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This paper shows the useful combination of a gradient-based particle swarm optimization (GPSO) method with a metamodeling
process in order to save computation time for the design of a Wireless Power Transfer (WPT) system for automotive applications.
The goal of this analysis has been to investigate new configurations for 3F3 ferrite cores in an existing WPT system regarding both
the coupling factor and the ferrite volumes. An innovative gradient-based multi-objective optimization method has been coupled to
an adaptive sampling algorithm for Polynomial-Chaos Kriging metamodeling.

Index Terms—Metamodeling, Optimization methods, Wireless power transmission.

I. INTRODUCTION

MEtamodels have been initially developed to perform
sensitivity analysis at a low computation cost. They are

widely used for various modeling applications, and are espe-
cially handy for trade-off optimization problems on complex
computational models. The main interest of using an accurate
metamodel for optimization is its direct analytical expression
which can be called instead of the real model for comput-
ing many datapoints. In the field of electromagnetics, many
metamodel-based optimization have already been developed
such as Kriging-based optimization [1] or PCE-based opti-
mization [2]. The novelty of the metamodel-based optimization
presented here consists in extracting the gradient of the cost
function directly from its analytical expression. Indeed, instead
of calling the PCK predictor during the optimization process,
the gradient is directly computed from the meta-parameters,
thus, saving a lot of computation time in the case of complex
high-dimensional models. The works aims at investigating
new configurations for the design of 3F3 ferrite cores on an
available WPT system [3] which had not been done before.

II. OPTIMIZATION PROBLEM

A. Optimization method

The considered surrogate model consists in a combination of
a Polynomial Chaos Expansion (PCE) and a Gaussian process
(Kriging) : a Polynomial-Chaos Kriging (PCK) metamodel. An
accurate predictor can be computed from a given parameter
space using a previously developed active learning algorithm,
which combines PCK with an adaptive sequential sampling
method based on the quad-tree algorithm [4]

The optimization is performed by the Gradient Particle
Swarm Optimization (GPSO) which adds a local gradient-
based term to the motion equation of particles in the PSO
optimization [5]. The gradient computation is usually a heavy
burden but thanks to the PCK predictor it can be performed
easily. Indeed, the main advantage of using a PCE-based
metamodel is its direct analytical expression which allows an
easy computation of its gradient [6].

B. WPT model

The combination of an already developed active learning
metamodelling algorithm with the aforementioned GPSO opti-
mization method has been used for finding an optimal design
for the 3F3 ferrites of an existing WPT system [3]. Thanks
to this fast and accurate optimization method, this problem,
never treated before on such a WPT system, could be computed
easily. The considered relevant parameters, displayed on figure
1, are the (xf , yf ) position of the ferrite along with its
dimensions (wf , hf , lf ). Both ferrites are taken symmetrical
regarding (OR, y, z).

Fig. 1. Relevant geometrical parameters in the plane (x, z) for the optimization
problem

The objectives of the geometry optimization are to :

• Maximize: k =
M√
LRLT

the coupling factor between the

transmitting coil (self-inductance LT ) and the receiving
coil (self-inductance LR) with M the mutual inductance

• Minimize: V = wf .hf .lf the ferrite volume used in the
design

III. RESULTS

A. Optimization

A prior global sensitivity analysis and single-objective op-
timization (maximizing k) has been conducted on the meta-
model, built with nsamples = 517 and a LOO ≃ 6.907 ·10−10.
The results are displayed on table I. Due to the low influence of
the size parameters on the model regarding the ferrite position,



an evident factor simplification has been made with xf and yf
set to their nominal values for the multi-objective optimization.

TABLE I
OPTIMIZED PARAMETERS FOR MAXIMIZING THE COUPLING FACTOR k

WITH THEIR SOBOL’ INDICES (LOO ≃ 6.907 · 10−10, nsamples = 517)

variable value ST description
wf 0.1167m 5.856 · 10−5 ferrite width
hf 0.0304m 7.004 · 10−5 ferrite height
lf 0.1760m 7.727 · 10−5 ferrite length
xf (∆x = 0) 0.2627m 0.881 x position of the ferrite
yf (∆y = 0) −0.0049m 0.161 y position of the ferrite

For the multi-objective optimization on the size parameters
only (wf , hf , lf ) for the ferrite cores, an accurate metamodel
(nsamples = 35, LOO ≃ 3.698 · 10−5) has been built
for an unidimensional output : the coupling factor k. The
two objectives are to minimize both 1 − k and the ferrite
volume V . The Pareto front is displayed on figure 2. Due
to convexity of the Pareto front, the knee point solution
(k = 0.0950, V = 5.806 · 10−4m3) has been chosen as the
most optimal solution as it minimises the distance to the ideal
point (0, 0) for both objectives. The corresponding parameters
values and their Sobol’ indices are displayed on table II.

TABLE II
OPTIMIZED PARAMETERS FOR MAXIMIZING THE COUPLING FACTOR k AND

MINIMIZING THE FERRITE VOLUME V WITH THEIR SOBOL’ INDICES
(LOO ≃ 3.698 · 10−5, nsamples = 35)

variable value ST description
wf 0.246m 0.876 ferrite width
hf 0.0102m 8.855 · 10−3 ferrite height
lf 0.234m 0.126 ferrite length
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Fig. 2. Pareto front for the multi-objective optimization to minimize the ferrite
volume V and maximize the coupling factor k

B. Validation

Using the optimized ferrite geometry, for each possi-
ble misalignment (∆x,∆y), the resulting coupling fac-
tor k(∆x,∆y) has been predicted along with its nominal
value k0(∆x,∆y), using the active learning algorithm with
(∆x,∆y) ∈ [−0.25, 0.25]m ⊗ [−0.5, 0.5]m. The gain in

percentage
(
k − k0
k0

)
from the nominal coupling factor is

displayed on figure 3. Over the wide domains of variations
of ∆x and ∆y the percentage gain is ranging from 2% to 8%
with an average value of 6.1%. Thanks to the optimization, the
cost of 3F3 ferrites can be divided by 2 on a practical system
using the optimal set of parameters, while not diminishing, but
slightly increasing the WPT coupling factor.

Fig. 3. Percentage gain for the coupling factor k (LOO ≃ 2.237 ·
10−4, nsamples = 13) with the optimized geometry from the coupling factor
with the nominal geometry k0 (LOO ≃ 1.588 · 10−4, nsamples = 13)
against the misalignments ∆x and ∆y
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