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Abstract1

The Sublaminate Generalized Unified Formulation (SGUF) is extended for the first2

time to the framework of Finite Element Method (FEM) for both displacement-based3

and mixed (RMVT) formulation. The variable kinematics approach allows to choose4

different plate models according to the desired level of accuracy. Furthermore, the5

mixed ESL/LW approach of SGUF makes the model particularly convenient for sand-6

wich structures analysis. A substitute interpolation for the first-order transverse shear7

strain field, referred to as QC4 interpolation, makes the developed four-node FE locking8

free and insensitive to mesh distortion. The complete expression of finite element matri-9

ces for the PVD-based and RMVT-based elements is provided. The possibility of exactly10

satisfying transverse stress boundary conditions for RMVT-based elements is also inves-11

tigated for the first time. The flexibility and accuracy of the computational approach12

is demonstrated on linear static problems of sandwich plates and beams ranging from13

global bending response to local indentation problems. In particular, it is demonstrated14

that the proposed approach is capable of recovering full three-dimensional response with15

a 2D FE mesh and with less degrees of freedom than the conventional models available16

in commercial FE packages.17

Keywords: variable kinematics plate model, unified formulation, finite element method,
shear locking, sandwich plate, indentation

1 Introduction
Sandwich structures are widely employed in applications requiring high weight-specific bend-
ing stiffness, for instance aeronautics [1] or naval engineering [2]. Furthermore, the materials
constituting the skins and the core can be specifically tailored to furnish, e.g., high energy
absorption, acoustic damping, electro-mechanical wave absorption, thermal insulation and
fire resistance, which make sandwich panels very suitable candidates for an extremely wide
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range of engineering applications [3, 4]. A discussion about sandwich panels’ applications with
respect to their eco-efficiency in view of an environmental footprint reduction of structures
has been recently provided by Resende Oliveira et al. [5]

The analysis and design of composite sandwich panels requires refined models to cope with
the strong mismatch between facings and core in terms of mechanical stiffness and geometric
thickness. In fact, the strong face-core heterogeneity renders classical models for composite
structures, such as Classical Lamination Theory (CLT) or First order Shear Deformation
Theory (FSDT), inappropriate for evaluating bending deflections or vibration characteristics
[6]. The need for detailed models is even more stringent if the attention is to be given to local
stress response, which is a necessary step for a reliable prediction of the complex failure modes
that characterise sandwich panels [7, 8]. As pointed out by Birman and Kardomateas [9],
refined models are mandatory also in view of resolving multifield interactions and/or cross-
scaling effects, which constitute relevant axis of development towards advanced sandwich
applications. For instance, in order to improve the fidelity of the macro/meso-scale models
that are customarily employed for the sizing of built-up panel structures, homogenization
schemes have been recently proposed that take into account the cellular structure of many
employed core micro-structures [10–12].

A large number of refined, high-order two-dimensional (2D) models have been thus pro-
posed with the aim of attaining sufficient accuracy without resorting to computationally
expensive full three-dimensional (3D) models. Early developments have been exhaustively
summarised and assessed by Noor and Burton [13, 14], for more recent overviews we refer to
[15–19]. Over the last years, it is worth mentioning the extension from 1D (beams or wide
plates) to 2D plate models of the Enhanced High-order Sandwich Panel Theory (EHSAPT)
[20] and its extension towards geometrically nonlinear analysis [21].

Since they rely on ad hoc assumptions, the accuracy of such axiomatically derived struc-
tural models is problem-dependent, for it depends on the physics of the considered problem
(materials, geometry, loading . . . ) as well as on the output quantity of interest in the analysis.
The variational-asymptotic approach is a mathematically very elegant manner to cope with
this fundamental issue of reduced-order models [22], and it has conducted to relevant appli-
cations in the field of the mechanical response of sandwich structures [23, 24]. However, its
generalization to complex problems, e.g., involving multifield couplings, still requires a heavy
mathematical effort.

A very flexible and general framework for implementing virtually any kind of structural 1D
beam and 2D plate/shell models has been proposed by Carrera with his Unified Formulation
(CUF) [25, 26] and subsequently generalized by Demasi (GUF) [27–29]. The dimensional
reduction is carried out within the framework of two variational statements: the classical
displacement-based approach expressed by the Principle of Virtual Displacements (PVD),
and the mixed approach proposed by Reissner and referred to as Reissner Mixed Variational
Theorem (RMVT) [30, 31]. RMVT allows to introduce independent assumptions for the field
variables requiring to be interlaminar continuous, i.e., the displacements and the transverse
stresses, thus permitting the model to a priori fulfil the so-called “C0

z−Requirements” [32].
Axiomatic variable kinematics models are then constructed that can adopt Equivalent Single
Layer (ESL) as well as Layer-Wise (LW) descriptions for the field variables.

Zig-Zag Theories (ZZT) are a special class of ESL models towards meeting the C0
z -

Requirements. We refer to [33] for a comprehensive and clear historical review of ZZT.
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Among the different approaches developed over the last decades, CUF adopts the simple
Zig-Zag Function proposed by Murakami [34]. More recently, the Refined Zig-Zag Theory
(RZT) has been proposed for composite plates [35] and subsequently enhanced by referring
to RMVT [36]. Thorough comparisons between MZZF and RZT can be found in [37, 38].

By virtue of the Unified Formulation, these models are expressed in a compact index nota-
tion that enables their implementation in terms of kernel arrays or fundamental nuclei. As a
result, the user can select the model to be employed in the analysis at runtime, thus depending
on the desired accuracy and intended output. Since the most refined models of CUF and GUF
are capable of furnishing quasi-3D solutions, see, e.g., [39], the error introduced by a given
model with respect to a certain output quantity can be quantitively assessed, hence allowing
to resolve the problem-dependent accuracy issue by resorting to an Axiomatic/Asymptotic
Method [40–43].

D’Ottavio formally extended GUF upon enabling the possibility of selecting different mod-
els for individual Sublaminates (SGUF), which consist of an arbitrary number of contiguous
plies within the composite stack [44]. The resulting mixed ESL/LW description is particularly
meaningful for sandwich panels, for which different models can be adopted for the thin and
stiff skins and the thick and compliant core layers [45]. Therefore, this feature allows to fur-
ther optimise the number of unknown functions of the structural model without affecting the
accuracy. SGUF has been successfully employed in the framework of a Ritz solution method
to the analysis of bending, vibration and buckling of sandwich plates and shells, which could
comprise multiple cores also [46–49].

This paper presents for the first time the Finite Element (FE) implementation of SGUF
variable kinematics plate models. Both PVD- and mixed RMVT-based element formulations
are considered. Bi-linear four-node elements based on refined shear-deformable plate models
suffer the same well-known transverse shear locking problem affecting FSDT. In order to
avoid the drawbacks of the reduced-order quadrature technique, recent FE implementations
of variable kinematics models have been proposed which adopt the MITC4 approach [50, 51].
The ANS approach has been used to formulate robust 4-node quadrilateral FEs for ESL and
LW shell models based on a refined through-thickness kinematics expressed in a Sampling-
Surfaces description using Lagrange polynomials [52–54]. A robust four-nodes quadrilateral
plate element is formulated based on previous FE developments dedicated to CUF models
[55, 56]. Also, it is shown for the first time that the local stress response can be improved by
prescribing values for the transverse stress degrees-of-freedom (DOF) of RMVT-based variable
kinematics elements.

The paper is organised as follows. The variable kinematics approach of SGUF is briefly
recalled in Section 2 and the FE interpolations along with the resulting algebraic govern-
ing equations for the linear statics problem are given in Section 3. The results discussed
in Section 4 are entirely dedicated to sandwich plate applications and allow to appreciate
the robustness and versatility of the developed computational approach, which is capable of
attaining quasi-3D solutions with simple 2D meshes even in problems involving localised core
indentations. Finally, conclusions are summarized and further works outlined in Section 5.
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2 Variable kinematics plate model

2.1 Geometry description
Let us consider a multilayered rectangular plate of total thickness h, composed of Np or-
thotropic, elastic and perfectly bonded plies occupying the volume V = Ω×{−h/2 ≤ x3 ≤ h/2}
in the Cartesian frame (x1, x2, x3 ≡ z), see Fig. 1 (left). The reference surface Ω is thus chosen
to lie in the plate midplane (z = 0). The boundary ∂V is split in the portion ∂Vu with an
imposed displacement field ūi and ∂Vt with imposed tractions t̄i such that ∂Vu ∪ ∂Vt = V
and ∂Vu ∩ ∂Vt = ∅. Unless differently stated, the Einstein summation convention is em-
ployed with Latin indices varying in {1, 2, 3} and Greek indices in {1, 2}. The composite
cross-section is shown in Fig. 1 (right), where p = 1, 2 . . . Np is the index for the physical plies
and k = 1, 2 . . . Nl is the index for the numerical layers in which the laminate is subdivided
into. The number of physical plies composing the kth numerical layer is indicated as Nk

p .
Non-dimensional coordinates ζk ∈ {−1, 1} and ζp ∈ {−1, 1} are introduced in order to define
the interpolations across the thickness of the kth layer and the pth ply, respectively:

ζ� = 2
h�
z − z�t + z�b

z�t − z�b
with � = p, k (1)

where hk = zkt − zkb and hp = zpt − zpb denotes the layer and ply thickness, respectively. The
relation between the non-dimensional ply-specific and layer-specific coordinates is obtained
as:

ζp = hk
hp
ζk + 2

hp

(
z0k − z0p

)
= 2
ζp,tk − ζp,bk

(
ζk −

ζp,tk + ζp,bk
2

)
(2)

where z0� = (z�t +z�b )/2 are the mid-plane coordinates of the kth layer (� = k) and the pth ply
(� = p), respectively. Finally, ζp,tk and ζp,bk are the values of the non-dimensional coordinate ζk
at the top and bottom interfaces, respectively, of the physical ply p inside the kth sublaminate,
i.e., ζp

(
ζk = ζp,tk

)
= 1 and ζp

(
ζk = ζp,bk

)
= −1.

2.2 Variational formulations
Variational formulations are used to introduce the axiomatic modeling along the thickness co-
ordinate and the FE approximations over the reference surface Ω. The conventional displacement-
based approach (PVD) as well as the mixed approach by Reissner (RMVT) will be employed
for deriving the governing equations of the composite plate. In either case, the governing
equations are expressed by equating the internal virtual work with the virtual work done by
the external tractions t̄i:

δWint = δWext with δWext =
∫

∂Vt
δui t̄i dΓ (3)

where δ is the usual variational operator and ui the displacement vector field. Invoking the
assumption of small perturbations, the attention is restricted to the classical linear elasticity
with small displacements and strains.
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Figure 1: Multilayered plate as an assembly of Np physical plies (left) and Nl numerical layers (right). Global
z, layer-specific zk and ply-specific zp coordinates are introduced along with the non-dimensional layer- and
ply-specific coordinates ζk and ζp.

2.2.1 The Principle of Virtual Displacement (PVD)

The PVD yields the weak form of the equilibrium equations under the assumption of a
compatible kinematic field and the verification of the constitutive law. The strain and stress
fields are split into their in-plane (subscript b), transverse normal (subscript n) and transverse
shear (subscript s) components as

εb =
[
εxx εyy γxy

]T
; εn = εzz; εs =

[
γyz γxz

]T

σb =
[
σxx σyy σxy

]T
; σn = σzz; σs =

[
σxz σyz

]T (4)

where γij = 2εij (i , j) and superscript T indicates the transposition operation. Referring to
the contracted vector notation for the symmetric strain and stress tensors, the constitutive
link for each physical ply p is expressed in matrix form in the Cartesian frame (x, y, z) as




σb

σn

σs




(p)

=




C̃bb C̃bn 0
C̃T
bn C̃nn 0
0 0 C̃ss




(p) 


εb

εn

εs




(p)

(5)

in which the stiffness coefficients C̃ of the orthotropic ply are expressed in the plate’s Cartesian
frame through a rotation angle θp about the z−axis [57]. The virtual internal work for the
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PVD is expressed by the following integral

δWint =
∫

V
δεTb σb + δεTnσn + δεTs σs dV =

=
∫

Ω

Np∑

p=1

∫

hp

{
δε

(p)T
b C̃

(p)
bb ε

(p)
b + δε

(p)T
b C̃

(p)
bn ε

(p)
n + δε(p)Tn C̃

(p)T
bn ε

(p)
b + δε(p)Tn C̃(p)

nn ε
(p)
n

+
{
δε(p)T

s C̃(p)
ss ε

(p)
s dz

}
dx dy

(6)

2.2.2 The Reissner Mixed Variational Theorem (RMVT)

RMVT allows to introduce independent approximations for the transverse stress field in view
of an a priori fulfilment of the interlaminar equilibrium [30, 31]. The virtual internal work
for RMVT can be written as

δWint =
∫

V
δεTb σb + δεnσn + δεTs σs + δσTn (εn − en) + δσTs (εs − es) dV

=
∫

Ω

Np∑

p=1

∫

hp

{
δε

(p)T
b C

(p)
bb ε

(p)
b + δε

(p)T
b C

(p)
bn σ

(p)
n + δε(p)Tn σ(p)

n + δε(p)T
s σ(p)

s + δσ(p)T
n ε(p)n

+ δσ(p)T
n C

(p)T
bn ε

(p)
b − δσ(p)T

n Cnnσ
(p)
n + δσ(p)T

s ε(p)
s − δσ(p)T

s C(p)
ss σ

(p)
s dz

}
dx dy

(7)
in which the following definitions have been used for the in-plane stresses σb and the transverse
strains e = [en es]T in each ply p:




σb

en

es




(p)

=




Cbb Cbn 0
−CT

bn Cnn 0
0 0 Css




(p) 


εb

σn

σs




(p)

(8)

where the coefficients of this mixed form of constitutive law are related to those of Hooke’s
law Eq. (5) by

Cbb = C̃bb + C̃bnC̃
−1
nn C̃

T
bn; Cbn = C̃bnC̃

−1
nn ; Cnn = C̃−1

nn ; Css = C̃−1
ss (9)

2.3 Variable-kinematics plate model in SGUF
The plate model is defined upon introducing ad hoc assumptions for the distribution across
the thickness of the generic dependent variable U of the variational framework to be used,
i.e., U ∈ {ui} for a PVD model and U ∈ {ui, σi3} for an RMVT model. The assumptions
are expressed in each sublaminate k and independently for each variable Uk according to the
GUF notation [44] as follows

Uk (x, y, zk) =
Nk

U∑

αU =0
FαU (ζ) ÛkαU

(x, y) (10)

In each sublaminate, the generic variable Uk can be described either in an ESL sense by
setting ζ = ζk, or in a LW sense by setting ζ = ζp. In this latter case, the approximation is
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defined as the assembly all Nk
p ply-specific contributions:

Uk (x, y, zk) =
Nk
p∑

p=1
U (p) (x, y, zp) =

Nk
p∑

p=1

Nk
U∑

αU =0
FαU (ζp) Û (p)

αU
(x, y) (11)

where it is intended that the expansion order Nk
U is the same for all the Nk

p plies within the
sublaminate. The model for the whole multilayer is eventually constructed upon assembling
in a LW sense all sublaminate-specific contributions.

The thickness functions are defined as

F0(ζ) = P0(ζ)− P1(ζ)
2 ; F1(ζ) = P0(ζ) + P1(ζ)

2 ; Fr(ζ) = Pr(ζ)− Pr−2(ζ) for r ≥ 2 (12)

where Pm(ζ) is the Legendre polynomial of order m:

P0 = 1; P1 = ζ; Pn+1 = (2n+ 1)ζ Pn − nPn−1

n+ 1 (13)

This hierarchic basis is used for both, the ESL and LW descriptions of the variable inside a
sublaminate. In the ESL case one sets ζ = ζk, whereas ζ = ζp is used for a LW description.

The assembly procedures of LW contributions is carried out by imposing the interlaminar
continuity of the variable U , i.e., by stating the perfect bond condition of adjacent plies and
sublaminates. By virtue of the property F0(−1) = F1(1) = 1, Fr(±1) = 0, it is straight-
forward to enforce the continuity within a classical assembly procedure, see [44] for more
details.

2.4 The semi-discrete governing equations of the plate
The approximations across the thickness, expressed in the compact notation Eq. (11), are
introduced into the virtual work integral Eq. (6) (PVD) or Eq. (7) (RMVT). As a result, the
virtual internal work defined by the generic unknown variable Us and the virtual variation
δUq can be expressed as

δWint

(
δÛq(x, y), Ûs(x, y)

)
=

Nl∑

k=1

Nk
p∑

p=1
δW

(p)
int

(
δÛ (p)

q (x, y), Û (p)
s (x, y)

)
(14)

where the contribution of the pth ply of the kth sublaminate can be written as follows:

δW
(p)
int

(
δÛ (p)

q , Û (p)
s

)
=
∫

Ω

(
∂qα
[
δÛ (p)

qµq
(x, y)

])
Z
p µUq τUs mn

∂qzUq ∂szUsQS
(
∂sβ
[
Û (p)
sτs

(x, y)
])

dx dy (15)

The operators ∂qα [·] and ∂sβ [·] indicate that the variables Ûs and δÛq may be partially derived
with respect to the in-plane coordinates, depending on the strain component involved in the
specific virtual work contribution being considered. Furthermore, the thickness integral Z
has been introduced as

Z
p µUq τUs mn

∂qzUq ∂szUsQS =
∫

hp

(
∂qz
[
Fm
µUq

(ζp)
])
cpQS

(
∂sz
[
F n
τUs

(ζp)
])

dz (16)
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Figure 2: Four-node quadrangular element in the physical Cartesian frame (x, y) and in the natural frame
(ξ, η).

Again, ∂z [·] indicates that a derivation with respect to the thickness coordinate z may be
required for defining the strain component pertaining to the specific contribution to the virtual
work. As it will become clear when introducing the finite element interpolations (Section 3.1),
thickness functions could be split in their z−constant part and the higher-order part that
depends on powers of z; this is taken into account by the superscripts m and n (with m,n ∈
{0, h, a}, where a means that both contributions are to be included). The coefficient cpQS
can represent a material parameter (with Q,S ∈ {1, 6}), or a unitary coefficient, because in
RMVT the compatible transverse strains are directly work-conjugated to the transverse stress
variables. Note also that in RMVT transverse stress variables are never derived with respect
to any coordinate.

Eq. (15) is the generic expression of the model-invariant kernel of the semi-discrete stiffness
matrix, which is computed upon cycling over all indices q, µq, s, τs and subsequently assembled
over all plies p and sublaminates k. Specific instances of the kernels are formed by expressing
all individual virtual work contributions pertaining to the model: PVD-based models rely on
6 kernels, whereas RMVT-based models require 15 kernels.

The thickness integrals are explicitly carried out and assembled across the whole mul-
tilayer section, which yields the dimensionally reduced 2D model. The strong form of the
2D governing equations, obtained upon integration by parts of those terms subjected to the
derivative ∂qα, have been given in [44] and solved in the framework of the Navier solution.
Weak-form solutions have been addressed in [46] by referring to the Ritz method. In this
paper, the Finite Element Method is for the first time used to obtain weak-form solutions of
SGUF models.

3 Finite Element Formulation
The solution over the reference surface Ω is discretized through four-node quadrilateral ele-
ments, see Fig. 2.

The classical C0
Ω isoparametric interpolation is employed for all variables (i.e., displacement

variables for PVD, and displacement and transverse stress variables for RMVT). However, in
order to circumvent the well-known transverse shear locking pathology, the dedicated field-
compatible approximation named QC4 is used to substitute the isoparametric interpolation
for the transverse shear strain γα3 [55].
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3.1 Strain-displacement relations
The development of FEs for the QC4 interpolation requires a new definition of the strain field.
In particular, only the z−constant part of the transverse shear strain field γ0

α3 is responsible
for the locking pathology, because high-order terms γhα3 that depend on powers > 1 of the
thickness coordinate z naturally vanish as the plate becomes thin. Therefore, the substitute
interpolation will be used only for the field γ0

α3, which is carried out by opportunely selecting
the z−independent terms of the thickness expansion. By introducing the compact index
notation, U (k)

µU i
is the displacement DOF vector related to the ith node (i ∈ {1, 4}), the kth

layer and the expansion order index µU :

U
(k)
µU i

=
[
U (k)
xµux

U (k)
yµuy

U (k)
zµuz

]T
i

(17)

The geometrical relations that define the discretized strain field can be then expressed in the
following matrix notation:

ε
(k)
b (x, y, zp) = FbµU (zp)Bbi (x, y)U (k)

µU i

ε(k)
n (x, y, zp) = FnµU (zp)Bni (x, y)U (k)

µU i

ε(k)
s (x, y, zp) = γ0 (x, y) + γh (x, y, zp)

= F 0
sµU
B̄si (x, y)U (k)

µU i
+ F h

sµU
(zp)Bsi (x, y)U (k)

µU i

(18)

where the B matrices contain the derivatives of the isoparametric shape functions that define
the in-plane strains (subscript b), the transverse normal strain (subscript n) and the trans-
verse shear strains (subscript s). The substitute interpolation for the z−constant part of the
transverse shear strain is indicated by the B̄s matrix. For the QC4 interpolation, the matrix
of the thickness functions FsµU must be split into the z−constant part F 0

sµU
and the part F h

sµU
that depends on z. The interpolation scheme involved in the definition of the z−constant
component γ0 of the transverse shear strain field is detailed in Appendix B.

The explicit expressions for the matrices containing the through-thickness functions (FbµU ,
FnµU , F 0

sµU
and F h

sµU
) as well as those containing the in-plane derivatives of the FE shape

functions (Bbi, Bni, B̄si and Bsi) are given in Appendix A.
Finally, it is worth highlighting that the QC4 interpolation is defined in the natural element

frame, which enhances the FE accuracy in presence of distorted mesh. This is carried out by
accounting for the Jacobian matrix J evaluated at Gauss points in the definition of γ0.

3.2 FE matrices
The governing equations for both PVD-based and RMVT-based formulations are finally de-
rived by substituting the strain-displacement relations Eq. (18) in the corresponding weak
forms expressed by Eq. (6) and Eq. (7), along with the opportune constitutive law (Eq. (5),
Eq. (8)).

The following algebraic systems are eventually obtained, in which the nodal unknowns
are the through-thickness parameters defining the displacement field and, for the RMVT
approach, the transverse stress field:
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PVD:




Kuxux Kuxuy Kuxuz

Kuyuy Kuyuz

sym Kuzuz







Ux

Uy

Uz


 =




Rx

Ry

Rz


 (19)

RMVT:




Kuxux Kuxuy 0uxuz Kuxsx Kuxsy Kuxsz

Kuyuy 0uyuz Kuysx Kuysy Kuysz

0uzuz Kuzsx Kuzsy Kuzsz

Ksxsx Ksxsy 0sxsz
sym Ksysy 0sysz

Kszsz







Ux

Uy

Uz

Sx

Sy

Sz




=




Rx

Ry

Rz

0

0

0




(20)

It worth emphasising that, in contrast to the algebraic systems of the RMVT formulation
obtained in the framework of Navier’s strong form solution or Ritz’ weak form solutions,
the coupling terms Kuxsy and Kuysx are non-zero due to the QC4 interpolation scheme. All
kernels from which the contributions of the stiffness matrices are obtained through opportune
cycling over the various indices are explicitly expressed in Appendix C.

4 Numerical results
The developed 4-node FE for variable kinematics SGUF models is here applied to the static
response sandwich plates. Three problems are considered. The global bending of a simply-
supported square plate, for which Kardomateas provided exact elasticity solutions [58], is used
for displaying the convergence properties of the FE and for a first assessment of PVD-based
and RMVT-based SGUF models. The rectangular sandwich plate subjected to a localized
pressure proposed by Meyer-Piening [59] is a more challenging problem due to the steep
gradients produced by the local load. Finally, a typical indentation problem of a sandwich
beam under a point force is examined, as considered in, e.g., [60–63]. The considered problems
aim at displaying the robustness of the numerical FE-based tool and the flexibility of the
variable kinematics modeling approach of SGUF, in particular its capability of recovering
accurate through-thickness response with a simple 2D mesh.

4.1 Employed models and acronyms
SGUF models for the sandwich plates are specified by the GUF-type model employed for
the facesheets and the core separated by a slash, see also [44]. The meaning of the models’
acronyms is recalled in Fig. 3. Displacement-based models with a z−constant out-of-plane
displacement (Nu3 = 0) resort to the reduced plane-stress constitutive coefficients. The plane
stress assumption σ33 = 0 is represented in RMVT-models by dropping off the σ33 variable,
which is indicated in the acronym by replacing the expansion order Ns3 by a dot (·). Simplified
CUF-type acronyms are used if the same description (ESL or LW) and expansion order N is
used for all variables, e.g., DZ2 Z2 = EDZ2, ML7 L7

L7 L7 = LM7, ME4 E4
Z4 Z4 = EMZ4 etc. FSDT is thus

obtained as ED10, and CLT is obtained from FSDT by numerically penalyzing the transverse
shear stiffness.
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D
M

ds1Ns1, ds2Ns2, ds3Ns3

du1Nu1, du2Nu2, du3Nu3

dui = E (ESL) or Z (ZZ) or L (LW)

dsi = E (ESL) or L (LW)

Figure 3: Structure of the acronyms for the considered GUF-type models

Some additional features are here introduced for the first time concerning the approxima-
tions of the transverse stresses in RMVT-based models. In particular, prescribed zero values
can be enforced as homogeneous boundary conditions for the transverse shear stresses. This
can be done across the thickness at the top and/or bottom surfaces z = ±H

2 as well as in
the (x, y)−plane at the nodal DOF of the FE. In order to indicate the exact satisfaction of
the homogeneous boundary conditions for the transverse shear stress at the plates’ top and
bottom surfaces, the symbol � is appended after the expansion order, e.g., EM2� ·

1 0 is a refined
FSDT that retains a quadratic transverse shear stress satisfying the homogeneous conditions
σα3(x, y,±H

2 ) = 0. It is emphasized that homogeneous transverse stresses are enforced only
in mixed models based on RMVT in order to avoid the static inconsistencies that may plague
high-order PVD-based models [64].

4.2 Kardomateas sandwich plate
The elasticity solution proposed by Pagano in [65] has been extended by Kardomateas to-
wards more realistic core materials, in particular transversely isotropic cores that are stiffer
in the transverse direction than in the in-plane directions, e.g., honeycomb cores [66]. The
Kardomateas-TestCase (K-TC) considers a simply-supported square three-layered sandwich
panel subjected to a bi-sinusoidal pressure load, see Fig. 4, with Graphite/Epoxy unidirec-
tional faces and a glass-phenolic honeycomb core. The geometry and material data are listed
in Tab. 1.

a

b

H

c

f

Figure 4: K-TC: Bi-sinusoidal pressure at top
surface.

Table 1: K-TC: Sandwich plate geom-
etry and material data

a = b = 10H; f = 2 mm; 2c = 16 mm
T300/5208 Glass-phenolic

Graphite/Epoxy honeycomb
E11 [GPa] 181 0.032
E22 [GPa] 10.3 0.032
E33 [GPa] 10.3 0.3

ν12 0.277 0.25
ν13 0.277 0.027
ν23 0.4 0.027

G12 [GPa] 7.17 13
G13 [GPa] 7.17 48
G23 [GPa] 5.96 48

The results are evaluated in terms of the following non-dimensional local response param-
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eters:

Ū (z) = ux (−a/2, 0, z) E11

q0HS3 ; V̄ (z) = uy (0,−b/2, z) E11

q0HS3 ;

W̄ (z) = uz (0, 0, z) E11

100q0H
; S̄αα (z) = σαα (0, 0, z) 1

q0S2 ;

S̄xy (z) = σxy (−a/2,−b/2, z) 1
q0S2 ; S̄xz (z) = σxz (−a/2, 0, z) 1

q0S
;

S̄yz (z) = σyz (0,−b/2, z) 1
q0S

; S̄zz (z) = σzz (0, 0, z) 1
q0

(21)

where S = a/H is the plate’s length-to-thickness ratio and q0 the amplitude of the pressure
load.

4.2.1 Convergence of the FE

A numerical test is first performed in order to show the convergence of the proposed FE. To
this aim, five regular meshes are considered with N = 2, 4, 8, 16, 32 four-node elements along
the edges of the quarter plate. The convergence analysis is carried out for two representative
models, namely the displacement-based FSDT/FSDT and the RMVT-based EM2� ·

1 0 /EM21
32.

FE results are compared against the Navier-type closed-form solution for the corresponding
model. These results are given in Tab. 2 and labelled by the superscript a.

Table 2: K-TC: Reference values obtained by the Navier-type closed-form solution.

Model S = a/H Ūa (−H/2) W̄ a (H/2) S̄axx (H/2) S̄axz (0.4H−)

FSDT/FSDT
101 0.4918643294 230.2174542 1.6339367620 0.2068595369
102 0.3162183647 230729.4323 1.01546741 0.3061014777
103 0.3166019035 2018522809 1.014763335 0.3092905016

EM2� ·
1 0 /EM21

32

101 0.4903456822 231.7002615 1.640280194 0.2065009079
102 0.3162178627 230733.5721 1.0154599550 0.3059699424
103 0.3166018998 2018523087 1.0147632530 0.3091640006

The non-dimensional in-plane displacement Ū is evaluated at the bottom of the plate,
the transverse displacement W̄ and bending stress S̄xx at the top surface and the transverse
stress S̄xz at facesheet-core interface. Note that throughout the paper, transverse stresses for
PVD-based models are evaluated through the constitutive law.

Convergence curves are reported in Fig. 5 for three different values of the length-to-
thickness ratio S = 101, 102, 103. For the displacement-based model, the strong locking
pathology affecting the fully-integrated isoparametric (ISO4) element is eliminated by re-
sorting to the QC4 interpolation, which thus recovers the asymptotic linear convergence rate.
It can be seen that the isoparametric mixed element is much less sensitive to the shear lock-
ing: similar results are thus obtained for the RMVT-based ISO4 and QC4 FE, in which the
compatible transverse shear strain is interpolated using the substitute interpolation scheme.

Fig. 6 compares the convergence of the RMVT-model for the whole plate to that obtained
for the quarter plate (S = 10), in which the symmetry conditions are imposed on both

12
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Figure 5: K-TC: Convergence to the Navier-type solution of displacements and stresses of the simply-
supported sandwich plate under bi-sinusoidal pressure load for three different values of the length-to-thickness
ratio (S = 101, 102, 103).
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−

Ū
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Figure 6: K-TC: Comparison between the convergence for the whole plate case and the quarter plate with
symmetry boundary conditions on displacements and transverse stresses.

displacement and transverse stresses. A perfect match can be appreciated which proves that
it is possible to enforce boundary conditions on transverse stress variables on the FE nodes.
Results obtained by RMVT models will henceforth verify a priori the homogeneity of the
transverse shear stresses at the symmetry edges.

4.2.2 Assessment of plate models

The Kardomateas benchmark is also used for providing an assessment for several plate theo-
ries. The results in Tab. 3 compare the exact 3D solution of [66] with different displacement-
based as well as mixed models in terms of through-thickness distributions of the quantities
defined in Eq. (21). Based on the previous convergence analysis, a mesh of 16x16 elements is
used for a quarter plate and the QC4 interpolation is adopted for the PVD models.

In their comprehensive assessment of PVD models, Carrera and Brischetto [6] have shown
that ESL models lead to significant errors for very high skin-to-core stiffness ratios. Tab. 3
shows that RMVT models exhibit the same issue (e.g., EM2). The results also confirm that
the use of Murakami’s Zig-Zag function (MZZF) improves the accuracy of ESL descriptions
for the displacement-based as well as the mixed formulations: it is more important to resolve
the slope discontinuity of the displacement field across the facesheet-core interface than to
enhance the polynomial order of the approximation.
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Table 3: K-TC: Assessment of classical and mixed models. Values in parentheses are the absolute percentage
errors with respect to the exact 3D solution.

Model (nDOF) Ū (−H/2) W̄ (H/2) S̄xx (H/2) S̄xz (0.4H−)
Ref [58] 0.4903 231.37 1.6421 0.2064

Displacement-based models
ED2 (9) 0.3005 (38.71%) 29.812 (87.12%) 0.9719 (40.81%) 0.0089 (95.71%)
ED4 (15) 0.3892 (20.63%) 130.31 (43.68%) 1.2759 (22.30%) 0.0341 (83.48%)
EDZ4 (18) 0.4901 (0.05%) 231.26 (0.05%) 1.6292 (0.78%) 0.2052 (0.55%)
LD4 (39) 0.4908 (0.09%) 231.48 (0.05%) 1.6407 (0.08%) 0.2061 (0.11%)
CLT/FSDT (9) 0.4941 (0.78%) 230.14 (0.53%) 1.6386 (0.21%) 0.2066 (0.11%)
FSDT/FSDT (9) 0.4923 (0.40%) 230.33 (0.45%) 1.6327 (0.57%) 0.2066 (0.13%)
FSDT/ED12 (11) 0.4909 (0.12%) 231.78 (0.18%) 1.6394 (0.16%) 0.2079 (0.73%)
FSDT/ED32 (15) 0.4909 (0.12%) 231.78 (0.18%) 1.6394 (0.16%) 0.2063 (0.05%)

Mixed models w/o homogeneous stress BC
EM2 (18) 0.1809 (63.11%) 158.55 (31.47%) 0.6436 (60.81%) 0.3601 (74.47%)
EM4 (30) 0.4747 (3.19%) 223.95 (3.21%) 1.5893 (3.21%) 0.1522 (26.23%)
EMZ4 (33) 0.4940 (0.74%) 231.96 (0.25%) 1.6512 (0.56%) 0.1858 (9.96%)
LM4 (78) 0.4910 (0.13%) 231.71 (0.15%) 1.6416 (0.03%) 0.2067 (0.15%)
EM2·

10/EM0·
10 (19) 0.4926 (0.46%) 230.55 (0.35%) 1.6336 (0.51%) 0.2072 (0.38%)

EM2·
10/EM2·

10 (23) 0.4926 (0.46%) 230.55 (0.35%) 1.6336 (0.51%) 0.2071 (0.36%)
EM2·

10/EM01
12 (23) 0.4912 (0.17%) 232.01 (0.27%) 1.6403 (0.11%) 0.2071 (0.37%)

EM2·
10/EM21

32 (31) 0.4912 (0.17%) 232.01 (0.28%) 1.6404 (0.10%) 0.2068 (0.21%)
Mixed models w/ homogeneous stress BC on σαz

EM2�·
10/EM0·

10 (15) 0.4924 (0.42%) 230.58 (0.34%) 1.6331 (0.55%) 0.2072 (0.38%)
EM2�·

10/EM2·
10 (19) 0.4924 (0.42%) 230.58 (0.34%) 1.6331 (0.55%) 0.2071 (0.34%)

EM2�·
10/EM01

12 (19) 0.4910 (0.14%) 232.03 (0.29%) 1.6397 (0.14%) 0.2071 (0.37%)
EM2�·

10/EM21
32 (27) 0.4910 (0.13%) 232.04 (0.29%) 1.6398 (0.14%) 0.2068 (0.21%)

The beneficial effect of MZZF is also visible in the distributions displayed in Fig. 7. On
the other hand, high order LW models are able to accurately recover the 3D response of the
sandwich plate. As it can be appreciated in Fig. 8, the interlaminar discontinuity of the
transverse stress field of PVD-based models can be reduced upon increasing the expansion
order of the approximation, up to match the a priori continuous transverse stress field of
RMVT-based models.

Tab. 3 reports results also for several SGUF models, in which one sublaminate is used
for each of the facesheets and the core. Thanks to the SGUF approach, the facesheet-core
interface can be described in a LW sense and dedicated expansion orders can be used in
individual sublaminates: it is hence possible to locally enrich the model for the relatively soft
and thick core while keeping simple models for the relatively stiff and thin facesheets, which
eventually allows to reduce the number of DOF without affecting the accuracy.
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Figure 7: K-TC: Influence of MZZF on Equivalent Single Layer plate theories.
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Figure 8: K-TC: Transverse stress S̄xz discontinuity at layer interfaces for displacement-based models.

Furthermore, the through-thickness distributions of PVD-based models are compared
against the 3D solution [58] in Fig. 9. The facesheets are modelled according to CLT or
FSDT and different kinematics for the core have been investigated, ranging from kinematics
invoking the plane-stress constitutive law (FSDT) up to fully 3D models (ED12 and ED32).
The benefits of an explicit representation of the facesheet-core interfaces are clearly visible:
all SGUF models yield errors well below 1%. The advantage is also obvious of enhancing
the transverse normal response by locally increasing the expansion order inside the core layer
only. Since the transverse normal deformation is mostly confined within the thick core layer,
all RMVT models reported in Tab. 3 adopt simple plane-stress models for the facesheets
without any substantial accuracy loss. Finally, Fig. 10 compares the through-thickness dis-
tribution of the transverse shear stresses S̄xz and S̄yz for the mixed SGUF model EM2·

10/EM21
32

against the equivalent PVD-based model FSDT/ED32. The accuracy improvement is actually
modest unless the homogeneous boundary conditions at the plate’s top and bottom surfaces
are exactly prescribed: the model EM2� ·

10 /EM21
32 is clearly capable of recovering the exact 3D

16



solution with 15 displacement DOF and 12 stress DOF per node.
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Figure 9: K-TC: Through-thickness distributions of local response parameters for displacement-based SGUF
models.
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4.3 Meyer-Piening benchmark
The Meyer-Piening TestCase (M-TC) considers a simply supported unsymmetric rectangular
plate subjected to a localized transverse pressure [59]. The sandwich plate geometry as well
as the elastic properties for the thin facesheets and the core are summarized in Tab. 4. The
uniform pressure load p0 = 1 MPa is applied at the top surface on a rectangular area delimited
by x ∈ [47.5, 52.5] mm and by y ∈ [90, 110] mm, as illustrated in Fig. 11.

H

a

b

Figure 11: M-TC: Sandwich plate with localized
uniform pressure.

Table 4: M-TC: Geometric and mate-
rial data

a = 100 mm; b = 200 mm; H = 12 mm
Lower face Core Upper face

h [mm] 0.5 11.4 0.1
θ 0 0 0

E11 [GPa] 70 3 70
E22 [GPa] 71 3 71
E33 [GPa] 69 2.8 69
G [GPa] 26 1 26

ν 0.3 0.25 0.3

A strong form solution can be obtained by means of a quasi-analytical Navier-type solution
with a Fourier series expansion for representing the localized pressure load.

x

y

Figure 12: M-TC: Refined mesh in proximity of the localized pressure load.

The in-plane distributions for this benchmark are characterized by significant gradients in
proximity of the localized pressure load. For this reason, a regular mesh is refined towards
the plate center as illustrated in Fig. 12. Exploiting symmetry, only one-quarter of the plate
needs to be modeled and it has been discretized with 8× 12 elements.

Present FE results are compared in Tab. 5 against the results obtained with the Navier
solution by considering the mixed model LM7. The values are evaluated at the top and
bottom of the sandwich plate as well as at facesheet-core interfaces located at z = 5.9 and
z = −5.5. The results provided by the FEM model are seen to closely match the reference
ones, with an absolute percentage error less than 5%.

An assessment is next carried out to highlight the capability of SGUF models to accurately
reproduce the sandwich plate response with a reduced number of DOFs when compared to
the high-order full LW model LM7. The results of this analysis are summarized in Tab. 6.
The variables uz, σxx and σzz are evaluated at the center of the plate (x = 0, y = 0) and the
transverse shear stress σxz at the boundary of the load application area, where its maximum
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Table 5: M-TC: Comparison between Navier-type solution and FEM solution for the LM7 model

Model z uz [mm] σxx [MPa] σxz [MPa] σzz [MPa]
LM7a 6 -3.78 -624 0 -1.04

5.9+ -3.78 580 -0.17 -0.85
−5.5− -2.14 -138 -0.04 -0.18
-6 -2.14 146 0 0

LM7 6 -3.73 (1.16%) -625 (0.27%) 0 (0.00%) -1 (4.00%)
5.9+ -3.73 (1.16%) 582 (0.34%) -0.17 (0.00%) -0.83 (2.4%)
−5.5− -2.13 (0.47%) -138 (0.00%) -0.04 (0.00%) -0.17 (5.55%)
-6 -2.13 (0.47%) 146 (0.00%) 0 (0.00%) 0 (0.00%)

Table 6: M-TC: Assessment of classical and mixed SGUF models for the Meyer-Piening sandwich plate
under a localized pressure load. The absolute percentage error is calculated w.r.t. LM7 solution.

Model (nDOF) z uz [mm] σxx [MPa]
LM7 (132) 6 -3.73 (-) -625 (-)

5.9+ -3.73 (-) 582 (-)
−5.5− -2.13 (-) -138 (-)
-6 -2.13 (-) 146 (-)

FSDT/FSDT (9) 6 -2.65 (28.95%) -73 (88.32%)
5.9+ -2.65 (28.95%) 39 (93.30%)
−5.5− -2.65 (24.41% ) -276 (100.00%)
-6 -2.65 (24.41%) 283 (93.84%)

FSDT/ED32 (15) 6 -3.72 (0.27%) -610 (2.4%)
5.9+ -3.72 (0.27%) 567 (2.58%)
−5.5− -2.12 (0.47%) -138 (0.00%)
-6 -2.12 (0.47%) 146 (0.00%)

EM2·
10/EM21

32 (31) 6 -3.73 (0.00%) -613 (1.92%)
5.9+ -3.73 (0.00%) 569 (2.23%)
−5.5− -2.13 (0.00%) -139 (0.72%)
-6 -2.13 (0.00%) 147 (0.68%)

EM2�·
10/EM21

32 (27) 6 -3.73 (0.00%) -613 (1.92%)
5.9+ -3.73 (0.00%) 580 (0.34%)
−5.5− -2.13 (0.00%) -139 (0.72%)
-6 -2.13 (0.00%) 147 (0.68%)
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value is reached (x = −2.5, y = 0). Tab. 6 reports also the nodal DOF of the considered
PVD-based and RMVT-based models.

Fig. 13 shows the transverse displacement uz and the bending stress σxx distributions
along two sections cut taken at x = 0 and y = 0, where x̄ = 2x/a and ȳ = 2y/b are the non-
dimensional coordinates spanning the x and y directions respectively. The results show that
the use of FSDT for modeling the core is not suitable for grasping the local indentation: the
core kinematics must include the transverse normal stretch if the effect of the local pressure
load is to be resolved. As long as the in-plane gradients of the response are concerned, no
difference is appreciated between the mixed EM2·

10/EM21
32 model and the displacement-based

FSDT/ED32 model.
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Figure 13: M-TC: In-plane distribution of coordinate z and bending stress σxx at top and bottom surfaces.

In order to appreciate the difference between the RMVT-based and PVD-based models,
Fig. 14 reports the through-thickness distributions of the transverse displacement uz, the
bending stress σxx and the transverse stresses σxz and σzz. The improved transverse stress
response of mixed models is obvious. Furthermore, it is possible to enhance the transverse
stress approximation locally in the core and the facesheets so to very accurately retrieve the
reference solution, see Fig. 14c and Fig. 14d. The effect is particularly emphasized of exactly
satisfying the homogeneous stress conditions at the plate’s top and bottom surfaces. It must
be pointed out that the expansion orders for the transverse stress variables in RMVT models
can not be freely chosen without considering the displacement field in order to avoid spurious
oscillations [67]. For this reason, a richer kinematics for the displacement field must be used
if the an enriched description of the transverse stress field is desired.
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Figure 14: M-TC: Through-thickness distributions of deflection uz, bending stress σxx and transverse stresses
σxz and σzz.

4.4 Indentation benchmark
The indentation of a sandwich beam is finally investigated by referring to the problem con-
sidered by Navarro et al. [61] and, therefore, referred to as Navarro-TestCase (N-TC). The
beam problem is defined in the (x, z)−plane as displayed in Fig. 15, with a concentrated load
P = 1000 N acting at the centre of the beam at the top surface and the bottom of the beam
fully clamped (ux = uz = 0). The data for geometry and material properties is given in
Tab. 7. Symmetry is exploited to reduce the computational model to one-half of the beam.

Navarro et al. developed a very effective model for core crushing, which is based on a
semi-analytical continuum-based model proposed by Vlasov [61]: considering a homogenous
and isotropic core, its elastic response is given in terms of a simple two-parameters “elastic
foundation” model, which relies upon the assumption of zero in-plane displacement in the
core and on a decay function of the core deformation that annihilates the perturbation at the
bottom of the core [68, 69].
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H x
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P

Figure 15: N-TC:Sandwich beam with indenta-
tion load.

Table 7: N-TC: Geometric and mate-
rial data.

a = 100 mm; b = 1 mm; H = 31 mm
Core Upper face

h [mm] 30 1
θ 0 0

E11 [GPa] 0.2 100
E22 [GPa] 0.2 100
E33 [GPa] 0.2 100
G [GPa] 0.087 38.46

ν 0.15 0.3

In the following, present SGUF FEM results are compared against the semi-analytical
Vlasov’s model as well as a reference elasticity solution obtained by the commercial FE pack-
age Abaqus. It will be shown that the present approach, which is more general than Vlasov’s
“elastic foundation” model, is capable of providing very accurate results with only a 2D mesh
and reduced number of DOF when compared to the commercial FE packages.

Following [61], the Abaqus model for one-half of the beam consists of 200 two-nodes
shear-deformable plane beam elements (B21) for the facesheet and 4200 four-nodes plane
stress elements (CPS4R) for the core. This results in a discrete model with 9805 DOF. The
axial displacement ux inside the core is suppressed in order to better reproduce Vlasov’s
assumption.

The present SGUF models adopt FSDT for the facesheet and high-order models for the
core, in which the axial displacement is expanded only linearly along the thickness in order to
minimise the axial deformation of the core as per Vlasov’s assumption. High-order expansions
are adopted for the transverse displacement in the core, ranging from cubic up to sixth-order:
the core models are thus expressed as ED1Nuz with Nuz ∈ {3, . . . 6}. As far as the 2D mesh
is concerned, the beam is modeled with only one 4-node plate element across the width, by
imposing uy = 0. 50 elements are used along the beam axis, with a bias factor (the ratio of
the largest edge size to the smallest) of 10 to increase the mesh density towards the loading
area to accurately grasp the localized stress field.

The number of total DOF of the considered SGUF models is compared against the Abaqus
model in Tab. 8.

Table 8: N-TC: DOFs comparison between commercial software FEM and 2D SGUF model.

Model DOFs
ED13/FSDT 1020
ED14/FSDT 1122
ED15/FSDT 1224
ED16/FSDT 1326

Abaqus 9805

Fig. 16 shows the distributions along the beam axis (x−direction) of the transverse dis-
placement uz and bending stiffness σxx at the top of the skin (z = H/2 = 15.5 mm), as well
as the transverse shear stress σxz and the transverse normal stress σzz in the core just below
the interface with the facesheet (z = 14.5 mm). A very satisfying agreement of the SGUF
model FSDT/ED14 with the reference Abaqus solution is obtained. The discrepancy in the

22



Vlasov
Abaqus
ED 14/FSDT

−7

−6

−5

−4

−3

−2

−1

0

0 10 20 30 40 50

x

z

x

uz

(a) Deflection uz.

Vlasov
Abaqus
ED 14/FSDT

−10000

−8000

−6000

−4000

−2000

0

2000

0 10 20 30 40 50

x

z

x

σxx

(b) Bending stress σxx.

Vlasov
Abaqus
ED 14/FSDT

0

10

20

30

40

0 10 20 30 40 50

x

z

x

σxz

(c) Transverse shear stress σxz.

Vlasov
Abaqus
ED 14/FSDT

−100

−80

−60

−40

−20

0

0 10 20 30 40 50

x

z

x

σzz

(d) Transverse normal stress σzz.

Figure 16: N-TC: In-plane distributions of deflection uz, bending stress σxx in the skin and transverse
stresses σxz and σzz in the foam.

maximum transverse shear stress (Fig. 16c) is attributed to the particular kinematics that has
been adopted inside the core. Concerning Vlasov’s model, it is capable of very precisely repro-
ducing the local indentation of the facesheet (transverse displacement and bending stress, see
Fig. 16a and Fig. 16b), but the transverse stresses inside the core appear to be less accurate.
In particular, the maximum value of the transverse normal stress predicted by Vlasov’s model
in correspondence of the concentrated load is quite unsatisfactory (Fig. 16d).
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Figure 17: N-TC: Influence of out-of-plane displacement approximation order on transverse normal stress
σzz.

Fig. 17 shows the convergence of transverse normal stress at the facesheet-core interface
upon increasing the expansion order Nuz , with emphasis on the region of the applied con-
centrated load. It can be seen that the maximum compressive stress appears to converge
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towards a finite value of approximately -95 MPa. Therefore, the present SGUF modeling
approach allows to recover full three-dimensional results with a simple 2D mesh and, hence,
a reduced number of DOF compared to the standard FEM available in commercial packages
(see Tab. 8).

5 Conclusion & Outlooks
This paper has extended for the first time the variable kinematics plate modeling approach
referred to as Sublaminate Generalized Unified Formulation (SGUF), to the general Finite
Element framework. Bi-linear four-nodes elements of general quadrilateral shape have been
formulated for conventional displacement-based as well as RMVT-based mixed plate models.
The adopted QC4 interpolation for the transverse shear strain makes the element locking-
free and robust against distorted mesh. The proposed FE has been applied to investigate
the static response of sandwich panels, ranging from global bending up to local indentation
under a concentrated load. The results demonstrate the flexibility of the approach, that
allows to adapt the number of DOF (i.e., the computational effort) depending on the desired
accuracy and selecting independently the in-plane mesh density and the through-thickness
model parameters. It has been shown that FE mesh refinement and dedicated high-order
models for selected sublaminates allow to recover the complex three-dimensional response of
the facesheets and the core with a number of DOF that is far below that required by currently
available approaches in commercial FE packages.

Thanks to the promising results of the proposed SGUF-FEM approach, future develop-
ments shall be considered that extend its scope towards the dynamic analysis of viscoleastic
sandwich plates as well as towards curved shell geometries. Future work will also address
the inclusion of geometric non-linearities in view of stability analyses. Furthermore, it is
worthwhile exploring the possibility to couple the variable kinematics approach offered by the
SGUF with the FEM so to adopt different models in different elements within a global-local
modelign strategy. Relevant literature to this topic is already available [70, 71]
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A Matrices containing the thickness and in-plane inter-
polation functions

The arrays containing the through-thickness approximations and the shape functions (and
their derivatives) introduced in the definition of the strain field in Eq. (18) are:

FbµU (zp) =



Fµux (zp) 0 0 0

0 Fµuy (zp) 0 0
0 0 Fµux (zp) Fµuy (zp)


 (22)

FnµU (zp) =
[
0 0 Fµuz,z (zp)

]
(23)

F 0
sµU

=
[
F 0
µux,z

F 0
µuy,z

F 0
µuz

0 0 0
0 0 0 F 0

µux,z
F 0
µuy,z

F 0
µuz

]
(24)

F h
sµU

(zp) =
[
F h
µux,z

(zp) 0 F h
µuz

(zp) 0
0 F h

µuy,z
(zp) 0 F h

µuz
(zp)

]
(25)

Bbi (x, y) =



Ni,x (x, y) 0 Ni,y (x, y) 0

0 Ni,y (x, y) 0 Ni,x (x, y)
0 0 0 0




T

(26)

Bni (x, y) =




0 0 0 0
0 0 0 0
0 0 0 Ni (x, y)




T

(27)

B̄si (x, y) =




N xux
i (x, y) 0 0

0 N xuy
i (x, y) 0

0 0 N xuz
i (x, y)

N yux
i (x, y) 0 0

0 N yuy
i (x, y) 0

0 0 N yuz
i (x, y)




(28)

Bsi (x, y) =



Ni (x, y) 0 0 0

0 Ni (x, y) 0 0
0 0 Ni,x (x, y) Ni,y (x, y)




T

(29)

The isoparametric interpolation functions for the four-node element depicted in Fig. 2 are:

Ni (ξ, η) = 1
4 (1 + ξiξ) (1 + ηiη) (30)

where ξi and ηi are the natural coordinates of the ith node.

B QC4 interpolation scheme
The modified field-compatible shape functions N rU

i (with U ∈ {ux, uy, uz} and r ∈ {x, y})
used to interpolate the z− constant part of the transverse shear strains γ0

xz and γ0
yz in Eq. (28)

are: 
N

x
i

N y
i



U

= J−1
(GP )


N

ξ
i

N η
i



U

=
[
j11 j12
j21 j22

](GP )

N

ξ
i

N η
i



U

(31)
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where j(GP )
αβ (with α, β ∈ {1, 2}) are the inverse terms of Jacobian matrix at Gauss point.

N ξU
i =

2∑

I=1
CξI (ξ, η) γξUi (ξI , ηI)

N ηU
i =

2∑

J=1
CηJ (ξ, η) γηUi (ξJ , ηJ)

(32)

where γξUi and γηUi are the transverse shear strains evaluated at tying points (Fig. 18) with

Cξ1 (ξ, η) = 1− η
2 ; Cξ2 (ξ, η) = 1 + η

2

Cη1 (ξ, η) = 1− ξ
2 ; Cη2 (ξ, η) = 1 + ξ

2

(33)

Using Einstein notation, the transverse shear strains components in Eq. (32) are written as

γξuxi (ξI , ηI) = Ni (ξI , ηI) J (I)
11 (ξI , ηI) +NRT

i,ξ (ξI , ηI)
γ
ξuy
i (ξI , ηI) = Ni (ξI , ηI) J (I)

12 (ξI , ηI) +NST
i,ξ (ξI , ηI)

γξuzi (ξI , ηI) = Ni,ξ (ξI , ηI)
γηuxi (ξJ , ηJ) = Ni (ξJ , ηJ) J (J)

21 (ξJ , ηJ) +NRT
i,η (ξJ , ηJ)

γ
ηuy
i (ξJ , ηJ) = Ni (ξJ , ηJ) J (J)

22 (ξJ , ηJ) +NST
i,η (ξJ , ηJ)

γηuzi (ξJ , ηJ) = Ni,η (ξJ , ηJ)

(34)

where J (t)
αβ (with t ∈ {1, 2}) are the terms of Jacobian matrix evaluated at tying point t. The

functions NRT
i and NST

i for the four-node element are given as:

NRT
i| i=1,2

(ξ, η) = 1
8
[
(−1)i J (i)

11 ξ
(
1− ξ2

)
(1 + ηiη)− J (i)

21 (1 + ξiξ) η
(
1− η2

)]

NRT
i| i=3,4

(ξ, η) = 1
8
[
(−1)i+1 J

(i)
11 ξ

(
1− ξ2

)
(1 + ηiη) + J

(i)
21 (1 + ξiξ) η

(
1− η2

)]

NST
i| i=1,2

(ξ, η) = 1
8
[
(−1)i J (i)

12 ξ
(
1− ξ2

)
(1 + ηiη)− J (i)

22 (1 + ξiξ) η
(
1− η2

)]

NST
i| i=3,4

(ξ, η) = 1
8
[
(−1)i+1 J

(i)
12 ξ

(
1− ξ2

)
(1 + ηiη) + J

(i)
22 (1 + ξiξ) η

(
1− η2

)]

(35)

where J (i)
αβ are the terms of Jacobian matrix at node i.
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C Kernels of the Sublaminate-Generalized Unified For-
mulation

C.1 Displacement-based formulation
The fundamental nuclei of the displacement-based formulation derived from Eq. (6) are

Kpµuxτux ij
uxux = Z

pµuxτux
uxux11 / Ni,xNj,x .Ω +Zpµuxτux

uxux16 / Ni,yNj,x .Ω +

+ Z
pµuxτux
uxux16 / Ni,xNj,y .Ω +Zpµuxτux

uxux66 / Ni,yNj,y .Ω +

+ Z
pµux,z τux,z00
uxux44 /N yux

i N yux
j .Ω +Zpµux,z τux,z00

uxux45 /N xux
i N yux

j .Ω +

+ Z
pµux,z τux,z00
uxux45 /N yux

i N xux
j .Ω +Zpµux,z τux,zh0

uxux45 / Ni N yux
j .Ω +

+ Z
pµux,z τux,z0h
uxux45 /N yux

i Nj .Ω +Zpµux,z τux,z00
uxux55 /N xux

i N xux
j .Ω +

+ Z
pµux,z τux,z0h
uxux55 /N xux

i Nj .Ω +Zpµux,z τux,zh0
uxux55 / Ni N xux

j .Ω +

+ Z
pµux,z τux,zhh
uxux55 / NiNj.Ω

K
pµuxτuy ij
uxuy = Z

pµuxτuy
uxuy12 / Ni,xNj,y .Ω +Zpµuxτuy

uxuy26 / Ni,yNj,y .Ω +

+ Z
pµuxτuy
uxuy16 / Ni,xNj,x .Ω +Zpµuxτuy

uxuy66 / Ni,yNj,x .Ω +

+ Z
pµux,z τuy,z00
uxuy44 /N yux

i N yuy
j .Ω +Zpµux,z τuy,z0h

uxuy44 /N yux
i Nj .Ω +

+ Z
pµux,z τuy,z00
uxuy45 /N xux

i N yuy
j .Ω +Zpµux,z τuy,z00

uxuy45 /N yux
i N xuy

j .Ω +

+ Z
pµux,z τuy,z0h
uxuy45 /N xux

i Nj .Ω +Zpµux,z τuy,zh0
uxuy45 / Ni N yuy

j .Ω +

+ Z
pµux,z τuy,zhh
uxuy45 / NiNj .Ω +Zpµux,z τuy,z00

uxuy55 /N xux
i N xuy

j .Ω +

+ Z
pµux,z τuy,zh0
uxuy55 / Ni N xuy

j .Ω

Kpµuxτuz ij
uxuz = Z

pµuxτuz,z
uxuz13 / Ni,xNj .Ω +Zpµuxτuz,z

uxuz36 / Ni,yNj .Ω +

+ Z
pµux,z τuz00
uxuz44 /N yux

i N yuz
j .Ω +Zpµux,z τuz0h

uxuz44 /N yux
i Nj,y .Ω +

+ Z
pµux,z τuz00
uxuz45 /N xux

i N yuz
j .Ω +Zpµux,z τuz00

uxuz45 /N yux
i N xuz

j .Ω +

+ Z
pµux,z τuz0h
uxuz45 /N yux

i Nj,x .Ω +Zpµux,z τuz0h
uxuz45 /N xux

i Nj,y .Ω +

(36)
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+ Z
pµux,z τuzh0
uxuz45 / Ni N yuz

j .Ω +Zpµux,z τuzhh
uxuz45 / NiNj,y .Ω +

+ Z
pµux,z τuz00
uxuz55 /N xux

i N xuz
j .Ω +Zpµux,z τuz0h

uxuz55 /N xux
i Nj,x .Ω +

+ Z
pµux,z τuzh0
uxuz55 / Ni N xuz

j .Ω +Zpµux,z τuzhh
uxuz55 / NiNj,x.Ω

K
pµuy τuy ij
uyuy = Z

pµuy τuy
uyuy22 / Ni,yNj,y .Ω +Zpµuy τuy

uyuy26 / Ni,xNj,y .Ω +

+ Z
pµuy τuy
uyuy26 / Ni,yNj,x .Ω +Zpµuy τuy

uyuy66 / Ni,xNj,x .Ω +

+ Z
pµuy,z τuy,z00
uyuy44 /N yuy

i N yuy
j .Ω +Zpµuy,z τuy,zh0

uyuy44 / Ni N yuy
j .Ω +

+ Z
pµuy,z τuy,z0h
uyuy44 /N yuy

i Nj .Ω +Zpµuy,z τuy,zhh
uyuy44 / NiNj .Ω +

+ Z
pµuy,z τuy,z00
uyuy45 /N xuy

i N yuy
j .Ω +Zpµuy,z τuy,z00

uyuy45 /N yuy
i N xuy

j .Ω +

+ Z
pµuy,z τuy,z0h
uyuy45 /N xuy

i Nj .Ω +Zpµuy,z τuy,zh0
uyuy45 / Ni N xuy

j .Ω +

+ Z
pµuy,z τuy,z00
uyuy55 /N xuy

i N xuy
j .Ω

K
pµuy τuz ij
uyuz = Z

pµuy τuz,z
uyuz23 / Ni,yNj .Ω +Zpµuy τuz,z

uyuz36 / Ni,xNj .Ω +

+ Z
pµuy,z τuz00
uyuz44 /N yuy

i N yuz
j .Ω +Zpµuy,z τuz0h

uyuz44 /N yuy
i Nj,y .Ω +

+ Z
pµuy,z τuzh0
uyuz44 / Ni N yuz

j .Ω +Zpµuy,z τuzhh
uyuz44 / NiNj,y .Ω +

+ Z
pµuy,z τuz00
uyuz45 /N xuy

i N yuz
j .Ω +Zpµuy,z τuz00

uyuz45 /N yuy
i N xuz

j .Ω +

+ Z
pµuy,z τuz0h
uyuz45 /N yuy

i Nj,x .Ω +Zpµuy,z τuz0h
uyuz45 /N xuy

i Nj,y .Ω +

+ Z
pµuy,z τuzh0
uyuz45 / Ni N xuz

j .Ω +Zpµuy,z τuzhh
uyuz45 / NiNj,x .Ω +

+ Z
pµuy,z τuz00
uyuz55 /N xuy

i N xuz
j .Ω +Zpµuy,z τuz0h

uyuz55 /N xuy
i Nj,x .Ω +

Kpµuz τuz ij
uzuz = Z

pµuy,z τuz,z
uzuz33 / NiNj .Ω +Zpµuz τuz00

uzuz44 /N yuz
i N yuz

j .Ω +

+ Z
pµuz τuz0h
uzuz44 /N yuz

i Nj,y .Ω +Zpµuz τuzh0
uzuz44 / Ni,y N yuz

j .Ω +
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+ Z
pµuz τuzhh
uzuz44 / Ni,yNj,y .Ω +Zpµuz τuz00

uzuz45 /N xuz
i N yuz

j .Ω +

+ Z
pµuz τuz00
uzuz45 /N yuz

i N xuz
j .Ω +Zpµuz τuz0h

uzuz45 /N yuz
i Nj,x .Ω +

+ Z
pµuz τuz0h
uzuz45 /N xuz

i Nj,y .Ω +Zpµuz τuzh0
uzuz45 / Ni,y N xuz

j .Ω +

+ Z
pµuz τuzh0
uzuz45 / Ni,x N yuz

j .Ω +Zpµuz τuzhh
uzuz45 / Ni,yNj,x .Ω +

+ Z
pµuz τuzhh
uzuz45 / Ni,xNj,y .Ω +Zpµuz τuz00

uzuz55 /N xuz
i N xuz

j .Ω +

+ Z
pµuz τuz0h
uzuz55 /N xuz

i Nj,x .Ω +Zpµuz τuzh0
uzuz55 / Ni,x N xuz

j .Ω +

+ Z
pµuz τuzhh
uzuz55 / Ni,xNj,x.Ω

where / .Ω denotes the integration over the in-plane domain Ω.

C.2 RMVT-based formulation
The fundamental nuclei of the RMVT-based formulation derived from Eq. (7) are

Kpµuxτux ij
uxux = Z

pµuxτux
uxux11 / Ni,xNj,x .Ω +Zpµuxτux

uxux16 / Ni,yNj,x .Ω +

+ Z
pµuxτux
uxux16 / Ni,xNj,y .Ω +Zpµuxτux

66uxux / Ni,yNj,y.Ω

K
pµuxτuy ij
uxuy = Z

pµuxτuy
uxuy12 / Ni,xNj,y .Ω +Zpµuxτuy

uxuy26 / Ni,yNj,y .Ω +

+ Z
pµuxτuy
uxuy16 / Ni,xNj,x .Ω +Zpµuxτuy

uxuy66 / Ni,yNj,x.Ω

Kpµuxτsx ij
uxsx = Z

pµux,z τsx0a
uxsx /N xux

i Nj .Ω +Zpµux,z τsxha
uxsx / NiNj.Ω

K
pµuxτsy ij
uxsy = Z

pµux,z τsy0a
uxsy /N yux

i Nj.Ω

Kpµuxτsz ij
uxsz = Z

pµuxτsz
uxsz13 / Ni,xNj .Ω +Zpµuxτsz

uxsz63 / Ni,yNj.Ω

K
pµuy τuy ij
uyuy = Z

pµuy τuy
uyuy22 / Ni,yNj,y .Ω +Zpµuy τuy

uyuy26 / Ni,xNj,y .Ω +

+ Z
pµuy τuy
uyuy26 / Ni,yNj,x .Ω +Zpµuy τuy

uyuy66 / Ni,xNj,x.Ω

K
pµuy τsx ij
uysx = Z

pµuy,z τsx0a
uysx /N xuy

i Nj.Ω

K
pµuy τsy ij
uysy = Z

pµuy,z τsy0a
uysy /N yuy

i Nj .Ω +Zpµuy,z τsyha
uysy / NiNj.Ω

K
pµuy τsz ij
uysz = Z

pµuy τsz
uysz23 / Ni,yNj .Ω +Zpµuy τsz

uysz63 / Ni,xNj.Ω

(37)
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Kpµuz τsx ij
uzsx = Zpµuz τsx0a

uzsx /N xuz
i Nj .Ω +Zpµuz τsxha

uzsx / Ni,xNj.Ω

K
pµuz τsy ij
uzsy = Z

pµuz τsy0a
uzsy /N yuz

i Nj .Ω +Zpµuz τsyha
uzsy / Ni,yNj.Ω

Kpµuz τsz ij
uzsz = Z

pµuz,z τsz
uzsz / NiNj.Ω

Kpµsxτsx ij
sxsx = −Zpµsxτsx

sxsx55 / NiNj.Ω

K
pµsxτsy ij
sxsy = −Zpµsxτsy

sxsy45 / NiNj.Ω

K
pµsy τsy ij
sysy = −Zpµsy τsy

sysy44 / NiNj.Ω

Kpµsz τsz ij
szsz = −Zpµsz τsz

szsz33 / NiNj.Ω

(38)
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