s

〉
ds. (15)

9
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Theorem 3 is proved in the appendix B. Since {θik, i ∈ {1, . . . N}}k=0,...,bNT c defined by (7) is not
bounded in general, we work in the space D(R+,Pγ0(Rd+1)). The proof of Theorem 3 is more
involved than that of Theorem 2, and generalizes the latter to the case where the parameters of the
SGD algorithm are unbounded. We prove that (µN )N≥1 (defined in (13)) is relatively compact
in D(R+,Pγ0(Rd+1)). To this end we now use (Jakubowski, 1986, Theorem 4.6). The compact
containment, which is the purpose of Lemma 20, is not straightforward since Pγ0(Rd+1) is not
compact contrary to Theorem 2 where we used the compactness of P(ΘT ). More precisely, the
compact containment of (µN )N≥1 relies on a characterization of the compact subsets of Pγ0(Rd+1)
(see Proposition 18) and moment estimates on {θik, i ∈ {1, . . . N}}k=0,...,bNT c (see Lemma 17). We
also mention that contrary to what is done in the proof of Theorem 2, we do not show that every
limit point of (µN )N≥1 in D(R+,Pγ0(Rd+1)) is continuous in time but we still manage to prove
that they all satisfy (15). Then, using the duality formula for the W1-distance together with rough
estimates on the jumps of t 7→ 〈f, µNt 〉 (for f uniformly Lipschitz over Rd+1), we then show that
every limit point of (µN )N≥1 in D(R+,Pγ0(Rd+1)) belongs a.s. to C(R+,P1(Rd+1)). Again this
is important since we have uniqueness of (15) in C(R+,P1(Rd+1)).

We conclude this section with the following important uniqueness result.

Proposition 4 Under the assumptions of Theorems 2 and 3, the solution to (11) is independent of
T and is equal to the solution to (15).

This uniqueness result states that both idealized and Bayes-by-backprop SGD have the same limiting
behavior. It is also noteworthy that the mini-batch B is held fixed B. The effect of batch size can
be seen at the level of the central limit theorem, which we leave for future work.

5. The Minimal-VI SGD algorithm

The idea behing the Bayes-by-Backprop SGD stems from the fact that there are integrals wrt γ
in the loss function that cannot be computed in practice and it is quite natural up to a reparam-
eterization trick, to replace these integrals by a Monte Carlo approximation (with i.i.d. gaussian
random variables). To devise a new cheaper algorithm based on the only terms impacting the
asymptotic limit, we directly analyse the limit equation (11) and remark that it can be rewritten
as, ∀f ∈ C∞(ΘT ) and ∀t ∈ [0, T ],

〈f, µ̄t〉 − 〈f, µ0〉

= −η
∫ t

0

∫
X×Y×(Rd)2

〈
φ(·, z1, x)− y, µ̄s

〉〈
∇θf · ∇θφ(·, z2, x), µ̄s

〉
γ⊗2(dz1dz2)π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µ̄s

〉
ds.

Thus, the integration over γ⊗2 can be considered as that over π, i.e., we can consider them as two
more data variables that only need to be sampled at each new step. In this case, the SGD (7)
becomes: for k ≥ 0 and i ∈ {1, . . . , N},

θik+1 = θik −
η

N2

N∑
j=1

(
φ(θjk,Z

1
k, xk)− yk

)
∇θφ(θik,Z

2
k, xk)−

η

N
∇θDKL(q1

θik
|P 1

0 )

θi0 = (mi
0, ρ

i
0) ∼ µ0,

(16)
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Figure 1: Histograms of {F (θibNT c), i = 1, . . . , N}, at different times (initialization (t = 0), half
(t = 2.5) and end of training (T = 5)), when N = 10000. First line: F (θ) = ‖m‖2,
where θ = (m, ρ) ∈ Rd ×R. Second line: F (θ) = m ∈ Rd. Idealized (blue), Bayes-
by-Backprop (orange) and Minimal-VI (green).

where η > 0 and (Zpk, p ∈ {1, 2}, k ≥ 0) is a i.i.d sequence of random variables distributed
according to γ⊗2. We call this backpropagation scheme minimal- VI SGD which is much cheaper
in terms of computational complexity, with the same limiting behavior as we now discuss.

We introduce the σ-algebra for N, k ≥ 1:

FNk = σ
(
θi0,Z

p
q , (xq, yq), 1 ≤ i ≤ N, p ∈ {1, 2}, 0 ≤ q ≤ k − 1

})
. (17)

In addition to A1→A4 (where in A2, FNk is now the one defined above in (17) when k ≥ 1), the
following assumption

A6. The sequences (Zpk, p ∈ {1, 2}, k ≥ 0) and ((xk, yk), k ≥ 0) are independent. In addition,
for k ≥ 0,

(
(xk, yk),Z

p
k, p ∈ {1, 2}

)
⊥⊥ FNk , where FNk is defined in (17).

Set for k ≥ 0 and t ≥ 0, νNk := 1
N

∑N
i=1 δθik

and µNt := νNbNtc, where the θik’s are defined in (16).
The last main result of this work states that the sequence (µN )N≥1 satisfies the same law of large
numbers when N → +∞ as the one satisfied by (13), whose proof will be omitted as it is the same
as the one made for Theorem 3.

Theorem 5 Assume A1→A4 and A6. Then, the sequence of (µN )N≥1 satisfies all the statements
of Theorem 3.

6. Numerical experiments

In this section we illustrate the theorems 2, 3, and 5 using the following toy model. We set d = 5.
Given θ∗ ∈ Rd (drawn from a normal distribution and scaled to the unit norm), we draw i.i.d
observations as follows: Given x ∼ U([−1, 1]d), we draw y = tanh(x>θ∗) + ε, where ε is

11
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Figure 2: Convergence of 〈f, µNT 〉 to 〈f, µ̄T 〉, for the idealized (blue), Bayes-by-Backprop (orange)
and Minimal-VI (green) SGD algorithms over 50 realizations.
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Figure 3: Decay of the negative ELBO (left) and its two components (KL (middle), loss (right))
during the training process done by the idealized (blue), Bayes-by-Backprop (orange) and
Minimal-VI (green) SGD algorithms, for N = 10000.

zero mean with variance 10−4. The initial distribution of parameters is centered around the prior:
θ0 ∼ (N (m0, 0.01Id)×N (g−1(σ0), 0.01))⊗N , with m0 = 0 and σ0 = 0.2. Since the idealized al-
gorithm cannot be implemented exactly, a mini-batch of size 100 is used as a proxy for the following
comparisons of the different algorithms. For the algorithm (7) SGD we set B = 1.
Evolution and limit of the distribution Fig. 1 displays the histograms of {F (θibNtc), i = 1, . . . , N}
(F (θ) = ‖m‖2, g(ρ) or m, where θ = (m, ρ) ∈ Rd × R), for N = 10000, at initialization,
halfway through training, and at the end of training. The empirical distributions illustrated by these
histograms are very similar over the course of training. It can be seen that for N = 10000 the limit
of the mean field is reached.
Convergence with respect to the numbers of neurons. We investigate here the speed of conver-
gence of µNt to µ̄t (as N → +∞), when tested against test functions f . More precisely, we fix
a time T (end of training) and Figure 2 represents the empirical mean of 〈f, µNT 〉 over 50 realiza-
tions. The test functions used for this experiment are fm(θ) = ‖m‖2, fElbo(θ) = −Êlbo(θ)N where
Êlbo is the empirical ENlbo (see (1)) computed with 100 samples of (x, y) and (z1, . . . , zN ). Finally,

fpred(θ) = Êx
[
V̂w∼qNθ [fNw (x)]

1/2
]

where Ê and V̂ denote respectively the empirical mean and
the empirical variance over 100 samples. All algorithms are converging to the same limit and are
performing similarly even with a limited number of neurons (N = 300 in this example).
Convergence with respect to time. This section illustrates the training process of a BNN with a
given number of neurons N = 10000. In Figure 3, we plot the negative ELBO on a test set and its
two components, the loss and the KL-divergence terms. Figure 3 shows that the BNN is able to learn
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Figure 4: Boxplots for 50 runs of 〈f, µNt 〉 for the three SGD schemes for f(θ) = ‖m‖2 on the first
line and f(θ) = g(ρ) on the second line. MVIB-SGD: Minimal-VI SGD. BbB-SGD:
Bayes-by-Backprop SGD.

on this specific task and all algorithms exhibit a similar performance. It illustrates the trajectorial
convergence of {µNt , t ∈ [0, T ]}N≥1 to {µ̄t, t ∈ [0, T ]} as N → +∞.

Behavior around the limit µ̄. On Figure 4, we plot the boxplots of 〈f, µNt 〉 for 50 realizations
and N = 10000, at different times of the training. Minimal-VI scheme (which is computationally
cheaper as explained in 5) exhibit a larger variance than the other algorithms.

7. Conclusion

By establishing the limit behavior of the idealized SGD for the variational inference of BNN with
the weighting suggested by Huix et al. (2022), we have rigorously shown that the most-commonly
used in practice Bayes-by-Backprop scheme indeed exhibits the same limit behavior. Furthermore,
the analysis of the limit equation led us to validate the correct scaling of the KL divergence term in
with respect to the loss. Notably, the mean-field limit dynamics has also helped us to devise a far
less costly new SGD algorithm, the Minimal-VI. This scheme shares the same limit behavior, but
only stems from the non-vanishing asymptotic contributions, hence the reduction of the computa-
tional cost. Aside from confirming the analytical results, the first simulations presented here show
that the three algorithms, while having the same limit, may differ in terms of variance. Thus, deriv-
ing a CLT result and discussing the right trade-off between computational complexity and variance
will be done in future work. Also, on a more general level regarding uncertainty quantification, an
interesting question is to analyse the impact of the correct scaling of the KL divergence term on the
error calibration and how to apply the same analysis in the context of deep ensembles.
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Appendix A. Proof of Theorem 2

For simplicity, we prove the theorem 2 when T = 1, and we denote Θ1 simply by Θ. In this section
we assume A1–A4.

A.1. Pre-limit equation (28) and error terms in (28)

A.1.1. DERIVATION OF THE PRE-LIMIT EQUATION

The aim of this section is to establish the so-called pre-limit equation (28), which will be our starting
point to derive Equation (11). Let N ≥ 1, k ∈ {0, . . . , N}, and f ∈ C∞(Θ). Recall that by
Lemma 1 and since 0 ≤ k ≤ N , a.s. θik ∈ Θ, and thus a.s. f(θik) is well-defined. The Taylor-
Lagrange formula yields

〈f, νNk+1〉 − 〈f, νNk 〉 =
1

N

N∑
i=1

f(θik+1)− f(θik)

=
1

N

N∑
i=1

∇θf(θik) · (θik+1 − θik) +
1

2N

N∑
i=1

(θik+1 − θik)T∇2f(θ̂ik)(θ
i
k+1 − θik),

where, for all i ∈ {1, . . . , N}, θ̂ik ∈ (θik, θ
i
k+1) ⊂ Θ. Using (5), we then obtain

〈f, νNk+1〉 − 〈f, νNk 〉 = − η

N3

N∑
i=1

N∑
j=1,j 6=i

(〈
φ(θjk, ·, xk), γ

〉
− yk

)〈
∇θf(θik) · ∇θφ(θik, ·, xk), γ

〉
− η

N2

〈(
φ(·, ·, xk)− yk

)
∇θf · ∇θφ(·, ·, xk), νNk ⊗ γ

〉
− η

N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), νNk

〉
+ RN

k [f ], (18)

where

RN
k [f ] :=

1

2N

N∑
i=1

(θik+1 − θik)T∇2f(θ̂ik)(θ
i
k+1 − θik). (19)

Let us define

DN
k [f ] := E

[
− η

N3

N∑
i=1

N∑
j=1,j 6=i

(〈
φ(θjk, ·, xk), γ

〉
− yk

)〈
∇θf(θik) · ∇θφ(θik, ·, xk), γ

〉∣∣∣FNk ]
−E

[ η
N2

〈
(φ(·, ·, xk)− yk)∇θf · ∇θφ(·, ·, xk), νNk ⊗ γ

〉∣∣∣FNk ]. (20)

Note that using (45) and (47) together with the fact that |∇θf(θik)| ≤ supθ∈Θ |∇θf(θ)|, the integrant
in (20) is integrable and thus DN

k [f ] is well defined. Using the fact that (xk, yk) ⊥⊥ FNk by A2 and
that {θik, i = 1, . . . , N} is FNk -measurable by (5), we have:

DN
k [f ] = − η

N3

N∑
i=1

N∑
j=1,j 6=i

∫
X×Y

(〈
φ(θjk, ·, x), γ

〉
− y
)〈
∇θf(θik) · ∇θφ(θik, ·, x), γ

〉
π(dx, dy)

− η

N2

∫
X×Y

〈
(φ(·, ·, x)− y)∇θf · ∇θφ(·, ·, x), νNk ⊗ γ

〉
π(dx,dy). (21)
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Introduce also

MN
k [f ] := − η

N3

N∑
i=1

N∑
j=1,j 6=i

(〈φ(θjk, ·, xk), γ〉 − yk)〈∇θf(θik) · ∇θφ(θik, ·, xk), γ〉

− η

N2
〈(φ(·, ·, xk)− yk)∇θf · ∇θφ(·, ·, xk), νNk ⊗ γ〉 −DN

k [f ].

Note that E
[
MN

k [f ]|FNk
]

= 0. Equation (18) then writes

〈f, νNk+1〉 − 〈f, νNk 〉 = DN
k [f ] + MN

k [f ]− η

N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), νNk

〉
+ RN

k [f ]. (22)

Notice also that

DN
k [f ] = − η

N3

N∑
i=1

N∑
j=1

∫
X×Y

(〈φ(θjk, ·, x), γ〉 − y)〈∇θf(θik) · ∇θφ(θik, ·, x), γ〉π(dx,dy)

+
η

N3

N∑
i=1

∫
X×Y

(〈φ(θik, ·, x), γ〉 − y)〈∇θf(θik) · ∇θφ(θik, ·, x), γ〉π(dx,dy)

− η

N2

∫
X×Y
〈(φ(·, ·, x)− y)∇θf · ∇θφ(·, ·, x), νNk ⊗ γ〉π(dx,dy)

= − η

N

∫
X×Y
〈φ(·, ·, x)− y, νNk ⊗ γ〉〈∇θf · ∇θφ(·, ·, x), νNk ⊗ γ〉π(dx,dy)

+
η

N2

∫
X×Y

〈
(〈φ(·, ·, x), γ〉 − y)〈∇θf · ∇θφ(·, ·, x), γ〉, νNk

〉
π(dx,dy)

− η

N2

∫
X×Y
〈(φ(·, ·, x)− y)∇θf · ∇θφ(·, ·, x), νNk ⊗ γ〉π(dx,dy). (23)

Now, we define for t ∈ [0, 1]:

DN
t [f ] :=

bNtc−1∑
k=0

DN
k [f ], RN

t [f ] :=

bNtc−1∑
k=0

RN
k [f ], and MN

t [f ] :=

bNtc−1∑
k=0

MN
k [f ]. (24)

We can rewrite DN
t [f ] has follows:

DN
t [f ] =

bNtc−1∑
k=0

∫ k+1
N

k
N

NDN
bNsc[f ]ds = N

∫ t

0
DN
bNsc[f ]ds−N

∫ t

bNtc
N

DN
bNsc[f ]ds.

Since νNbNsc = µNs (by definition, see (8)), we have, using also (23) with k = bNsc,

DN
t [f ] = −η

∫ t

0

∫
X×Y
〈φ(·, ·, x)− y, µNs ⊗ γ〉〈∇θf · ∇θφ(·, ·, x), µNs ⊗ γ〉π(dx,dy)ds

+
η

N

∫ t

0

∫
X×Y

〈
〈φ(·, ·, x)− y, γ〉〈∇θf · ∇θφ(·, ·, x), γ〉, µNs

〉
π(dx, dy)ds

− η

N

∫ t

0

∫
X×Y

〈
(φ(·, ·, x)− y)∇θf · ∇θφ(·, ·, x), µNs ⊗ γ

〉
π(dx,dy)ds−VN

t [f ],

(25)
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where

VN
t [f ] := −η

∫ t

bNtc
N

∫
X×Y
〈φ(·, ·, x)− y, µNs ⊗ γ〉〈∇θf · ∇θφ(·, ·, x), µNs ⊗ γ〉π(dx,dy)ds

+
η

N

∫ t

bNtc
N

∫
X×Y

〈
〈φ(·, ·, x)− y, γ〉〈∇θf · ∇θφ(·, ·, x), γ〉, µNs

〉
π(dx,dy)ds

− η

N

∫ t

bNtc
N

∫
X×Y

〈
(φ(·, ·, x)− y)∇θf · ∇θφ(·, ·, x), µNs ⊗ γ

〉
π(dx,dy)ds.

On the other hand, we also have for t ∈ [0, 1],

bNtc−1∑
k=0

− η

N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), νNk

〉
= −η

∫ bNtc
N

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µNs

〉
ds. (26)

We finally set:

WN
t [f ] := −VN

t [f ] + η

∫ t

bNtc
N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µNs

〉
ds. (27)

Since 〈f, µNt 〉− 〈f, µN0 〉 =
∑bNtc−1

k=0 〈f, νNk+1〉− 〈f, νNk 〉, we deduce from (22), (24), (25), (26) and
(27), the so-called pre-limit equation satisfied by µN : for N ≥ 1, t ∈ [0, 1], and f ∈ C∞(Θ),

〈f, µNt 〉 − 〈f, µN0 〉 = −η
∫ t

0

∫
X×Y
〈φ(·, ·, x)− y, µNs ⊗ γ〉〈∇θf · ∇θφ(·, ·, x), µNs ⊗ γ〉π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µNs

〉
ds

+
η

N

∫ t

0

∫
X×Y

〈
〈φ(·, ·, x)− y, γ〉〈∇θf · ∇θφ(·, ·, x), γ〉, µNs

〉
π(dx,dy)ds

− η

N

∫ t

0

∫
X×Y

〈
(φ(·, ·, x)− y)∇θf · ∇θφ(·, ·, x), µNs ⊗ γ

〉
π(dx,dy)ds

+ MN
t [f ] + WN

t [f ] + RN
t [f ]. (28)

A.1.2. THE LAST FIVE TERMS IN (28) ARE ERROR TERMS

The purpose of this section is to show that the last five terms appearing in the r.h.s. of (28) are error
terms when N → +∞. For J ∈ N∗ and f ∈ CJ(Θ), set ‖f‖CJ (Θ) :=

∑
|k|≤J ‖∂kf‖∞,Θ, where

‖g‖∞,Θ = supθ∈Θ |g(θ)| for g : Θ→ Rm.

Lemma 6 (Error terms) Assume A1→A4. Then, there exists C > 0 such that a.s. for all f ∈
C∞(Θ) and N ≥ 1,

1. η
N

∫ 1
0

∫
X×Y

∣∣∣〈〈φ(·, ·, x)− y, γ〉〈∇θf · ∇θφ(·, ·, x), γ〉, µNs
〉∣∣∣π(dx,dy)ds ≤ C‖f‖C1(Θ)/N .

2. η
N

∫ 1
0

∫
X×Y

∣∣∣〈(φ(·, ·, x)− y)∇θf · ∇θφ(·, ·, x), µNs ⊗ γ
〉∣∣∣π(dx,dy)ds ≤ C‖f‖C1(Θ)/N .
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3. supt∈[0,1] |WN
t [f ]|+ supt∈[0,1] |RN

t [f ]| ≤ C‖f‖C2(Θ)/N .

Finally, supt∈[0,1] E
[
|MN

t [f ]|
]
≤ C‖f‖C1(Θ)/

√
N .

Proof All along the proof, C > 0 denotes a positive constant independent of N ≥ 1, k ∈
{0, . . . , N − 1}, (s, t) ∈ [0, 1]2, (x, y) ∈ X × Y, θ ∈ Θ, z ∈ Rd, and f ∈ C∞(Θ) which can
change from one occurrence to another. Using (47), the Cauchy-Schwarz inequality, and the fact
that ∇θf is bounded over Θ imply:

|〈∇θf(θ) · ∇θφ(θ, ·, x), γ〉| ≤ 〈|∇θf(θ) · ∇θφ(θ, ·, x)|, γ〉 ≤ C‖f‖C1(Θ). (29)

Combining (45) and (29), we obtain:∫ 1

0

∫
X×Y

∣∣∣〈〈φ(·, ·, x)− y, γ〉〈∇θf · ∇θφ(·, ·, x), γ〉, µNs
〉∣∣∣π(dx, dy)ds ≤ C‖f‖C1(Θ)

and ∫ 1

0

∫
X×Y

∣∣∣〈(φ(·, ·, x)− y)∇mf · ∇mφ(·, ·, x), µNs ⊗ γ
〉∣∣∣π(dx,dy)ds ≤ C‖f‖C1(Θ),

which proves Items 1 and 2.
Let us now prove Item 3. By (45) and (29), supt∈[0,1] |VN

t [f ]| ≤ C‖f‖C1(Θ)/N . On the
other hand, because f ∈ C∞(Θ) and θ 7→ ∇θDKL(q1

θ |P 1
0 ) is continuous (see (4)) over Θ which is

compact, it holds, ‖∇θf · ∇θDKL(q1
θ |P 1

0 )‖∞,Θ < +∞. Hence, it holds:

sup
t∈[0,1]

∣∣∣ ∫ t

bNtc
N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µNs

〉
ds
∣∣∣ ≤ C‖f‖C1(Θ)/N.

Using (27), it then holds supt∈[0,1] |WN
t [f ]| ≤ C‖f‖C1(Θ)/N . Since f ∈ C∞(Θ), we have, by

(19), for N ≥ 1 and 0 ≤ k ≤ N − 1, |RN
k [f ]| ≤ ‖f‖C2(Θ)

C
N

∑N
i=1 |θik+1 − θik|2. By (48) and

Lemma 1, |θik+1 − θik|2 ≤ C/N2 and consequently, one has:

|RN
k [f ]| ≤ C‖f‖C2(Θ)/N

2. (30)

Hence, for all t ∈ [0, 1], |RN
t [f ]| ≤ C‖f‖C2(Θ)/N . This proves Item 3.

Let us now prove the last item in Lemma 6. Let t ∈ [0, 1]. We have, by (24),

|MN
t [f ]|2 =

bNtc−1∑
k=0

∣∣MN
k [f ]

∣∣2 + 2
∑
k<j

MN
k [f ] MN

j [f ].

For all 0 ≤ k < j < bNtc, MN
k [f ] is FNj -measurable (see (9)), and since E

[
MN

j [f ]|FNj
]

= 0,
one deduces that E

[
MN

k [f ] MN
j [f ]

]
= E

[
MN

k [f ] E
[
MN

j [f ]|FNj
] ]

= 0. Hence, E[|MN
t [f ]|2] =∑bNtc−1

k=0 E[|MN
k [f ]|2]. By (45) and (29), one has a.s. for all 0 ≤ k ≤ N − 1,

|MN
k [f ]| ≤ C‖f‖C1(Θ)/N. (31)

Hence, E[|MN
t [f ]|2] ≤ C‖f‖C1(Θ)/N , which proves the last inequality in Lemma 6.
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A.2. Convergence to the limit equation as N → +∞

In this section we prove the relative compactness of (µN )N≥1 in D([0, 1],P(Θ)). We then show
that any of its limit points satisfies the limit equation (11).

A.2.1. WASSERSTEIN SPACES AND DUALITY FORMULA

In this section we recall some basic results which will be used throughout this work on the space
P(S) when (S, d) is a Polish space. First when endowed with the weak convergence topology,P(S)
is a Polish space (Billingsley, 1999, Theorem 6.8). In addition,Pq(S) = {ν ∈ P(S),

∫
S d(w0, w)qν(dw) <

+∞}, where w0 ∈ S is arbitrary (note that this space was defined previously in (14) when S =
Rd+1) when endowed with the Wq metric is also a Polish space (Villani, 2009, Theorem 6.18).
Recall also the duality formula for the W1-distance on P1(S) (see e.g (Villani, 2009, Remark 6.5)):

W1(µ, ν) = sup
{∣∣ ∫

S
f(w)dµ(w)−

∫
S
f(w)ν(dw)

∣∣, ‖f‖Lip ≤ 1
}
. (32)

Finally, when K ⊂ Rd+1 is compact, the convergence in Wq-distance is equivalent to the usual
weak convergence on P(K) (see e.g. (Villani, 2009, Corollary 6.13)).

A.2.2. RELATIVE COMPACTNESS

The main result of this section is to prove that (µN )N≥1 is relatively compact in D([0, 1],P(Θ)),
which is the purpose of Proposition 8 below. To this end, we need to prove that for all f ∈ C∞(Θ),
every sequence (〈f, µNt 〉)N≥1 satisfies some regularity conditions, which is the purpose of the next
result.

Lemma 7 (Regularity condition) Assume A1→A4. Then there exists C > 0 such that a.s. for all
f ∈ C∞(Θ), 0 ≤ r < t ≤ 1, and N ≥ 1:

|〈f, µNt 〉 − 〈f, µNr 〉| ≤ C‖f‖C2(Θ)

[
|t− r|+ |t− r|

N
+

1

N

]
. (33)

Proof Let f ∈ C∞(Θ) and let N ≥ 1 and 0 ≤ r < t ≤ 1. In the following C > 0 is a positive
constant independent of f ∈ C∞(Θ), N ≥ 1, and 0 ≤ r < t ≤ 1, which can change from one
occurrence to another. From (28), we have

〈f, µNt 〉 − 〈f, µNr 〉 = AN
r,t[f ]− η

∫ t

r

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µNs

〉
ds

+ MN
t [f ]−MN

r [f ] + WN
t [f ]−WN

r [f ] + RN
t [f ]−RN

r [f ], (34)

where

AN
r,t[f ] = −η

∫ t

r

∫
X×Y
〈φ(·, ·, x)− y, µNs ⊗ γ〉〈∇θf · ∇θφ(·, ·, x), µNs ⊗ γ〉π(dx,dy)

+
η

N

∫ t

r

∫
X×Y

〈
〈φ(·, ·, x)− y, γ〉〈∇θf · ∇θφ(·, ·, x), γ〉, µNs

〉
π(dx,dy)

− η

N

∫ t

r

∫
X×Y

〈
(φ(·, ·, x)− y)∇θf · ∇θφ(·, ·, x), µNs ⊗ γ

〉
π(dx,dy).
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By (45) and (29), |AN
r,t[f ]| ≤ C‖f‖C1(Θ)

[
|t − r| + |t−r|

N

]
. In addition, since θ 7→ DKL(q1

θ |P 1
0 ) is

bounded over Θ (since it is smooth and Θ is compact),∣∣∣ ∫ t

r

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µNs

〉
ds
∣∣∣ ≤ C‖f‖C1(Θ)|t− r|.

Furthermore, using (31),

|MN
t [f ]−MN

r [f ]| =
∣∣∣ bNtc−1∑
k=bNrc

MN
k [f ]

∣∣∣ ≤ (bNtc − bNrc)C‖f‖C1(Θ)/N.

Next, we have, by Item 3 in Lemma 6, |WN
t [f ]−WN

r [f ]| ≤ |WN
t [f ]|+|WN

r [f ]| ≤ C‖f‖C2(Θ)/N .
Finally, by (30),

|RN
t [f ]−RN

r [f ]| =
∣∣∣ bNtc−1∑
k=bNrc

RN
k [f ]

∣∣∣ ≤ (bNtc − bNrc)C‖f‖C2(Θ)/N
2.

The proof of Proposition 7 is complete plugging all the previous estimates in (34).

Proposition 8 (Relative compactness) Assume A1→A4. Then, the sequence (µN )N≥1 is rela-
tively compact in D([0, 1],P(Θ)).

Proof The proof consists in applying (Jakubowski, 1986, Theorem 3.1) with E = P(Θ) endowed
with the weak convergence topology. Set F = {Lf , f ∈ C∞(Θ)} where

Lf : ν ∈ P(Θ) 7→ 〈f, ν〉.

The class of continuous functions F on P(Θ) satisfies Conditions (Jakubowski, 1986, (3.1) and
(3.2) in Theorem 3.1).

On the other hand, the condition (Jakubowski, 1986, (3.3) in Theorem 3.1) is satisfied since
P(Θ) is compact because Θ is compact (see e.g. (Panaretos and Zemel, 2020, Corollary 2.2.5)
together with (Villani, 2009, Corollary 6.13)).

It remains to verify Condition (3.4) of (Jakubowski, 1986, Theorem 3.1), i.e. that for all
f ∈ C∞(Θ), (〈f, µN 〉)N≥1 is relatively compact in D([0, 1],R). To this end, we apply (Billings-
ley, 1999, Theorem 13.2). Condition (i) in (Billingsley, 1999, Theorem 13.2) is satisfied because
|〈f, µNt 〉| ≤ ‖f‖∞,Θ for all t ∈ [0, 1] and N ≥ 1. Let us now show that Condition (ii) in (Billings-
ley, 1999, Theorem 13.2) holds. For this purpose, we use Lemma 7. For δ, β > 0 sufficiently small,
it is possible to construct a subdivision {ti}vi=0 of [0, 1] such that t0 = 0, tv = 1, ti+1 − ti = δ + β
for i ∈ {0, . . . , v− 2} and δ+β ≤ tv− tv−1 ≤ 2(δ+β). According to the terminology introduced
in (Billingsley, 1999, Section 12), {ti}vi=0 is δ-sparse. Then, by Lemma 7, there exists C > 0 such
that a.s. for all δ, β > 0, all such subdivision {ti}vi=0, i ∈ {0, . . . , v − 1}, and N ≥ 1,

sup
t,r∈[ti,ti+1]

|〈f, µNt 〉−〈f, µNr 〉| ≤ C
(
|ti+1−ti|+

|ti+1 − ti|
N

+
1

N

)
≤ C

(
2(δ+β)+

2(δ + β)

N
+

1

N

)
.
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Thus, one has:

inf
β>0

max
i

sup
t,r∈[ti,ti+1]

|〈f, µNt 〉 − 〈f, µNr 〉| ≤ C
(

2δ +
2δ

N
+

1

N

)
.

Consequently, there exists C > 0 such that a.s. for all δ > 0 small enough and N ≥ 1,

w′〈f,µN 〉(δ) := inf
{ti}

δ-sparse

max
i

sup
t,r∈[ti,ti+1]

|〈f, µNt 〉 − 〈f, µNr 〉| ≤ C
(

2δ +
2δ

N
+

1

N

)
.

This implies limδ→0 lim supN→+∞E[w′〈f,µN 〉(δ)] = 0. By Markov’s inequality, this proves Condi-
tion (ii) of (Billingsley, 1999, Theorem 13.2). Therefore, for all f ∈ C∞(Θ), using also Prokhorov
theorem, the sequence (〈f, µN 〉)N≥1 ⊂ D([0, 1],R) is relatively compact. In conclusion, according
to (Jakubowski, 1986, Theorem 3.1), (µN )N≥1 ⊂ D([0, 1],P(Θ)) is tight.

A.2.3. LIMIT POINTS SATISFY THE LIMIT EQUATION (11)

In this section we prove that every limit point of (µN )N≥1 in D([0, 1],P(Θ)) satisfies (11).

Lemma 9 Let m, (mN )N≥1 ⊂ D([0, 1],P(Θ)) be such that mN → m in D([0, 1],P(Θ)). Then,
for all Lipschitz continuous function f : Θ→ R, we have 〈f,mN 〉 → 〈f,m〉 in D([0, 1],R).

Proof Let f be such a function. By (Billingsley, 1999, p.124), mN → m inD([0, 1],P(Θ)) iff there
exist functions λN : [0, 1] → [0, 1] continuous, increasing onto itself such that supt∈[0,1] |λN (t) −
t| →N→∞ 0 and supt∈[0,1] W1(mN

λN (t),mt) →N→∞ 0. Then 〈f,mN 〉 → 〈f,m〉 in D([0, 1],R)

since by (32), supt∈[0,1] |〈f,mN
λN (t)〉 − 〈f,mt〉| ≤ ‖f‖Lip supt∈[0,1] W1(mN

λN (t),mt)→N→∞ 0.

Proposition 10 (Continuity of the limit points of 〈f, µN 〉) Let f ∈ C∞(Θ). Then, any limit point
of (〈f, µN 〉)N≥1 ⊂ D([0, 1],R) belong a.s. to C([0, 1],R).

Proof Fix t ∈ (0, 1]. Letting r → t in (33), we obtain |〈f, µNt 〉 − 〈f, µNt−〉| ≤ C/N . Therefore

supt∈(0,1] |〈f, µNt 〉 − 〈f, µNt−〉|
D−→ 0 as N → +∞. The result follows from (Billingsley, 1999,

Theorem 13.4).

Proposition 11 (Continuity of the limit points of µN ) Let µ∗ ∈ D([0, 1],P(Θ)) be a limit point
of (µN )N≥1 ⊂ D([0, 1],P(Θ)). Then, a.s. µ∗ ∈ C([0, 1],P(Θ)).

Proof Up to extracting a subsequence, we assume that µN D−→ µ∗. By Skorohod representation
theorem, there exists another probability space (Ω̂, F̂ , P̂) on which are defined random elements
(µ̂N )N≥1 and µ̂∗, where,

µ̂∗
D
= µ∗, and for all N ≥ 1, µ̂N D

= µN ,

24



LLN FOR BAYESIAN TWO-LAYER NEURAL NETWORK TRAINED WITH VARIATIONAL INFERENCE

and such that P̂-a.s., µ̂N → µ̂∗ in D([0, 1],P(Θ)) as N → +∞. Fix f ∈ C∞(Θ). We have, by
Lemma 9,

P̂−a.s., 〈f, µ̂N 〉 →N→+∞ 〈f, µ̂∗〉 in D([0, 1],R).

In particular, 〈f, µ̂N 〉 →N→+∞ 〈f, µ̂∗〉 in distribution. By Proposition 10, there exists Ω̂f ⊂
Ω̂ of P̂-mass 1 such that for all ω ∈ Ω̂f , 〈f, µ̂∗(ω)〉 ∈ C([0, 1],R). Denote by F the class
polynomial functions with rational coefficients. Since this class is countable, the set Ω̂F :=
∩f∈F Ω̂f is of P̂-mass 1. Consider now an arbitrary f ∈ C(Θ) and let us show that for all
ω ∈ Ω̂F , 〈f, µ̂∗(ω)〉 ∈ C([0, 1],R). By the Stone-Weierstrass theorem, there exist (fn)n≥1 ⊂ F
such that ‖fn − f‖∞,Θ →n→+∞ 0. On Ω̂F , for all n, t ∈ [0, 1] 7→ 〈fn, µ̂∗t 〉 is continuous
and converges uniformly to t ∈ [0, 1] 7→ 〈f, µ̂∗t 〉. Hence, for all ω ∈ Ω̂F and f ∈ C(Θ),
〈f, µ̂∗(ω)〉 ∈ C([0, 1],R), i.e. for all ω ∈ Ω̂F , µ̂∗(ω) ∈ C([0, 1],P(Θ)). This concludes the
proof.

Now, we introduce, for t ∈ [0, 1] and f ∈ C∞(Θ), the function Λt[f ] : D([0, 1],P(Θ)) → R+

defined by:

Λt[f ] : m 7→
∣∣∣〈f,mt〉 − 〈f, µ0〉

+ η

∫ t

0

∫
X×Y
〈φ(·, ·, x)− y,ms ⊗ γ〉〈∇θf · ∇θφ(·, ·, x),ms ⊗ γ〉π(dx,dy)ds

+ η

∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),ms

〉
ds
∣∣∣. (35)

We now study the continuity of Λt[f ].

Lemma 12 Let (mN )N≥1 ⊂ D([0, 1],P(Θ)) converge to m ∈ D([0, 1],P(Θ)). Then, for all
continuity point t ∈ [0, 1] of m and all f ∈ C∞(Θ), we have Λt[f ](mN )→ Λt[f ](m).

Proof Let f ∈ C∞(Θ) and denote by C(m) ⊂ [0, 1] the set of continuity points of m. Let t ∈ C(m).
From (Billingsley, 1999, p. 124), we have, for all s ∈ C(m),

mN
s → ms in P(Θ). (36)

Thus, 〈f,mN
t 〉 →N→∞ 〈f,mt〉. For all z ∈ Rd and (x, y) ∈ X × Y, A1 and A3 ensure that the

functions θ ∈ Θ 7→ φ(θ, z, x) − y and θ ∈ Θ 7→ ∇θf(θ) · ∇θφ(θ, z, x) are continuous and also
bounded because Θ is compact. Hence, for all s ∈ [0, t] ∩ C(m), using (36),

〈φ(·, z, x)− y,mN
s 〉 → 〈φ(·, z, x)− y,ms〉 and 〈∇θf · ∇θφ(·, z, x),mN

s 〉 → 〈∇θf · ∇θφ(·, z, x),ms〉

Since [0, 1]\C(m) is at most countable (see (Billingsley, 1999, p. 124)) we have that for a.e.
(s, z′, z, x, y) ∈ [0, t]×Rd ×Rd × X× Y,

〈φ(·, z′, x)− y,mN
s 〉〈∇θf · ∇θφ(·, z, x),mN

s 〉 → 〈φ(·, z′, x)− y,ms〉〈∇θf · ∇θφ(·, z, x),ms〉.

Since φ(θ, z′, x) − y is bounded and by (46), there exists C > 0 such that for all (s, z′, z, x, y) ∈
[0, t]×Rd ×Rd × X× Y, 〈|φ(·, z′, x)− y|,mN

s 〉〈|∇θf · ∇θφ(·, z, x)|,mN
s 〉 ≤ C‖∇θf‖∞,Θb(z).
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By the dominated convergence theorem, we then have:∫ t

0

∫
X×Y
〈φ(·, ·, x)− y,mN

s ⊗ γ〉〈∇θf · ∇θφ(·, ·, x),mN
s ⊗ γ〉π(dx,dy)ds

−→
N→+∞

∫ t

0

∫
X×Y
〈φ(·, ·, x)− y,ms ⊗ γ〉〈∇θf · ∇θφ(·, ·, x),ms ⊗ γ〉π(dx, dy)ds.

With the same arguments as above, one shows that
∫ t

0 〈∇θf · ∇θDKL(q1
· |P

1
0 ),mN

s 〉ds→
∫ t

0 〈∇θf ·
∇θDKL(q1

· |P
1
0 ),ms〉ds. The proof of the lemma is complete.

Proposition 13 (Convergence to the limit equation) Let µ∗ ∈ D([0, 1],P(Θ)) be a limit point of
(µN )N≥1 ⊂ D([0, 1],P(Θ)). Then, a.s. µ∗ satisfies (11).

Proof Up to extracting a subsequence, we can assume that µN D−→ µ∗ as N → +∞. Let f ∈
C∞(Θ). The pre-limit equation (28) and Lemma 6 imply that a.s. for all N ≥ 1 and t ∈ [0, 1],
Λt[f ](µN ) ≤ C/N+MN

t [f ]. Hence, using the last statement in Lemma 6, it holds for all t ∈ [0, 1],

lim
N→∞

E[Λt[f ](µN )] = 0.

In particular, Λt[f ](µN )
D−→ 0. Let us now show that Λt[f ](µN )

D−→ Λt[f ](µ∗). Denoting by
D(Λt[f ]) the set of discontinuity points of Λt[f ], we have, from Proposition 11 and Lemma 12, for
all t ∈ [0, 1] and f ∈ C∞(Θ),

P(µ∗ ∈ D(Λt[f ])) = 0.

By the continuous mapping theorem, Λt[f ](µN )
D−→ Λt[f ](µ∗). By uniqueness of the limit in

distribution, we have that for all t ∈ [0, 1] and f ∈ C∞(Θ), a.s. Λt[f ](µ∗) = 0. Let us now prove
that a.s. for all t ∈ [0, 1] and f ∈ C∞(Θ), Λt[f ](µ∗) = 0.

On the one hand, for all f ∈ C∞(Θ) and m ∈ D([0, 1],P(Θ)), the function t 7→ Λt[f ](m) is
right-continuous. Since [0, 1] is separable, we have that for all f ∈ C∞(Θ), a.s. for all t ∈ [0, 1],
Λt[f ](µ∗) = 0.

One the other hand C∞(Θ) is separable (when endowed with the norm ‖f‖C∞(Θ) =∑
k≥0 2−k min(1,

∑
|j|=k ‖∂jf‖∞,Θ)) and the function f ∈ C∞(Θ) 7→ Λt[f ](m) is continuous

(for fixed t ∈ [0, 1] and m ∈ D([0, 1],P(Θ))) relatively to the topology induced by ‖f‖C∞(Θ).
Hence, we obtain that a.s. for all t ∈ [0, 1] and f ∈ C∞(Θ), Λt[f ](µ∗) = 0. The proof of the

proposition is thus complete.

A.2.4. UNIQUENESS AND END OF THE PROOF OF THEOREM 2

Proposition 14 There exists a unique solution to (11) in C([0, 1],P(Θ)).

Proof First of all, the fact that there is a solution to (11) is provided by Propositions 8, 11 and 13.
The proof of the fact that there is a unique solution to (11) relies on the same arguments as those
used in the proof of (Descours et al., 2022, Proposition 2.14).
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For µ ∈ P(Rd+1), we introduce v[µ] : Rd+1 → Rd+1 defined, for θ = (m, ρ) ∈ Rd+1, by

v[µ](θ) = −η
∫
X×Y
〈φ(·, ·, x)− y, µ⊗ γ〉〈∇θφ(θ, ·, x), γ〉π(dx,dy)− η∇θDKL(q1

θ |P 1
0 ). (37)

In addition, if µ̄ ∈ C([0, 1],P(Θ)) is solution to (11), it satisfies also (11) with test functions
f ∈ C∞c (Rd+1). Then, adopting the terminology of (Santambrogio, 2015, Section 4.1.2), any
solution µ̄ to (11) is a weak solution1 on [0, T ] of the measure-valued equation{

∂tµ̄t = div(v[µ̄t]µ̄t)

µ̄0 = µ0.
(38)

Let us now prove that:

1. There exists C > 0 such that for all µ ∈ P(Rd+1) and θ ∈ Rd+1,

|Jθv[µ](θ)| ≤ C.

2. There exists C > 0 such that for all µ̄ ∈ C([0, 1],P(Θ)) solution to (11), 0 ≤ s, t ≤ 1, and
θ ∈ Rd+1,

|v[µ̄t](θ)− v[µ̄s](θ)| ≤ C|t− s|.

3. There exists L′ > 0 such that for all µ, ν ∈ P1(Rd+1),

sup
θ∈Rd

|v[µ](θ)− v[ν](θ)| ≤ L′W1(µ, ν).

Before proving the three items above, we quickly conclude the proof of the proposition. Items 1
and 2 above imply that v(t, θ) = v[µ̄t](θ) is globally Lipschitz continuous over [0, 1]×Rd+1 when
µ̄ ∈ C([0, 1],P(Θ)) is a solution to (11). Since µ̄ ∈ C([0, 1],P(Θ)) ⊂ C([0, 1],P(Rd+1)), this
allows to use the representation theorem (Villani, 2003, Theorem 5.34) for the solution of (38) in
C([0, 1],P(Rd+1)), i.e. it holds:

∀t ∈ [0, 1], µ̄t = φt#µ0, (39)

where φt is the flow generated by the vector field v[µ̄t](θ) over Rd+1. Equation (39) and the fact that
C([0, 1],P(Θ)) ⊂ C([0, 1],P1(Rd+1)) together with Item 3 above and the same arguments as those
used in the proof of (Descours et al., 2022, Proposition 2.14) (which we recall is based estimates
in Wasserstein distances between two solutions of (11) derived in Piccoli and Rossi (2016)), one
deduces that there is a unique solution to (11).

Let us prove Item 1. Recall g(ρ) = ln(1 + eρ). The functions

ρ 7→ g′′(ρ)g(ρ), ρ 7→ g′(ρ), ρ 7→ g′(ρ)

g(ρ)
, and ρ 7→ g′′(ρ)

g(ρ)

1. We mention that according to (Santambrogio, 2015, Proposition 4.2), the two notions of solutions of (38) (namely
the weak solution and the distributional solution) are equivalent.
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are bounded on R. Thus, in view of (4), ‖Hessθ DKL(q1
θ |P 1

0 )‖∞,Rd+1 < +∞. On the other hand,
by A1 and A3, for x ∈ X, z ∈ Rd, θ ∈ Θ 7→ φ(θ, z, x) is smooth and there exists C > 0, for all
x ∈ X, θ ∈ Rd+1, z ∈ Rd:

|Hessθφ(θ, z, x)| ≤ C(b(z)2 + b(z)).

This bound allows us to differentiate under the integral signs in (37) and proves that
|Jθ
∫
X×Y〈φ(·, ·, x) − y, µ ⊗ γ〉〈∇θφ(θ, ·, x), γ〉π(dx,dy)| ≤ C, where C > 0 is independent of

µ ∈ P(Θ) and θ ∈ Θ. The proof of Item 1 is complete.
Let us prove Item 2. Let µ̄ ∈ C([0, 1],P(Θ)) be a solution to (11), 0 ≤ s ≤ t ≤ 1, and

θ ∈ Rd+1. We have

v[µ̄t](θ)− v[µ̄s](θ) = −η
∫
X×Y
〈φ(·, ·, x), (µ̄t − µ̄s)⊗ γ〉〈∇θφ(θ, ·, x), γ〉π(dx,dy). (40)

Let z ∈ Rd and x ∈ X. By A1 and A3, φ(·, z, x) ∈ C∞(Θ). Therefore, by (11),

〈φ(·, z, x), µ̄t − µ̄s〉 = −η
∫ t

s

∫
X×Y
〈φ(·, ·, x′)− y, µ̄r ⊗ γ〉〈∇θφ(·, z, x) · ∇θφ(·, ·, x′), µ̄r ⊗ γ〉π(dx′, dy)dr

− η
∫ t

s
〈∇θφ(·, z, x) · ∇θDKL(q1

· |P
1
0 ), µ̄r〉dr

We have ‖∇θDKL(q1
θ |P 1

0 )‖∞,Θ < +∞. Using also (46) and the fact that X × Y is a compact (see
A2), it holds:

|〈φ(·, z, x), µ̄t − µ̄s〉| ≤ Cb(z)|t− s|.

Hence, for all x′ ∈ X,

|〈φ(·, ·, x′), (µ̄t − µ̄s)⊗ γ〉| ≤ 〈|〈φ(·, ·, x′), µ̄t − µ̄s〉|, γ〉 ≤ C|t− s|.

Thus, by (40) and (47), |v[µ̄t](θ)− v[µ̄s](θ)| ≤ C|t− s|. This ends the proof of Item 2.
Let us now prove Item 3. Fix µ, ν ∈ P1(Rd+1) and θ ∈ Rd+1. We have

v[µ](θ)− v[ν](θ) = −η
∫
X×Y
〈φ(·, ·, x), (µ− ν)⊗ γ〉〈∇θφ(θ, ·, x), γ〉π(dx,dy) (41)

For all x ∈ X, using (32) and (46), it holds:

|〈φ(·, ·, x), (µ− ν)⊗ γ〉| ≤
∫
Rd

|〈φ(·, z, x), µ〉 − 〈φ(·, z, x), ν〉|γ(z)dz

≤ C
∫
Rd

W1(µ, ν)b(z)γ(z)dz ≤ CW1(µ, ν).

Finally, using in addition (47) and (41), we deduce Item 3.
This ends the proof of the proposition.

We are now ready to prove Theorem 2.
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Proof [Proof of Theorem 2] Recall Lemma 1 ensures that a.s. (µN )N≥1 ⊂ D([0, 1],P(Θ)). By
Proposition 8, this sequence is relatively compact. Let µ∗ ∈ D([0, 1],P(Θ)) be a limit point. Along
some subsequence N ′, it holds:

µN
′ D−→ µ∗.

In addition, a.s. µ∗ ∈ C([0, 1],P(Θ)) (by Proposition 11) and µ∗ satisfies (11) (by Proposition 13).
By Proposition 14, (11) admits a unique solution µ̄ ∈ C([0, 1],P(Θ)). Hence, a.s. µ∗ = µ̄.
Therefore,

µN
′ D−→ µ̄.

Since the sequence (µN )N≥1 admits a unique limit point, the whole sequence converges in distribu-
tion to µ̄. The convergence also holds in probability since µ̄ is deterministic. The proof of Theorem
2 is complete.

A.3. Proof of Lemma 1

In this section we prove Lemma 1. We start with the following simple result.

Lemma 15 Let T > 0, N ≥ 1, and c1 > 0. Consider a sequence (uk)0≤k≤bNT c ⊂ R+ for which
there exists v0 such that u0 ≤ v0 and for all 1 ≤ k ≤ bNT c, uk ≤ c1(1 + 1

N

∑k−1
`=0 u`). Then, for

all 0 ≤ k ≤ bNT c, uk ≤ v0e
c1T .

Proof Define vk = c1(1+ 1
N

∑k−1
`=0 v`). For all 0 ≤ k ≤ bNT c, uk ≤ vk and vk = vk−1(1+c1/N).

Hence vk = v0

(
1 + c1/N

)k ≤ v0

(
1 + c1/N

)bNT c ≤ v0ec1T . This ends the proof of the Lemma.

Proof [Proof of Lemma 1] Since ρ 7→ g′(ρ) and ρ 7→ g′(ρ)/g(ρ) are bounded continuous functions
over R, and since |g(ρ)| ≤ C(1 + |ρ|), according to (4), there exists c > 0, for all θ ∈ Rd+1,

|∇θDKL(q1
θ |P 1

0 )| ≤ c(1 + |θ|). (42)

All along the proof, C > 0 is a constant independent of N ≥ 1, T > 0, i ∈ {1, . . . , N}, 1 ≤ k ≤
bNT c, (x, y) ∈ X× Y, θ ∈ Rd+1, and z ∈ Rd, which can change from one occurence to another.
It holds:

|θik| ≤ |θi0|+
k−1∑
`=0

|θi`+1 − θi`|. (43)

Using (5), we have, for 0 ≤ ` ≤ k − 1,

|θi`+1 − θi`| ≤
η

N2

N∑
j=1,j 6=i

∣∣∣(〈φ(θj` , ·, x`), γ〉 − y`)〈∇θφ(θi`, ·, x`), γ〉
∣∣∣

+
η

N2

∣∣∣〈(φ(θi`, ·, x`)− y`)∇θφ(θi`, ·, x`), γ
〉∣∣∣+

η

N
|∇θDKL(q1

θi`
|P 1

0 )|. (44)

For all θ ∈ Rd+1, z ∈ Rd, (x, y) ∈ X×Y, we have, by A2 and A3, since φ(θ, z, x) = s(Ψθ(z), x),

|φ(θ, z, x)− y| ≤ C. (45)
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Moreover, we have ∇θφ(θ, z, x) = ∇1s(Ψθ(z), x)JθΨθ(z) (here ∇1s refers to the gradient of s
w.r.t. its first variable). By A3, |∇1s(Ψθ(z), x)| ≤ C and, hence, denoting by Jθ the Jacobian w.r.t.
θ, using (10),

|∇θφ(θ, z, x)| ≤ C|JθΨθ(z)| ≤ Cb(z). (46)

Therefore, by (10),
〈|∇θφ(θ, ·, x)|, γ〉 ≤ C. (47)

Hence, we obtain, using (44) and (42),

|θi`+1 − θi`| ≤
η

N2

N∑
j=1,j 6=i

C +
η

N2
C +

cη

N
(1 + |θi`|) ≤

C

N
(1 + |θi`|). (48)

Using A4, there exists K0 > 0 such that a.s. for all i, |θi0| ≤ K0. Then, from (43) and (48), for
1 ≤ k ≤ bNT c, it holds:

|θik| ≤ K0 +
C

N

k−1∑
`=0

(1 + |θi`|) ≤ K0 + CT +
C

N

k−1∑
`=0

|θi`| ≤ C0,T (1 +
1

N

k−1∑
`=0

|θi`|),

with C0,T = max(K0 +CT,C) ≤ K0 +C(1 + T ). Then, by Lemma 15 and A4, we have that for
all N ≥ 1, i ∈ {1, . . . , N} and 0 ≤ k ≤ bNT c, |θik| ≤ K0e

[K0+C(1+T )]T . The proof of Lemma 1
is thus complete.

Appendix B. Proof of Theorem 3

In this section, we assume A1→A5 (where in A2, when k ≥ 1, FNk is now the one defined in (12))
and the θik’s (resp. µN ) are those defined by (7) for i ∈ {1, . . . , N} and k ≥ 0 (resp. by (13) for
N ≥ 1).

B.1. Preliminary analysis and pre-limit equation

B.1.1. NOTATION AND WEIGHTED SOBOLEV EMBEDDINGS

For J ∈ N and β ≥ 0, letHJ,β(Rd+1) be the closure of the set C∞c (Rd+1) for the norm

‖f‖HJ,β :=
( ∑
|k|≤J

∫
Rd+1

|∂kf(θ)|2

1 + |θ|2β
dθ
)1/2

.

The space HJ,β(Rd+1) is a separable Hilbert space and we denote its dual space by H−J,β(Rd+1)
(see e.g. Fernandez and Méléard (1997); Jourdain and Méléard (1998)). The associated scalar
product onHJ,β(Rd+1) will be denoted by 〈·, ·〉HJ,β . For Φ ∈ H−J,β(Rd+1), we use the notation

〈f,Φ〉J,β = Φ[f ], f ∈ HJ,β(Rd+1).

For ease of notation, and if no confusion is possible, we simply denote 〈f,Φ〉J,β by 〈f,Φ〉. The set
CJ,β0 (Rd+1) (resp. CJ,β(Rd+1)) is defined as the space of functions f : Rd+1 → R with continuous
partial derivatives up to order J ∈ N such that

for all |k| ≤ J, lim
|θ|→∞

|∂kf(θ)|
1 + |θ|β

= 0 (resp.
∑
|k|≤J

sup
θ∈Rd+1

|∂kf(θ)|
1 + |θ|β

< +∞).
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The spaces CJ,β(Rd+1) and CJ,β0 (Rd+1) is endowed with the norm

‖f‖CJ,β :=
∑
|k|≤J

sup
θ∈Rd+1

|∂kf(θ)|
1 + |θ|β

.

We note that

θ ∈ Rd+1 7→ (1− χ(θ))|θ|α ∈ HJ,β(Rd+1) if β − α > (d+ 1)/2, (49)

where χ ∈ C∞c (Rd+1) equals 1 near 0. We recall that from (Fernandez and Méléard, 1997, Section
2), form′ > (d+1)/2 and α, j ≥ 0,Hm′+j,α(Rd+1) ↪→ Cj,α0 (Rd+1). In the following, we consider
γ0, γ1 ∈ R and L0 ∈ N such that

γ1 > γ0 >
d+ 1

2
+ 1 and L0 >

d+ 1

2
+ 1.

We finally recall the following standard result.

Proposition 16 Let q > p ≥ 1 and C > 0. The set K q
C := {µ ∈ Pp(Rd+1),

∫
Rd+1 |x|qµ(dx) ≤

C} is compact.

B.1.2. BOUND ON THE MOMENTS OF THE θik’S

We have the following uniform bound in N ≥ 1 on the moments of the sequence {θik, i ∈
{1, . . . , N}}k=0,...,bNT c defined by (7).

Lemma 17 Assume A1→ A5. For all T > 0 and p ≥ 1, there exists C > 0 such that for all
N ≥ 1, i ∈ {1, . . . , N} and 0 ≤ k ≤ bNT c,

E[|θik|p] ≤ C.

Proof Let p ≥ 1. By A4, E[|θi0|p] ≤ Cp for all i ∈ {1, . . . , N}. Let T > 0. In the following C > 0
is a constant independent of N ≥ 1, i ∈ {1, . . . , N}, and 1 ≤ k ≤ bNT c. Using (7), the fact that φ
is bounded, Y is bounded, and (46), we have, for 0 ≤ n ≤ k − 1,

|θin+1 − θin| ≤
C

N2B

N∑
j=1

B∑
`=1

b(Zi,`n ) +
C

N
|∇θDKL(q1

θin
|P 1

0 )|

≤ C

NB

B∑
`=1

(1 + b(Zi,`n )) +
C

N
(1 + |θin|), (50)

where we have also used (42) for the last inequality. Let us recall the following convexity inequality:
for m, p ≥ 1 and x1, . . . , xp ∈ R+,( m∑

n=1

xn

)p
≤ mp−1

m∑
n=1

xpn. (51)

Using (43), A1 with q = p, and the fact that 1 ≤ k ≤ bNT c, one has setting uk = E[|θik|p],
uk ≤ C(1 + 1

N

∑k−1
n=0 un). The result then follows from Lemma 15.
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B.1.3. PRE-LIMIT EQUATION

In this section, we derive the pre-limit equation for µN defined by (13). For simplicity we will
keep the same notations as those introduced in Section A.1.1, though these objects will now be
defined with θik set by (7), and on C2,γ1(Rd+1), for all integer k ≥ 0, and all time t ≥ 0. Let
f ∈ C2,γ1(Rd+1). Then, set for k ≥ 0,

DN
k [f ] = − η

N3

N∑
i=1

N∑
j=1,j 6=i

∫
X×Y

(〈
φ(θjk, ·, x), γ

〉
− y
)〈
∇θf(θik) · ∇θφ(θik, ·, x), γ

〉
π(dx, dy)

− η

N2

∫
X×Y

〈
(φ(·, ·, x)− y)∇θf · ∇θφ(·, ·, x), νNk ⊗ γ

〉
π(dx,dy).

Note that DN
k above is the one defined in (21) but now on C2,γ1(Rd+1) and with θik defined by (7).

For k ≥ 0, we set

MN
k [f ] = − η

N3B

N∑
i,j=1

B∑
`=1

(φ(θjk,Z
j,`
k , xk)− yk)∇θf(θik) · ∇θφ(θik,Z

i,`
k , xk)−DN

k [f ]. (52)

By Lemma 17 together with (45) and (46), MN
k [f ] is integrable. Also, using A5 and the fact that θjk

is FNk -measurable (see (12)),

E[MN
k [f ]|FNk ] = 0.

Set MN
t [f ] =

∑bNtc−1
k=0 MN

k [f ], t ≥ 0. We now extend the definition of WN
t [f ] and RN

k [f ] in (27)
and (19) to any time t ≥ 0, k ≥ 0, and f ∈ C2,γ1(Rd+1), and with θik set by (7). We then set

RN
t [f ] =

bNtc−1∑
k=0

RN
k [f ], t ≥ 0.

With the same algebraic computations as those made in Section A.1.1, one obtains the following
pre-limit equation: for N ≥ 1, t ≥ 0, and f ∈ C2,γ1(Rd+1),

〈f, µNt 〉 − 〈f, µN0 〉 = −η
∫ t

0

∫
X×Y
〈φ(·, ·, x)− y, µNs ⊗ γ〉〈∇θf · ∇θφ(·, ·, x), µNs ⊗ γ〉π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µNs

〉
ds

+
η

N

∫ t

0

∫
X×Y

〈
〈φ(·, ·, x)− y, γ〉〈∇θf · ∇θφ(·, ·, x), γ〉, µNs

〉
π(dx,dy)ds

− η

N

∫ t

0

∫
X×Y

〈
(φ(·, ·, x)− y)∇θf · ∇θφ(·, ·, x), µNs ⊗ γ

〉
π(dx,dy)ds

+ MN
t [f ] + WN

t [f ] + RN
t [f ]. (53)

We will now show that the sequence (µN )N≥1 is relatively compact in D(R+,Pγ0(Rd+1)).
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B.2. Relative compactness and convergence to the limit equation

B.2.1. RELATIVE COMPACTNESS IN D(R+,Pγ0(Rd+1))

In this section we prove the following result.

Proposition 18 Assume A1→A5. Recall γ0 >
d+1

2 +1. Then, the sequence (µN )N≥1 is relatively
compact in D(R+,Pγ0(Rd+1)).

We start with the following lemma.

Lemma 19 Assume A1→A5. Then, ∀T > 0 and f ∈ C2,γ1(Rd+1),

sup
N≥1

E
[

sup
t∈[0,T ]

〈f, µNt 〉2
]
< +∞.

Proof Let T > 0. In what follows, C > 0 is a constant independent of f ∈ C2,γ1(Rd+1),
(s, t) ∈ [0, T ]2, and z ∈ Rd which can change from one occurence to another. We have by A4,
E[〈f, µN0 〉2] ≤ C‖f‖2C2,γ1 . By (53) and (45), it holds:

sup
t∈[0,T ]

〈f, µNt 〉2 ≤ C
[
‖f‖2C2,γ1 +

∫ T

0

∫
X×Y

∣∣〈〈∣∣∇θf · ∇θφ(·, ·, x)
∣∣, γ〉, µNs 〉∣∣2π(dx,dy)ds∫ T

0

∣∣〈∣∣∇θf · ∇θDKL(q1
· |P

1
0 )
∣∣, µNs 〉∣∣2ds

+
1

N2

∫ T

0

∫
X×Y

∣∣〈〈∣∣∇θf · ∇θφ(·, ·, x)
∣∣, γ〉, µNs 〉∣∣2π(dx,dy)ds

+ sup
t∈[0,T ]

|MN
t [f ]|2 + sup

t∈[0,T ]
|WN

t [f ]|2 + sup
t∈[0,T ]

|RN
t [f ]|2.

]
. (54)

We have using (46), for s ∈ [0, T ] and z ∈ Rd,

|∇θf(θibNsc) · ∇θφ(θibNsc, z, x)| ≤ C‖f‖C1,γ1b(z)(1 + |θibNsc|
γ1). (55)

Thus, using Lemma 17,

E
[〈
〈|∇θf · ∇θφ(·, ·, x)|, γ〉, µNs

〉2] ≤ C‖f‖2C1,γ1 . (56)

Using (42), for s ∈ [0, T ], it holds:∣∣∇θf(θibNsc) · ∇θDKL(q1
θibNsc
|P 1

0 )
∣∣ ≤ C‖f‖C1,γ1 (1 + |θibNsc|

γ1+1). (57)

Thus, using Lemma 17,

E
[∣∣〈∇θf · ∇θDKL(q1

· |P
1
0 ), µNs

〉∣∣2] ≤ C‖f‖2C1,γ1 . (58)

On the other hand, we have using (51):

sup
t∈[0,T ]

|MN
t [f ]|2 ≤ bNT c

bNT c−1∑
k=0

|MN
k [f ]|2. (59)
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Recall (52). By (21), (51), A1, and (55), it holds:

|DN
k [f ]|2 ≤ C‖f‖2C1,γ1

[ 1

N4

N∑
i 6=j=1

(1+|θik|2γ1)+
1

N4
(1+〈|·|2γ1 , νNk 〉)

]
≤ C

N2
‖f‖2C1,γ1 (1+|θik|2γ1)

and

|MN
k [f ]|2 ≤ C

N4B

N∑
i,j=1

B∑
`=1

‖f‖2C1,γ1 |b(Zi,`k )|2(1 + |θibNsc|
2γ1) + |DN

k [f ]|2.

By Lemma 17 and A1, one deduces that

E[|MN
k [f ]|2] ≤ C‖f‖2C1,γ1/N

2. (60)

Going back to (59), we then have E[supt∈[0,T ] |MN
t [f ]|2] ≤ C‖f‖2C1,γ1 . Using the same arguments

as those used so far, one also deduces that for t ∈ [0, T ]

sup
t∈[0,T ]

|WN
t [f ]|2 ≤

C‖f‖2C1,γ1
N2

sup
t∈[0,T ]

(1 + 〈| · |γ1+1, νNbNtc〉)
2

=
C‖f‖2C1,γ1

N2
max

0≤k≤bNT c
(1 + 〈| · |γ1+1, νNk 〉)2

≤
C‖f‖2C1,γ1

N2

bNT c∑
k=0

(1 + 〈| · |γ1+1, νNk 〉)2.

and thus
E
[

sup
t∈[0,T ]

|WN
t [f ]|2

]
≤ C‖f‖2C1,γ1/N. (61)

Let us finally deal with the term involving RN
t [f ]. One has using (51):

sup
t∈[0,T ]

|RN
t [f ]|2 ≤ bNT c

bNT c−1∑
k=0

|Rk[f ]|2.

For 0 ≤ k ≤ bNT c − 1, we have, from (19),

|RN
k [f ]|2 ≤

C‖f‖2C2,γ1
N

N∑
i=1

|θik+1 − θik|4(1 + |θ̂ik|γ1)2

≤
C‖f‖2C2,γ1

N

N∑
i=1

|θik+1 − θik|4(1 + |θik+1|2γ1 + |θik|2γ1).

Using (50),

|θik+1 − θik|4 ≤ C
[ 1

N4
+
|θik|4

N4
+

1

N4B

B∑
`=1

|b(Zi,`k )|4
]
.
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By Lemma 17 and A1, it then holds E[|θik+1− θik|4(1 + |θik+1|2γ1 + |θik|2γ1)] ≤ C/N4. Hence, one
deduces that

E[ sup
t∈[0,T ]

|RN
t [f ]|2] ≤ C‖f‖2C2,γ1/N

2. (62)

This ends the proof of Lemma 19.

Lemma 20 (Compact containment for (µN )N≥1) Assume A1→A5. Let 0 < ε < γ1 − γ0. For
every T > 0,

sup
N≥1

E
[

sup
t∈[0,T ]

∫
Rd+1

|x|γ0+εµNt (dx)
]
< +∞. (63)

Proof Apply Lemma 19 with f : θ 7→ (1− χ)|θ|γ0+ε ∈ C2,γ1(Rd+1).

Lemma 21 Assume A1→A5. Let T > 0 and f ∈ C2,γ1(Rd+1). Then, there exists C > 0 such
that for all δ > 0 and 0 ≤ r < t ≤ T such that t− r ≤ δ, one has for all N ≥ 1,

E
[
|〈f, µNt 〉 − 〈f, µNr 〉|2

]
≤ C(δ2 + δ/N + 1/N).

Proof Using (53), Jensen’s inequality, (45), (56), and (58), one has for f ∈ C2,γ1(Rd+1),

E
[
|〈f, µNt 〉 − 〈f, µNr 〉|2

]
≤ C

[
(t− r)2(1 + 1/N2)‖f‖2C1,γ1 + E

[∣∣ bNtc−1∑
k=bNrc

MN
k [f ]

∣∣2]
+ E

[ ∣∣WN
t [f ]−WN

r [f ]
∣∣2 ]+ E

[ ∣∣RN
t [f ]−RN

r [f ]
∣∣2 ]. (64)

We also have with the same arguments as those used just before (31)

E
[∣∣ bNtc−1∑
k=bNrc

MN
k [f ]

∣∣2] =

bNtc−1∑
k=bNrc

E[|MN
k [f ]|2].

Using in addition (60), one has E
[∣∣∑bNtc−1

k=bNrcM
N
k [f ]

∣∣2] ≤ C(Nδ+1)‖f‖2C1,γ1/N
2. Note that with

this argument, we also deduce that

E[|MN
t [f ]|2] ≤ C‖f‖2C1,γ1/N. (65)

On the other hand, by (61) and (62), one has

E
[ ∣∣WN

t [f ]−WN
r [f ]

∣∣2 ] ≤ C‖f‖2C1,γ1/N and E
[ ∣∣RN

t [f ]−RN
r [f ]

∣∣2 ] ≤ C‖f‖2C2,γ1/N2.

One then plugs all the previous estimates in (64) to deduce the result of Lemma 21.

We are now in position to prove Proposition 18.
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Proof [Proof of Proposition 18] The proof consists in applying (Jakubowski, 1986, Theorem 4.6)
with E = Pγ0(Rd+1) and F = {Hf , f ∈ C∞c (Rd+1)} where

Hf : ν ∈ Pγ0(Rd+1) 7→ 〈f, ν〉.

The set F on Pγ0(Rd+1) satisfies Conditions (Jakubowski, 1986, (3.1) and (3.2) in Theorem 3.1).
Condition (4.8) there follows from Proposition 16, Lemma 20, and Markov’s inequality. Let us
now show (Jakubowski, 1986, Condition (4.9)) is verified, i.e. that for all f ∈ C∞c (Rd+1), the
family (〈f, µN 〉)N≥1 is relatively compact in D(R+,R). To do this, it suffices to use Lemma 21
and (Descours et al., 2022, Proposition A.1) (with H1 = H2 = R there). In conclusion, according
to (Jakubowski, 1986, Theorem 4.6), the sequence (µN )N≥1 ⊂ D(R+,Pγ0(Rd+1)) is relatively
compact.

B.2.2. LIMIT POINTS SATISFY THE LIMIT EQUATION (15)

For f ∈ C1,γ0−1(Rd+1) and t ≥ 0, we introduce for m ∈ D(R+,Pγ0(Rd+1)),

Φt[f ] : m 7→
∣∣∣〈f,mt〉 − 〈f, µ0〉

+ η

∫ t

0

∫
X×Y
〈φ(·, ·, x)− y,ms ⊗ γ〉〈∇θf · ∇θφ(·, ·, x),ms ⊗ γ〉π(dx, dy)ds

+ η

∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),ms

〉
ds
∣∣∣. (66)

Note that Φt[f ] is the function Λt[f ] previously defined in (35) for test functions f ∈ C1,γ0−1(Rd+1)
and for m ∈ D(R+,Pγ0(Rd+1)).

Lemma 22 Assume A1→A5. Let f ∈ C1,γ0−1(Rd+1). Then Φt[f ] is well defined. In addition, if
a sequence (mN )N≥1 converges to m in D(R+,Pγ0(Rd+1)), then, for all continuity point t ≥ 0 of
m, we have Φt[f ](mN )→ Φt[f ](m).

Proof Using A1, and because Y is bounded and the function φ is bounded, G x,y
1 : θ 7→ 〈φ(θ, ·, x)−

y, γ〉 ∈ C∞b (Rd+1). In addition, for all multi-index α ∈ Nd+1, there exists C > 0, for all x, y ∈
X × Y and all θ ∈ Rd+1, |∂αG x,y

1 (θ)| ≤ C. The same holds for the function G x
2 : θ ∈ Rd+1 7→

〈∇θφ(θ, ·, x), γ〉. Consequently, θ 7→ ∇θf(θ) · G x
2 (θ) ∈ C0,γ0−1(Rd+1) ↪→ C0,γ0(Rd+1). Then,

there exists C > 0 independent of (x, y) ∈ X× Y and s ∈ [0, t] such that

|〈G x,y
1 ,ms〉| ≤ C,

and
|〈∇θf · G x

2 ,ms〉| ≤ C‖f‖C1,γ0−1〈1 + |.|γ0 ,ms〉.

Finally, the function θ 7→ ∇θDKL(q1
θ |P 1

0 ) is smooth (see (4)) and (42) extends to all its derivatives,
i.e. for all multi-index α ∈ Nd+1, there exists c > 0, for all θ ∈ Rd+1,

|∂α∇θDKL(q1
θ |P 1

0 )| ≤ c(1 + |θ|).
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Thus,∇θf · ∇θDKL(q1
θ |P 1

0 ) ∈ C0,γ0(Rd+1) and for some C > 0 independent of s ∈ [0, t]

|〈∇θf · ∇θDKL(q1
· |P

1
0 ),ms

〉
| ≤ C‖f‖C1,γ0−1〈1 + |.|γ0 ,ms〉.

Since in addition sups∈[0,t]〈1 + |.|γ0 ,ms〉 < +∞ (since s 7→ 〈1 + |.|γ0 ,ms〉 ∈ D(R+,R)), Φt[f ]
is well defined. To prove the continuity property of Φt[f ] it then suffices to use the previous upper
bounds together similar arguments as those used in the proof of Lemma 12 (see also Descours et al.
(2022)).

Proposition 23 Assume A1→A5. Let µ∗ be a limit point of (µN )N≥1 in D(R+,Pγ0(Rd+1)).
Then, µ∗ satisfies a.s. Equation (15).

Proof Let us consider f ∈ C∞c (Rd+1) and µ∗ be a limit point of (µN )N≥1 in D(R+,Pγ0(Rd+1)).
Recall that by (Ethier and Kurtz, 2009, lemma 7.7 in Chapter 3), the complementary of the set

C(µ∗) = {t ≥ 0, P(µ∗t− = µ∗t ) = 1}

is at most countable. Let t∗ ∈ C(µ∗). Then, by Lemma 22, one has that P(µ∗ ∈ D(Φt∗ [f ])) = 0.
Thus, by the continuous mapping theorem, it holds

Φt∗ [f ](µN )
D−→ Φt∗ [f ](µ∗).

On the other hand, using (53) and the estimates (62), (61), (65), (56), and (58), it holds

lim
N→∞

E[Φt∗ [f ](µN )] = 0.

Consequently, for all f ∈ C∞c (Rd+1) and t∗ ∈ C(µ∗), it holds a.s. Φt∗ [f ](µ∗) = 0. On the other
hand, for all ψ ∈ C∞c (Rd+1), m ∈ D(R+,Pγ0(Rd+1)), and s ≥ 0, the mappings

t ≥ 0 7→ Φt[ψ](m)

is right continuous, and
f ∈ HL0,γ0−1(Rd+1) 7→ Φs[f ](m)

is continuous (because HL0,γ0−1(Rd+1) ↪→ C1,γ0−1
0 (Rd+1)). In addition, HL0,γ0−1(Rd+1) admits

a dense and countable subset of elements in C∞c (Rd+1). Moreover, there exists a countable subset
Tµ∗ of C(µ∗) such that for all t ≥ 0 and ε > 0, there exists s ∈ Tµ∗ , s ∈ [t, t + ε]. We prove this
claim. Since R+ is a metric space, C(µ∗) is separable and thus admits a dense subset Oµ∗ . Since
[t+ ε/4, t+ 3ε/4]∩C(µ∗) 6= ∅, there exists u ∈ [t+ ε/4, t+ 3ε/4]∩C(µ∗). Consider now s ∈ Oµ∗
such that |s− u| ≤ ε/4. It then holds t ≤ s ≤ t+ ε, proving the claim with Tµ∗ = Oµ∗ .

Hence, we have with a classical argument that a.s. for all f ∈ HL0,γ0−1(Rd+1) and t ≥ 0,
Λt[f ](µ∗) = 0. Note also that C∞b (Rd+1) ⊂ HL0,γ0−1(Rd+1) since 2γ0 > d + 1. This ends the
proof of the proposition.

B.3. Uniqueness of the limit equation and end of the proof of Theorem 3

In this section, we prove that there is a unique solution to (15) in C(R+,P1(Rd+1)). To this end,
we first need to prove that every limit points of (µN )N≥1 a.s. belongs to C(R+,P1(Rd+1)).
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B.3.1. LIMIT POINTS BELONG TO C(R+,P1(Rd+1))

Proposition 24 Assume A1→A5. Let µ∗ ∈ D(R+,Pγ0(Rd+1)) be a limit point of (µN )N≥1 in
D(R+,Pγ0(Rd+1)). Then, a.s. µ∗ ∈ C(R+,P1(Rd+1)).

Proof Note that since W1 ≤ Wγ0 , µN
′ D−→ µ∗ also in D(R+,P1(Rd+1)), along some sub-

sequence N ′. According to (Jacod and Shiryaev, 1987, Proposition 3.26 in Chapter VI), µ∗ ∈
C(R+,P1(Rd+1)) a.s. if for all T > 0, limN→+∞E

[
supt∈[0,T ] W1(µNt− , µ

N
t )
]

= 0. Using (32),
this is equivalent to prove that

lim
N→+∞

E
[

sup
t∈[0,T ]

sup
‖f‖Lip≤1

|〈f, µNt−〉 − 〈f, µ
N
t 〉|
]

= 0. (67)

Let us consider T > 0 and a Lipschitz function f : Rd+1 → R such that ‖f‖Lip ≤ 1. We have
〈f, µNt 〉 = 〈f, µN0 〉 +

∑bNtc−1
k=0 〈f, νNk+1〉 − 〈f, νNk 〉 (with usual convention

∑−1
0 = 0). Thus the

discontinuity points of t ∈ [0, T ] 7→ 〈f, µNt 〉 lies exactly at {1/N, 2/N, . . . , bNT c/N} and

|〈f, µNt−〉 − 〈f, µ
N
t 〉| ≤ max

k=0,...,bNT c−1
|〈f, νNk+1〉 − 〈f, νNk 〉|, ∀t ∈ [0, T ], f Lipschitz. (68)

Pick k = 0, . . . , bNT c − 1. We have by (50),

|〈f, νNk+1〉 − 〈f, νNk 〉| ≤
1

N

N∑
i=1

|θik+1 − θik| ≤
C

N

N∑
i=1

[ 1

NB

B∑
`=1

(1 + b(Zi,`k )) +
1

N
(1 + |θik|)

]
=: dNk

(69)

Hence, it holds:

|dNk |2 ≤
C

N

N∑
i=1

[ 1

N2B

B∑
`=1

(1 + b2(Zi,`k )) +
1

N2
(1 + |θik|2)

]
,

where thanks to Lemma 17 and A1, for all k = 0, . . . , bNT c − 1, E[|dNk |2] ≤ C/N2 for some
C > 0 independent of N ≥ 1 and k = 0, . . . , bNT c − 1. Thus, using (68) and (69),

E
[

sup
t∈[0,T ]

sup
‖f‖Lip≤1

|〈f, µNt−〉 − 〈f, µ
N
t 〉|
]
≤ E

[
sup
‖f‖Lip≤1

max
k=0,...,bNT c−1

|〈f, νNk+1〉 − 〈f, νNk 〉|
]

≤ E
[

max
k=0,...,bNT c−1

dNk

]

≤ E
[√√√√bNT c−1∑

k=0

|dNk |2
]

≤

√√√√E
[ bNT c−1∑

k=0

|dNk |2
]
≤ C√

N
.

This concludes the proof of Proposition 24.
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B.3.2. UNIQUENESS OF THE SOLUTION TO (15)

Proposition 25 There is a unique solution µ̄ ∈ C(R+,P1(Rd+1)) to (15).

Proof First of all, the existence of a solution is provided by Propositions 18, 24 and 23. Let us now
prove that there is a unique solution to (15) in C(R+,P1(Rd+1)).

Recall the definition of v[µ] in (37). We claim that for all T > 0 and all solution µ̄ ∈
C(R+,P1(Rd+1)) of (15), there exists C > 0 such that

|v[µ̄t](θ)− v[µ̄s](θ)| ≤ C|t− s|, for all 0 ≤ s ≤ t ≤ T and θ ∈ Rd+1. (70)

The proof of item (70) is the same as the one made for Item 2 in Proposition 14 since it holds using
(42) and (46), for all 0 ≤ s ≤ t ≤ T and z ∈ Rd,∣∣∣ ∫ t

s
〈∇θφ(·, z, x) · ∇θDKL(q1

· |P
1
0 ), µ̄r〉dr

∣∣∣ ≤ Cb(z)

∫ t

s
〈(1 + | · |), µ̄r〉dr

≤ Cb(z) max
r∈[0,T ]

〈(1 + | · |), µ̄r〉|t− s|.

We now conclude the proof of Proposition 25. Item 1 in the proof of Proposition 14 and (70)
imply that v(t, θ) = v[µ̄t](θ) is globally Lipschitz on [0, T ] × Rd+1, for all T > 0, when µ̄ ∈
C(R+,P1(Rd+1)) is a solution of (15). Since in addition a solution µ̄ to (15) is a weak solution on
R+ to (38) in C(R+,P(Rd+1)), it holds by (Villani, 2003, Theorem 5.34):

∀t ≥ 0, µ̄t = φt#µ0, (71)

where φt is the flow generated by the vector field v[µ̄t](θ) over Rd+1. Together with Item 3 in
the proof of Proposition 14 and using the same arguments as those used in Step 3 of the proof
of (Descours et al., 2022, Proposition 2.14), two solutions agrees on each [0, T ] for all T > 0. One
then deduces the uniqueness of the solution to (11). The proof of Proposition 25 is complete.

We are now in position to end the proof of Theorem 3.
Proof [Proof of Theorem 3] By Proposition 18, (µN )N≥1 is relatively compact inD(R+,Pγ0(Rd+1)).
Let µ1, µ2 ∈ D(R+,Pγ0(Rd+1)) be two limit points of this sequence. By Proposition 24, a.s.
µ̄1, µ̄2 ∈ C(R+,P1(Rd+1)). In addition, according to Proposition 23, µ1 and µ2 are a.s. solutions
of (15). Denoting by µ̄ ∈ C(R+,Pγ0(Rd+1)) the unique solution to (15) (see Proposition 25), we
have a.s.

µ̄1 = µ̄ and µ̄2 = µ̄ in C(R+,P1(Rd+1)).

In particular µ̄ ∈ D(R+,Pγ0(Rd+1)) and µ̄j = µ̄ in D(R+,Pγ0(Rd+1)), j ∈ {1, 2}. As a
consequence, µ̄ is the unique limit point of (µN )N≥1 inD(R+,Pγ0(Rd+1)) and the whole sequence
(µN )N≥1 converges to µ̄ in D(R+,Pγ0(Rd+1)). Since µ̄ is deterministic, the convergence also
holds in probability. The proof of Theorem 3 is complete.

Let us now prove Proposition 4.
Proof [Proof of Proposition 4] Any solution to (11) in C([0, T ],P(ΘT )) is a solution to (15) in
C([0, T ],P1(Rd+1)). The result follows from Proposition 25.
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