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We investigate the regularity of the solutions of degenerate and/or singular elliptic equations. We prove the continuity of G(∇u) where u is a locally Lipschitz solution of div G(∇u) = λ ∈ R in dimension two under some growth assumptions on G. We also present a result true in any dimension stating that the distance between ∇u and the degeneracy set of G is continuous.

1. Introduction 1.1. A first example. In this article, we establish the continuity of certain functions of the gradients of solutions for elliptic partial differential equations. For instance, let us consider a locally Lipschitz continuous function u defined on an open subset Ω of R 2 that minimizes the following functional: [START_REF] Anzellotti | Convex functionals and partial regularity[END_REF] v → Ω φ(∇v) -λv among the functions in W 1,2 u (Ω). The set W 1,2 u (Ω) is the set of functions v ∈ L 2 (Ω) with a distributional gradient that is also in L 2 (Ω) such that u and v share the same trace on the boundary ∂Ω of Ω. Here we assume that λ ∈ R + and φ has the following form: [START_REF] Ball | A version of the fundamental theorem for young measures, PDEs and continuum models of phase transitions[END_REF] φ(z) :=

     1 2 |z| 2 if |z| ≤ 1, |z| -1 2 if 1 < |z| < 2, 1 4 |z| 2 + 1 2 if 2 ≤ |z|.
This convex function is not strictly convex and is not C 2 . Hence, we cannot apply the classical regularity theory for smooth strictly convex functions. The case where we do not have ellipticity at only one point has also been well studied. For instance in the case of the p-Laplacian when φ(z) = |z| p with p > 1 we know that the solutions are C 1,α . However, in our example D 2 φ(z) has an eigenvalue equal to 0 on the entire annulus {1 < |z| < 2}. Thus, we cannot use the results already known when the set of degeneracy is just a point.

For this kind of problems we know that we can not expect u to be C 1 on Ω. In fact by [8, Theorem 1] the function

(3) u(x) := C -λ 4 |x| 2 if |x| ≤ 2 λ , C + 1 λ -λ 2 |x| 2 if 2 λ < |x| ≤ 1
is a minimizer of (1) with φ as in (2) on the set W 1,2 u (Ω) with its own boundary condition. The problem [START_REF] Anzellotti | Convex functionals and partial regularity[END_REF] with φ as in [START_REF] Ball | A version of the fundamental theorem for young measures, PDEs and continuum models of phase transitions[END_REF] was introduced by Kawohl, Stara and Wittum in [START_REF] Kawohl | Analysis and numerical studies of a problem of shape design[END_REF] where the authors want to prove the uniqueness of the solutions. They assume that Ω has several symmetries in order to establish the Lipschitz continuity of the level sets of the minimizers. In our article, we prove that we do not need Ω to have any symmetry to obtain such a result. This shows that a good understanding of the regularity of the solutions can be useful to prove the uniqueness of the minimizers. Nevertheless, in the case of [START_REF] Anzellotti | Convex functionals and partial regularity[END_REF] with φ as in [START_REF] Ball | A version of the fundamental theorem for young measures, PDEs and continuum models of phase transitions[END_REF] and λ ∈ R + we can use [START_REF] Lledos | Uniqueness for a translation invariant problem in the Calculus of Variations[END_REF]Theorem 1.1] to obtain a direct proof of uniqueness.

Since in general, u is not C 1 , one of our goals is to prove the continuity of ∇φ(∇u). This new result has important applications such as the local C ∞ regularity of the solution around points where the gradient has a norm either smaller than one or larger than two. This also gives that generically the level sets of a solution are C 1 curves.

More generally, the aim of the article is to prove this kind of continuity estimates for different types of convex functions defined on R 2 that are not strictly convex. In fact, the results are stated in the larger framework of elliptic equations that also enclose the Euler-Lagrange equations associated to minimization problems. In Theorem 1.9, we partially generalize these results to any dimension N ∈ N.

1.2. General problem. Let G : R N → R N be a continuous function with N ∈ N. In this article we study the regularity of locally Lipschitz continuous weak solutions of the following equation: [START_REF] Bousquet | Another look to the orthotropic functional in the plane[END_REF] div G(∇u 0 ) = f in Ω

with Ω an open bounded set of R N and f : R N → R in W 1,q (Ω) with q > N . We assume that G is non-decreasing in the following sense:

(5) ⟨G(z 1 ) -G(z 2 ), z 1 -z 2 ⟩ ≥ 0 for every z 1 , z 2 ∈ R N . By solution we mean every locally Lipschitz function u 0 such that Ω ⟨G(∇u 0 ), ∇θ⟩ = -Ω f θ for every function θ ∈ C ∞ 0 (Ω). Many results state that the solutions are locally Lipschitz under suitable growth on G at infinity, see e.g. [START_REF] Brasco | Global L ∞ gradient estimates for solutions to a certain degenerate elliptic equation[END_REF], [START_REF] Celada | Existence and regularity of minimizers of nonconvex integrals with p -q growth[END_REF], [START_REF] Esposito | On the Lipschitz regularity for certain elliptic problems[END_REF] and [START_REF] Fonseca | An existence result for a nonconvex variational problem via regularity[END_REF]. The main goal of the paper is to prove the continuity of the stress field G(∇u 0 ) depending on the assumptions of G and f . When G is the gradient of a convex function φ, we obtain a nonlinear elliptic equation that can be seen as the Euler-Lagrange equation associated to the minimization of ( 6)

Ω φ(∇v) + f v.
If G is smooth and if there exists C > 0 such that 1 C |A-B| 2 ≤ ⟨G(A)-G(B), A-B⟩ ≤ C|A-B| 2 for every A, B ∈ R N then the solutions of (4) are C 1 when f ∈ L p (Ω) with p > N , (see [START_REF] Folland | Introduction to partial differential equations[END_REF]Theorem 6.33]). This is the case for instance for the Poisson equation when G = Id. When there exist A and B two distinct vectors of R N such that ⟨G(A) -G(B), A -B⟩ = 0 we say that the equation is degenerate. If we cannot bound from above ⟨G(A) -G(B), A -B⟩ by a constant times the quantity |A-B| 2 then we say that the equation is singular. In these two critical frameworks the C 1 regularity is not guaranteed.

However, the study of the regularity of the solutions for degenerate and/or singular equations with a large set of degeneracy and/or singularity is a recent and dynamic subject. In the seminal paper [START_REF] Anzellotti | Convex functionals and partial regularity[END_REF], the authors study the partial C 1,α regularity of the solutions. Namely, let u 0 be a minimizer of [START_REF] Brasco | Global L ∞ gradient estimates for solutions to a certain degenerate elliptic equation[END_REF], if x ∈ Ω is a Lebesgue point of ∇u 0 such that φ is C 2 and D 2 φ is positive-definite on a neighborhood of ∇u 0 (x) then there exists an open neighborhood U of x such that u 0 ∈ C 1,α (U ). If we apply this result to φ as in [START_REF] Ball | A version of the fundamental theorem for young measures, PDEs and continuum models of phase transitions[END_REF] then there exist two open sets U 1 and U 2 such that u 0 ∈ C 1,α on these two sets. Moreover, |∇u 0 | < 1 on U 1 , |∇u 0 | > 2 on U 2 and for a.e. x ∈ Ω\(U 1 ∪ U 2 ) we have 1 ≤ |∇u 0 (x)| ≤ 2. The drawback of this result is that we do not know the behavior of ∇u 0 at the boundary of the set where u ∈ C 1,α . For instance, does |∇u 0 (x)| converge to 2 when x converges to ∂U 2 ∩ Ω from the inside of U 2 ? Some results of our paper use ideas from [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF]. In this article, De Silva and Savin prove, in particular, two theorems that state that the minimizers of [START_REF] Brasco | Global L ∞ gradient estimates for solutions to a certain degenerate elliptic equation[END_REF] with f ≡ 0 are C 1 and φ is strictly convex. The first one is [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Theorem 1.1] where φ is not singular and degenerate on the same set. The second one is [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Theorem 1.2] where φ is not singular except at a finite number of points.

There is a recent family of results when the set of degeneracy or singularity is convex. In this case G = ∇φ with φ a convex function that is strongly convex outside a convex set C containing the origin. Let us quote two results of continuity everywhere on Ω. The first one is an article of Santambrogio and Vespri [START_REF] Santambrogio | Continuity in two dimensions for a very degenerate elliptic equation[END_REF]Theorem 11] in dimension two and the second one an article of Colombo and Figalli [START_REF] Colombo | Regularity results for very degenerate elliptic equations[END_REF]Theorem 1.1]. In the latter case, the authors prove that F (∇u) is continuous on Ω when F is a continuous function that vanishes on C. In the vectorial case, the article [START_REF] Bögelein | Higher regularity in congested traffic dynamics[END_REF] extends [START_REF] Colombo | Regularity results for very degenerate elliptic equations[END_REF] for a particular φ that is equal to 1 p (| • | -1) p + with p > 1. It would be interesting to extend the results of our paper to the vectorial case. When φ is as in [START_REF] Ball | A version of the fundamental theorem for young measures, PDEs and continuum models of phase transitions[END_REF], thanks to [START_REF] Colombo | Regularity results for very degenerate elliptic equations[END_REF]Theorem 1.1] we get that (|∇u 0 | -2) + is continuous on Ω. In our paper we obtain a similar result for (1 -|∇u 0 |) + even if the set of degeneracy is not convex. 1.3. Main results. We state the new results of this paper. Theorem 1.1, Theorem 1.4 and Theorem 1.6 are only valid in dimension two. Theorem 1.9 which is valid in any dimension extends [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF]Theorem 2.1] with a larger class of degeneracy sets.

Theorem 1.1. Let us assume that G := G 1 + G 2 ∈ C 0,1 loc (R 2 ) and that f = 0. We assume that:

(A 1 )
for every L > 0 there exists C L > 0 such that for every z 1 , z 2 ∈ B L (0) :

⟨G 1 (z 1 ) -G 1 (z 2 ), z 1 -z 2 ⟩ ≥ C L |G 1 (z 1 ) -G 1 (z 2 )| 2
and

(A 2 )
the function G 2 is the gradient of a C 1,1 loc (R 2 ) convex function φ. Then for every solution u 0 of (4) the function G(∇u 0 ) is continuous.

We point out that (A 1 ) does not imply that G 1 is strictly increasing or a gradient of a convex function. Moreover, we have an explicit modulus of continuity: Remark 1.2. Let u 0 be a solution of [START_REF] Bousquet | Another look to the orthotropic functional in the plane[END_REF]. Then for every ϵ > 0 and x 0 ∈ Ω ′′ ⋐ Ω ′ ⋐ Ω, G(∇u 0 (B δ (x 0 ))) ⊂ B ϵ (G(∇u(x 0 ))) with

δ = dist(x 0 , ∂Ω ′′ ) 2 exp - 2π||G(∇u 0 )|| 2 W 1,2 (Ω ′′ ) ϵ 2
and

||G(∇u 0 )|| 2 W 1,2 (Ω ′′ ) ≤ 4L 2 |Ω ′ | Kdist(∂Ω ′ , ∂Ω ′′ ) 2 with L = ||∇u 0 || L ∞ (Ω ′
) and K > 0 depending only on ||DG|| L ∞ (B L (0)) and C L the constant introduced in (A 1 ).

When f ∈ R is not equal to zero, we can extend the previous result under structural assumptions on G. In order to state the next result we need the following definition:

Definition 1.3. We say that a convex function N : R N → R + is a pseudo-norm if N (0) = 0, N is positively homogeneous and {z ∈ R N such that N (z) < 1} is an open strictly convex bounded set with a C 1,1 continuous boundary.
It is important to notice that N is not necessarily symmetric. Hence, the definition of a pseudonorm is more general than the definition of a norm with C 1,1 level sets.

The next theorem is stated when f ≡ λ ∈ R and G is the sum of gradients of convex functions:

Theorem 1.4. Let us assume that f ≡ λ ∈ R and G = n i=1 G i with n ∈ N.
Here the functions (G i ) 1≤i≤n are gradients of convex functions (φ i ) 1≤i≤n that have one of the two following forms:

(A 3 ) φ i (z) := f i (N i (z -ξ i )) and f ′ i (z) = 0 ⇔ z = 0 with f i ∈ C 1,1 loc (R) a convex function, N i a pseudo-norm and ξ i ∈ R 2 . (A 4 ) φ i (z) := f i (⟨z, ξ i ⟩)
where f i ∈ C 1,1 loc (R) is a convex function and ξ i ∈ R 2 \{0}. Then for every solution u 0 of (4) the function G(∇u 0 ) is continuous.

Remark 1.5. In this article we use the convention that 0 / ∈ N.

We can apply Theorem 1.4 to G = ∇φ with φ as in [START_REF] Ball | A version of the fundamental theorem for young measures, PDEs and continuum models of phase transitions[END_REF]. Hence, ∇φ(∇u 0 ) is continuous. In this particular case, [1 -|∇u 0 |] + is continuous which is a new feature that can not be obtained with [START_REF] Colombo | Regularity results for very degenerate elliptic equations[END_REF], [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF] or [START_REF] Santambrogio | Continuity in two dimensions for a very degenerate elliptic equation[END_REF] since the set of degeneracy is an annulus. Thus, we know that |∇u 0 (x)| has to go to 1 when x converges to the boundary of the open set {x ′ ∈ Ω such that |∇u 0 (x ′ )| < 1} from the inside. This new result is useful to study global regularity of the level lines.

Theorem 1.4 can also be used for orthotropic type functionals. By orthotropic we mean that G = ∇φ and φ is the sum of convex functions z → φ i (z) that depends only on one coordinate of z.

Hence, if φ(z) = |z 1 | p 1 + |z 2 | p 2 with 2 ≤ p 1 ≤ p 2 and
with z i := ⟨z, e i ⟩, then ∇φ(∇u 0 ) is continuous. In the singular case where 1 < p 1 ≤ 2 ≤ p 2 we have the following result:

Theorem 1.6. Let us assume that f ≡ λ ∈ R and G = G 1 + G 2 with G i (z) := f ′ i (⟨z, ξ i ⟩)ξ i where f 1 ∈ C 1,1 loc (R) and f 2 ∈ C 1 (R) ∩ C 1,1 loc ( 
R\{0}) are two convex functions and ξ 1 , ξ 2 ∈ R 2 \{0} are non colinear. Moreover, we assume that there exist r > 0 and a modulus of convexity ω : R + → R + for f 2 , that is a continuous function satisfying ω(t) = 0 ⇔ t = 0 such that for every x, y ∈ (-r, r) we have that

(f ′ 2 (x) -f ′ 2 (y))(x -y) ≥ ω(|x -y|).
Then for every solution u 0 of (4) the function G(∇u 0 ) is continuous.

Theorem 1.6 can be used to prove some regularity results of the solutions in the case of orthotropic functionals with more general growth than power-type growth. In fact if

φ(z) = |z 1 | p 1 + |z 2 | p 2 with 1 < p 1 < 2 ≤ p 2
as in a case of [START_REF] Bousquet | Another look to the orthotropic functional in the plane[END_REF] then the functional is singular on {z 1 = 0} and degenerate on {z 2 = 0}. Hence this is only when z = 0 that we have both problems. In our case the set where φ is singular and degenerate at the same time can be a line. For instance, we can consider f 1 (t) := (|t| -r) 2 + and f 2 (t) = |t| 3 2 for every t ∈ R. But we do not have the C 1 regularity in that case.

However, the two functions (|∂ 1 u 0 | -r) + and 1

|∂ 2 u 0 | 1 2
∂ 2 u 0 are continuous. We can see that the continuity of this last function implies the continuity of ∂ 2 u 0 . Hence, the regularity of G(∇u 0 ) can be useful when we exploit the local properties of G. For instance, in the setting of Theorem 1. 

u 0 ∈ C 1 (σ -1 (V )).
In the case where σ -1 (V ) = Ω then u 0 is C 1 . The above proposition can be seen as an extension of what is known in dimension one, see e.g. [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Theorem 15.5] that states that a Lipschitz minimizer

u 0 of b a F (x, u(x), u ′ (x))dx is C 1 when y → F (x, u 0 (x), y) is strictly convex for a.e. x ∈ (a, b).
This proposition is useful in the case of orthotropic functionals with φ(z)

= |z 1 | p 1 + |z 2 | p 2 .
The first result on this subject [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Theorem 1.1] provides the C 1 regularity of the minimizers when the problem is fully singular: 1 < p 1 ≤ p 2 ≤ 2 or fully degenerate: 2 ≤ p 1 ≤ p 2 . We point out that we can use Theorem 1.4 and Proposition 1.7 to obtain a new proof of the C 1 regularity of u 0 in the degenerate case 2 ≤ p 1 ≤ p 2 .

The singular and degenerate case where 1 < p 1 < 2 < p 2 is studied in [START_REF] Bousquet | Another look to the orthotropic functional in the plane[END_REF] using ideas of [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF] but Proposition 1.7 combined with Theorem 1.6 gives a new proof of the C 1 regularity in this case. The fully singular case 1 < p 1 ≤ p 2 ≤ 2 is out of the scope of Theorem 1.4 and Theorem 1.6 unless p 2 = 2. Some other cases with different exponents can be found in the following papers [START_REF] Bousquet | C 1 regularity of orthotropic p-harmonic functions in the plane[END_REF], [START_REF] Lindqvist | Regularity for an anisotropic equation in the plane[END_REF] and [START_REF] Ricciotti | Regularity of the derivatives of p-orthotropic functions in the plane for 1 < p < 2[END_REF].

Under the assumptions of Theorem 1.4, when G is the gradient of a convex function φ that depends only on the Euclidean norm we have that ∇φ(∇u 0 ) |∇φ(∇u 0 )| = ∇u 0 |∇u 0 | is continuous when ∇u 0 ̸ = 0. This allows to define the normal of the level sets as a continuous function. In that case we have the following result on the regularity of the level sets of a solution: Proposition 1.8. Let φ be a radial C 1,1 loc (R 2 ) convex function and u 0 a solution of (4) with G = ∇φ. We denote by σ the continuous representative of ∇φ(∇u 0 ) obtained in Theorem 1.4. Then for a.e.

t ∈ R, if we set L t := [u 0 = t] then the connected components of L t ∩ [σ ̸ = 0] are C 1 curves.
Our last result is an improvement of [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF]Theorem 2.1]. In this article Mooney considers a C 1 convex function φ and proves that the Lipschitz minimzers of

u → Ω φ(∇u)
are C 1 under some assumptions on φ. He introduces the sets

O k := {z ∈ R N , 1 k |v| 2 < ⟨D 2 φ(z)v, v⟩ < k|v| 2 for every v ∈ R N } and D φ = R N \ k∈N O k . Then [23, Theorem 2.1] establishes that if φ is C 2
outside D φ and if D φ is a finite set of coplanar points then the solutions are C 1 .

In order to state the last theorem we assume that there exists a compact set

D G such that G ∈ C 1 (R N \D G ) and D G = R N \ k∈N O k with O k := {z ∈ R N , 1 k |v| 2 < ⟨DG(z)v, v⟩ < k|v| 2 for every v ∈ R N }.
For every t ≥ 0, we introduce the closed t-neighborhood of a set U as N t (U ) := {z ∈ R N such that dist(z, U ) ≤ t}.

Theorem 1.9. Let us assume that f ∈ W 1,q (Ω) with q > N , D G is contained in a plane and has finitely many connected components. We assume that there exists t 0 > 0 such that for every 0 ≤ t ≤ t 0 the connected components of N t (D G ) are simply connected. Then for every solution u 0 of (4), dist(∇u 0 , D G ) and

∇u 0 × dist(∇u 0 , D G ) are continuous. Moreover, if G is constant on each connected components of D G then G(∇u 0 ) is continuous.
This assumption on the simply connected neighborhoods is satisfied when the connected components of D G are simply connected with a Lipschitz boundary. The main difference between this result and [23, Theorem 2.1] is that the degeneracy set D G is not just points. However, even if the conclusion is weakened the solutions are still C 1 around points x ∈ Ω such that ∇u(x) is outside this set of degeneracy. Furthermore, we prove that the distance between ∇u and the degeneracy set is a continuous function.

This extension is natural in the sense that this is an improvement of [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF] comparable to the improvement of [START_REF] Colombo | Regularity results for very degenerate elliptic equations[END_REF] and [START_REF] Santambrogio | Continuity in two dimensions for a very degenerate elliptic equation[END_REF] to the p-Laplacian case. In fact, we can look at [START_REF] Colombo | Regularity results for very degenerate elliptic equations[END_REF] or [START_REF] Santambrogio | Continuity in two dimensions for a very degenerate elliptic equation[END_REF] as an extension of what is known for the p-Laplacian case where the set of degeneracy is one point to the case where the set of degeneracy is larger. In this case, it is proven that the distance between ∇u 0 and the degeneracy set is continuous. This is exactly what we are doing in Theorem 1.9 with respect to [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF]Theorem 2.1].

The study of the regularity of the solutions of ( 4) with a right-hand side f ∈ L q (Ω) with q > N is a widely studied subject in the classical framework of uniform elliptic equations and degenerate problems. It is the case in [START_REF] Bögelein | Higher regularity in congested traffic dynamics[END_REF] and [START_REF] Colombo | Regularity results for very degenerate elliptic equations[END_REF] for instance. In our case, we allow a right-hand side a the smaller set of Sobolev functions: f ∈ W 1,q (Ω) with q > N .

It is important to notice that the case where G is constant on each connected components of D G does not cover the framework of Theorem 1.1, Theorem 1.4 and Theorem 1.6 since the connected components of D G must be simply connected. That is not the case when G = ∇φ with φ as in (2) for instance.

1.4. Ideas of the proofs. The proof of the continuity of G(∇u 0 ) in Theorem 1.1, Theorem 1.4 and Theorem 1.6 uses ideas from [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF]. In this article the authors want to prove the C 1 regularity for Lipschitz minimizers of the following functional:

v → Ω F (∇v).
A major difference between our article and [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF] is that we do not require that G is strictly increasing, which as expected weakens the conclusion. The solutions are not necessarily C 1 as shown in (3) but Proposition 1.7 provides a partial answer to that.

We can divide the proofs of Theorem 1.1, Theorem 1.4 and Theorem 1.6 in four parts: Part 1 We regularize G in order to work with smooth elliptic equations of the form div G m (∇u m ) = f m .

We have to be careful when we approximate our problem since the functions (G m ) m∈N have to share some properties of G such as the pseudo-norm structure or the orthotropic form. Part 2 As in [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF], we want to prove that ||G m (∇u m )|| W 1,2 (Ω) can be bounded uniformly in m ∈ N. Since Theorem 1.1 is stated for a function G that is not necessarily the gradient of a convex function we have to adapt some ideas of [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF] to the setting of partial differential equations. In the case of Theorem 1.1 and Theorem 1.4 we prove the following result: Proposition 1.10. We assume that G ∈ C 1 (R N ) satisfies the assumptions of Theorem 1.1 or Theorem 1.4. Then G(∇u) ∈ W 1,2 loc (Ω). We have an analogous result in the framework of Theorem 1.6. In our case we have to combine some results of [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF] with an adaptation of [START_REF] Carstensen | Local Stress Regularity in Scalar Nonconvex Variational Problems[END_REF]Theorem 2.1] to obtain Sobolev estimates in that framework. Hence, we can avoid the singularity at the origin with the following result: Proposition 1.11. We assume that G ∈ C 1 (R N ) satisfies the assumption of Theorem 1.6. Then for every Ω ′ ⋐ Ω and every r > 0:

(7) Ω ′ ∩Ur |∇[G(∇u)]| 2 ≤ C(G, r, Ω ′ ) where U r := {x ∈ Ω such that |⟨∇u(x), ξ 2 ⟩| ≥ r}. Moreover, G 1 (∇u) ∈ W 1,2
loc (Ω). Part 3 We use this uniform estimate to obtain a uniform modulus of continuity. The original idea, specific to the dimension two, is due to Lebesgue and is used e.g. in [12, Lemma 2.1] and [21, Lemma 3.1]: Proposition 1.12. Let H ∈ W 1,2 loc (Ω). If for every ϵ > 0 and every x 0 ∈ Ω there exists C(ϵ, x 0 ) > 0 such that for every 0 < δ < dist(x 0 , ∂Ω):

osc B δ (x 0 ) H ≥ ϵ ⇒ osc ∂B δ (x 0 ) H ≥ C(ϵ, x 0 ), then H is continuous at x 0 . Here, osc B δ (x 0 ) H := sup x,y∈B δ (x 0 ) |H(x) -H(y)|.
The second tool is a classical maximum principle see e. This maximum principle is used as in [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF] to prove that G m (∇u m ) satisfies the assumptions of the result from Lebesgue uniformly in m ∈ N. Hence, the functions G m (∇u m ) are uniformly continuous in m ∈ N.

Part 4 We pass to the limit when m goes to +∞ and we prove that the sequence G m (∇u m ) converges uniformly to G(∇u 0 ).

The strategy of the proof of Theorem 1.9 is different. Since the result if stated in any dimension we can not use the result from Lebesgue. The proof is an adaptation of the one from [23, Theorem 2.1]. In our case, the result is stated with partial differential equations and with a non-zero right hand side f ∈ W 1,q (Ω) with q > N which create some technical difficulties.

The proof shows that one of the two following cases occurs:

• either ∇u(B r (x 0 )) is outside the degeneracy set D G for r small enough.

• or ∇u(B r (x 0 )) is inside the convex hull of D G when r is small enough.

In the first case, we are reduced to the framework of uniform elliptic partial differential equations and the conclusion follows from classical results. In the second case, we use the fact that the set of degeneracy D G is in a plane to show that either ∇u(B r (x 0 )) converges to a point outside D G when r → 0 or ∇u(B r (x 0 )) is contained in a neighborhood of D G when r → 0.

1.5. Plan of the paper. In the following Section 2, we approximate our equation ( 4) by smooth equations in order to work with smooth functions. We also prove that if we pass to the limit we obtain a solution of (4). In Section 3, we prove a uniform continuity estimate for Theorem 1.1 and Theorem 1.4 thanks to a uniform Sobolev estimate. Section 4 is devoted to the proof of Theorem 1.6 for approximated solutions. In the subsequent Section 5, we prove an intermediate result for Theorem 1.9. Finally, we pass to the limit in Section 6 to obtain the final conclusions. Section 7 is an appendix about the convex gauge functionals used for the pseudo-norms.

Approximations of the solutions by smooth functions

In this article, we assume a priori that the solution u 0 of (4) with G as in ( 5) is locally Lipschitz continuous. This regularity can be obtained under a uniform convexity condition at infinity. For instance, we can apply [START_REF] Esposito | On the Lipschitz regularity for certain elliptic problems[END_REF]Theorem 4.1] or [6, Theorem 2.1] when there exist C > 0 and R > 0

such that G ∈ C 1 (R N \B R (0)) and (8) 1 C |ξ| 2 ≤ ⟨DG(z)ξ, ξ⟩ ≤ C|ξ| 2
for every z ∈ R N \B R (0) and every ξ ∈ R N . Under these assumptions for every Ω ′ ⋐ Ω there exists a constant

L := L(Ω ′ , R, C) such that ||∇u 0 || L ∞ (Ω ′ ) ≤ L.
Since we want to prove some local regularity results, we can assume that u 0 is globally Lipschitz continuous on Ω. Hence, we can change G outside a sufficiently large ball in order to assume that there exist C > 0 and R > 0 such that G satisfies [START_REF] Cellina | Uniqueness and comparison results for functionals depending on ∇u and on u[END_REF].

In this section we describe an approximation argument for the proofs of the main theorems that has to be adapted for each theorem in order to have smooth approximations (G m ) m∈N that share the same properties as G and (8) uniformly in m ∈ N.

We begin with an infinitesimal version of the assumption (A 1 ):

Lemma 2.1. Let L > 0 and H be a C 1 function that satisfies (A 1 ). Then there exists C L > 0 such that for every z ∈ B L (0) and every v ∈ R N we have:

⟨DH(z)v, v⟩ ≥ C L |DH(z)v| 2 .
Proof. This result is true when v = 0. By assumption (A 1 ), we have that for every z ∈ B L (0), every v ∈ R N \{0} and every 0 < h < L-|z| |v| :

⟨H(z + hv) -H(z), hv⟩ ≥ C L |H(z + hv) -H(z)| 2 .
By dividing this last equation by h 2 and letting h go to 0, we get:

⟨DH(z)v, v⟩ ≥ C L |DH(z)v| 2 . □ Remark 2.2.
The result is also true without the condition (A 1 ) when DH is symmetric, nonnegative and bounded. In fact, for every z, v ∈ R N , we can work in an orthogonal basis where DH(z) is diagonal. Hence, ⟨DH(z)v, DH(z)v⟩ ≤ C⟨DH(z)v, v⟩ with C an upper bound of the largest eigenvalues of DH on B L (0).

We use this new version of (A 1 ) in order to approximate G in the framework of Theorem 1.1. In this section the constant L > 0 is such that ||∇u 0 || L ∞ (Ω) ≤ L. 2 such that G m 2 is a gradient of a convex function φ m whose C 1,1 norm is independent of m ∈ N and there exists C 1 > 0 independent of m ∈ N such that for every z, ξ ∈ R N we have

(A ′ 1 ) ⟨DG m 1 (z)ξ, ξ⟩ ≥ C 1 |DG m 1 (z)ξ| 2 .
Moreover, DG m is invertible everywhere for every m ∈ N.

Proof. In the framework of Theorem 1.1, we have that G = G 1 + G 2 with G 2 = ∇φ. Let (ρ m ) m∈N be a standard radial mollifying sequence with support in B 1 m (0). We introduce the convex function

Φ(z) := (|z| -2L) 2 + for every z ∈ R 2 with L the Lipschitz constant of u 0 and θ ∈ C ∞ 0 (B 4L (0)) such that 0 ≤ θ ≤ 1 on R N , θ ≡ 1 on B 3L (0) and ||∇θ|| L ∞ (R N ) ≤ 2
L . Moreover, we introduce G 2 that is the gradient of a convex function φ that is equal to φ on B 2L (0) and quadratic at infinity. It can be done by post-composing φ with a smooth function Θ equals to the identity on

[-R, R] for a certain R > 1 such that φ(B 2L (0)) ⊂ [-R + 1, R -1]
and equals to 2R outside B 2R (0). Then we add the function Φ to it: φ := Θ(φ + Φ) + K 2 Φ with K 2 > 0 such that φ is convex. If we compute the Hessian matrix of φ we obtain that:

D 2 φ := Θ ′ (φ + Φ)D 2 (φ + Φ) + Θ ′′ (φ + Φ)∇(φ + Φ) ⊗ ∇(φ + Φ) + K 2 D 2 Φ. Since Θ is equal to the identity on [-R, R] and φ(B 2L (0)) ⊂ [-R + 1, R -1] there exists ϵ > 0 such that for every z ∈ B 2L+ϵ (0), D 2 φ(z) = D 2 (φ(z) + Φ(z)) + K 2 D 2 Φ(z) ≥ 0. Since φ + Φ is coercive there exists L ′ > 2L + ϵ such
that for every z with a norm larger than L ′ we have that D 2 φ(z) = K 2 D 2 Φ(z). It remains to choose K 2 > 0 such that for every z ∈ B L ′ (0)\B 2L+ϵ (0) we have that:

K 2 D 2 Φ(z) ≥ |Θ ′ (φ + Φ)D 2 (φ + Φ) + Θ ′′ (φ + Φ)∇(φ + Φ) ⊗ ∇(φ + Φ)|. We set G m := G m 1 + G m 2 + ∇Φ m + 1 m Id where G m 1 := θ(G 1 * ρ m ) + K 1 ∇Φ m , G m 2 := G 2 * ρ m , Φ m := Φ * ρ m and K 1 > 0 to be fixed later. Thanks to Φ and the regularity of G, G m satisfies (8) uniformly in m ∈ N and G m 2 := G m 2 + ∇Φ m + 1 m
Id is the gradient of a convex function. Since we add the identity in G m we have that DG m is invertible everywhere. It remains to check that G m 1 satisfies the assumption (A ′ 1 ) uniformly in m ∈ N. For every z 1 , z 2 ∈ R 2 we have

⟨G 1 * ρ m (z 1 ) -G 1 * ρ m (z 2 ), z 1 -z 2 ⟩ ≥ R 2 ⟨G 1 (z 1 -y) -G 1 (z 2 -y), (z 1 -y) -(z 2 -y)⟩ρ m (y)dy.
Thus, by assumption (A 1 ) we obtain that

⟨G 1 * ρ m (z 1 ) -G 1 * ρ m (z 2 ), z 1 -z 2 ⟩ ≥ C 3L+1 R 2 |G 1 (z 1 -y) -G 1 (z 2 -y)| 2 ρ m (y)dy for every z 1 , z 2 ∈ B 3L (0). By Jensen's inequality we get that ⟨G 1 * ρ m (z 1 ) -G 1 * ρ m (z 2 ), z 1 -z 2 ⟩ ≥ C 3L+1 |G 1 * ρ m (z 1 ) -G 1 * ρ m (z 2 )| 2 .
Hence, by Lemma 2.1 we obtain that

⟨DG 1 * ρ m (z)ξ, ξ⟩ ≥ C 3L+1 |DG 1 * ρ m (z)ξ| 2
for every z ∈ B 3L (0), every ξ ∈ R N and every m ∈ N. In (A ′ 1 ) we can assume that |ξ| = 1. For every z, ξ ∈ R N with |ξ| = 1 we have that:

⟨DG m 1 (z)ξ, ξ⟩ ≥ θ⟨D(G 1 * ρ m )(z)ξ, ξ⟩ + K 1 ⟨D 2 Φ m (z)ξ, ξ⟩ -|∇θ||D(G 1 * ρ m )(z)| and |DG m 1 (z)ξ| 2 ≤ 4 |∇θ| 2 |G 1 * ρ m (z)| 2 + θ 2 |D(G 1 * ρ m )(z)| 2 + K 2 1 |D 2 Φ m (z)ξ| 2 . If z ∈ B 3L (0) then θ(z) = 1 and ∇θ(z) = 0. Hence, ⟨DG m 1 (z)ξ, ξ⟩ ≥ 1 4 min{C 3L+1 , 1 2K 1 }|DG m 1 (z)ξ| 2 . If z / ∈ B 4L (0) then DG m 1 = K 1 D 2 Φ m . Thus, ⟨DG m 1 (z)ξ, ξ⟩ ≥ 1 2K 1 |DG m 1 (z)ξ| 2 .
Finally, if z ∈ B 4L (0)\B 3L (0) then we can bound |∇θ| from above by 2 L . Hence, we want to find C > 0 such that:

K 1 ⟨D 2 Φ m (z)ξ, ξ⟩ ≥ 4C 4 L 2 |G 1 * ρ m (z)| 2 + |D(G 1 * ρ m )(z)| 2 + K 2 1 |D 2 Φ m (z)| 2 + 2 L |D(G 1 * ρ m )(z)|.
By definition of Φ, when m is large enough this is equivalent to

4K 1 3 ≥ 2 L |D(G 1 * ρ m )(z)| + 4C 4 L 2 |G 1 * ρ m (z)| 2 + |D(G 1 * ρ m )(z)| 2 + 4K 2 1 .
By global Lipschitz regularity of G 1 on B := B 4L (0) we can choose the two constants

K 1 := K 1 (L, ||DG|| L ∞ (B) ) > 0 and C := C(L, ||DG|| L ∞ (B) ) > 0 such that this last inequality is true. Hence, by taking C 1 as min{C, 1 8K 1 , C 3L+1 4 } the assumption (A ′ 1 ) is satisfied uniformly in m ∈ N. □
In the case of Theorem 1.4 we proceed as follows:

Proposition 2.4. If G satisfies the assumptions of Theorem 1.4 then there exists a sequence of C 4 functions (G m ) m∈N converging to G uniformly on B L (0) that satisfy the same assumptions as G and (8) uniformly in m ∈ N. Moreover, DG m is invertible everywhere for every m ∈ N.

Proof. In the framework of Theorem 1.4, we have that

G = n i=1 ∇φ i with φ i (•) = f i (N i (• -ξ i )) or φ i (•) = f i (⟨•, ξ i ⟩). For L ≥ ||∇u 0 || L ∞ (Ω)
and every 1 ≤ i ≤ n we introduce:

fi (t) :=      f i (-2L) + f ′ i (-2L)(t + 2L) + (t + 2L) 2 if t < -2L f i (t) if -2L ≤ t ≤ 2L, f i (2L) + f ′ i (2L)(t -2L) + (t -2L) 2 if t > 2L,
and

Φ(z) = (| • | -2L) 2 + .
We divide the rest of the proof in four steps.

Step 1 If φ i (•) = f i (⟨•, ξ i ⟩) then we set G m i (•) := ∇[f m i (⟨•, ξ i ⟩)] for every m ∈ N with f m i (•) := fi * ρ m (•) + 1 m | • | 2 . Step 2 If φ i (•) = f i (N i (• -ξ i )) then we proceed as follows. We introduce C := (N i ) -1 ({[0, 1)}), then N i is the convex gauge γ C of the convex set C. Then we regularize γ C by convolution: γ m C := γ C * ρ m . For every m ∈ N, the function γ m
C is convex and has strictly convex lower level sets thanks to Proposition 7.2. By Sard's theorem, we can define C m as (γ m C ) -1 ({[0, r m )}) with r m → 1 when m → +∞ selected such that C m is smooth. Moreover, we can assume that there exists r > 0 independent of m such that B r (0) is in the interior of C m . Then we define N m i as the gauge of C m . Hence, by Proposition 7.1 N m i is a pseudo-norm smooth outside the origin. Moreover, for every z ̸ = 0 we have that

∇N m i (z) = ν Cm (P m (z)) ⟨ν Cm (P m (z)), P m (z)⟩ ̸ = 0
where P m (z) is the intersection between R + z and ∂C m and ν Cm is the unit outward normal vector of C m . In order to regularize f i we set

f m i (t) := ( fi * ρ m (•) + 1 m | • | 2 ) (|t| q + 1 m ) 1 q - 1 m 1 q + α m i .
Here, q ≥ 6 is chosen in order to have f m i (N m i ) at least C 5 for the upcoming computations, α m i is the only point where the strictly convex and coercive function fi

* ρ m (•) + 1 m | • | 2 attains its minimum. Finally we set φ m i (•) := f m i (N m i (• -ξ i )). Hence, φ m i is a strictly convex function such that ∇φ m i (z) = 0 ⇔ z = ξ i .
Step 3 We prove that φ m i and ∇φ m i converge uniformly to φ i and ∇φ i on every compact set when m → +∞. For every z ∈ R 2 \{0} we have that

|γ C (P m (z)) -γ C (P C (z))| ≤ |γ m C (P m (z)) -γ C (P m (z))| + |γ C (P C (z)) -γ m C (P m (z))| with P C (z) the intersection of ∂C and R + z. By uniform convergence of γ m
C to γ C on compact sets the first term in the right-hand side converges to 0 when m → +∞ uniformly in z ∈ R 2 \{0}. The second term is equal to |r m -1| and converges also to 0 uniformly in z ∈ R 2 \{0}. This means that γ C (P m (z)) converges uniformly to 1 on R 2 \{0} when m → +∞. Hence, P m converges to P C uniformly on R 2 \{0}. By homogeneity of N m i we get that N m i (z) = |z| |Pm(z)| for every z ̸ = 0. The convergence of P m combined with the fact that N m i (0) = 0 = N i (0) gives that N m i converges uniformly to N i on every compact sets of R 2 when m → +∞. Thus we obtain that φ m i converges uniformly to φ i on every compact sets of R 2 when m → +∞.

When z = ξ i , ∇φ m i (ξ i ) = 0 and for every z ̸ = ξ i , we have that

∇φ m i (z) = (f m i ) ′ (N m i (z -ξ i ))∇N m i (z -ξ i ).
Moreover, if we set

f m i := g m i (Θ m q ) with Θ m q (t) = (|t| q + 1 m ) 1 q -1 m 1 q then (f m i ) ′′ (t) = (g m i ) ′ (Θ m q (t))(Θ m q ) ′′ (t) + (g m i ) ′′ (Θ m q (t))((Θ m q ) ′ (t)) 2 .
The fact that (

g m i ) ′ (0) = 0 and (Θ m q ) ′′ (t) ≤ C t with C independent of m ∈ N gives that the functions (f m i ) m∈N are uniformly in C 1,1 (R 2 ). Hence, it only remains to check that ∇N m i converge uniformly to ∇N i on R 2 \{0}. For every z ∈ R 2 \{0} we have that ∇N m i (z) = ν Cm (Pm(z)) ⟨ν Cm (Pm(z)),Pm(z)⟩ ̸ = 0. The function ν Cm (P m ) is equal to ∇γ m C (Pm) |∇γ m C (Pm)| that converges uniformly on R 2 \{0} to ∇γ C (P C ) |∇γ C (P C )| that is equal to ν C (P C ).
Since there exists a small ball B r (0) with r > 0 independent of m ∈ N inside every C m the scalar product ⟨ν Cm (P m (z)), P m (z)⟩ can be bounded from below by a positive constant independent of m ∈ N. Hence, ∇N m i converges uniformly on R 2 \{0} to ∇N i . Thus, ∇φ m i converges uniformly on every compact sets of R 2 to ∇φ i .

Thanks to Proposition 7.3 the sets C m have a Lipschitz continuous normal with a Lipschitz constant independent of m ∈ N. Hence the functions ∇φ m i (z

) := (f m i ) ′ (N m i (z))∇N m i (z) if z ̸ = 0 and ∇φ m i (0) = 0 are equi-Lipschitz continuous on each compact set of R 2 .
Step 4 In order to have (G m ) m∈N satisfying [START_REF] Cellina | Uniqueness and comparison results for functionals depending on ∇u and on u[END_REF] uniformly in m ∈ N we add a term of the

following form: ∇[(Φ * ρ m (| • |) + 1 m | • | 2 ].
We define G m as the following:

G m := n i=1
G m i . Since we add the identity in G m we have that DG m is invertible everywhere. Thus, G m is a function that satisfies the assumptions of Theorem 1.4 and ( 8) uniformly in m ∈ N. □

We have the following result for Theorem 1.6:

Proposition 2.5. If G satisfies the assumptions of Theorem 1.6 then there exists a sequence of smooth functions (G m ) m∈N converging to G uniformly on B L (0) that satisfy the same assumptions as G and (8) uniformly in m ∈ N. Moreover, DG m is invertible everywhere for every m ∈ N and for every 0 < r < L, sup

r≤t≤L (f m 2 ) ′′ (t) can be bounded uniformly in m ∈ N. Proof. Let us consider L > ||∇u 0 || L ∞ (Ω) .
In the framework of Theorem 1.6, we have that

G = G 1 + G 2 with G i (•) = f ′ i (⟨•, ξ i ⟩)ξ i for i = 1, 2. We introduce Φ 1 (z) := (|⟨z, ξ 1 ⟩| -2L) 2 + , Φ 2 (z) := (|⟨z, ξ 2 ⟩| -2L) 2
+ and Φ(z) := Φ 1 (z) + Φ 2 (z). We also introduce f1 and f2 that satisfy

fi (t) :=      f i (-2L) + f ′ i (-2L)(t + 2L) + (t + 2L) 2 if t < -2L f i (t) if -2L ≤ t ≤ 2L, f i (2L) + f ′ i (2L)(t -2L) + (t -2L) 2 if t > 2L.
Hence, we set for every m ∈ N,

G m i (•) := ∇[( fi * ρ m )(⟨•, ξ i ⟩) + 1 m |⟨•, ξ i ⟩| 2 + Φ i * ρ m (•)] for i = 1, 2.
Then we can define G m as the sum of these two functions:

G m := G m 1 + G m 2 . Since we add 1 m |⟨•, ξ 1 ⟩| 2 + 1 m |⟨•, ξ 2 ⟩| 2 in G m
we have that DG m is invertible everywhere. It remains to check that around the origin where

f m 2 (•) := f 2 * ρ m (•) + 1 m | • | 2 + Φ i * ρ m (•)
this function has a uniform modulus of convexity ω without any dependence on m ∈ N. For every m ≥ 2 r and every x, y ∈ (-r 2 , r 2 ) we have that

((f m 2 ) ′ (x) -(f m 2 ) ′ (y))(x -y) ≥ B r 2 (0) (f ′ 2 (x -t) -f ′ 2 (y -t))((x -t) -(y -t))ρ m (t)dt.
By the uniform convexity assumption made on f 2 , we have that

(f ′ 2 (x-t)-f ′ 2 (y-t))((x-t)-(y-t)) ≥ ω(|x -y|) for every x, y, t ∈ (-r 2 , r 2 ). Hence, ((f m 2 ) ′ (x) -(f m 2 ) ′ (y))(x -y) ≥ ω(|x -y|) for every m ≥ 2
r and every x, y ∈ (-r 2 , r 2 ). □

In the case of Theorem 1.9 we just approximate G by

(G * ρ m + ∇Φ m + 1 m Id) m∈N with Φ(•) := (| • | -2L) 2
+ . Proposition 2.6. If G satisfies the assumptions of Theorem 1.9 then there exists a sequence of smooth functions (G m ) m∈N converging to G uniformly on B L (0) that satisfy [START_REF] Cellina | Uniqueness and comparison results for functionals depending on ∇u and on u[END_REF] uniformly in m ∈ N. Moreover, for every r > 0 there exists k r ∈ N such that for every m ≥ 2 r and every

z ∈ R N such that dist(z, D G ) ≥ r we have 1 kr Id < (DG m (z)) s < k r Id with (DG m ) s := DG m +(DG m ) T 2 .
Proof. We regularize G as in the proof of Proposition 2.3. More precisely, we introduce

Φ(•) := (| • | -2L) 2 + , θ ∈ C ∞ 0 (B 4L (0)) such that 0 ≤ θ ≤ 1 on R N , θ ≡ 1 on B 3L (0). For every m ∈ N, we set G m := θ(G * ρ m ) + 1 m Id + K∇Φ * ρ m with K > 0 such that G m is increasing. Thus, for every r > 0 the support of ρ m is inside B r 2 (0) for every m ≥ 2 r . Since {z ∈ R N such that dist(z, D G ) ≥ r 2 } is inside O k ′
r for a certain k ′ r the conclusion follows.

□

In all the four cases, when m → +∞ we have that G m → G uniformly on B L (0) with L > 0 selected such that ||∇u 0 || L ∞ (Ω) ≤ L. Hence, up to a modification of G outside B L (0) we can assume that G m → G uniformly on every compact sets of R N when m → +∞.

For every m ∈ N, we can consider the following equation:

(9) div G m (∇v(x)) = f m in Ω, v = u 0 on ∂Ω,
with f m := f * ρ m and u 0 a globally Lipschitz continuous solution of (4). By [15, Theorem 6.33], the solution u m of ( 9) is C 3 inside Ω if q ≥ 6 in the proof of Proposition 2.4. We have that [START_REF] Cellina | Uniqueness and comparison results for functionals depending on ∇u and on u[END_REF] 

implies the existence of C > 0, C ′ > 0, D ∈ R and D ′ > 0 such that (10) C|z 1 -z 2 | 2 + D ≤ ⟨G(z 1 ) -G(z 2 ), z 1 -z 2 ⟩ ≤ C ′ |z 1 -z 2 | 2 + D ′ for every z 1 , z 2 ∈ R N .
By the growth assumptions of G m we have that the sequence (u m ) m∈N is uniformly bounded in W 1,2 (Ω):

Proposition 2.7. The sequence (u m ) m∈N is uniformly bounded in W 1,2 u 0 (Ω). Proof. For every m ∈ N, using the fact that u m is a solution of ( 9) we obtain:

Ω ⟨G m (∇u m ), ∇(u m -u 0 )⟩ = - Ω f m (u m -u 0 )
Thanks to the first inequality in [START_REF] Carstensen | Local Stress Regularity in Scalar Nonconvex Variational Problems[END_REF] we get:

Ω ⟨G m (∇u 0 ), ∇(u m -u 0 )⟩ + C|∇u m -∇u 0 | 2 + D ≤ - Ω f m (u m -u 0 ). Hence, since u 0 ∈ W 1,∞ (Ω) and ||f m || L ∞ (Ω) ≤ ||f || L ∞ (Ω) we have: Ω |∇u m -∇u 0 | 2 ≤ C ′ Ω |∇u m -∇u 0 | + D ′ .
Applying Young's inequality on the first term of the right-hand side gives that |∇u m -∇u 0 | is bounded in L 2 (Ω). Thus, (u m ) is uniformly bounded in W 1,2 u 0 (Ω). □ By (8), we can assume that for every Ω ′ ⋐ Ω there exists

L Ω ′ such that ||∇u m || L ∞ (Ω ′ ) ≤ L Ω ′ for every m ∈ N.
Since the sequence (u m ) m∈N is uniformly bounded in W 1,2 (Ω), we can extract a subsequence that converges weakly to a function u ∈ W 1,2 u 0 (Ω). Moreover, for every subset Ω ′ ⋐ Ω we can use the Ascoli theorem to extract a subsequence of (u m ) m∈N that converges uniformly to u on Ω ′ . Up to a diagonal process we can assume that the sequence (u m ) m∈N converges locally uniformly to u on Ω.

We can prove that u is a solution of (4). To do so we use the following result on Young measures:

Lemma 2.8. There exists a family of probability measures (ν x ) x∈Ω measurable with respect to x such that for a.e. x ∈ Ω and for ν x -a.e. y ∈ R N we have:

(11) ⟨G(y) -G(∇u(x)), y -∇u(x)⟩ = 0.
Moreover, these probability measures satisfy the following property:

(12) Ω H(x, ∇u m (x))dx → Ω R N H(x, y)dν x (y)dx when m → +∞, for every bounded Carathéodory function H : Ω × R N → R.
Proof. Since for every

Ω ′ ⋐ Ω there exists L Ω ′ independent of m ∈ N such that ||∇u m || L ∞ (Ω ′ ) ≤ L Ω ′ , we get: lim k→+∞ sup m∈N |{x ∈ Ω, |∇u m (x)}| > k| = 0.
By [START_REF] Ball | A version of the fundamental theorem for young measures, PDEs and continuum models of phase transitions[END_REF]Theorem] and [2, Remark 3], the sequence (∇u m ) m∈N , up to an extraction, generates a family of Young measures denoted by (ν x ) x∈Ω satisfying [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF]. By weak convergence of (∇u m ) m∈N to ∇u, we obtain that ( 13)

∇u(x) = R N ydν x (y)
for a.e. x ∈ Ω. Since u m is a solution of ( 9), for every θ ∈ C ∞ 0 (Ω) we have that

Ω ⟨G m (∇u m ), ∇θ⟩ = - Ω f m θ. When m → +∞, G m → G on the compact set B L (0) where L is the uniform bound of (||∇u m || L ∞ (supp θ) ). Thus, lim m→+∞ Ω ⟨G m (∇u m ) -G(∇u m ), ∇θ⟩ = 0.
Hence, by [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF] and the previous equation we have that

- Ω f θ = Ω ⟨∇θ, R N G(y)dν x (y)⟩dx.
We introduce X θ :

X θ := lim m→+∞ Ω H(x, ∇u m (x))dx
with H(x, y) := θ(x)⟨G(y), y -∇u(x)⟩. Thus, by [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF] we obtain:

X θ = Ω θ(x) R N ⟨G(y), y -∇u(x)⟩dν x (y)dx.
Since u m is solution of a (9), we get that X θ is equal to:

lim m→+∞ Ω θ⟨G(∇u m ) -G m (∇u m ), ∇u m -∇u⟩ -⟨G m (∇u m ), ∇θ⟩(u m -u) -f m θ(u m -u)dx.
Using the fact that (u m ) m∈N converges uniformly to u on supp θ and that (G m ) m∈N converges uniformly to G on the compact set B L (0) when m → +∞ imply that X θ = 0. But by [START_REF] Esposito | On the Lipschitz regularity for certain elliptic problems[END_REF] we get that

(14) 0 = X θ = Ω θ R N ⟨G(y), y -∇u⟩dν x (y)dx = Ω θ R N ⟨G(y) -G(∇u), y -∇u⟩dν x (y)dx
where the last equality comes from [START_REF] Esposito | On the Lipschitz regularity for certain elliptic problems[END_REF]. Since ( 14) is true for every θ ∈ C ∞ 0 (Ω), we obtain that for a.e. x ∈ Ω,

R N ⟨G(y) -G(∇u(x)), y -∇u(x)⟩dν x (y) = 0
and the conclusion follows from the fact that ⟨G(y) -G(∇u(x)), y -∇u(x)⟩ ≥ 0. □

We can make the following observation:

Remark 2.9. For a.e. x ∈ Ω, if G is strictly increasing at ∇u(x), namely ⟨G(∇u(x)) -G(y), ∇u(x) -y⟩ > 0 for every y ∈ R N \{∇u(x)}, then ν x = δ ∇u(x) thanks to Lemma 2.8.

With this lemma we can show that:

Proposition 2.10. Under the assumptions of Theorem 1.1, Theorem 1.4 or Theorem 1.6, for every bounded Carathéodory function

H : Ω × R N → R we have Ω H(x, G(∇u m (x)))dx → Ω H(x, G(∇u(x)))dx
when m → +∞.

Proof. Thanks to Lemma 2.8 and ( 12), it remains to prove the following result:

supp ν x ⊂ {y ∈ R N such that G(y) = G(∇u(x))} for a.e. x ∈ Ω.
Since G is the sum of non decreasing functions (G i ) 1≤i≤n , we have that ⟨G(y)-G(∇u(x)), y-∇u(x)⟩ is the sum of n non negative terms : ⟨G i (y) -G i (∇u(x)), y -∇u(x)⟩ for every 1 ≤ i ≤ n. For a.e.

x ∈ Ω and ν x -a.e. y ∈ R N , since ⟨G(y) -G(∇u(x)), y -∇u(x)⟩ = 0 for every 1 ≤ i ≤ n we get that ⟨G i (y) -G i (∇u(x)), y -∇u(x)⟩ = 0. We distinguish two cases: a) If the condition (A 1 ) is satisfied for G i , for a.e. x ∈ Ω and ν x -a.e. y ∈ R N , we have that We can prove that u is a solution of (4):

G i (y) = G i (∇u(x)) at once. b) If G i is
Proposition 2.12. Under the assumptions of Theorems 1.1, 1.4 or 1.6, the function u is a solution of div G(∇u(x)) = f in Ω, u = u 0 on ∂Ω.

Proof. Since (u m ) m converges weakly to u ∈ W 1,2 u 0 (Ω) we have that u satisfies the boundary condition. It remains to prove that

Ω ⟨G(∇u), ∇θ⟩ = - Ω f θ for every θ ∈ C ∞ 0 (Ω). Since ||∇u m || L ∞ (supp θ) is uniformly bounded, G m (∇u m ) -G(∇u m ) → 0 in L 1 (supp θ) when m → +∞. By Remark 2.11, this implies that G m (∇u m ) → G(∇u) in L 1 (supp θ). Since Ω ⟨G m (∇u m ), ∇θ⟩ = - Ω f m θ
we have our desired result. □

We conclude this section with a counterpart of Proposition 2.10 in the case of Theorem 1.9:

Proposition 2.13. Under the assumptions of Theorem 1.9, we have that

Ω |dist(∇u m , D G ) -dist(∇u, D G )| → 0 and Ω |∇u m × dist(∇u m , D G ) -∇u × dist(∇u, D G )| → 0 when m → +∞.
Proof. For every x ∈ Ω, such that ∇u(x) / ∈ D G we have that ⟨DG(∇u(x))A, A⟩ > 0 for every A ̸ = 0. Hence, ⟨G(∇u(x)) -G(A), ∇u(x) -A⟩ > 0 for every A ∈ R N \{∇u(x)}. Thanks to Remark 2.9, we get that ν x = δ ∇u(x) . Since (x, y) → |dist(y, D G ) -dist(∇u(x), D G )| is a Carathéodory function, this implies together with [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF] that

Ω |dist(∇u m , D G ) -dist(∇u, D G )| → Ω R N |dist(y, D G ) -dist(∇u(x), D G )|dν x (y)dx = 0
and for the same reasons

Ω |∇u m × dist(∇u m , D G ) -∇u × dist(∇u, D G )| → 0 when m → +∞. □ 3.
Uniform estimates for Theorem 1.1 and Theorem 1.4

In this section, we prove that G m (∇u m ) is continuous with a modulus of continuity independent of m ∈ N when we are under the assumptions of Theorem 1.1 or Theorem 1.4.

3.1. W 1,2 regularity of G m (∇u m ). In this subsection we show that G m (∇u m ) ∈ W 1,2 loc (Ω) with a norm uniformly bounded in m ∈ N. More precisely, our goal is to prove that in the framework of Theorem 1.1 and Theorem 1.4, for every

1 ≤ i ≤ n the function G m i (∇u m ) is in W 1,2 loc (Ω)
with a norm that does not depend on m ∈ N. To do so we apply the same method as in [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Proposition 2.4] to smooth functions, namely the regularized equations. Proposition 3.1. We assume that G ∈ C 1 (R N ) satisfies the assumptions of Theorem 1.1 with (A 1 ) replaced by (A ′ 1 ) or the assumptions of Theorem 1.4 and that u is a C 2 solution of (4). If we write If G i satisfies the assumption (A ′ 1 ) then there exists

G := n i=1 G i as in those theorems then G i (∇u) ∈ W 1,2 loc (Ω) for every 1 ≤ i ≤ n and G(∇u) ∈ W 1,2 loc (Ω). Moreover,
C 1 := C 1 (L) > 0 with L := ||∇u|| L ∞ (Ω ′ ) such that ⟨DG i (∇u)∇∂ e u, ∇∂ e u⟩ ≥ C 1 |DG i (∇u)∇∂ e u| 2 .
If G i is the gradient of a C 1,1 loc convex function then by Remark 2.2 we obtain

⟨DG i (∇u)∇∂ e u, ∇∂ e u⟩ ≥ 1 ||DG i || L ∞ (B L (0)) |DG i (∇u)∇∂ e u| 2 .
We set

K i (G i , C 1 ) := min{1, C 1 , 1 ||DG i || L ∞ (B L (0)) }.
Thanks to Young's inequality each term of the sum in the right-hand side can be bounded by

α i Ω |DG i (∇u)∇∂ e u| 2 η 2 + 1 α i Ω |∇η| 2 |∇u| 2 + |∇f |η 2 |∇u| with 0 < α i < K i (G i , C 1 ). We can take α i = K i (G i ,C 1 ) 2 for instance. We introduce K(G, C 1 ) := min{K i , 1 ≤ i ≤ n} and α := min{α i , 1 ≤ i ≤ n}.
Thus, since η ≡ 1 on Ω ′′ we have that ( 16)

n i=1 Ω ′′ |DG i (∇u)∇∂ e u| 2 ≤ 2L(L|Ω|ndist(∂Ω ′ , ∂Ω ′′ ) -2 + ||f || W 1,1 (Ω) ) α(G, C 1 )K(G, C 1 )
.

Here the dependence on G in α and K is just the dependence on ||DG i || L ∞ (B L (0)) . Hence, for every e ∈ S 1 the function ∂ e (G i (∇u)) = DG i (∇u)∇∂ e u is in L 2 loc (Ω). Thus, G i (∇u) ∈ W 1,2 loc (Ω) and we have an explicit estimate for the norm from [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. Moreover, G(∇u) is also in W 1,2 loc (Ω) as the sum of (G i (∇u)) 1≤i≤n . □

We apply this result to G m and u m to prove a uniform estimate on the Sobolev norm of 

G m i (∇u m ). Proposition 3.2. If G ∈ C 0,1 (R N ) satisfies the assumption of Theorem 1.1 or Theorem 1.4, then, G m (∇u m ) ∈ W 1,2 loc (Ω) with a norm independent from m ∈ N. Moreover, G m i (∇u m ) ∈ W 1,2 loc (Ω) with a norm independent from m ∈ N for every 1 ≤ i ≤ n. Proof. We introduce Ω ′′ ⋐ Ω ′ ⋐ Ω.
m (∇u m ) ∈ W 1,2 loc (Ω). □ 3.2. Continuity of G m (∇u m ).
In this subsection we use the W 1,2 regularity that we obtained before in order to prove the continuity of G m (∇u m ).

The following proposition is crucial in the proofs of Theorem 1.1 and Theorem 1.4. As in [12, Lemma 2.1] and [21, Theorem 3.1] our strategy to prove it relies on a maximum principle that can be found in [16, Theorem 3.1] and a theorem due to Lebesgue stated in [20, page 388]:

Proposition 3.3. Let H ∈ W 1,2 loc (Ω) ∩ C 1 (Ω).
If for every ϵ > 0 and every x 0 ∈ Ω there exists C(ϵ, x 0 ) > 0 such that for every 0 < δ < dist(x 0 , ∂Ω):

osc B δ (x 0 ) H ≥ ϵ ⇒ osc ∂B δ (x 0 ) H ≥ C(ϵ, x 0 ), then H is continuous at x 0 . Here, osc B δ (x 0 ) H := sup x,y∈B δ (x 0 ) |H(x) -H(y)|.
Proof. We argue by contradiction. Let us assume that there exist ϵ > 0 and x 0 ∈ Ω such that for every 0 < δ < dist(x 0 ,∂Ω)

2 there are x, y ∈ B δ (x 0 ) such that |H(x) -H(y)| ≥ ϵ.
By assumption, there exist

x 1 , x 2 ∈ ∂B δ (x 0 ) such that |H(x 1 ) -H(x 2 )| ≥ C(ϵ, x 0 ). Hence, there exists e ∈ S 1 such that C(ϵ, x 0 ) ≤ ⟨H(x 1 ), e⟩ -⟨H(x 2 ), e⟩.
For a.e. 0 < δ < dist(x 0 ,∂Ω) 2 , the term in the right-hand side can be bounded from above by

∂B δ (x 0 ) |∇H|dH 1 . By Cauchy-Schwarz inequality we obtain C(ϵ, x 0 ) 2 2πδ ≤ ∂B δ (0) |∇H| 2 dH 1 .
By integrating over δ between a certain δ ϵ and dist(x 0 , ∂Ω) 2 we have

C(ϵ, x 0 ) 2 2π ln dist(x 0 , ∂Ω) 2δ ϵ ≤ ||H|| 2 W 1,2 (B dist(x 0 ,∂Ω) 2 (x 0 )) .
By taking δ ϵ > 0 small enough we obtain a contradiction thanks to the fact that H ∈ W 1,2 loc (Ω). □ Thanks to Proposition 3.1 we can make the following observation: Remark 3.4. In Proposition 3.2, we have proved that G m (∇u m ) is bounded in W 1,2 loc (Ω) uniformly in m ∈ N. Hence, the functions (G m (∇u m )) m∈N are uniformly continuous on any compact subset of Ω with a modulus of continuity independent of m ∈ N if they satisfy the assumptions of Proposition 3.3 with a constant C(ϵ, x 0 ) independent of m ∈ N.

It remains to prove that under the assumptions of Theorem 1.1 and Theorem 1.4, the functions G m (∇u m ) or G m i (∇u m ) satisfy the maximum principle stated in Proposition 3.3 with C that does not depend on m ∈ N.

The following lemma, instrumental for the proof of Theorem 1.1 uses the fact that f ≡ 0: Lemma 3.5. Let u m be a C 2 solution of (9) with f ≡ 0. We have that det(D 2 u m ) ≤ 0.

Proof. Since u m is a solution of ( 9) with f ≡ 0 we have that Proposition 3.6. Let u m be a solution of (9) with f ≡ 0. Then for every Ω ′ ⋐ Ω, we have that ∂∇u m (Ω ′ ) ⊂ ∇u m (∂Ω ′ ).

Remark 3.7. This last result is true in any dimension provided that the sign of det(D 2 u m ) does not change. This is the case if u m is convex everywhere or concave for instance. This proposition can be used as an improved version of [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Lemma 3.2].

With this result we can prove the following lemma:

Lemma 3.8. Let u m be a solution of (9) with f ≡ 0. Then for every Ω ′ ⋐ Ω we have that ∂σ(Ω ′ ) ⊂ σ(∂Ω ′ ) where σ := G m (∇u m ).

Proof. We consider z ∈ ∂σ(Ω ′ ), then there exists a sequence (z n ) n∈N such that z n ∈ σ(Ω ′ ) and z n → z when n → +∞. Hence, there exists a sequence

(y n ) n∈N with y n ∈ ∇u m (Ω ′ ) such that G m (y n ) = z n . Since the sequence (y n ) n∈N is bounded by L := ||∇u m || L ∞ (Ω ′ )
, we can extract a subsequence converging to y ∈ ∇u m (Ω ′ ). By continuity of G m , z n → z = G m (y). Since, DG m (y) is invertible, by the inverse function theorem if y ∈ Int(∇u m (Ω ′ )) then z ∈ Int(σ(Ω ′ )). Since this is not the case we have that y ∈ ∂∇u m (Ω ′ ). Thanks to Proposition 3.6, we obtain that y ∈ ∇u m (∂Ω ′ ),

thus z = G m (y) ∈ σ(∂Ω ′ ). □
This lemma leads to the proof of Theorem 1.1 in the regularized setting: Proposition 3.9. Under the assumptions of Theorem 1.1, G m (∇u m ) is continuous with a modulus of continuity independent of m ∈ N.

Proof. We just have to prove that G m (∇u m ) satisfies the assumption of Proposition 3. In the remaining part of the section, we proceed to establish continuity estimates for G m (∇u m ) independent of m ∈ N under the assumptions of Theorem 1.4. We prove that for each

1 ≤ i ≤ n, G m i (∇u m ) is continuous.
To do so, we use the fact that ∇u m satisfies the following classical maximum principle see e.g. [16, Theorem 3.1]: Proposition 3.10. Let u m be a solution of [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]. Then for any e ∈ S N -1 and any open set Ω ′ ⋐ Ω, we have that sup

x∈Ω ′ ∂ e u m (x) = sup x∈∂Ω ′ ∂ e u m (x).
We start with the case when

G m i = ∇φ m i where φ m i (•) = f m i (N m i (• -ξ i )) ∈ C 1,1 loc (R 2 ) with f m i a convex function, N m i a pseudo-norm and ξ i ∈ R 2 .
The pseudo-norm is introduced in Definition 1.3. We denote the non-oriented angle between two vectors z 1 , z 2 by ∠(z 1 , z 2 ) ∈ [0, π] with the convention that ∠(z, 0) = 0. We can apply the following lemma to G m i :

Lemma 3.11. Let us assume that G m i = ∇φ m i with φ m i (•) = f m i (N m i (• -ξ i )) ∈ C 1,1 loc (R 2 ). • For every r > 0 there exists C(r) > 0 independent of m ∈ N such that if |∇φ m i (z)| ≥ r then |z -ξ i | ≥ C(r).
• For every 0 < θ ≤ π there exists 0

< D(θ) ≤ π independent of m ∈ N such that if ∠(∇φ m i (z), ∇φ m i (z ′ )) ≥ θ then ∠(z -ξ i , z ′ -ξ i ) ≥ D(θ)
for every z, z ′ ∈ R 2 \{ξ i }. Moreover, C(r) → 0 when r → 0 and D(θ) → 0 when θ → 0.

Proof. For every r > 0 we introduce

C(r) := inf{|z -ξ i |, z ∈ R 2 such that |∇φ m i (z)| ≥ r
for some m ∈ N} and for every 0 < θ ≤ π we introduce

D(θ) := inf{∠(z -ξ i , z ′ -ξ i ), z, z ′ ∈ R 2 \{ξ i } such that ∠(∇φ m i (z), ∇φ m i (z ′ )) ≥ θ for some m ∈ N}. In the definition of the constant D(θ) we can replace R 2 \{ξ i } by B R (ξ i )\B ρ (ξ i ) with R > ρ > 0 since the direction of ∇φ m
i is constant on the half-lines starting at ξ i . Since for every m ∈ N, ∇φ m i (z) = 0 only when z = ξ i , C(r) → 0 when r → 0. The fact that for each m ∈ N, the range of the gradient of N m i is not in a half-line provides that D(θ) → 0 when θ → 0.

It remains to prove that C(r) > 0 and D(θ) > 0. If C(r) = 0 then there exist (z n ) n∈N and (m n ) n∈N such that z n → ξ i when n → +∞ and |∇φ mn i (z n )| ≥ r for every n ∈ N. We set M := lim sup n→+∞ m n .

If M ∈ N then up to an extraction we can assume that m n ≡ M for n large enough. Thus, |∇φ M i (z n )| ≥ r and z n → ξ i when n → +∞ which is a contradiction with the fact that ∇φ M i (ξ i ) = 0. If M = +∞ then we combine the fact that ∇φ m i converges to ∇φ i uniformly with the fact that ∇φ i (ξ i ) = 0 to obtain a contradiction. Hence, C(r) > 0.

If D(θ) = 0 then there exist

(z n ) n∈N , (z ′ n ) n∈N and (m n ) n∈N such that ∠(z n -ξ i , z ′ n -ξ i ) → 0 when n → +∞ and ∠(∇φ mn i (z n ), ∇φ mn i (z ′ n )) ≥ θ. If M := lim sup n→+∞
m n < +∞ we use the continuity of ∇φ M i to obtain a contradiction. If M = +∞ we use the fact that the sequences (z n ) n∈N and (z ′ n ) n∈N are in B R (ξ i )\B ρ (ξ i ) to extract two converging subsequences that tend to z ̸ = ξ i and z ′ ̸ = ξ i . By uniform convergence of ∇φ m i to ∇φ i we obtain that ∠(z-ξ i , z ′ -ξ i ) = 0 and ∠(∇φ i (z), ∇φ i (z ′ )) ≥ θ. That contradicts the fact that ∇φ i (z) and ∇φ i (z ′ ) are colinear when z and z ′ are colinear. Hence, D(θ) > 0. □

The converse is also true: Lemma 3.12. Let us assume that

G m i = ∇φ m i with φ m i (•) = f m i (N m i (• -ξ i )) ∈ C 1,1 loc (R 2 ). • For every r > 0 there exists C ′ (r) > 0 independent of m ∈ N such that if |z -ξ i | ≥ r then |∇φ m i (z)| ≥ C ′ (r). • For every 0 < θ ≤ π there exists 0 < D ′ (θ) ≤ π independent of m ∈ N such that if ∠(z -ξ i , z ′ - ξ i ) ≥ θ then ∠(∇φ m i (z), ∇φ m i (z ′ )) ≥ D ′ (θ) for every z, z ′ ∈ R 2 \{ξ i }. Moreover, C ′ (r) → 0 when r → 0 and D ′ (θ) → 0 when θ → 0.
Proof. We argue as in the proof of the previous lemma. For every r > 0 and every 0 < θ ≤ π we set

C ′ (r) := inf{|∇φ m i (z)| with m ∈ N, z ∈ R 2 such that |z -ξ i | ≥ r} and D ′ (θ) := inf{∠(∇φ m i (z), ∇φ m i (z ′ )) with m ∈ N, z, z ′ ∈ R 2 \{ξ i } such that ∠(z -ξ i , z ′ -ξ i ) ≥ θ}.
The quantity D ′ (θ) is the same if we replace R 2 \{ξ i } by B R (ξ i )\B ρ (ξ i ) with R > ρ > 0 since the direction of ∇φ m i is constant on the half-lines starting at ξ i . The continuity of ∇φ m i gives that C ′ (r) → 0 when r → 0 and D ′ (θ) → 0 when θ → 0.

If we assume that C ′ (r) = 0, then by uniform coercivity of |∇φ m i | we can find z ∈ R 2 and M ∈ N ∪ {+∞} such that ∇φ M i (z) = 0 and |z -ξ i | ≥ r with the convention φ +∞ i = φ i . Since ∇φ M i (z) = 0 ⇒ z = ξ i this is absurd. Hence, we have that C ′ (r) > 0. If we assume that D ′ (θ) = 0 then once again we can find z, z

′ ∈ B R (ξ i )\B ρ (ξ i ) and M ∈ N∪{+∞} such that ∠(∇φ M i (z), ∇φ M i (z ′ )) = 0 and ∠(z -ξ i , z ′ -ξ i ) ≥ θ.
Using the strict convexity of the level sets of φ M i we obtain a contradiction. Thus, we have D ′ (θ) > 0. □

With these two results we can prove that: Proposition 3.13. We set

σ i := G m i (∇u m ) with G m i = ∇φ m i where the convex function φ m i (•) = f m i (N m i (• -ξ i )) satisfies (A 3 ). If x 0
∈ Ω is such that σ i (x 0 ) = 0 then σ i is continuous at x 0 and the modulus of continuity is independent of m ∈ N.

Proof. Thanks to Proposition 3.1 and Proposition 3.3, it remains to prove that for every ϵ > 0 there exists C(ϵ, x 0 ) > 0 such that for every δ > 0 if there exists

x ∈ B δ (x 0 ) such that |σ i (x)| ≥ ϵ then there exist x 1 , x 2 ∈ ∂B δ (x 0 ) such that |σ i (x 1 ) -σ i (x 2 )| ≥ C(ϵ, x 0 ).
By the first point of Lemma 3.11, |∇u m (x) -ξ i | ≥ C(ϵ) > 0 with C(ϵ) that does not depend on m ∈ N. We set e := ∇um(x)-ξ i |∇um(x)-ξ i | . By the maximum principle from Proposition 3.10, there exists

x 1 ∈ ∂B δ (x 0 ) such that ⟨∇u m (x 1 ) -ξ i , e⟩ ≥ ⟨∇u m (x) -ξ i , e⟩ = |∇u m (x) -ξ i | ≥ C(ϵ).
In particular |∇u m (x 1 ) -ξ i | ≥ C(ϵ) and by Lemma 3.12 we obtain that |σ i (x 1 )| ≥ C ′ (C(ϵ)). If we set e 1 := ∇um(x 1 )-ξ i |∇um(x 1 )-ξ i | then once again by Proposition 3.10 there exists x 2 ∈ ∂B δ (x 0 ) such that [START_REF] Kawohl | Analysis and numerical studies of a problem of shape design[END_REF] ⟨∇u m (x 2 ) -ξ i , e 1 ⟩ ≤ ⟨∇u m (x 0 ) -ξ i , e 1 ⟩ = ⟨0, e 1 ⟩ = 0.

The last equality comes from the fact that σ

i (x 0 ) = 0 ⇒ ∇u m (x 0 ) = ξ i . If ∇u m (x 2 ) = ξ i then |σ i (x 1 ) -σ i (x 2 )| = |σ i (x 1 )| ≥ C ′ (C(ϵ)) > 0.
Otherwise, by [START_REF] Kawohl | Analysis and numerical studies of a problem of shape design[END_REF] we get that ∠(∇u m (x 1 ) -

ξ i , ∇u m (x 2 ) -ξ i ) ≥ π 2 .
In that case, by the second point of Lemma 3.12 we obtain that

∠(σ i (x 1 ), σ i (x 2 )) ≥ D ′ ( π 2 
).

Since

|σ i (x 1 )| ≥ C ′ (C(ϵ)) there exists C(ϵ) > 0 such that |σ i (x 1 ) -σ i (x 2 )| ≥ C(ϵ).
By taking C(ϵ) := min{ C(ϵ), C ′ (C(ϵ))} we can apply Proposition 3.3. The conclusion follows. □

In the case where σ i (x 0 ) ̸ = 0, we have the following lemma:

Lemma 3.14. We set

σ i := G m i (∇u m ) with G m i = ∇φ m i where the convex function φ m i (•) = f m i (N m i (• -ξ i )) satisfies (A 3 ). If σ i (x 0 ) ̸ = 0 then for every r > 0, θ > 0 there exists 0 < δ(r, θ) < dist(x 0 ,∂Ω) 2
independent of m ∈ N such that for every x ∈ B δ (x 0 ), either |σ i (x)| ≤ r or the angle between σ i (x) and σ i (x 0 ) is smaller than θ.

Proof. Given 0 < δ < dist(x 0 ,∂Ω) 2 let us assume that there exists x ∈ B δ (x 0 ) such that |σ i (x)| > r and ∠(σ i (x), σ i (x 0 )) ≥ θ. By Lemma 3.11 we have that [START_REF] Lebesgue | Sur le problème de dirichlet[END_REF] |∇u m (x) -

ξ i | > C(r) and ∠(∇u m (x) -ξ i , ∇u m (x 0 ) -ξ i ) ≥ D(θ). If ⟨∇u m (x) -ξ i , ∇um(x 0 )-ξ i |∇um(x 0 )-ξ i | ⟩ ≤ -C(r)
2 then by Proposition 3.10 there exist

x 1 ∈ ∂B δ (x 0 ) such that ⟨∇u m (x 1 ) -ξ i , ∇um(x 0 )-ξ i |∇um(x 0 )-ξ i | ⟩ ≤ -C(r) 2 and x 2 ∈ ∂B δ (x 0 ) such that ⟨∇u m (x 2 ) -ξ i , ∇u m (x 0 ) -ξ i |∇u m (x 0 ) -ξ i | ⟩ ≥ ⟨∇u m (x 0 ) -ξ i , ∇u m (x 0 ) -ξ i |∇u m (x 0 ) -ξ i | ⟩ > 0.
The last inequality comes from the assumption σ i (x 0 ) ̸ = 0. In that case the angle between ∇u m (x 1 ) -ξ i and ∇u m (x 2 ) -ξ i is bounded from below by a constant 0 < θ ′ ≤ π depending only on C(r) and a Lipschitz constant of u m on B dist(x 0 ,∂Ω) 2 (x 0 ) independent of m ∈ N. By the second point of Lemma 3.12 the angle between σ i (x 1 ) and

σ i (x 2 ) is bounded from below by D ′ (θ ′ ) > 0. Since |∇u m (x 1 ) -ξ i | ≥ C(r)
2 by the first point of Lemma 3.12 we obtain that

|σ i (x 1 )| is larger than C ′ ( C(r)
2 ). Hence, there exists a constant F (r) > 0 such that

|σ i (x 1 ) -σ i (x 2 )| ≥ F (r). If ⟨∇u m (x) -ξ i , ∇um(x 0 )-ξ i |∇um(x 0 )-ξ i | ⟩ > -C(r) 2
then by [START_REF] Lebesgue | Sur le problème de dirichlet[END_REF] there exists e a unit vector orthogonal to ∇u m (x 0 ) -ξ i and F ′ (r, θ) > 0 such that ⟨∇u m (x) -ξ i , e⟩ ≥ F ′ (r, θ). Once again by Proposition 3.10 there exist x 1 , x 2 ∈ ∂B δ (x 0 ) such that

⟨∇u m (x 1 ) -ξ i , e⟩ ≥ ⟨∇u m (x) -ξ i , e⟩ ≥ F ′ (r, θ) > 0 = ⟨∇u m (x 0 ) -ξ i , e⟩ ≥ ⟨∇u m (x 2 ) -ξ i , e⟩. If ∇u m (x 2 ) = ξ i then by Lemma 3.12, |σ i (x 1 ) -σ i (x 2 )| ≥ C ′ (F ′ (r, θ)).
Otherwise, the angle between ∇u m (x 1 ) -ξ i and ∇u m (x 2 ) -ξ i is bounded from below by a constant 0 < θ ′ ≤ π depending only on r > 0, θ > 0 and the Lipschitz constant of u m on B dist(x 0 ,∂Ω)

2 (x 0 ) independent of m ∈ N.
We conclude as in the first case.

Hence, we have proved that for every 0 < δ < dist(x 0 ,∂Ω)

2
if there exists x ∈ B δ (x 0 ) such that |σ i (x)| > r and the angle between σ i (x) and σ i (x 0 ) is larger than θ then there exist x 1 , x 2 ∈ ∂B δ (x 0 ) and F (r, θ) > 0 such that |σ i (x 1 )-σ i (x 2 )| ≥ F (r, θ). We can conclude as in the proof of Proposition 3.3:

F (r, θ) ≤ |σ i (x 1 ) -σ i (x 2 )| ≤ ∂B δ (x 0 ) |∇σ i |dH 1 .
Using the Cauchy-Schwarz inequality and integrating over δ between δ ′ > 0 and dist(x 0 ,∂Ω) 2 we obtain

F (r, θ) 2 2π ln dist(x 0 , ∂Ω) 2δ ′ ≤ ||σ i || 2 W 1,2 (B dist(x 0 ,∂Ω) 2 (x 0 )) .
The conclusion follows from the fact that σ i ∈ W 1,2 loc (Ω) with a norm independent of m ∈ N by Proposition 3.1. □

The following lemma asserts that the component of σ i is continuous in the direction of σ i (x 0 ). Lemma 3.15. We set

σ i := G m i (∇u m ) with G m i = ∇φ m i where the convex function φ m i (•) = f m i (N m i (• -ξ i )) satisfies (A 3 ). If σ i (x 0 ) ̸ = 0 then for every ϵ > 0 there exists δ > 0 independent of m ∈ N such that |σ i (x 0 )| -ϵ ≤ ⟨σ i (x), σ i (x 0 ) |σ i (x 0 )| ⟩ ≤ |σ i (x 0 )| + ϵ for every x ∈ B δ (x 0 ).
Proof. Thanks to Lemma 3.14, for every r > 0 and θ > 0 there exists δ(r, θ) > 0 such that for every x ∈ B δ (x 0 ), |σ i (x)| ≤ r or ∠(σ i (x), σ i (x 0 )) ≤ θ. By the contrapositive statement of Lemma 3.12, there exist C(r) > 0 and D(θ) > 0 such that |∇u m (x)-ξ i | ≤ C(r) or ∠(∇u m (x)-ξ i , ∇u m (x 0 )-ξ i ) ≤ D(θ) for every x ∈ B δ (x 0 ). Moreover, we can choose them in such a way that C(r) → 0 when r → 0 and D(θ) → 0 when θ → 0.

For ϵ > 0, we introduce η > 0 independent of m ∈ N such that the oscillations of G m i on the square of center ξ i and sides of length 2η are smaller than ϵ 2 . Since C(r) goes to 0 when r goes to 0 and D(θ) goes to 0 when θ goes to 0 we can choose δ > 0 small enough such that for every x ∈ B δ (x 0 ) we have [START_REF] Lindqvist | Regularity for an anisotropic equation in the plane[END_REF] |∇u m (x) -

ξ i | ≤ η or ∠(∇u m (x) -ξ i , ∇u m (x 0 ) -ξ i )
is as small as we want.

We introduce p x the projection of ∇u m (x) on R + (∇u m (x 0 ) -ξ i ) + ξ i . Hence, for every d > 0 we can choose δ 0 such that for every x ∈ B δ 0 (x 0 ) the distance between ∇u m (x) and p x is smaller than d. By uniform continuity of G m i in m ∈ N, there exists ω a modulus of continuity independent of

m ∈ N such that |G m i (p x ) -G m i (∇u m (x))| ≤ ω(d). × ξ i × ∇u m (x 0 ) ≤ d ≤ d × L
Let us argue by contradiction. We assume that for every 0 < δ < δ 0 there exists x ∈ B δ (x 0 ) such that |σ i (x 0 )| + ϵ < ⟨σ i (x), e⟩ or ⟨σ i (x), e⟩ < |σ i (x 0 )| -ϵ with e := σ i (x 0 ) |σ i (x 0 )| . Case 1 We begin with the case where ⟨σ

i (x), e⟩ > |σ i (x 0 )| + ϵ. Since |G m i (p x ) -σ i (x)| ≤ ω(d) and ⟨σ i (x), e⟩ ≥ |σ i (x 0 )| + ϵ we obtain that ⟨G m i (p x ), e⟩ ≥ |σ i (x 0 )| = ⟨σ i (x 0 ), e⟩ when d is small enough such that ω(d) ≤ ϵ without any dependence on m ∈ N. By definition of φ m i we have that G m i (p x ) = (f m i ) ′ (N m i (p x -ξ i ))∇N m i (p x -ξ i ) and σ i (x 0 ) = (f m i ) ′ (N m i (∇u m (x 0 ) -ξ i ))∇N m i (∇u m (x 0 ) -ξ i ).
Thus, these two vectors are positively colinear to e. This means that (

f m i ) ′ (N m i (p x -ξ i )) ≥ (f m i ) ′ (N m i (∇u m (x 0 ) -ξ i ))
. Thus, by strict convexity of

f m i we have that ⟨∇u m (x) -∇u m (x 0 ), ∇u m (x 0 ) -ξ i ⟩ = ⟨p x -∇u m (x 0 ), ∇u m (x 0 ) -ξ i ⟩ ≥ 0.
Hence, by Proposition 3.10 there exists

x 1 , x 2 ∈ ∂B δ (x 0 ) such that ⟨∇u m (x 1 ) -ξ i , e ′ ⟩ ≤ ⟨∇u m (x 0 ) -ξ i , e ′ ⟩ ≤ ⟨∇u m (x) -ξ i , e ′ ⟩ ≤ ⟨∇u m (x 2 ) -ξ i , e ′ ⟩
with e ′ := ∇um(x 0 )-ξ i |∇um(x 0 )-ξ i | . We introduce p 1 and p 2 the projection of ∇u m (x 1 ) and

∇u m (x 2 ) on R + (∇u m (x 0 ) -ξ i ) + ξ i . Since ⟨p 1 , e ′ ⟩ ≤ ⟨∇u m (x 0 ), e ′ ⟩ the convexity of f m i gives that ⟨G m i (p 1 ), e⟩ ≤ ⟨σ i (x 0 ), e⟩. For the same reasons, ⟨G m i (p 2 ), e⟩ ≥ ⟨G m i (p x ), e⟩ ≥ ⟨σ i (x), e⟩ -ω(d)
where the last inequality comes from the fact that |G m i (p x ) -σ i (x)| ≤ ω(d). We also have that |∇u m (x 1 ) -p 1 | and |∇u m (x 2 ) -p 2 | are smaller than d. Thus, ⟨σ i (x 1 ), e⟩ ≤ ⟨G m i (p 1 ), e⟩ + ω(d) and ⟨σ i (x 2 ), e⟩ ≥ ⟨G m i (p 2 ), e⟩ -ω(d). Hence, [START_REF] Lledos | Uniqueness for a translation invariant problem in the Calculus of Variations[END_REF] ⟨σ i (x 1 ), e⟩ ≤ ⟨σ i (x 0 ), e⟩ + ω(d) and ⟨σ i (x 2 ), e⟩ ≥ ⟨σ i (x), e⟩ -2ω(d). When d is sufficiently small with respect to ϵ we have that

|σ i (x 2 ) -σ i (x 1 )| ≥ ϵ 2 . Case 2 Let us assume that there exists x ∈ B δ (x 0 ) such that |σ i (x 0 )| -ϵ > ⟨σ i (x), σ i (x 0 ) |σ i (x 0 )| ⟩.
Hence, if we apply Proposition 3.10 to ⟨∇u m (•) -ξ i , ∇u m (x 0 ) -ξ i ⟩ we can show that there exists

x 1 ∈ ∂B δ (x 0 ) such that ⟨∇u m (x 1 ) -ξ i , ∇u m (x 0 ) -ξ i ⟩ ≥ ⟨∇u m (x 0 ) -ξ i , ∇u m (x 0 ) -ξ i ⟩.
As in the previous case we can show that ⟨σ i (x 1 ), e⟩ ≥ |σ i (x 0 )| -ω(d) that is an analogous result to [START_REF] Lledos | Uniqueness for a translation invariant problem in the Calculus of Variations[END_REF] (up to interchanging ≤ in ≥).

It remains to find a point x 2 ∈ ∂B δ (x 0 ) such that ⟨∇u m (x 2 ) -ξ i , ∇u m (x 0 ) -ξ i ⟩ is sufficiently small. We distinguish two sub-cases. We start by assuming that ∇u m (x) ∈ B η (ξ i ). By Proposition 3.10 there exists x 2 ∈ ∂B δ (x 0 ) such that

⟨∇u m (x 2 ) -ξ i , ∇u m (x 0 ) -ξ i ⟩ ≤ ⟨∇u m (x) -ξ i , ∇u m (x 0 ) -ξ i ⟩.
By [START_REF] Lindqvist | Regularity for an anisotropic equation in the plane[END_REF] we have that ∇u m (x 2 ) ∈ B η (ξ i ). Since the oscillations of G m i are smaller than ϵ 2 on that set we get that ⟨σ i (x 2 ), e⟩ ≤ ⟨σ i (x), e⟩ + ϵ 2 . In that case we obtain

⟨σ i (x 2 ), e⟩ ≤ ⟨σ i (x), e⟩ + ϵ 2 ≤ ⟨σ i (x 0 ), e⟩ - ϵ 2 ≤ ⟨σ i (x 1 ), e⟩ - ϵ 2 + ω(d).
Thus, by taking d small enough

|σ i (x 1 ) -σ i (x 2 )| ≥ ϵ 4 . If ∇u m (x) / ∈ B η (ξ i ) then ⟨p x -ξ i , ∇u m (x 0 ) -ξ i ⟩ > 0 with p x the projection of ∇u m (x) on R + (∇u m (x 0 ) -ξ i ) + ξ i . Hence, there exists x 2 ∈ ∂B δ (x 0 ) such that ⟨∇u m (x 2 ), e ′ ⟩ ≤ ⟨∇u m (x), e ′ ⟩ which implies that ⟨p x -p 2 , ∇u m (x 0 )-ξ i ⟩ ≥ 0. Hence, by convexity of f m i we have that ⟨G m i (p 2 ), e⟩ ≤ ⟨G m i (p x ), e⟩. Thus, ⟨σ i (x 2 ), e⟩ ≤ ⟨σ i (x), e⟩ + 2ω(d) ≤ ⟨σ i (x 0 ), e⟩ -ϵ + 2ω(d).
Once again, by taking d small enough |σ i (x 1 ) -σ i (x 2 )| ≥ ϵ 4 . In any case, for every 0 < δ < δ 0 such that there exists x ∈ B δ (x 0 ) such that |σ i (x 0 )| + ϵ < ⟨σ i (x), e⟩ or ⟨σ i (x), e⟩ < |σ i (x 0 )| -ϵ we can find

x 1 , x 2 ∈ ∂B δ (x 0 ) such that |σ i (x 1 ) -σ i (x 2 )| ≥ ϵ 4 .

The conclusion follows Proposition 3.3. □

The combination of the last three results gives the following proposition: Proposition 3.16. Under the assumptions of Theorem 1.4, in the case where

G m i = ∇φ m i with φ m i (•) = f m i (N m i (• -ξ i )), we have that G m i (∇u m
) is continuous on Ω with a modulus of continuity that does not depend on m ∈ N. Now, let us focus on the case where G i satisfies the assumption (A 4 ). Proposition 3.17. Let us assume that

G m i = ∇φ m i with φ m i (•) = f m i (⟨•, ξ i ⟩) and ξ i ̸ = 0. Then if G m i (∇u m ) ∈ W 1,2 loc (Ω) we have that σ i := G m i (∇u m
) is continuous on Ω with a modulus of continuity that does not depend on m ∈ N.

Proof. For every ϵ > 0 we have ( 23)

|G m i (z 1 ) -G m i (z 2 )| ≥ ϵ ⇔ |(f m i ) ′ (⟨z 1 , ξ i ⟩) -(f m i ) ′ (⟨z 2 , ξ i ⟩)| ≥ ϵ |ξ i | for every z 1 , z 2 ∈ R 2 .
Thus, for δ > 0, if we assume that there exists x ∈ B δ (x 0 ) such that

|G m i (∇u m (x)) -G m i (∇u m (x 0 ))| ≥ ϵ then (24) |(f m i ) ′ (⟨∇u m (x), ξ i ⟩) -(f m i ) ′ (⟨∇u m (x 0 ), ξ i ⟩)| ≥ ϵ |ξ i | .
Up to a change of sign of ξ i we can assume that ⟨∇u m (x 0 ), ξ i ⟩ ≤ ⟨∇u m (x), ξ i ⟩. By the maximum principle from Proposition 3.10 applied to y → ⟨∇u m (y), ξ i ⟩, there exist

x 1 , x 2 ∈ ∂B δ (x 0 ) such that ⟨∇u m (x 1 ), ξ i ⟩ ≤ ⟨∇u m (x 0 ), ξ i ⟩ and ⟨∇u m (x), ξ i ⟩ ≤ ⟨∇u m (x 2 ), ξ i ⟩.
We use the fact that (f m i ) ′ is increasing with [START_REF] Ricciotti | Regularity of the derivatives of p-orthotropic functions in the plane for 1 < p < 2[END_REF] to obtain that

|(f m i ) ′ (⟨∇u m (x 1 ), ξ i ⟩) -(f m i ) ′ (⟨∇u m (x 2 ), ξ i ⟩)| ≥ ϵ |ξ i | .
Thus, by [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF], we get that

|G m i (∇u m (x 1 )) -G m i (∇u m (x 2 ))| ≥ ϵ.
Once again, we can conclude thanks to Proposition 3. Proof. For every m ∈ N we have proved in Proposition 3.16 or in Proposition 3.17 that for every

1 ≤ i ≤ n the function G m i (∇u m
) is continuous with a modulus of continuity independent of m ∈ N. Hence that is the case for their sum, namely G m (∇u m ). □ 4. Uniform estimates for Theorem 1.6

In this section we study the case when

G = G 1 +G 2 where G i (z) := f ′ i (⟨z, ξ i ⟩)ξ i with f 1 ∈ C 1,1 loc (R) and f 2 ∈ C 1 (R)∩C 1,1
loc (R\{0}) two convex functions. Moreover, the right-hand side of ( 4) is a constant λ ∈ R.

We begin by the following observation on ξ 1 and ξ 2 :

Proposition 4.1. Under the assumptions of Theorem 1.6 we can assume that ξ 1 = e 1 and ξ 2 = e 2 are the two standard vectors of the canonical basis.

Proof. Let us assume that A is an invertible linear matrix. We introduce the convex function

φ(z) := f 1 (⟨z, ξ 1 ⟩) + f 2 (⟨z, ξ 2 ⟩).
Let us consider u a solution of ( 9), then u is a minimizer of ( 25)

min w∈W 1,2 u (Ω) Ω φ(∇w(x)) + λw(x)dx with φ(z) = f 1 (⟨z, ξ 1 ⟩) + f 1 (⟨z, ξ 2 ⟩).
For every w ∈ W 1,2 (Ω), we have:

Ω φ(∇w(x)) + λw(x)dx = | det A| A -1 (Ω)
φ(∇w(Ay)) + λw(Ay)dy.

If we set v(y) := w(Ay) then:

Ω φ(∇w(x)) + λw(x)dx = | det A| A -1 (Ω)
φ((A T ) -1 ∇v(y)) + λv(y)dy.

Hence, since u is a minimizer of (25), we obtain that u(A•) is a minimizer of

A -1 (Ω) φ((A T ) -1 ∇v(y)) + λv(y)dy on W 1,2 u(A•) (A -1 (Ω))
. It remains to choose A such that (A -1 )ξ 1 = e 1 and (A -1 )ξ 2 = e 2 . Since proving that ∇φ(∇u) ∈ C 0 (Ω) is equivalent to proving that ∇φ(∇u(A•)) ∈ C 0 (A -1 (Ω)) we can assume that ξ 1 = e 1 and ξ 2 = e 2 . □

We want to establish continuity estimates for G m (∇u m ) independent of m ∈ N with u m solution of [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]. We start by proving the following lemma inspired by [12, Proposition 2.3]: Lemma 4.2. Let f 1 and f 2 be two smooth convex functions. Let u be a smooth solution of (9) with G(z)

:= f ′ 1 (⟨z, e 1 ⟩)e 1 + f ′ 2 (⟨z, e 2 ⟩)e 2 . Then the function f ′ 1 (∂ 1 u) belongs to W 1,2 loc (Ω). Moreover, for every Ω ′′ ⋐ Ω ′ ⋐ Ω and every L Ω ′ ≥ ||∇u|| L ∞ (Ω ′ ) we have ||f ′ 1 (∂ 1 u)|| W 1,2 (Ω ′′ ) ≤ C(L ′ Ω , ||f ′ 1 || L ∞ (-L Ω ′ ,L Ω ′ ) , ||f ′ 2 || L ∞ (-L Ω ′ ,L Ω ′ ) , ||f ′′ 1 || L ∞ (-L Ω ′ ,L Ω ′ ) , dist(∂Ω ′ , ∂Ω ′′ )).
Proof. By local Lipschitz regularity of u, we already know that

f ′ 1 (∂ 1 u) ∈ L 2 loc (Ω).
Since u is a solution of ( 9) we have that:

Ω ⟨∇φ(∇u), ∇θ⟩ = - Ω λθ for every θ ∈ C ∞ 0 (Ω).
If we differentiate the Euler-Lagrange equation in the first direction, the fact that λ ∈ R gives that (26)

Ω ⟨∇ 2 φ(∇u)∇∂ 1 u, ∇θ⟩ = 0 for every θ ∈ C ∞ 0 (Ω). If we replace θ by ξ 2 f ′ 1 (∂ 1 u) with ξ ∈ C ∞ 0 (Ω ′ ) and Ω ′ ⋐ Ω we obtain i=1,2 Ω f ′′ i (∂ i u)∂ 1i uξ 2 f ′′ 1 (∂ 1 u)∂ 1i u = -2 i=1,2 Ω f ′′ i (∂ i u)∂ 1i uξ∂ i ξf ′ 1 (∂ 1 u).
Since the terms in the left hand side are non-negative we have that

Ω (f ′′ 1 (∂ 1 u)∂ 11 uξ) 2 ≤ -2 i=1,2 Ω f ′′ i (∂ i u)∂ 1i uξ∂ i ξf ′ 1 (∂ 1 u).
With an integration by parts on the right hand side we get

Ω (∂ 1 [f ′ 1 (∂ 1 u)]) 2 ξ 2 ≤ 2 i=1,2 Ω f ′ i (∂ i u)∂ 1 (ξ∂ i ξ)f ′ 1 (∂ 1 u) + f ′ i (∂ i u)ξ∂ i ξ∂ 1 [f ′ 1 (∂ 1 u)].
With the Young and Hölder inequalities and the fact that

||∇u|| L ∞ (Ω ′ ) ≤ L Ω ′ we obtain that Ω (∂ 1 [f ′ 1 (∂ 1 u)]) 2 ξ 2 ≤ C(L Ω ′ , ||f ′ 1 || L ∞ (-L Ω ′ ,L Ω ′ ) , ||f ′ 2 || L ∞ (-L Ω ′ ,L Ω ′ ) , ||ξ|| W 1,∞ (Ω ). Hence, if we take ξ ∈ C ∞ 0 (Ω ′ ) such that ξ ≡ 1 on Ω ′′ with Ω ′′ ⋐ Ω ′ then we get that ∂ 1 [f ′ 1 (∂ 1 u)] belongs to L 2 (Ω ′′ ) and ||∂ 1 [f ′ 1 (∂ 1 u)]|| L 2 (Ω ′′ ) ≤ C(L Ω ′ , ||f ′ 1 || L ∞ (-L Ω ′ ,L Ω ′ ) , ||f ′ 2 || L ∞ (-L Ω ′ ,L Ω ′ ) , dist(Ω ′ , Ω ′′ )).
With the same strategy we can also prove that ∂ 2 f ′ 2 (∂ 2 u) ∈ L 2 (Ω ′′ ) with the same estimate.

It remains to prove that ∂ 2 f ′ 1 (∂ 1 u) ∈ L 2 loc (Ω). We proceed as in the proof of [10, Theorem 2.1]. For 0 < h < 1 4 and x ∈ Ω ′′ , we introduce τ (x) = σ(x + he 2 ) -σ(x) h where σ(x) = G(∇u(x)). We set

τ 1 (x) := f ′ 1 (∂ 1 u(x + he 2 )) -f ′ 1 (∂ 1 u(x)) h
, we want to prove that ||τ 1 || L 2 loc (Ω ′′ ) is bounded uniformly in h.

Since f ′ 1 is Lipschitz continuous and increasing there exists K > 1 such that

τ 1 (x) 2 ≤ Kτ 1 (x) × ∂ 1 u(x + he 2 ) -∂ 1 u(x) h .
Using the fact that f 2 is convex we have that:

τ 1 (x) 2 ≤ K τ (x), ∇u(x + he 2 ) -∇u(x) h . With ξ ∈ C ∞ 0 (Ω ′′′ )
where Ω ′′′ ⋐ Ω ′′ and 0 < h < dist(∂Ω ′′′ , ∂Ω ′′ ) we have

||ξτ 1 || 2 L 2 (Ω ′′′ ) ≤ K Ω ′′′ ξ 2 τ (x), ∇u(x + he 2 ) -∇u(x) h .
Since div τ = 0, an integration by parts gives that

||ξτ 1 || 2 L 2 (Ω ′′′ ) ≤ 2K Ω ′′′ ξ(x) u(x + he 2 ) -u(x) h ⟨∇ξ(x), τ (x)⟩ . Thus, ||ξτ 1 || 2 L 2 (Ω ′′′ ) ≤ C L Ω ′ , K, ||ξ|| W 1,∞ (Ω ′′ ) ||ξτ || L 2 (Ω ′′′ )
. We already know that ||τ 2 || L 2 (Ω ′′′ ) is bounded uniformly in h thanks to the fact that ∂ 2 f ′ 2 (∂ 2 u) ∈ L 2 (Ω ′′ ). Hence, ||ξτ 1 || L 2 (Ω ′′′ ) is bounded uniformly in h. Thus, if we take ξ ≡ 1 on a subset of Ω ′′′ , we obtain that ∂ 2 f ′ 1 (∂ 1 u) belongs to L 2 loc (Ω ′′′ ) with an explicit estimate. □

If we apply this lemma with f m 1 and f m 2 we obtain an estimate on the Sobolev norm of (f m 1 ) ′ (∂ 1 u m ) independent of m ∈ N. Hence, we can apply Proposition 3.17 to prove that (f m 1 ) ′ (∂ 1 u m ) is continuous with a modulus of continuity that does not depend on m ∈ N. It remains to do the same for (f m 2 ) ′ (∂ 2 u m ). For every r > 0 we have the following result coming from [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Proposition 2.4]: Proposition 4.3. Let f 1 and f 2 be two smooth convex functions. Let u be a smooth solution of [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF] with G(z) := f ′ 1 (⟨z, e 1 ⟩)e 1 + f ′ 2 (⟨z, e 2 ⟩)e 2 and f ≡ λ ∈ R. For every r > 0 and every x 0 ∈ Ω ′ ⋐ Ω, we have

Ω ′ ∩Ur |f ′′ 2 (∂ 2 u)∂ 22 u| 2 ≤ C(r, α r , ||f ′′ 1 || L ∞ (B L Ω ′ ) ) with U r := {x ∈ Ω, |∂ 2 u(x)| ≥ r}, L Ω ′ := ||∇u|| L ∞ (Ω ′ ) and α r := sup r≤t≤L Ω ′ f ′′ 2 (t).
Proof. Since λ is a constant, the right-hand side of ( 9) vanishes when we differentiate the equation. By [START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF]Proposition 2.4], we have that

Ω ′ ∩Ur |f ′′ 1 (∂ 1 u)∂ 11 u| 2 + |f ′′ 2 (∂ 2 u)∂ 22 u| 2 ≤ C(r, α r , ||f ′′ 1 || L ∞ (B L Ω ′ ) )
and the conclusion follows. □ Proof. For every ϵ > 0, we want to find δ > 0 such that

(f m 2 ) ′ (∂ 2 u m (B δ (x 0 ))) ⊂ B ϵ ((f m 2 ) ′ (∂ 2 (u m (x 0 )))). We introduce C(ϵ) > 0 such that if -C(ϵ) ≤ t ≤ C(ϵ) then (28) |(f m 2 ) ′ (t) -(f m 2 ) ′ (0)| ≤ ϵ 2
for every m ≥ M r . Then thanks to Proposition 4.6, we have two options.

If

∂ 2 u m (x) ∈ (-∞, d ′ -C(ϵ) ) ∪ (d C(ϵ)
, ∞) for every x ∈ B δ 0 (x 0 ) we can assume that f 1 and f 2 are in C 1,1 loc and apply Theorem 1.4. Otherwise, -C(ϵ) ≤ ∂ 2 u m (x) ≤ C(ϵ) for every x ∈ B δ 0 (x 0 ). In that case we conclude thanks to (28). □

If we combine the results of this section, we have proved:

Proposition 4.8. Under the assumptions of Theorem 1.6, the functions (G m (∇u m )) m∈N are continuous with the same modulus of continuity on each compact subset of Ω.

5.

Uniform estimate for Theorem 1.9

This section is devoted to the proof of Theorem 1.9. We assume that there exists a compact set

D G such that G ∈ C 1 (R N \D G ) and D G = R N \ k∈N O k with O k := {z ∈ R N , 1 k |v| 2 < ⟨DG s (z)v, v⟩ < k|v| 2 for every v ∈ R N } where DG s := DG+DG T 2
. For every r > 0, we introduce the closed r-neighborhood of a set U : N r (U ) := {y ∈ R N , dist(y, U ) ≤ r}. We assume that there exists t 0 > 0 such that for every 0 ≤ t ≤ t 0 the connected components of N t (D G ) are simply connected.

As in the previous sections, we want to obtain uniform estimates for smooth approximations of the original problem. Hence, we are working with the smooth function G m from Proposition 2.6 and the smooth solution u m of (9). Let r 0 be the smallest distance between two connected components of D G . We introduce ρ 0 < min{ r 0 8 , t 0 }. In this section, we prove that: Proposition 5.1. For every 0 < t < ρ 0 2 and for every subset Ω ′ ⋐ Ω, the functions dist(∇u m , N t (D G )) and ∇u m × dist(∇u m , N t (D G )) are continuous with a uniform modulus of continuity in m ≥ 2 t . Moreover, for every x 0 ∈ Ω ′ , there exists r > 0 independent of m ∈ N such that ∇u m (B r (x 0 )) encounters at most one connected component

D 0 G of D G . Furthermore if ∇u m (B r (x 0 )) ∩ D 0 G is not empty then ∇u m (B r (x 0 )) ⊂ N 3ρ 0 (D 0 G ). We define O t k := m≥ 2 t { 1 k Id < (DG m ) s < kId} \N t (D G ).
Hence the sets O t k are independent of m when m ≥ 2 t . Since every estimate of this section is independent of m ≥ 2 t we can drop the subscript m ∈ N in order to simplify the notations. Moreover, since we want to prove continuity results for every x 0 ∈ Ω ′ we can replace Ω ′ by B dist(x 0 ,∂Ω) (x 0 ). By replacing u(•) by u(dist(x 0 , ∂Ω) • +x 0 ) we can assume that Ω ′ = B 1 (0). We introduce the constant L > 0 that is a Lipschitz constant of u m on B 1 (0) uniform in m ∈ N. In the remaining of the section 0 < t < ρ 0 2 is fixed. Hence, we do not state the dependence on t in the constants of the following results. Let η be a smooth function in a neighborhood of ∇v(B 1 (0)). We assume that

∇v(B 1 (0)) ∩ {η > 0} ⊂ O t k . Then there exists λ := λ(k, N ) > 0 such that if in ∇v(B 1 (0)) ∩ {η > 0} the eigenvalues γ 1 ≤ γ 2 ≤ ... ≤ γ N of D 2 η satisfy γ 2 > 0 and 0 ≥ γ 1 ≥ -λγ 2 then L v G (η + (∇v)) ≥ ⟨∇ f , ∇η(∇v)⟩ -λγ 2 k 3 f 2 1 {η(∇v)>0}
in the weak sense.

Here, η + := max{η, 0}.

Proof. Since v is a solution of (29) we have that

L v G (η(∇v)) = div(DG(∇v)∇[η(∇v)]) = i,j,s,l D i G j (∇v)v js η sl (∇v)v li + ⟨∇ f , ∇η(∇v)⟩.
As in [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF]Lemma 3.2], for x 0 ∈ {η(∇v) > 0} we can choose coordinates such that η sl (∇v(x 0 )) = γ s δ sl . Hence,

L v G (η(∇v))(x 0 ) = s γ s i,j D i G j (∇v)v js v si + ⟨∇ f , ∇η(∇v)⟩. Since ∇v(B 1 (0)) ∩ {η > 0} ⊂ O t k we obtain that L v G (η(∇v))(x 0 ) ≥ γ 1 k|∇v 1 | 2 + N n=2 γ n 1 k |∇v n | 2 + ⟨∇ f , ∇η(∇v)⟩.
This last inequality combined with the fact that γ 1 ≥ -λγ 2 on {η(∇v) > 0} provides that

γ -1 2 L v G (η(∇v))(x 0 ) ≥ k -1 N n=2 |∇v n (x 0 )| 2 -kλ|∇v 1 (x 0 )| 2 + γ -1 2 ⟨∇ f , ∇η(∇v)⟩. If L v G (η(∇v))(x 0 ) < ⟨∇ f , ∇η(∇v)⟩ -λγ 2 k 3 f 2 then k -1 N n=2 |∇v n (x 0 )| 2 -kλ|∇v 1 (x 0 )| 2 < -λk 3 f 2 . Since N n=2 |∇v n (x 0 )| 2 ≥ 1 2 (i,j)̸ =(1,1) v 2 ij (x 0 ) we have that (30) ( λ -1 k -2 2 -1) (i,j)̸ =(1,1) v 2 ij (x 0 ) + k 2 f 2 < v 2 11 (x 0 ). We introduce D s G = DG+DG T 2 . Since T r(DG s (∇v)D 2 v) = T r(DG(∇v)D 2 v) = f , we obtain that D 1 G s 1 (∇v)v 11 = - (i,j)̸ =(1,1) D i G s j v ij + f .
Thus, since x 0 ∈ {η(∇v) > 0} and {η > 0} ⊂ O t k we have

v 2 11 (x 0 ) ≤ C(N, k) (i,j)̸ =(1,1) v 2 ij (x 0 ) + k 2 f 2 .
We get a contradiction with (30) when λ ≤ 

div(G(∇v)) = f in B 1 (0) with f ∈ L q (B 1 (0)). We consider p such that B ϵ (p) ∩ N t (D G ) = ∅. Let k ∈ N such that B ϵ (p) ⊂ O t k .
Then there exist δ 0 > 0 and µ 0 > 0 depending on the modulus of continuity of DG in B ϵ+ t 2 (p), k and ϵ such that if ||v -l p || L ∞ (B 1 (0)) ≤ δ 0 for some affine function l p with ∇l p = p and

|| f || L q (B 1 (0)) ≤ δ 0 µ 0 , then ∇v(B 1 2 (0)) ⊂ B ϵ (p).
We can use this result to show that:

Lemma 5.6. For every ϵ > 0 there exist α := α(ρ 0 , DG, ||f || L q (Ω) , L, N, ϵ), κ := κ(DG, L, N, ϵ) ≤ ϵ and µ 1 := µ 1 (DG, L, N, ϵ) with L the Lipschitz constant of u on B 1 (0) such that if

|{∇u ∈ B κ (p)} ∩ B r (0)| |B r (0)| ≥ 1 -µ 1
for some p / ∈ N t+ϵ (D G ) and r ≤ α then ∇u(B r 2 (0)) ⊂ B ϵ (p). Remark 5.7. When a dependence in DG appears in a constant it means that the constant depends only on on the sets of ellipticity O t k and the modulus of continuity of DG m outside N t (D G ) with m ≥ 2 t the parameter of regularization. Since all those quantities are independent of m ≥ 2 t we can just denote this dependence by DG.

Proof. For r > 0, we introduce v(x) := 1 r u(rx) in B 1 (0). Then div(G(∇v(x))) = rf (rx)
in B 1 (0). Since q > N by taking r small enough we can assume that ||rf (r•)|| L q (B 1 (0)) is as small as we want. Hence, there exists α := α(ρ 0 , DG, ||f || L q (Ω) , L, N ) > 0 such that ||rf (r•)|| L q (B 1 (0)) ≤ δ 0 µ 0 for every r ≤ α.

We show as in [START_REF] Colombo | Regularity results for very degenerate elliptic equations[END_REF]Lemma 4.1] that there exists an affine function l p such that ||v -l p || L ∞ (B 1 (0)) ≤ δ 0 . By Morrey inequalities, there exists a constant C 0 depending only N such that for every x ∈ B r (0) and every w ∈ W 1,2N (B 1 (0)) we have

w(x) - 1 |B 1 (0)| B 1 (0) w(y)dy ≤ C 0 1 |B 1 (0)| B 1 (0) |∇w(y)| 2N dy 1 2N
.

We set l p (x) := ⟨p, x⟩ + 1 |B 1 (0)| B 1 (0) v(y)dy. In that case, we obtain

|v(x) -l p (x)| ≤ C 0 1 |B 1 (0)| B 1 (0) |∇v(y) -p| 2N dy 1 2N
.

We estimate the right hand side by splitting the integral in two sets. The first one is

X := {x ∈ B 1 (0),∇v(x) ∈ B κ (p)}. A direct computation gives that B 1 (0)∩X |∇v(y) -p| 2N dy ≤ κ 2N |B 1 (0)|.
Since the complement of X has a measure less than µ|B 1 (0)|, we have that

B 1 (0)\X |∇v(y) -p| 2N dy ≤ µ|B 1 (0)|(2L) 2N
with L the Lipschitz constant of u on B 1 (0). Thus,

|v(x) -l p (x)| ≤ C 0 (κ 2N + µ(2L) 2N ) 1 2N
.

Hence, it remains to take κ and µ small enough such that C 0 (κ 2N + µ(2L) 2N ) 1 2N ≤ δ 0 in order to apply Proposition 5.5 to v. The conclusion follows for u. □

In the rest of the paper, we write the vectors z ∈ R N in the following way: z = (p, p ′ ) with p ∈ R 2 and p ′ ∈ R N -2 and we assume that D G ⊂ {p ′ = 0}. Now, we introduce the main result of this subsection that has the same conclusion as [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF]Propositon 3.7].

Proposition 5.8. For every ϵ > 0, there exist three constants β := β(||f || W 1,q (Ω) , κ, µ 1 , N, DG, ϵ) > 0, s 0 := s 0 (κ, µ 1 , L, DG, ϵ) > 0 and σ 0 := σ 0 (κ, µ 1 , N, DG, ϵ) > 0 with κ and µ 1 from Lemma 5.6 such that if ∇u(B r (0)) ⊂ {|p ′ | < σ 0 } with r ≤ β then either ∇u(B s 0 r (0)) ⊂ B ϵ (p) for some p / ∈ N ϵ+t (D G ) or ∇u(B s 0 r (0)) ⊂ N ϵ+t (D G ).

As in [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF], we need the following preliminary lemma:

Lemma 5.9. Let (p 0 , 0) / ∈ N ϵ+t (D G ). There exist β := β(||f || W 1,q (Ω) , κ, µ 1 , N, DG, ϵ) > 0, σ 0 := σ 0 (κ, µ 1 , N, DG, ϵ) > 0 and C 0 := C 0 (κ, µ 1 , N, DG, ϵ) > 0 such that if ∇u(B r (0)) ⊂ {|p ′ | < σ 0 } ∩ {|p -p 0 | ≥ κ 4 } and |{∇u ∈ B κ (p 0 , 0)} ∩ B r 2 (0)| |B r 2 (0)| < 1 -µ 1 , for r ≤ β then ∇u(B r 4 (0)) ⊂ {|p -p 0 | ≥ κ 4 + C 0 }.
Proof. There exists k ∈ N such that B ϵ (p 0 , 0) ⊂ O t k . We follow the proof of [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF]Lemma 3.8]. We set v(x) = 1 r u(rx) on B 1 (0) and we replace f (x) by rf (rx). We define

η A (p, p ′ ) := exp( A 2 2 |p ′ | 2 -A|p|), η A,p 0 := η A (p -p 0 , p ′ ) -exp(-A κ 2 
).

In the basis ( p ⊥ |p| , p |p| , e 3 , ..., e N ), on the set {|p ′ | < A -3 }, we have

(A 2 η A ) -1 D 2 η A = diag(-(A|p|) -1 , 1, ..., 1) + O(A -2 )

Main proofs

We assume that G satisfies the assumptions of Theorem 1.1, Theorem 1.4 or Theorem 1.6. Before proving these three theorems, we show the following result: Proposition 6.1. If G satisfies the assumptions of Theorem 1.1, Theorem 1.4 or Theorem 1.6 then G(∇u) does not depend on the choice of the solution u of (4) when the Dirichlet boundary condition is fixed.

Proof. Let us assume that u and v are two solutions of the same equation ( 4) such that u = v on ∂Ω. Then we have:

Ω ⟨G(∇u) -G(∇v), ∇u -∇v⟩ = 0.
Since ⟨G(A) -G(B), A -B⟩ ≥ 0, we get that ⟨G(∇u(x)) -G(∇v(x)), ∇u(x) -∇v(x)⟩ = 0 for a.e.

x ∈ Ω. The condition (A 1 ) gives that G 1 (∇u(x)) = G 1 (∇v(x)) for a.e. x ∈ Ω. In the other cases, we use the convexity of φ to get the same result. □

With this proposition, we just have to show that G(∇u) is continuous for u the solution of (4) obtained as the limit of (u m ) m∈N when m → +∞:

Proof of Theorem 1.1, Theorem 1.4 and Theorem 1.6. Thanks to Proposition 3.18 and Proposition 4.8, we have that for every compact Ω ′ ⋐ Ω, the family (G m (∇u m )) m∈N is equicontinuous. Hence, by the Arzelà-Ascoli Theorem, G m (∇u m ) converges to v uniformly on Ω ′ , up to a subsequence.

Since ||∇u m || L ∞ (Ω ′ ) is bounded uniformly in m ∈ N, we have that |G m (∇u m ) -G(∇u m )| → 0 in L 1 (Ω ′ ). Thanks to Remark 2.11, we get that G m (∇u m ) converges to G(∇u) in L 1 (Ω ′ ). Thus, v = G(∇u)
is continuous for any solution of (4) thanks to Proposition 6.1.

□

We are ready to prove Proposition 1.7.

Proof of Proposition 1.7. On the set σ -1 (V ) we define F (x) as G -1 (σ(x)). Thus, the function F is continuous and F = ∇u 0 a.e. on σ -1 (V ). Hence, ∇u 0 has a continuous representative on σ -1 (V a.e. on Ω ∩ [∇u 0 ̸ = 0], there exists C ′ such that for a.e. x ∈ B r (x 0 ), ⟨∇u 0 (x), e⟩ ≥ C ′ > 0. By Lipschitz continuity of u 0 for a.e. x ∈ B r 2 (x 0 ) and every 0 < t < r 2 we have that

u 0 (x + te) -u 0 (x) = t 0 ⟨∇u 0 (x + se), e⟩ds ≥ C ′ t > 0.
By continuity of u 0 , for every x ∈ B r 2 (x 0 ) and every 0 < t < r 2 we obtain that u 0 (x + te) -u 0 (x) ≥ C ′ t > 0. Hence, by continuity of u 0 , for every ρ > 0 we have that 0

< |B ρ (x 0 ) ∩ [u 0 > u 0 (x 0 )]| < B ρ (x 0 ). This means that x 0 ∈ ∂ e [u > u(x 0 )]. Finally, let t ∈ R such that ∂ e E t ∩ [σ ̸ = 0] is a C 1 curve. By continuity of u 0 , for every x ∈ ∂ e E t ∩ [σ ̸ = 0] we have that u 0 (x) = t. Moreover, for every x ∈ [σ ̸ = 0] such that u 0 (x) = t we have that x ∈ ∂ e E t . Hence, for a.e. t ∈ R, [u 0 = t] ∩ [σ ̸ = 0] = ∂ e E t ∩ [σ ̸ = 0]. Hence, the connected components of [u 0 = t] ∩ [σ ̸ = 0] are C 1 curves for a.e. t ∈ R. □
In order to prove Theorem 1.9 we state the following proposition that we use instead of Proposition 6.1 in this case: Proposition 6.2. Let us assume that G satisfies the assumptions of Theorem 1.9. We consider two solutions u and v of of (4) such that u = v on ∂Ω. Then ∇u(x) = ∇v(x) for a.e. x ∈ Ω such that ∇u(x) / ∈ D G .

Proof. As in the proof of Proposition 6.1, for a.e. x ∈ Ω we have that ⟨G(∇u(x)) -G(∇v(x)), ∇u(x) -∇v(x)⟩ = 0.

If for some x ∈ Ω, we have that ∇u(x) / ∈ D G then there exists k ∈ N such that ∇u(x) ∈ O k := { 1 k Id < DG < kId}. Hence, for every A ∈ R N \{∇u(x)}, we have that ⟨G(A) -G(∇v(x)), A -∇v(x)⟩ > 0. Thus, ∇v(x) = ∇u(x) for a.e. x ∈ Ω such that ∇u(x) / ∈ D G . □ Remark 6.3. Thanks to this proposition, dist(∇u, D G ) and ∇u × dist(∇u, D G ) do not depend on the choice of a solution of (4).

Finally, we prove Theorem 1.9:

Proof of Theorem 1.9. By Remark 2.11 and Remark 2.9, for every Ω ′ ⋐ Ω and every t > 0 we have:

dist(∇u m , N t (D G )) -dist(∇u, N t (D G )) → 0 in L 1 (Ω ′ ) and ∇u m × dist(∇u m , N t (D G )) -∇u × dist(∇u, N t (D G )) → 0 in L 1 (Ω ′ )
when m → +∞. Thus, thanks to Proposition 5.1, the functions dist(∇u, N t (D G )) and ∇u × dist(∇u, N t (D G )) have a continuous representative σ t and Σ t respectively for every t > 0.

We introduce the following open subset of Ω, Ω 0 := t>0 [σ t > 0]. Let us consider x 0 ∈ Ω 0 . Then there exist t > 0 and ϵ > 0 such that σ t (x 0 ) > ϵ. By continuity of σ t , there exists a neighborhood U of x 0 such that σ t ≥ ϵ 2 on U . The continuity of Σ t on U and the fact that σ t ≥ ϵ 2 on U give that ∇u has a continuous representative on U . Hence, dist(∇u, D G ) has a continuous representative on U . Thus, ∇u and dist(∇u, D G ) have continuous representatives F 0 and σ 0 respectively on Ω 0 . Let us extend σ 0 by 0 on Ω\Ω 0 . We claim that this function σ is continuous and coincides a.e. with dist(∇u, D G ). To prove the continuity we assume that there exists x ∈ Ω\Ω 0 and (x n ) n∈N in Ω 0 a sequence converging to x such that (σ(x n )) n∈N does not converge to 0. This means that we can extract a subsequence from (σ(x n )) n∈N , still denoted (σ(x n )) n∈N such that σ(x n ) ≥ l > 0 when n is large enough. Thus, σ l 2 (x n ) ≥ l 2 for every n large enough. By continuity of σ l 4 we obtain that x ∈ Ω 0 which is a contradiction. Hence, σ is continuous. Moreover, for a.e. x ∈ Ω 0 , σ(x) := dist(∇u(x), D G ) and for a.e x ∈ Ω such that σ(x) = 0 we have that x ∈ D G . Thus, σ is a representative of dist(∇u, D G ) and F 0 × σ is a continuous representative of ∇u × dist(∇u, D G ).

To conclude, we assume that G is constant on each connected components of D G . By Remark 2.9, there exists a subsequence of (∇u m ) m∈N still denoted (∇u m ) m∈N such that ∇u m → ∇u a.e. on Ω 0 when m → +∞.

Let us assume that (x n ) n∈N is a sequence in Ω 0 converging to x 0 ∈ Ω\Ω 0 when n → +∞. By Proposition 5.1, there exists r > 0 such that for every m ∈ N, ∇u m (B r (x 0 )) ⊂ N By homogeneity of γ C , for every y ∈ ∂γ C (z) we get that γ C (z ′ ) ≥ ⟨y, z ′ ⟩ for every z ′ ∈ R N . By taking z ′ = 0 we get that γ C (z) ≤ ⟨y, z⟩. Hence, we have that γ C (z) = ⟨y, z⟩ for every y ∈ ∂γ C (z). Thus, for every z ∈ R N , we obtain that (34) ∂γ C (z) = {y ∈ R N such that γ C (z) = ⟨y, z⟩ and γ C (z ′ ) ≥ ⟨y, z ′ ⟩ for every z ′ ∈ R N }.

This convex set is not empty since γ C is a convex continuous function. We claim that when z ̸ = 0, ∂γ C (z) is reduced to a singleton. In fact, if there exist y 1 and y 2 two different points of ∂γ C (z) then ⟨y 1 , z⟩ = ⟨y 2 , z⟩ = γ C (z) and ⟨y 1 , z ′ ⟩ ≤ 1, ⟨y 2 , z ′ ⟩ ≤ 1 for every z ′ ∈ ∂C. Hence, C is on one side of the hyperplane ⟨ξ, y 1 ⟩ = 1, on one side of another hyperplane ⟨ξ, y 2 ⟩ = 1 and z γ C (z) ∈ ∂C is in their intersection. This contradicts the fact that C is at least C 1 . Thus for every z ̸ = 0, ∂γ C (z) contains only one vector. Hence, γ C is differentiable at every z ̸ = 0. By homogeneity of γ C we have that ∇γ C (z) is positively colinear to ν C (P C (z)) where ν C is the unit outward normal vector to C and P C (z) := z γ C (z) . By (34) we have that ⟨z, ∇γ C (z)⟩ = γ C (z). This scalar product in the denominator is not 0 because C contains a small ball centered at 0, thus for every z ′ ∈ ∂C the normal vector ν C (z ′ ) cannot be orthogonal to z ′ . With this expression of the gradient of γ C we can find the regularity of γ C . In fact, we know that ν C is C k-1,α continuous with k ≥ 1. Since γ C is Lipschitz continuous the map P C is locally Lipschitz continuous on R N \{0}. Hence, ∇γ C is C 0,α loc continuous on R N \{0}. Thus, P C is C 1,α loc continuous on R N \{0}. By a bootstrap argument we get that γ C is C k,α loc on R N \{0}. □

We also prove a convexity result for the lower level sets of the convolution product of γ C : Hence, if we have equality in (36) this means that z 1 -y and z 2 -y are colinear. Since z 1 ̸ = z 2 , for a.e. y ∈ B 1 m (0) z 1 -y and z 2 -y are not colinear. Thus, γ m C (t(z 1 )+(1-t)(z 2 )) < tγ m C (z 1 )+(1-t)γ m C (z 2 ). This provides the strict convexity of the lower level sets of γ m C for every m ∈ N. □

We prove that the approximations of a C 1,1 strictly convex set through convolutions of γ C are also C 1,1 with a uniform norm. Hence, ν Cm is Lipschitz continuous for every m ∈ N with a Lipschitz constant independent of m ∈ N. □
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Proposition 1 . 13 .

 113 g. [16, Theorem 3.1]: Let u be a C 3 solution of (4) with G ∈ C 2 and f ≡ λ ∈ R. Then for any e ∈ S N -1 and any open set Ω ′ ⋐ Ω, we have that sup x∈Ω ′ ∂ e u m (x) = sup x∈∂Ω ′ ∂ e u m (x).

Proposition 2 . 3 .

 23 If G satisfies the assumptions of Theorem 1.1 then there exists a sequence of smooth functions (G m ) m∈N converging uniformly to G on B L (0) that satisfy the same assumptions as G and (8) uniformly in m ∈ N. Namely, for every m ∈ R, G m is the sum of two functions G m 1 and G m

Remark 2 . 11 .

 211 the gradient of a convex function φ i , we obtain that for a.e. x ∈ Ω and ν x -a.e. y ∈ R N , G i (y) = G i (∇u(x)) and the conclusion follows. □We have the following convergence result: If we consider H(x, y) := |G(∇u(x))-G(y)| in[START_REF] Silva | Minimizers of convex functionals arising in random surfaces[END_REF], we get that G(∇u m ) → G(∇u) in L 1 (Ω).

2 Ω

 2 the dependence on G of the norms of these quantities is only due to the Lipschitz constant of G and C 1 from assumption(A ′ 1 ). Proof. Let us consider Ω ′′ ⋐ Ω ′ ⋐ Ω. By differentiating (4), for every e ∈ S 1 , every θ ∈ C 1 0 (Ω ′ ) we have that Ω ⟨DG(∇u)∇∂ e u, ∇θ⟩ = -Ω ∂ e f θ.In this last equality we choose the following test function: θ = η 2 ∂ e u with η ∈ C ∞ 0 (Ω ′ ) and η ≡ 1 on Ω ′′ . Hence, we get: Ω ⟨DG(∇u)∇∂ e u, ∇∂ e u⟩η 2 = -η∂ e u⟨DG(∇u)∇∂ e u, ∇η⟩ -Ω ∂ e f η 2 ∂ e u.⟨DG i (∇u)∇∂ e u, ∇∂ e u⟩η 2 = -2 n i=1 Ω η∂ e u⟨DG i (∇u)∇∂ e u, ∇η⟩ -Ω ∂ e f η 2 ∂ e u.

  If the case of Theorem 1.1 the functions (G m 1 ) m∈N satisfy uniformly the assumption (A ′ 1 ). Since the norm ||∇u m || L ∞ (Ω ′ ) can be bounded uniformly in m ∈ N, all the estimates of the previous proposition are independent of m ∈ N if we apply it to G m and u m . Hence, ||G m i (∇u m )|| W 1,2 (Ω ′′ ) can be bounded uniformly in m ∈ N. That is also the case for their sum: G

( 17 )

 17 T r(DG m (∇u m )D 2 u m ) = 0. m ) s (∇u m )D 2 u m ) = 0 where (DG m ) s = DG m + (DG m ) T 2 is the symmetric part of DG m . Thanks to Proposition 2.3, (DG m ) s is positive-definite. Hence, in a basis where (DG m ) s is diagonal the product of the two terms on the diagonal of D 2 u m is non-positive. Since D 2 u m is symmetric we obtain det(D 2 u m ) ≤ 0. □ As a consequence of Lemma 3.5, [18, Theorem 2] implies that:

  3 uniformly in m ∈ N. Let us assume that there exist x 1 , x 2 ∈ B δ (x 0 ) such that |G m (∇u m (x 1 ))-G m (∇u m (x 2 ))| ≥ r > 0. By Lemma 3.8 with Ω ′ = B δ (x 0 ), the diameter of G m (∇u m (B δ (x 0 ))) can be bounded from above by the diameter of G m (∇u m (∂Ω ′ )). Thus, there exist x 3 , x 4 ∈ ∂B δ (x 0 ) such that |G m (∇u m (x 4 )) -G m (∇u m (x 3 ))| ≥ r. Hence thanks to Proposition 3.3, G m (∇u m ) is continuous with a modulus of continuity independent of the parameter of regularization m ∈ N. □

Proposition 3 . 18 .

 318 3. □Hence, we have proved the following result: Under the assumptions of Theorem 1.4, the functions (G m (∇u m )) m∈N are continuous with the same modulus of continuity on each compact subset of Ω.

Lemma 5 . 4 .

 54 Let f ∈ C 1 (B 1 (0)) and v a smooth solution in B 1 (0) of (29) div(G(∇v)) = f .

5 . 2 .Proposition 5 . 5 .

 5255 When ∇u is close to the convex hull of D G . Let C G be the convex hull of D G . In this section we study the behavior of ∇u(B δ (0)) when ∇u(B δ (0)) is close to C G . By [11, Proposition 4.3], we have the following result: We assume that ϵ > 0 and that

  for every x ∈ ∂ e E t ∩ [σ ̸ = 0]. By[START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF] Theorem 4.11] we obtain that the connected components of∂ e E t ∩ [σ ̸ = 0] are C 1 curves. Let x 0 ∈ [σ ̸ = 0]. By continuity of σ this set is open. Hence, there exist r > 0 and C > 0 such that for every x ∈ B r (x 0 ) we have that ⟨σ(x), e⟩ ≥ C with e := σ(x 0 ) |σ(x 0 )| . Since, σ(x) = ∇φ(∇u 0 (x)) for a.e. x ∈ Ω the continuity of ∇φ gives that |∇u 0 (x)| ≥ C > 0 for a.e. x ∈ B r (x 0 ). Since σ |σ| = ∇u 0 |∇u 0 |

Proposition 7 . 1 .

 71 3ρ 0 (D m G ) with D m G a connected component of D G . By convergence a.e. on Ω of ∇u m we have that D m G is independent of m for m large enough. Let us call D 0 G this connected component, by continuity of dist(∇u, D G ) we obtain that dist(∇u(x n ), D 0 G ) → 0 when n → +∞. Since G is continuous on R N and constant on D 0 G we have that G(∇u(x n )) → G(∇u(x 0 )) when n → +∞. □7. Appendix: Regularity of the gauge functionLet C be a bounded convex set of R N such that its interior contains 0. We define the gauge associated to C as the following function:γ C (z) := inf{t > 0 such that z t ∈ C}.We have the following result about the regularity of γ C : Let k ∈ N and 0 ≤ α ≤ 1. If C is a strictly convex bounded set of R N of regularity C k,α such that its interior contains the origin then the gauge γ C associated to C is in C k,α loc (R N \{0}).Proof. The function γ C is convex on R N . For every z ∈ R N we compute the convex subdifferential ∂γ C (z) of γ C at the point z. By definition of the subdifferential we have ∂γ C (z) := {y ∈ R N such that γ C (z ′ ) ≥ γ C (z) + ⟨y, z ′ -z⟩ for every z ′ ∈ R N }.

  Hence, |∇γ C (z)|⟨z, ν C (P C (z))⟩ = γ C (z) for every z ̸ = 0. Again by homogeneity of γ C , for every z ̸ = 0 we obtain that (35) ∇γ C (z) = ν C (P C (z)) ⟨ν C (P C (z)), P C (z)⟩ .

Proposition 7 . 2 . 1 m

 721 Let C be a strictly convex bounded set of R N such that its interior contains 0. If (ρ m ) m∈N is a standard mollifying sequence then the lower level sets of γ m C := γ C * ρ m are strictly convex for every m ∈ N.Proof. Let us consider z 1 ̸ = z 2 on the boundary of a lower level set of γ m C . By continuity of γ m C , γ m C (z 1 ) = γ m C (z 2 ) =: s.Then for every 0 < t < 1 we have:γ m C (tz 1 + (1 -t)z 2 ) = B (0) γ C (t(z 1 -y) + (1 -t)(z 2 -y))ρ m (y)dy.By convexity of γ C we have(36) γ C (t(z 1 -y) + (1 -t)(z 2 -y)) ≤ γ C (z 1 -y) + (1 -t)γ C (z 2 -y).If γ C (z 1 -y) = γ C (z 2 -y) by strict convexity of C we get that γ C (t(z 1 -y) + (1 -t)(z 2 -y)) < tγ C (z 1 -y) + (1 -t)γ C (z 2 -y).

Proposition 7 . 3 .

 73 Let C be a C 1,1 strictly convex bounded set of R N such that its interior contains 0. We consider γ m C := γ C * ρ m with (ρ m ) m∈N a standard mollifying sequence andr m → 1 when m → +∞ such that C m := (γ m C ) -1 ({[0, r m )}) is a smooth convex set containing 0. Then C m is a C 1,1 strictly convex set of R Nand the Lipschitz constant of its outward normal vector can be bounded uniformly in m ∈ N. Proof. By Proposition 7.2 the set C m is strictly convex. Since (r m ) m∈N converges to 1 and (γ m C ) m∈N converges uniformly to γ C on R N when m → +∞ we have that lim m→+∞ dist(∂C m , ∂C) = 0. Thanks to this last result and the fact that 0 is in the interior of C we can find r > 0 such that B r (0) is in C m for every m large enough. Since C m is a level set of γ m C for every z ∈ ∂C m we have that ν Cm (z) = ∇γ m C (z) |∇γ m C (z)| . By Proposition 7.1 and (35) the function ∇γ m C := ∇γ C * ρ m is uniformly Lipschitz continuous on R N \B r (0). Moreover, there exists κ > 0 such that |∇γ m C (z)| ≥ κ for every m ∈ N large enough according to r > 0 and C.

  1, Theorem 1.4 or Theorem 1.6 we have a local C 1 regularity result: Proposition 1.7. Under the assumptions of Theorem 1.1, Theorem 1.4 or Theorem 1.6, G(∇u 0 ) has a continuous representative σ. If G is a homeomorphism between two open sets U and V then

  For every t ∈ R we introduce the super level set E t = [u 0 > t]. By the co-area formula we obtain that for a.e. t ∈ R, D1 Et = ∇u 0 |∇u 0 | H N -1 ∂ e E t where ∂ e E t is the support of the measure D1 Et . Since φ is radial σ |σ| = ∇u 0 |∇u 0 | a.e. on Ω ∩ [∇u 0 ̸ = 0]. Thus, by the co-area formula we get that D1 Et = σ |σ| H N -1 ∂ e E t for a.e. t ∈ R.

	Hence, we get

). □ Let us prove Proposition 1.8. Proof of Proposition 1.8. We know that G(∇u 0 ) has a continuous representative σ where G = ∇φ with φ a convex function that depends only on the Euclidean norm | • |.

Since this proposition allows to avoid the values of f ′′

2 around the origin we can apply it with f m 1 and f m 2 . In that case the constant C(r, α r , ||(f m 1 ) ′′ || L ∞ (B L Ω ′ ) ) can be taken independent of m ∈ N. Let us use this estimate in order to prove the continuity of (f m 2 ) ′ (∂ 2 u m ) uniformly in m ∈ N. Thanks to Proposition 2.5 there exist r > 0, ω : R + → R + a continuous function that satisfies ω(t) = 0 ⇔ t = 0 and M r ∈ N such that for every m ≥ M r , every x, y ∈ (-r 2 , r 2 ) we have that ( 27)

2 ) ′ (y))(x -y) ≥ ω(|x -y|). We prove the following alternative: Lemma 4.4. For every t > 0 there exist 0 < d t < t and δ 0 > 0 such that for every m ≥ M r , ∂ 2 u m (x) > d t for every x ∈ B δ 0 (x 0 ) or ∂ 2 u m (x) < t for every x ∈ B δ 0 (x 0 ).

Proof. By (27), for every t > 0 there exist 0 < d < t and C independent of m ≥ M r such that

We introduce F : R → R a smooth increasing function such that F (s) = 0 for every s < (f m 2 ) ′ (d) and F (s) = C for every s > (f m 2 ) ′ (t). We assume that for every 0 < δ < dist(x 0 ,∂Ω)

. Once again, thanks to the maximum principle from Proposition 3.10, there exist x ′ 1 and

Thus, as in the proof of Proposition 3.3, if we integrate between δ 0 and dist(x 0 ,∂Ω)

we obtain that:

Hence, using Proposition 4.3 there exists δ 0 > 0 such that ∂ 2 u m (x) ≥ d for every x ∈ B δ 0 (x 0 ) or ∂ 2 u m (x) ≤ t for every x ∈ B δ 0 (x 0 ). □

We have the same result with t < 0: Lemma 4.5. For every t < 0 there exist t < d ′ t < 0 and

Proof. The proof is the same as the proof of Proposition 4.4 replacing ∂ 2 u by -∂ 2 u. □

Hence we have proved:

Proposition 4.6. For every t > 0 there exist d t > 0 and δ 0 > 0 such that for every m ≥ M r we have that

With this result we are ready to prove the continuity of (f m 2 ) ′ (∂ 2 u m ). Proposition 4.7. Under the assumptions of Theorem 1.6, (f m 2 ) ′ (∂ 2 u m ) is continuous with a modulus of continuity independent of m ∈ N.

Preliminary results.

In this section, we introduce two results that are adaptations of [23, Proposition 3.1, Lemma 3.2] in the case where f ̸ = 0.

We introduce the following operator:

for every e ∈ S N -1 . We prove the following result:

Proof. Let us introduce m := sup

DG(∇u) by the identity matrix on the set where v = 0 then by [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.18], there exists

We estimate the left-hand side from below by integrating over the set [v = 0]. Thus,

Hence,

), we have:

□

In the rest of the paper we are going to apply this proposition to functions of ∇u that are concave in one direction. To do so, we prove the following result:

Once again if A is large enough depending only on λ(k, N ) from Lemma 5.4 and κ then the eigenvalues γ 1 ≤ ... ≤ γ n of D 2 η A,p 0 satisfy γ 2 > 0 and γ 1 > -λγ 2 in ∇v(B 1 (0)) ∩ {η A,p 0 > 0}. Thanks to Lemma 5.4, the function v p 0 := (η A,p 0 ) + (∇v) satisfies

Let denote by ν 1 the constant ν(µ 1 , N, k) from Proposition 5.3. We select σ 0 (κ, ν 1 , A) small in such a way that

)).

Then if we look at the right-hand side of (31) there exists β(||f || W 1,q (Ω) , κ, µ 1 , L, N, DG, ϵ) such that when r ≤ β, we can apply Proposition 5.

. Hence, we have that

The conclusion follows. □

We prove Proposition 5.8:

Proof of Proposition 5.8. We follow the proof of [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF]Proposition 3.7]. We introduce α, κ and µ 1 from Lemma 5.6 and β from Lemma 5.9. Taking r ≤ min{α, β}, we use the following strategy: if there exist (p 0 , 0)

then we can apply Lemma 5.6 in order to obtain that ∇u(B 2 -2n-1 r ) ⊂ B ϵ (p 0 , 0) and the conclusion follows.

If that is not the case then by Lemma 5.9 we obtain that for every

The idea in [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF]Proposition 3.7] is to use a covering argument with neighborhoods of lines. Unfortunately, we can not cover the set B 2L (0)\N ϵ+t (D G ) with κ 4 neighborhoods of lines since N ϵ+t (D G ) is not a finite union of small balls.

Instead, since the connected components of N ϵ+t (D G ) are simply connected we can consider a finite family of points

Thus, we can initiate the algorithm. By Lemma 5.9 we obtain that

The algorithm terminates after at most I G steps with two potential conclusions. The first one is that To finish this section we reintroduce the subscript m ∈ N. We can prove that for every 0 < t < ρ 0 2 , dist(∇u m , N t (D G )) and ∇u m × dist(∇u m , N t (D G )) are uniformly continuous in m ≥ 2 t with a similar strategy as in [START_REF] Mooney | Minimizers of convex functionals with small degeneracy set[END_REF]. Proof of Proposition 5.1. We take x 0 ∈ Ω ′ and 0 < ϵ < r 0 , we consider σ 0 from Lemma 5.9. We apply Proposition 5.10 with s = σ 0 4 . Hence, there exists δ s > 0 such that either ∇u m (B δs (x 0 )) ⊂ B σ 0 4 (∇u m (x 0 )) or ∇u m (B δs (x 0 )) ⊂ N σ 0 (C G ). In the first case for every 0 < ϵ 1 < σ 0 4 , we can find δ := δ(L, DG, ϵ 1 ) such that ∇u m (B δ (x 0 )) ⊂ B ϵ 1 (∇u m (x 0 )) thanks to Proposition 5.10.

In the second case, we apply Proposition 5.8 with r = min{β, δ s }. Hence, in this case, we either have ∇u m (B s 0 r (x 0 )) ⊂ B ϵ (p) for some p / ∈ N ϵ+t (D G ) or ∇u m (B s 0 r (x 0 )) ⊂ N ϵ+t (D G ). Since ∇u m (B s 0 r ) is connected, by definition of ρ 0 the set ∇u m (B s 0 r ) encounters at most one connected component D G .

Hence, for every ϵ > 0 and every t > 0 there exists δ ϵ (L, DG, N, ϵ, t, ||f || W 1,q (Ω) ) > 0 such that either ∇u m (B δϵ ) ⊂ B ϵ (∇u m (x 0 )) or ∇u m (B δϵ ) ⊂ N ϵ+t ((D G )) for every m ≥ 2 t . Thus, we have that dist(∇u m , N t (D G )) and ∇u m × dist(∇u m , N t (D G )) are continuous uniformly in m ∈ N with m ≥ 2 t . □