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Abstract—This paper presents the experimental validation
of a real-time nonlinear model predictive control algorithm
developed to deal with dynamic and static obstacle avoidance
for a non-holonomic wheeled mobile robot. Unlike state-of-the-
art techniques, the speed of the dynamic obstacle is unknown to
the controller. The developed controller autonomously drives the
robot away from the obstacle by calculating the minimal distance
from which the avoidance maneuver starts. Several real-time
experimental results for stabilizing a mobile robot in presence of
dynamic and static obstacles are presented.

I. INTRODUCTION

Control of autonomous mobile robots is an active area of
research with several industrial, military and civil applications.
These systems can be programmed to perform a wide range
of tasks in complex environments where humans can be at
risk, including exploration, interception of dangerous objects,
surveillance, and many others. A robot’s or any moving
object’s autonomy cannot be completed without the ability to
avoid obstacles and some adversaries. As a result, it is critical
to investigate control techniques that allow mobile robots to
carry out complex missions while navigating autonomously.
These control techniques should be capable of driving the sys-
tem away from any obstacles that it may encounter. Several ap-
proaches have been used in the literature to pilot mobile robots
autonomously. They include dynamic feedback linearization
[1]], Lyapunov control [2], smooth time-varying control [3]] and
piece-wise continuous feedback control [4]]. However, these
approaches do not incorporate constraints on the mobile robots
states, which are very important for physical implementation
and exploitation as well as for obstacles avoidance.

Sequel to its ability in handling constraints and ability
to compute optimal control inputs for nonlinear systems,
Nonlinear Model Predictive Control (NMPC) becomes the
most appropriate technique to deal with control problems for
mobile robots [S]], [[6]. It has been used to address stabilization
problems, path following [7]], [8]] and both point stabilization
and tracking problems without incorporating obstacle avoid-
ance [9].

To ensure safety of autonomous vehicles, active collision
avoidance system has become a research hot-spot. Static
obstacle avoidance, where the position and the size of the
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obstacle is required have been dealt with in [[10] for tracking
problems, in [[11]] for pursuit-evasion games, in [12] for point-
stabilization and in [13], [14] for path following problems.
In [15]], dynamic collision avoidance among multiple mobile
robots has been considered. However, these works have as-
sumed full knowledge of the obstacle speed and size, which
are either obtained by measurement and sensors or additional
computation. While measurement requires embedding addi-
tional sensors, thus increasing the computation time. Following
these drawbacks, it is therefore interesting to work on another
obstacle avoidance method that does not require measuring or
predicting the movement of the obstacles.

In this paper, we propose a dynamic obstacle avoidance
model predictive control (MPC) algorithm that needs the
instantaneous position of the obstacles for a point-stabilization
problem. Different from the work of [16], our MPC algorithm
does not require additional computation for predicting the
obstacle’s speed, which could lead to higher computational
time and wrong prediction in the case of “tricky” obstacles.
This method, initially developed in our previous [17], incor-
porates obstacle avoidance as a constraint while solving the
optimal control problem. The performance of the discretization
methods as well as the effect of prediction horizon on the
computational time is also studied. The second contribution
of this paper is that, the proposed approach could be used
to simultaneously handle both static and dynamic obstacle
avoidance. Finally, the third contribution of this paper is that
an experimental validation of the proposed control algorithm
using physical robots is presented.

The remaining part of the paper is organized as follows.
The system’s modeling is presented in Section [[I] followed
by the dynamic obstacle avoidance MPC formulation in Sec-
tion [LII} The experimental results are presented in Section
Finally, in Section |V| conclusions and future perspectives are
presented.

II. SYSTEM MODELING

The mobile robot studied in this paper is a differential drive
robot (Fig[I). Its kinematic model governs how wheel speeds
map to robot velocities, while its dynamic model governs how
the torques map to robot acceleration. In this paper, we will
only focus on the kinematic model. The kinematic model of
the nonholonomic wheeled mobile robot of unicycle type can
be obtained from [I8] and is represented by eq/l}
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Fig. 1: Schematic diagram of differential drive robot.

#(t) = u(t)cosd(t)
g(t) = o(t)sing(t) 1)
0t) = w(®)

where the state variable x = [z, y, ]7 denotes the position of
the robot in the chassis frame of reference and the heading
angle. The control variable u = [v,w]T denotes the linear
speed and the angular speed.

The kinematic models are said to be nonholonomic because
with slight manipulation we can obtain a differential constraint
in @):

Zsinf —gcosd =0 2)

Since linear approximations are usually regarded as the first
step for the analysis and control design of a nonlinear system.
Thus, if the linearized system is controllable, then the original
nonlinear system is at least locally controllable and feedback
stabilizable. However, the linearized model is not controllable,
because the rank of the controllability matrix is less than the
number of states [[19].

In this present paper, we employ the 4" order Runge-Kutta
(RK4) discretization. Let us represent the kinematic model of
non-holonomic robots (I) as an initial value problem (@).

X = f(t,x) 3)
X(to) =X (4)

The RK4 approximation of x(¢;41) is Xx41 which depends
on the current value x; and some weighted average of four
increments as depicted in Figure 2] Each increment is a
function of the sampling time and an estimated slope specified
by a function of the right-hand side of the differential equation.
The mathematical representation of RK4 is given as:

1
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Fig. 2: Runge-Kutta Discretization

The first slope s is at the beginning of the interval. The slopes
so and sg are both at the mid-point of the interval while the sy
is at the end of the interval. After discretization, the kinematic
model of the non-holonomic mobile robot is approximated by
the following equation.

x(k +1) = £(x(k), u(k), T;) (6)

where T is the sampling time. This kinematic equation is
used for the high-level controller, assuming that the low-level
controller achieves the desired linear and angular velocities
reasonably fast.

III. DYNAMIC OBSTACLE AVOIDANCE WITH MODEL
PREDICTIVE CONTROL

Model Predictive Control (MPC) is a feedback implemen-
tation of optimal control using finite prediction horizon and
online optimization. MPC is also known as Receding Horizon
Control (RHC) where a future control sequence minimizing
an objective function is minimized over a finite horizon. The
advantages of MPC comprise its ability to: control multi-
variable coupled dynamical systems, handle constraints on the
states, handle constraints on control inputs, handle nonlinear-
ities in the systems model conceptually. In addition, MPC
have systematic design approach and has a well understood
tuning parameters, i.e. prediction horizon length and weighting
matrices, [20], [21]. Since the model of the system to control
is the heart of the MPC design, we discretize the nonlinear
model of the non-holonomic robot using the RK4 method and
formulate an MPC by solving the following optimal control
problem (OCP):

in T (xo, ) @)
Subject to
x(0) = xo,
x(k+1) =f(x(k),u(k)); ke{0,1,..N—1},
HX(k) - XObS(k)H 2 Trob + Tobs (8)

Xmin < X(k) < Xmaz k € {1,2, N},
Wyin < u(k) < Upmax ke {0, 1, .N — 1}



where:
N—-1
Iy (x0,u) = Y V(x(k), u(k)) + W(x(N)) (9
k=0

The term V (x(k),u(k)) is called the running cost which can
be computed by penalizing the deviation of the system’s state
x(k) and control input u(k) from the reference state x" (k)
and reference control input u” (k) respectively. Generally, the
running cost can be defined as:

V (x(k), u(k)) = [|x(k) —x"(k)|[g +[[u(k) —u"(%)||7 (10)

where ) € R™*™ and R € R™*™ are positive definite
symmetric weighting matrices. N is the prediction horizon
assuming that the length of the prediction and control horizon
is the same. In point stabilization problem, the state reference
x" (k) is a fixed value, thus the control, reference u” (k) = 0.
In the case of trajectory tracking problem, the state reference
x" (k) is time varying, therefore the deviation of control input
from the reference can be penalized due to computational
advantages such as rendering the optimal control problem
easier, avoiding control values with expensive energy [22].
The term W (x(NV)) is referred to as terminal cost which is
used for stability purpose. It can be computed by penalizing
the last entry from the state prediction x(/N') from its reference
X" (N). Terminal cost can be defined as:

(1)

where P € R"*™ is a positive definite weighting matrix.
The solution of the optimal control problem (7) is the optimal
control sequence of the form:

u* = (u*(0), u* (1), ..

The first part (u* = u*(0)) is applied to the robot, while the
rest are discarded.

The schematic diagram of the control architecture is pre-
sented in Figure [3] Matlab/Simulink software is used for
computing the optimal control. The algorithm is coded using
an open-source symbolic framework for automatic differentia-
tion and optimal control software, CasADi, . The optimal
control problem is converted to a nonlinear programming
problem using a multiple shooting approach (where both the
states and the control variables are considered as optimization
parameters). The CasADi toolkit is interfaced with an Interior
Point OPTimizer (IPOPT), an open-source software, to provide
the solution. The output of the controller is sent to the system
for an update, whereas the state measurement, that is the
reference position, and the obstacles parameters are fed to
the controller at each sampling instant for re-computation
of the new control strategy. For real-time validation of the
proposed control algorithms with real-time measurements and
real transmission of information to the actual system, two non-
holonomic mobile robots depicted in Figures f(a)| and [A(b)]
are fabricated at Gipsa-lab and named Robot 1 and Robot 2
respectively. Each robot consists of two controlled wheels at

W (x(N)) = [[x(N) = x"(N)||5

,ut (N —1)) (12)
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Fig. 3: Control system architecture

(c) Motion capture system
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Fig. 4: Robots, communication and motion capture systems.

the left and right sides of the robot and a freewheel at the front
to support the robot. Two continuous rotation servo motors
are coupled to the left and right wheels. Each motor takes the
speed command signal (w, or w;) which controls the move-
ment of the robot (speed and direction). The speed commands
of each servo-motor are simultaneously received wirelessly
from an Infra Red Communication (IRC) board of Figure
[A(d)] which communicates with the robot’s Spectrum DSMX
receiver. The communication between Matlab/Simulink and
the IRC board is done via the UDP-protocol block in Simulink.



The motion capture system used in this work is composed
of 8 Miqus M3 cameras from the Qualisys company, which
is used as a sensor to track the movement of the robots. The
cameras, depicted in Figure are synchronized using an
integrated software which communicates with a Raspberry-pi
board. The states of both robots are then sent to Simulink in
real-time via the UDP-protocol.

The controllers then use the states and other information to
compute the control inputs v and w which are converted to
angular speeds of the left (w;) and the right (w,) wheels by
the following equation:

wr = (20 4+ wWRyop) /21 (13)
w; = (2v — wWRop) /21

where R, is the length of the robot’s base from the center
and r is the radius of the robot’s wheels. Robot 2 is considered
as an obstacle, while Robot 1 has a task of moving from its
initial condition and stabilizes at the referent posture while
avoiding the collision with the obstacle. For static obstacle
avoidance, Robot 2 is approximated as a circle whose only
the position and size is known.

IV. RESULTS AND DISCUSSION

This section presents the experimental validation of the
proposed controller. The weight matrices are tuned and the
best values that stabilize the controller are chosen. The @
and R matrices are designed to be diagonal matrices with
diagonal elements respectively equal to (1, 1,0.001) and (1, 1).
The weight on the terminal penalty cost is calculated to be
1000 * Q.

The camera system depicted in Figure is used to
detect the instantaneous position and size of the obstacle
denoted by (X = Tobs, Yobs, Tobs)- With the movement of the
obstacle unknown to the controller, the current parameter of
the obstacle is sent to the controller which then computes
the minimal distance to avoid collision with it. The constraint
(T4) is added during the formulation of the MPC for obstacles
avoidance, as expanded in the following equation.

\/(xrob - xobs)2 + (yrob - yobs)2 Z (Tobs + Trob) (14)

where T,p, Yrob and 7., are the positions and the radius of
the robot respectively. This constraint forces the robot to move
tangentially around the surface of the obstacle and then return
to its original path after completely avoiding the obstacle.

In Figs. 5] - Bl the experimental results for a point sta-
bilization control problem with static obstacle avoidance is
presented [[] It can be seen that the robot starts from a
given initial pose marked at xg = [—0.9m, —0.7m, Srad] and
autonomously moved towards the reference pose marked at
X, = [1m, 1m, Jrad] where it encountered a static obstacle,
which is the second robot approximated as a circle with
the diameter of 0.2m, placed at (0.15m,0.15m). With the
sampling time of 0.1sec and a prediction horizon N = 20
and the robot’s actuator saturation limits obtained from the

A video on the experiments can be viewed on the following link: 'video
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Fig. 5: Point stabilization with static obstacles avoidance.
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Fig. 6: Point stabilization with static obstacles avoidance: The
state error vector.

maximum revolution of the wheels, the linear velocity v ranges
from —0.06m/s to 0.06m/s and the angular velocity w ranges
from —7 rad/s to 7 rad/s. The state error vector shown on
Figure [6] has asymptotically goes to zero for all the states
variables with the exception of the variable 6. The slight
variation of the reference orientation angle occurred due to
experimental errors due to the delay between the commanded
controls and the actual controls.

As presented on Figs comparison between the com-
puted (commanded) and real (actual) control profile over-
lapped. The control profiles have respected the saturation lim-
its given. However small oscillations occurred in the control
signal due to small measurement noise present in the data
acquisition system.

Secondly, experimental results for a point stabilization prob-
lem with dynamic obstacle avoidance is presented in Figure


https://youtu.be/vpjOLpfxayU
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Comparison of Angular speeds

= = commanded
actual N

L L L

o] 10 20 30 40 50 60 70 80 90
Time [s]

Fig. 8: Point stabilization with static obstacles avoidance:
Angular speed profiles.

O It can be seen that the robot starts from a given initial
pose marked at [—0.9m,—0.7m, Srad] and autonomously
moved towards the reference pose marked at [1,1,0] while
encountering a moving obstacle along the way. Similarly,
the second robot is considered as the obstacle which is
approximated as a circle with the diameter of 0.2m moving
in a counter-clockwise direction with a speed of 0.04m/s and
turning rate of 7/20 rad/s. The trajectories of the robot and
the obstacles at four-time instances are depicted in Figure
EI At time t = 20secs, the robot encountered the moving
obstacle (shaded circle), and autonomously avoided collision
with the it despite the fact that the controller does not know
the information about the movement of the obstacle. The robot
finally stabilized at the exact reference pose. The state error
vector is shown on Figure [I0}

As presented in Figs[TT{I2] comparison between the com-
puted (commanded) and real (actual) control profile is seen
to overlap with smooth the control profiles. Here again the
control profiles have respected the imposed saturation limits.
It is important to note that the commanded speed is the speed
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Fig. 9: Point stabilization with dynamic obstacles avoidance:
States trajectories.

computed form the controller while the actual speed is the
measured obtained from the real data.
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Fig. 10: Point stabilization with dynamic obstacles avoidance:
The state error vector.

V. CONCLUSION

In this paper, we presented a model predictive control-based
strategy for dynamic obstacle avoidance for a non-holonomic
mobile robot. The proposed controller realized simultaneous
online optimal trajectory planning and control. The optimal
control inputs are obtained by minimizing the tracking error.
The speed profile of the dynamic obstacle was unknown to the
controller, thus saved the cost of purchasing and integration of
an additional measurement device. The obstacle avoidance was
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integrated as an inequality constraint during the formulation
of the MPC which is stabilized by adding a terminal cost
function. The experimental platform developed allowed for
localization and wireless transmission of the command signals.
The experimental results showed that the MPC-based dynamic
obstacle avoidance controller exhibits good performance.
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