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Experiments on the control of differential game of target defense

Mukhtar Sani1, Ahmad Hably1, Bogdan Robu1*, Jonathan Dumon1, Nacim Meslem1

Abstract— This paper evaluates experimentally a novel strat-
egy for solving a variant of the differential game of target defense
in the presence of obstacles. The state-of-the-art approaches
mostly employ an offline optimization strategy that is only
applicable to holonomic systems. This paper presents an online
optimization technique, by designing a trade-off parameter
that integrates game theory with the model predictive control
which allows a nonholonomic defender to intercept an attacker
while simultaneously defending a specific target. Several indoor
laboratory experiments validate the performance of the proposed
approach and compared with a standard model predictive
control approach.

I. INTRODUCTION

Differential game, first studied in [1], is a powerful tool for
studying dynamic behavior of multiple systems (or players)
that interact with each other either in a conflict or in a
cooperative manners and analyzing their decision-making
processes. The continuous-time nature of these games is
aligned with a lot of robotics problems since robots kinematic
equations are naturally and originally in continuous time.
Translating players’ decision strategies into algorithms is a
non-trivial task.

Hamilton–Jacobi–Isaacs (HJI) equation has been used in
[2] to address a special class of differential games, called
”reach and avoid”, including time-varying dynamics, targets,
and constraints. In this reach and avoid game, the player
attempting to reach the target is treated as an attacker
whose objective is to arrive at the goal, and the other
player (or the defender) tries to intercept the offensive player
(attacker) and to prevent him to from reaching the target. The
value of the game is defined as the time required for the
attacking player to reach the goal, and the objectives of the
attacking and defending players are respectively minimizing
and maximizing this value. This game has several applications
such as collision avoidance [3], path planning [4], and
confrontational situations [5]. In surveillance and security,
for tracking malicious evader that is trying to escape, the
security robot must ensure that the evader does not escape by
maintaining visibility. This game can also be useful in wildlife
monitoring, where unmanned surface vehicle is required to
navigate in a cluttered environment while tracking different
species. In [6], a priority-based evasion system has been used
for multiple players or agents in order that they avoid each
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other and reach their respective targets. In [7], by exploiting
sensitivity analysis within an iterated best response algorithm,
an online motion planning algorithm for two-player drone
racing has been proposed and validated experimentally.

Model predictive control (MPC) [8] is a feedback imple-
mentation of optimal control using finite prediction horizon
and online optimization. The technique allows predicting
the system’s future states using its mathematical model
and find the future optimal control sequence minimizing
a certain objective function. Only the first part of this control
sequence is applied to the system while the remaining is
discarded. For its intrinsic capability to deal with stability,
disturbances, constraints, and obstacle scenarios, MPC is
an appealing scheme to address the navigation problem of
mobile robots [9]. In our previous work [10], MPC has
been used for non-cooperative competitive games between
two unmanned ground robots while incorporating obstacle
avoidance techniques. Nevertheless, the information available
to each player plays an important role in generating optimal
strategies. For this, a new game-theoretic way of using MPC
approach to handle pursuit-evasion games in presence of
obstacles for nonholonomic mobile robots where each player
can only measure the current position of its opponent, is
given in [11].

In this present paper, the differential game of target defense
consists of two pursuit-evasion games that are coupled to
produce a single game with three players: the defender, the
attacker, and the target. The objective of the defender is to
intercept an attacker before reaching the target, while the
objective of the attacker is to reach the target while avoiding
the defender. We consider a situation where the speed limits
of the players are the same and the distance between each
player and the target is equal. We propose an improved
formulation of nonlinear model predictive control (NMPC)
which we termed as game-theoretic model predictive control
(GT-MPC) to handle the differential game of static target
defense (DGSTD) in both simple and complex environments.
From the perspective of the defender, GT-MPC contains a
parameter that allows for a trade-off between the interception
of the attacker and protection of the target. Game-theoretic
model predictive control (GT-MPC) approach proposed in
this paper combines the notions of game-theory and model
predictive control. Game theory is a mathematical tool that
models systems as intelligent rational decision-makers where
an agent considers the opponent’s strategy when selecting its
optimal strategy. Each player in a game seeks to find its Nash
equilibrium that is, considered the best response a particular
player can have given that the opponent is also doing his best.
For more details on the relationship between game theory



and control, the reader can refer to the nice paper [12].
The paper is organized as follows. Section II contains

the formulation of the static target defense problem as a
differential game. The following Section III details de math-
ematical formulation of the game-theoretic model predictive
control (GT-MPC). The experimental platform is introduced
in Section IV while the experimental results are detailed in
Section V. The paper ends with conclusions and perspectives
in Section VI.

II. DIFFERENTIAL GAME OF STATIC TARGET DEFENSE
FORMULATION

In this section, we will present the formulation of the
differential game of static target defense and its players. The
first player is the attacker (A) and the second is the defender
(D). Both these players are nonholonomic since they have
turn radius constraints. The third player is the target (T) and
it is represented only by its Cartesian position. While the
position of the static target is regarded as the center of a
particular object approximated by a sphere, the kinematic
model of nonholonomic wheeled mobile robots (A) and (D)
can be represented in equation (1) as used in [13], [14].

ẋ(t) = v(t) cos θ(t)

ẏ(t) = v(t) sin θ(t)

θ̇(t) = ω(t)

(1)

where the state variable x = [x, y, θ]T represents the position
of the robot in the chassis frame of reference and the heading
angle, while the control variables u = [v, ω]T represents the
linear speed and the angular speed which are also bounded
as vmin ≤ v ≤ vmax and ωmin ≤ ω ≤ ωmax respectively.
Since the robots used in this work are not a point mass, the
sizes of the defender and the attacker are defined as RD

and RA respectively. However, this imposes a difficulty that
is connected with the point-stabilization task, that is, the
task cannot be accomplished with a pure feedback algorithm
due to Brockett’s condition which implies that the linearized
nonholonomic models are not stabilizable [15].

Having defined the players of the game, models, and
the game environment, players’ objectives and the game
termination conditions will be presented in the next paragraph.
The objective of the defender is to pursue the attacker and
protect the target while the objective of the attacker is to
reach the target and avoid the defender. Since the defender
and the attacker have the same capabilities but also are at the
distance between each other and they are equidistant from
the target. Then the defender will never win the game when
it blindly tracks the attacker. Without any cooperation from
the target, the question is how can the defender intelligently
pursue the two objectives explained herein and win the game
while simultaneously avoiding all the obstacles whose position
and size are defined as xobs, yobs while having a size Robs.
The game is played where the attacker tries to minimize the
terminal distance between the attacker and the target while
the defender tries to maximize it. The first condition is when
the attacker is intercepted by the defender. This happens when

the distance between the defender and the attacker is equal
to some threshold value, as given in (2):

C1 :
√

(xA − xD)2 + (yA − yD)2) = l1 (2)

where l1 = RA + RD. The second termination condition
is when the attacker captures the target. This occurs when
the attacker eventually reaches the target without being
intercepted by the defender as given in (3):

C2 :
√

(xT − xA)2 + (yT − yA)2 = l2 (3)

where l2 = RT +RA. Therefore, the termination condition
of the game can be defined as (4) which is the combination
of the two conditions (2) and (3).

C = C1

⋃
C2 (4)

III. GAME-THEORETIC MODEL PREDICTIVE CONTROL
FORMULATION

In this section, the control formulation will be presented.
First a discrete nonlinear model predictive control is for-
mulated by solving the following optimal control problem
(OCP):

min
u∈Rnu×N

JN (x0,u) (5)

subject to
x(0) = x0,

x(k + 1) = f(x(k),u(k)); k ∈ {0, 1, ...N − 1},
xmin ≤ x(k) ≤ xmax k ∈ {1, 2, ...N},
umin ≤ u(k) ≤ umax k ∈ {0, 1, ...N − 1}

(6)

where:

JN (x0,u) =

N−1∑
k=0

V (x(k),u(k)) +W (x(N)) (7)

The term V (x(k),u(k)) is called the running cost which can
be computed by penalizing the deviation of the system’s state
x(k) and control input u(k) from the reference state xr(k)
and reference control input ur(k) respectively. Generally, the
running cost is defined as:

V (x(k),u(k)) = ||x(k)−xr(k)||2Q+ ||u(k)−ur(k)||2R (8)

where Q ∈ Rn×n and R ∈ Rm×m are positive definite
symmetric weighting matrices. N is the prediction horizon,
assuming that the length of the prediction and control horizon
is the same. The choice of N is not straightforward, as a
large values would imply a non-realistic behavior where all
the future movements of the agent are known, whereas a
small value would imply a myopic reaction only based on
the current measurements. Moreover, since the sampling time
is smaller than of the robot’s dynamics, one can suppose that
the estimation of few further positions would not be very far
from the reality.

In point stabilization problems, the state reference xr(k)
is a fixed value, thus the control, reference ur(k) = 0. In
our case where we treat trajectory tracking problem, the
state reference xr(k) is time-varying, therefore the deviation



of control input from the reference can be penalized due
to computational advantages such as rendering the optimal
control problem easier, avoiding control values with expensive
energy as mentioned in [16].
The second term of equation (7), W (x(N)), normally referred
as terminal cost is used for stability purpose. It can be
computed by penalizing the last entry from the state prediction
x(N) from its reference xr(N). Terminal cost can be defined
as:

W (x(N)) = ||x(N)− xr(N)||2P (9)

where P ∈ Rn×n is a positive definite weighting matrix. The
solution of the optimal control problem (5) is the optimal
control sequence of the form:

u∗ = (u∗(0),u∗(1), ...,u∗(N − 1)) (10)

Now, combining both of the concepts of game theory and
MPC, the defender will have information on the attacker’s
intentions. The first objective of the defender is then to
intercept the attacker before it reaches the target, while the
second objective is to track the attacker. To satisfy both
objectives concurrently, the defender is made to track a
reference that depends on the parameter α which makes
a trade-off between the attacker’s and the target’s positions.
This parameter will be designed and tuned discretely.

A. The defender’s control

Following the general formulation presented above, The
defender’s control can be at every sampling time by solving
the following optimal control problem:

min
uD

J = ||xD(N)−xR||2QN
+

N−1∑
k=0

||xD(k)−xR||2Q+||uD(k)||2R

(11)
Subject to:

xD(k + 1) = f(xD(k),uD(k)), k = 0, 1, ..N (12)√
(xD(k)− xobs)2 + (yD(k)− yobs)2 ≥ (RD +Robs)

(13)
xDmin

≤ xD(k) ≤ xDmax
(14)

uDmin
≤ uD(k) ≤ uDmax

(15)

with
xR = (1− α)xA + αxT (16a)

α ∈ (0, 1) (16b)

As we notice from (16b), the cost function depends on the
parameter α which varies from 0 to 1. As the parameter
increases from 0 towards 1, more importance is given to
protect the target than to pursue the attacker. Due to the
fact that nonholonomic systems are not linearly stabilizable,
a terminal cost was added to asymptotically stabilize the
controller. Furthermore, the obstacles are included in the
problem through the equation (13).

B. The attacker’s control

Conversely, the attacker is interested in reaching the target
as fast as possible while avoiding the defender, the problem
can be formulated using MPC such that the target’s state is
regarded as the reference signal while the defender is taken
as a dynamic obstacle. Therefore, the attacker will be solving
the following optimal control problem at each time instant:

min
uA

J = ||xA(N)−xT ||2QN
+

N−1∑
k=0

||xA(k)−xT ||2Q+||uA(k)||2R

(17)
Subject to:

xA(k + 1) = f(xA(k),uA(k)), k = 0, 1, ..N (18)√
(xA(k + 1)− xD)2 + (yA(k + 1)− yD)2 ≥ (RA +RD)

(19)√
(xA(k)− xobs)2 + (yA(k)− yobs)2 ≥ (RA+Robs) (20)

xAmin ≤ xA(k) ≤ xAmax (21)

uAmin
≤ uA(k) ≤ uAmax

(22)

This cost function (17) comprises the running cost which
is the sum of stages predicted over the prediction horizon
and the terminal cost for stabilizing the controller. xA and
uA respectively denote the states and control variables of the
attacker whereas xT represents the position of the target taken
as a reference to go. The constraint given by equation (18)
represents the nonlinear model of the robot. Two obstacle
avoidance constraints are added to the formulation. The
constraint (19) is used to allow the attacker to avoid the
defender (as a dynamic obstacle), while the second constraint
(20) is employed to avoid static obstacles that might be
encountered during the experiment. The weight matrices can
be tuned and values that stabilize the controller can be chosen,
as will be shown in the results section V.

IV. EXPERIMENTAL SET-UP

Before presenting the results of the different experiments,
we will present our experimental step-up. We have fabricated,
at Gipsa-lab, two nonholonomic mobile robots of uni-cycle
type as depicted in Figure 1. They are named Robot 1 and
Robot 2 respectively. Each robot consists of two controlled
wheels on the right and left sides with a free wheel at the front
to support the robot. Two continuous rotation servo motors
are coupled to the right and left wheels. Each motor gets
the speed command signal (ωr or ωl) which commands the
robot rotation speed and linear movement direction (forward
or backward). The speed commands of each servo-motor
are simultaneously received wirelessly from an IRC board
(Figure 3) which communicates with the robot’s Spectrum
DSMX receiver at 2.4GHz, for extra interference protection
and faster re-connection times. The communication between
the simulation program used in our case (Simulink) and
the IRC board is done via UDP-protocol block of Simulink
Real-Time toolbox.

The position of the robots are recovered using a motion
capture system. In this work, this system consists of eight



Miqus M3 Qualisys cameras. These cameras are designed
to capture accurate data with very low latency. Each 2MP
camera has a resolution of 1824 × 1088 pixels as well as a
recording speed of 340 frames per second. The cameras are
light and portable (around 700 grams each) and have been
properly positioned to cover all the experimental area, as their
maximum capture distance is around 15 meters, which is close
to the maximum size of the experimental ground of 16m2.
The cameras, depicted in Figure 2, are synchronized using
an integrated Qualisys software (namely Camera Sync Unit)
which communicates with a Raspberry-pi board containing a
python code for converting the quaternions to Euler angles.
Camera Sync Unit supports a wide range of synchronization
and communication protocols including PTP, SMPTE, IRIG.
The states of both robots, as well as any moving obstacle,
are then sent in real-time to a Matlab/Simulink environment
through Simulink Real-Time toolbox via UDP-protocol as
mentioned before.

Fig. 1: The two robots (1 left and 2 right)

Fig. 2: The motion capture system used to measure the states
of the robots and the moving obstacles during the experiments.

Fig. 3: The IRC Communication system to send the speed
commands of each servo-motor.

V. EXPERIMENTAL RESULTS

In this section, the experimental results of different games
will be presented. The controllers to be applied to the robots
use the states and other information to compute the control
inputs v and ω which are converted to the angular speeds
of the left (ωl) and right (ωr) wheels of the robot by the

following mapping:{
ωr = (2v + ωRrob)/2r

ωl = (2v − ωRrob)/2r
(23)

where Rrob is the length of the robot’s base from the center
and r is the radius of the robot’s wheels. Each experiment
can terminate in three ways, i.e when the attacker reaches the
target, when the defender captured the attacker, or when the
game time elapses (120 seconds) which happened when the
defender prevented the attacker from reaching the target. Also,
the initial positions of each game were selected so that the
players are equidistant from the target. The area of the game
environment for the experiments is between -2m to +2m on
both axis. Moreover, the bounds on the control variables which
translates into inequality constraints are defined as vmax =
0.065m/s, vmin = −0.065m/s, ωmax = 0.05rad/s, and
ωmin = −0.05rad/s for both robots. The sample time is 0.1
seconds and the prediction horizon N is equal to 10.

The Q and R matrices introduced in section III are found
to be diagonal matrices with diagonal elements obtained
as (1, 1, 0.001) and (1, 1) respectively. The weight on the
terminal penalty cost is found to be 1000∗Q. In a general case,
as we are on a problem of distance minimization between
the defender and attacker, and not on an angle minimization
problem, the weights of the first two elements in Q and R
matrices should be the same. In this case we chose them
to be both equal to 1 as it is the simplest case. Concerning
the third element in the state space vector, namely θ, as it is
shown in our previous work [11], [10] that its weight should
be much smaller in order to avoid unrealistic behavior where
the defender, even though very far, will first turn around itself,
in order to match the angle, before deciding to pursue the
attacker.

A. Experiments in an obstacle-free environment

Both controllers are implemented on the defender in a
bounded-free environment. First the defender employs the
classical MPC. The game’s trajectory in Figure 4 clearly
shows that the defender tracks the attacker but would not
intercept or prevent it from reaching the target. This means
that the defender blindly tracks the attacker, thus unless with
speed advantage, the defender can never intercept this attacker
in this case. The control strategy profiles of the defender and
the attacker are respectively shown in figures 5 and 6. In the
second experiment, the defender’s strategy is improved by
employing the GT-MPC scheme. The game’s trajectories are
shown on Figure 7. One can clearly see that the defender
prevents the attacker from reaching the target until the game
terminated. The attacker considers the defender as a dynamic
obstacle, that is why it moves away from the defender to
avoid capture. The strategy profiles of the defender and the
attacker are shown in figures 8 and 9 respectively. The slight
oscillations seen on the real speeds is because the speeds are
not measured directly but rather obtained off-line from the
real-time state measurements.
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Fig. 4: The game trajectories by applying MPC.

Fig. 5: The defender’s strategy with MPC.

B. Experiments in an environment with obstacles

To add more complexity, obstacles’ avoidance is incor-
porated in the formulation of the proposed controller. In
this section, three virtual obstacles are placed at strategic
positions within the area of the game environment as shown
in Figure 10. The trajectories of the robots show that the
defender intercepts the attacker before it reaches the target
even in presence of different obstacles that reduce the space
of admissible trajectories. The strategy profiles of the different
players are shown in figures 11 and 12. When the game was
repeated with the defender using MPC, it could not intercept
the attacker.

VI. CONCLUSION AND FUTURE WORK

This paper studied differential games under the context
of static target defense and proposed a solution using
the combination of nonlinear model predictive control and
game theory. The drawbacks of the previous approaches are
leveraged to propose a novel game-theoretic model predictive
control. A parameter α which provides a trade-off between the
pursuing objective and the defending objective was introduced
and tuned such that the best value of the parameter that makes
it possible for a single defender to intercept the attacker before
reaching the target. Even though the algorithms are applied on
a nonholonomic mobile robot, it can still be useful for other
mobile robots such as unmanned aerial vehicles, unmanned

Fig. 6: The attacker’s strategy with MPC.
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Fig. 7: The game’s trajectories using GT-MPC strategy.

surface vehicles with known dynamics. Several simulations
and real-time experiments in the presence and the absence
of obstacles are conducted. It can be concluded that the
proposed approach performed better than tracking methods
such as NMPC.
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Fig. 10: Trajectories of the game by using GT-MPC in
presence of obstacles.

Fig. 11: The defender’s strategy by using GT-MPC in presence
of obstacles.

Fig. 12: The attacker’s strategyby using GT-MPC in presence
of obstacles.


