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ABSTRACT Wireless communications systems are impacted by multi-path fading and Doppler shift
in dynamic environments, where the channel becomes doubly-dispersive and its estimation becomes an
arduous task. Only a few pilots are used for channel estimation in conventional approaches to preserve high
data rate transmission. Consequently, such estimators experience a significant performance degradation
in high mobility scenarios. Recently, deep learning has been employed for doubly-dispersive channel
estimation due to its low-complexity, robustness, and good generalization ability. Against this backdrop, the
current paper presents a comprehensive survey on channel estimation techniques based on deep learning by
deeply investigating different methods. The study also provides extensive experimental simulations followed
by a computational complexity analysis. After considering different parameters such as modulation order,
mobility, frame length, and deep learning architecture, the performance of the studied estimators is evaluated
in several mobility scenarios. In addition, the source codes are made available online in order to make the
results reproducible.

INDEX TERMS Artificial neural networks, Channel estimation, Convolutional neural networks, Deep
learning, Doppler effect, Feedforward neural networks, Frequency-selective channels, Long short term
memory, Time-varying channels.

I. INTRODUCTION

W Ith the commercialization of fifth generation net-
works globally, research into sixth generation (6G)

networks has been initiated to address the demands for high
data rates and low latency mobile applications, including
unmanned aerial vehicles [1], high-speed railway [2], and
vehicular communications [3]. Mobile wireless communi-
cations systems offer the freedom to move around without
being disconnected from the network. However, the mobility
feature is ridden with several challenges that have a severely
adverse impact on the communication reliability, such as fast
and frequent handovers [4], carrier frequency offset [5], inter-
carrier interference [6], high penetration loss [7], and fast
time-varying wireless channel [8].

In wireless environment, transmitted signals are known to
propagate via a multitude of paths, each entailing a different
attenuation and delay in addition to the Doppler shift effect
stemming from the motion of network nodes along with the

surrounding environment. As a result, the wireless channel
becomes frequency-selective and time-varying. Given that a
precisely estimated channel response influences the follow-
up equalization, demodulation, and decoding operations at
the receiver, the accuracy of the channel estimation influ-
ences the system performance. Therefore, ensuring commu-
nication reliability via accurate channel estimation in such
environments is highly important.

In the extant literature, a vast body of work has been
carried out to address the problem of doubly-dispersive chan-
nels. While some works have focused on investigating the
waveform design [9]–[12], we are interested in this paper in
the channel estimation task. In general, channel estimators
can be classified into two main categories: (i) symbol-by-
symbol (SBS) channel estimators: the channel is estimated
for each received symbol separately using only the previous
and current received pilots [13]–[15] (ii) frame-by-frame
(FBF) channel estimators: the previous, existing, as well
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as future pilots are employed in the channel estimation for
each received symbol [16]. It is possible to achieve a higher
channel estimation accuracy by utilizing FBF estimators,
since the channel estimation of each symbol benefits from
the combined knowledge of all allocated pilots within the
frame. However, the conventional estimators’ performance
mainly relies on the allocated reference training pilots within
the transmitted frames. The majority of standards allocate
a few pilots to maintain a good transmission data rate.
Therefore, these pilots are insufficient for accurately tracking
the doubly-dispersive channel, because they are not spaced
closely enough to capture the variation of the channel in
the frequency domain. Consequently, conventional estima-
tors are primarily based on the demapped data subcarri-
ers, besides pilot subcarriers to update the channel estimate
for each received symbol. This procedure called data-pilot
aided (DPA) channel estimation is regarded as unreliable
because the demapping error gets enlarged from one sym-
bol to another, which leads to another additional error in
the estimation process, especially in highly dynamic time-
varying channels. Moreover, other conventional estimators
like the linear minimum mean square error (LMMSE) [17]
estimator rely on many assumptions that limit their perfor-
mance in highly dynamic time-varying channels. Moreover,
linear conventional estimators are impractical solutions in
real case scenarios as they rely on statistical models and
require high implementation complexity, in addition, they
lack robustness in highly dynamic environments. Therefore,
investigating estimators with a good trade-off complexity
vs. performance is a crucial need for improving the channel
estimation accuracy while preserving good data rate as well
as maintaining affordable computational complexity.

As a prevailing approach to AI, deep learning (DL) is
an efficient method to analyze data by identifying patterns
and learning underlying structures, denoting an effective
approach to problems faced in various scientific fields. DL
algorithms have been integrated into the physical layer
of wireless communications systems [18]–[20], including
channel estimation [21]–[26]. In turn, this is attributable to
the great success in enhancing the overall system perfor-
mance, particularly when used in addition to conventional
estimators, where coarse channel estimation is derived from
conventional estimators, following which DL is employed
to achieve a fine estimation. Therefore, DL-based channel
estimators are capable of significantly enhancing the per-
formance while preserving low computational complexity.
In addition, the GPU-based distributed processing allows
the DL employment in real-time applications, as a result of
which DL can overcome the limitations of traditional channel
estimation through robust, low-complexity, and generalized
solutions that improve the performance of wireless systems.

Motivated by these advantages, DL algorithms have been
integrated in frequency-selective [24]–[26] and doubly-
dispersive channel estimation. In this survey, we examine the
recently proposed DL-based channel estimation schemes in
doubly-dispersive environments, where DL algorithms are

utilized in two different manners: (i) feed-forward neural
networks (FNNs) with different architectures and configu-
rations are employed on top of the conventional SBS chan-
nel estimators [27]–[29]. (ii) convolutional neural networks
(CNNs) processing is employed where the estimated channel
for the entire frame is modeled as a 2D low-resolution noisy
image, whereas CNN-based processing is implemented as
super resolution and denoising techniques [30]–[32].

The majority of surveys conducted in the literature [33],
[34] lack intensive simulations in the performance evaluation
and complexity analysis of the studied channel estimators.
Moreover, they do not cover both SBS and FBF based
estimators. In addition, [33] compares the performance of
different DL architectures used after the least squares (LS)
and the LMMSE estimators without considering several con-
ventional channel estimation schemes, whereas [34] provides
a general overview of several channel estimators without
any performance evaluation. Given this context, to the best
of our knowledge, this is the first survey that presents a
comprehensive study on the recently proposed DL-based
SBS and FBF estimators in doubly-dispersive environments,
while presenting intensive simulations evaluating the system
performance in different scenarios, providing a detailed com-
plexity analysis, as well as the source codes to reproduce
all the presented results. We believe that this survey is a
very relevant reference to initiate researches pertaining to the
domain of deep learning based channel estimation in doubly
dispersive channels. The contributions of this paper can be
summarized in the following manner

• Comprehensive study on the recently proposed DL-
based channel estimation techniques for doubly-
dispersive channels.

• Overview of the DL networks, especially those used
in the studied channel estimators, such as FNN, long
short-term memory (LSTM), super resolution CNN
(SR-CNN), and denoising CNN (DN-CNN).

• Performance analysis of different channel estimation
schemes and a fair comparison between them in terms
of normalized mean-squared error (NMSE) and bit error
rate (BER) for different mobility scenarios and frame
length, and modulation order.

• Detailed computational complexity analysis for the
studied channel estimators concerning the overall re-
quired real-valued operations.

• Simulation source code for various channel estimation
schemes to reproduce all the comparison results pre-
sented in this paper [35].

The remainder of this paper is organized as follows:
Section II elucidates the system model, illustrating signal
transmission over a doubly-dispersive channel. Section III
provides a brief overview of the main DL networks employed
in this survey. The recently proposed DL-based SBS and FBF
channel estimation schemes are thoroughly investigated and
discussed in Sections IV and V, respectively. In Section VI,
different modulation orders are used to present simulation
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results, wherein the performance of the studied estimators is
examined in terms of BER, and NMSE. Detailed computa-
tional complexity analysis is provided in Section VII. Finally,
Section VIII concludes this study.

Notations: Throughout the paper, vectors are defined with
lowercase bold symbols x whose k-th element is x[k]. Time
and frequency domain vectors are represented by x and x̃
respectively. Matrices are written as uppercase bold symbols
X . E [.] denotes the expectation operator. The trace of a
square matrix X is trace {X}. The notation⊙ and⊘ refer to
the element-wise multiplication and division operations, re-
spectively. Finally. the pseudo inverse and conjugate matrices
of X are signified by X† and XH, respectively.

II. SYSTEM MODEL
Consider a frame comprising I orthogonal frequency divi-
sion multiplexing (OFDM) symbols. The i-th transmitted
frequency-domain OFDM symbol x̃i[k], is denoted by

x̃i[k] =

{
x̃di [k], k ∈ Kd.
x̃pi [k], k ∈ Kp.

(1)

where 0 ≤ k ≤ K − 1. x̃di [k] and x̃pi [k] represent the
modulated data symbols and the predefined pilot symbols
allocated at a set of subcarriers denoted Kd and Kp, respec-
tively. xi[k] is converted to the time domain by applying the
inverse discrete Fourier transform (IDFT), such that

xi[n] =
1√
K

K−1∑
k=0

x̃i[k]e
j2π nk

K . (2)

A cyclic prefix (CP) of length larger than the delay spread
is added. Therefore, after passing via the doubly-dispersive
channel and removing the CP, the received OFDM symbol
yi[n] can be expressed as follows

yi[n] =

L−1∑
l=0

hi[l, n]xi[n− l] + vi[n]

=
1√
K

K−1∑
k=0

h̃i[k, n]x̃i[k]e
j2π nk

K + vi[n].

(3)

hi[l, n] denotes the delay-time response of the discrete
linear time-variant (LTV) channel of L taps at the i-th OFDM
symbol, whereas h̃i[k, n] =

∑L−1
l=0 hi[l, n]e

−j2π lk
K refers

to the frequency-time response. Moreover, vi signifies the
additive white Gaussian noise (AWGN) of variance σ2. The
i-th received frequency-domain OFDM symbol is derived
from (3) via discrete Fourier transform (DFT), and thus

ỹi[k] =
1

K

K−1∑
q=0

x̃i[q]

K−1∑
n=0

h̃i[q, n]e
−j2π

n(k−q)
K + ṽi[k].

(4)

It is noteworthy that index k is used in (3) to express
the channel delay-time response in terms of the channel
frequency-time response. While the change of index into q
in (4) is used to express the i-th received symbol in frequency

domain. This, in turn, better illustrates the DFT transform.
Moreover, h̃i[q, n] refers to time-variant at the scale of the
OFDM symbol duration (the index i) and within the symbol
itself (the index n). Accordingly,

h̃i[q, n] =

L−1∑
l=0

e−j2π lq
K

∫ ν=νd

ν=−νd

h̄(l, ν)ej2πνniej2πνndν,

(5)

where h̄(l, ν) =
∑
n
h[l, n]e−j2πnν signifies the channel

delay-Doppler response, ν refers to the normalized Doppler
frequency, ni = i(K +Kcp) +Kcp. And νd = fd

Fs
represents

the maximum Doppler frequency. Let

h̄i[l, v] =
1

K

K−1∑
q=0

K−1∑
n=0

h̃i[q, n]e
−j2π nv

K ej2π
ql
K

=

∫ ν=νd

ν=−νd

h̄(l, ν)ej2πνni

K−1∑
n=0

e−j2π(ν− v
K )ndν,

(6)

be the discrete delay-Doppler response at the i-th OFDM
symbol. For the sake of simplicity, h̄(l, ν) is assumed
to be uncorrelated in both domains [36], such that
E
[
h̄(l, ν)h̄∗(l′, ν′)

]
= Sh(l, ν)δ(l − l′)δ(ν − ν′), where

Sh(l, ν) is the delay-Doppler spectrum [37], and δ(x) de-
notes the Dirac delta function. Using (6), we have

E
[
h̄i[l, v]h̄

∗
i [l, v

′]
]
=∫ ν=νd

ν=−νd

Sh(l, ν)

K−1∑
n=0

K−1∑
n′=0

e−j2πν(n−n′)e−j2π n′v′−nv
K dν.

(7)

This correlation that is independent of the index i can be
approximated as follows

E
[
h̄i[l, v]h̄

∗
i [l, v

′]
]
≈ K2ρ[l, v]δ[v − v′],

where ρ[l, v] = Sh(l,
v

N
).

(8)

The time selectivity of the channel depends on the mobility.
In very low mobility, where fd ≈ 0, h̃i[q, n] = h̃[q] is
constant during the whole frame. For moderate to high mo-
bility, the channel variation within the duration of one OFDM
symbol is negligible, and therefore, h̃i[q, n] = h̃i[q]. At very
high mobility, the channel becomes variant within a single
OFDM symbol. In this instance, h̃i[q, n] = h̃i[q] + ϵ̃i[q, n],
where

h̃i[q] =
1

K

K−1∑
n=0

h̃i[q, n], and ϵ̃i[q, n] = h̃i[q, n]− h̃i[q].

(9)
Replacing this in (4), we get

ỹi[k] = h̃i[k]x̃i[k] + ẽi,d[k] + ṽi[k], k ∈ Kon. (10)
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The term ẽi,d[k] denotes the Doppler interference given by

ẽi,d[k] =
1

K

K−1∑
q=0
q ̸=k

K−1∑
n=0

h̃i[q, n]e
−j2π

n(k−q)
K x̃i[q]

=
1

K

∑
q∈Kon
q ̸=k

L−1∑
l=0

h̄i[l, k − q]e−j2π lq
K x̃i[q].

(11)

The Doppler interference destroys the orthogonality of the
subcarriers within the received OFDM symbol, leading
to a significant degradation in the overall system perfor-
mance [38]. Assuming that the subcarriers are uncorrelated
with power Eq , i.e. E [x̃i[q]x̃

∗
i [q

′]] = Eqδ[q − q′] and using
(8) then

E
[
ẽi,d[k]ẽ

∗
i,d[k

′]
]
=

L−1∑
l=0

∑
q∈Kon
q ̸=k

Eqρ[l, k − q]δ[k − k′]

= σ2
d[k]δ[k − k′].

(12)

Thus, it is assumed that the Doppler interference is uncorre-
lated. However, the variance σ2

d[k] = E
[
|ẽi,d[k]|2

]
depends

on the subcarrier index. Noting that

h̃i[k] =
1

K

L−1∑
l=0

h̄i[l, 0]e
−j2π kl

K , (13)

the channel gain and Doppler interference are uncorrelated,
i.e. E

[
h̃i[k]ẽ

∗
i,d[k]

]
= 0. Moreover, it is possible to estimate

the h̃i[k] from L uncorrelated taps defined by h̄i[l, 0].

III. DL TECHNIQUES OVERVIEW
This section discusses the DL networks employed in the
studied DL-based channel estimation schemes, providing the
mathematical representation of each network.

A. FNN
Neural networks are one of the most popular machine learn-
ing algorithms [39]. Initially, neural networks are inspired by
the neural architecture of a human brain, For this reason,
the basic building block is called a neuron as is the case
with a human brain. Its functionality is similar to that of
a human neuron, i.e. it takes in some inputs and then fires
an output. In purely mathematical terms, a neuron denotes
a placeholder for a mathematical function whose job is to
yield an output by applying the function on the given inputs.
Neurons are stacked together to form a layer. The neural
network comprises at least one layer; in case multiple layers
are employed, the neural network is referred to as deep FNN.

Consider a FNN architecture shown in Figure 1. Here L
represents the number of layers, including one input layer,
L − 2 hidden layers, as well as one output layer . The l-th
hidden layer of the network consists of Jl neurons where
2 ≤ l ≤ L − 1. Moreover, each neuron in the l-th hidden
layer is denoted by j where j 1 ≤ j ≤ Jl. The FNN inputs i
and outputs o are expressed as i = [i1, i2, ..., iN ]T ∈ RN×1

FIGURE 1. FNN architecture showing the input, output, and hidden
layers.

and o = [o1, o2, ..., oM]T ∈ RM×1, where N and M
refer to the number of FNN inputs and outputs, respectively.
Wl ∈ RJl×Jl−1 , and bl ∈ RJl×1 are used to express the
weight matrix and the bias vector of the l-th hidden layer,
respectively.

Each neuron n(l,j) performs a nonlinear transform of a
weighted summation of the preceding layer’s output values.
This nonlinear transformation is represented by the activation
function f(l,j) on the neuron input vector i(l) ∈ RJl−1×1

using its weight vector ω(l,j) ∈ RJl−1×1, and bias b(l,j),
respectively. The neuron’s output o(l,j) is

o(l,j) = f(l,j)

(
b(l,j) + ωT

(l,j)i(l)

)
. (14)

The deep neural network (DNN) overall output of the l-th
hidden layer is signified by the vector form

o(l) = f(l)

(
b(l) +W(l)i(l)

)
, i(l+1) = o(l), (15)

where f(l) is a vector resulting from the stacking of the nl

activation functions.
After the selection of the FNN architecture, the parameter

θ = (W ,B) representing the total FNN weights and biases
must be estimated via the learning procedure applied during
the FNN training phase. As well known, θ estimation is
obtained by minimizing a loss function Loss(θ). The loss
function measures how far apart the predicted FNN outputs
(o(P)

(L)) are from the true outputs (o(T)
(L)). Therefore, the FNN

training phase carried over Ntrain training samples can be
explained in two steps: (i) calculate the loss, and (ii) update
θ. This process is repeated until convergence, so that the loss
becomes very small. Accordingly, various optimization algo-
rithms can be used for minimizing Loss(θ) by iteratively up-
dating the parameter θ, i.e., stochastic gradient descent [39],
root mean square prop [40], and adaptive moment estimation
(ADAM) [41].

The final step after FNN training is to test the trained
FNN on new data in order to evaluate its performance. An
elaborate comprehensive analysis of FNN different principles
is presented in [42].

B. LSTM
Another well-known DL tool is available in the form of
LSTM networks that essentially deal with sequential data
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FIGURE 2. LSTM unit architecture [43] showing the forget, input, and
output gates.

where the order of the data matters and a correlation exists
between the previous and the future data. In this context,
LSTM networks are defined with a special architecture capa-
ble of learning the data correlation over time, which enables
the LSTM network to predict the future data based on prior
observations.

The LSTM unit, as shown in Figure 2, contains computa-
tional blocks referred to as gates, which are responsible for
controlling and tracking the information flow over time. The
LSTM network mechanism can be explicated in four major
steps:

a: Forget the irrelevant information
In general, the LSTM unit classifies the input data into
relevant and irrelevant information. The first processing step
entails eliminating the irrelevant information that is not im-
portant for predicting the future. This can be undertaken
through the forget gate that decides which information the
LSTM unit should retain, and which information can be
deleted. The forget gate processing is defined as follows

ft = σ(Wf,tx̄t +W ′
f,tz̄t−1 + b̄f,t), (16)

where σ̄ denotes the sigmoid function, Wf,t ∈ RP×Kin ,
W ′

f,t ∈ RP×P and b̄f,t ∈ RP×1 are the forget gate weights
and biases at time t, x̄t ∈ RKin×1 and z̄t−1 represents the
LSTM unit input vector of size Kin, and the previous hidden
state of size P , respectively.

b: Store the relevant new information
After classifying the relevant information, the LSTM unit
applies some computations on the selected information via
the input gate

īt = σ(Wī,tx̄t +W ′
ī,tz̄t−1 + b̄ī,t), (17)

c̃t = tanh(Wc̃,tx̄t +W ′
c̃,tz̄t−1 + b̄c̃,t). (18)

c: Update the new cell state
Next the LSTM unit is supposed to update the current cell
state ct based on the two previously-mentioned steps such
that

ct = ft ⊙ ct−1 + īt ⊙ c̃t. (19)

where ⊙ denotes the Hadamard product.

Input Image 

Kernel

Feature Map

FIGURE 3. Numerical example showing the convolution operation
performed by the CNN convolutional layer [46].

d: Generate the LSTM unit output
Updating the hidden state and generating the output by the
output gate is the final processing step. The output is consid-
ered to be a cell state filtered version and can be computed
such that

ot = σ(Wo,tx̄t +W ′
o,tz̄t−1 + b̄o,t), (20)

z̄t = ot ⊙ tanh(ct). (21)

In literature, there exists several LSTM architecture vari-
ants, where the interactions between the LSTM unit gates are
modified. The authors in [44] provide a detailed comparison
of popular LSTM architecture variants.

C. CNN
Another type of deep learning is CNN model. This is com-
monly used for processing data with grid patterns, such as
images [45]. Thus, CNN has generally become the state of
the art for several visual applications such as image classifi-
cation, due to its demonstrated ability to extract patterns from
the input image. CNN can be seen as a set of several layers
stacked together to accomplish the requisite task. These
layers include

• Input layer: It represents the 2D or 3D input image. For
the sake of simplicity, let us consider a 2D image input
to the l -th CNN layer denoted by Xl ∈ Rhl×wl , where
hl and wl denote the height and the width of the Xl

input image.
• Convolutional layer: refers to a specialized type of linear

operation used for feature extraction, where predefined
filters referred to as kernels scan the input matrix to
fill the output matrix denoted as feature map, which is
shown in Figure 3. We note that different kernels can be
considered as different feature extractors.
Two key hyper parameters define the CNN convolu-
tional layer, namely, the size and number of kernels
denoted by fl and nl, respectively. The typical kernel
size is 3 × 3, but sometimes 5 × 5 or 7 × 7. The
number of kernels is arbitrary and determines the depth
of output feature maps. It is possible to tune these pa-
rameters according to the application type. Furthermore,
the process of training a CNN model regarding the
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FIGURE 4. CNN classical architecture [46] showing the concatena-
tion of convolutional, pooling, and FC layers.

convolution layer involves identifying the kernels values
that work optimally for a particular task based on a given
training dataset. In the convolution layer, the kernels are
the only automatically learned parameters during the
training process. Mathematically speaking, for a given
input image Xl and kernel Kl ∈ Rfl×fl×1, we consider
one kernel for simplicity, the generated feature map
Yl ∈ R(hl−f+1)×(wl−f+1) can be expressed as follows

Yl[x, y] =

hl∑
i=1

wl∑
j=1

Kl[i, j]Xl[x+i−1, y+j−1]. (22)

• Activation layer: The outputs of a linear operation
such as convolution pass through a nonlinear activation
function. This activation function introduces non-linear
processing to the CNN architecture given that the input-
output CNN pairs relation could be non-linear. While
several non-linear activation functions exist such as
sigmoid or hyperbolic tangent (tanh) function, the most
common presently used function is the rectified linear
unit (ReLU).

• Pooling layer: This layer is employed to decrease the
number of parameters when the images are too large.
Pooling operation is also referred to as sub-sampling or
down-sampling. This reduces the dimensionality of all
feature maps but does manage to retain significant infor-
mation. Notably, none of the pooling layers contains any
learnable parameter. The most popular form of pooling
operation is max pooling, which extracts patches from
the input feature maps, outputs the maximum value
in each patch, and then discards all the other values.
However, there are other pooling operations such as
global average pooling [47].

• Fully connected layer (FC): This layer forms the last
block of the CNN architecture and is mainly employed
in the classification problems. It is a simple feed-
forward neural network layer that comprises at least one
hidden layer; its role is to transform the 2D CNN layer
output into a 1D vector. In classification problems, the
final outputs of the CNN network represent the proba-

bilities for each class, where the final fully-connected
layer typically has the same number of output nodes as
the number of classes.

• Batch normalization: It is used to increase the CNN sta-
bility of the output by normalizing each layer’s output.
Moreover, batch normalization layer reduces overfitting
and accelerates the CNN training.

• Output layer: This layer is configured in accordance
with the studied problem. For instance, in classification
problems the CNN output layer is a fully connected
layer with softmax activation function. On the other
hand, in regression problems, the CNN output does not
use any activation function.

Figure 4 illustrates the classical CNN architecture. As seen
in this figure, the only trainable parameters within the CNN
network are the kernels and the fully connected layer weights.
Similar to all other DL techniques, CNN network updates its
trainable parameters by minimizing the CNN loss function
that measures how far the inputs are from the outputs. There-
after, the CNN kernels and weights are updated in the back
propagation operation [48]. Finally, the performance of the
trained CNN model is examined in the testing phase where
new unobserved images are fed to the trained CNN model.

It is noteworthy that there are special CNN archi-
tectures such as SR-CNN [49], DN-CNN [50], and
super resolution convolutional long short-term memory
(SR-ConvLSTM) [51] that are mainly used for regression
problems. SR-CNN is used for enhancing the quality of
the input image, where it takes the low-resolution image
as the input and outputs the high-resolution one. DN-CNN
uses another methodology to improve the image quality by
separating the noise from the input noisy image employing
residual learning [52]. The input noisy image is then sub-
tracted from the extracted noise, resulting in the denoised
image. Furthermore, SR-ConvLSTM combines both LSTM
and CNN networks together where time correlation across
the whole input image is learned, thus leading to a better
estimation accuracy.

IV. DL-BASED SBS CHANNEL ESTIMATION
In DL-based SBS channel estimation, FNN and LSTM net-
works are primarily integrated with conventional estimation
schemes in the following two manners: (i) FNN is imple-
mented as a post-processing module after conventional DPA,
spectral temporal averaging (STA), and time domain reli-
able test frequency domain interpolation (TRFI) estimators.
(ii) LSTM network gets implemented as a pre-processing
unit before conventional DPA estimation to minimize the
DPA demapping error iteratively. Both implementations are
helpful in improving the channel estimation’s accuracy, par-
ticularly in high mobility scenarios. However, the LSTM-
based estimation illustrates a considerable superiority over
the FNN-based estimation as demonstrated in Section VI.
Hereafter, the steps applied in each DL-based SBS estimator
are presented.
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A. DPA-FNN

The DPA estimation [13] utilizes the demapped data subcar-
riers of the previously received OFDM symbol for estimating
the channel for the existing OFDM symbol such that

d̃i[k] = D
( ỹi[k]

ˆ̃
hDPAi−1 [k]

)
,
ˆ̃
hDPA0

[k] =
ˆ̃
hLS[k], (23)

where D(.) refers to the demapping operation to the nearest
constellation point in accordance with the employed modu-
lation order. ˆ̃

hLS signifies the LS estimated channel at the
received preambles, such that

ˆ̃
hLS[k] =

P∑
u=1

ỹ
(p)
u [k]

P Λ̃[k]
, k ∈ Kon, (24)

where Λ̃ denotes the frequency domain predefined preamble
sequence. Thereafter, the final DPA channel estimates are
updated in the following manner

ˆ̃
hDPAi [k] =

ỹi[k]

d̃i[k]
. (25)

DPA estimation suffers from two main limitations. First,
it is based on the basic ˆ̃

hLS estimation suffering from noise
enhancement. Second, the demapping step in DPA leads to a
significant demapping error primarily in low signal-to-noise
ratio (SNR) region stemming from the noise imperfections
and doubly-dispersive channel variations. This demapping
error is enlarged in high mobility scenarios employing high
modulation orders. In addition, since the DPA estimated
channels are updated iteratively over the received frame, the
demapping error propagates via the frame that results in a sig-
nificant degradation in performance. In order to address these
limitations, the DPA-FNN scheme [27] has been proposed
to compensate the DPA estimation error, where ˆ̃

hDPAi
[k]

is fed to a three-hidden-layers FNN with 40 − 20 − 40
neurons, as shown in Figure 5. Using the FNN in addition
to the DPA scheme yields good performance but it is not
sufficient, because it ignores the time and frequency correla-
tion between successive received OFDM symbols. Also, the
employed FNN architecture can be optimized to reduce the
computational complexity of channel estimation.

B. STA-FNN

To improve the conventional DPA estimation, the STA es-
timator [13] has been proposed where frequency and time-
domain averaging are applied on top of the DPA estimated
channel as follows

ˆ̃
hFDi

[k] =

λ=β∑
λ=−β

ωλ
ˆ̃
hDPAi

[k + λ], ωλ =
1

2β + 1
. (26)

ˆ̃
hSTAi

[k] = (1− 1

α
)
ˆ̃
hSTAi−1

[k] +
1

α
ˆ̃
hFDi

[k]. (27)

STA estimator performs well in the low SNR region. How-
ever, it suffers from a considerable error floor in high SNR
regions due to the large DPA demapping error. Importantly,
in [13], the values of the frequency and time averaging
coefficients are fixed to α = β = 2. Thus, the final STA
estimated channel is a linear combination between the pre-
viously estimated channel (27) and the frequency averaged
channel estimates (26). However, this linear combination
leads to a significant performance degradation in real case
scenarios due to the doubly-dispersive channel non-linear
imperfections. Here, FNN is utilized as a post non-linear
processing unit after the conventional STA scheme [28].
STA-FNN captures more the time-frequency correlations of
the channel samples, apart from correcting the conventional
STA estimation error. Furthermore, the optimized STA-FNN
architecture performs better than the DPA-FNN with a sig-
nificant computational complexity decrease, as elucidated in
Section VII.

C. TRFI-FNN

TRFI estimation scheme [15] is another methodology used
for improving the DPA estimation in (25). Assuming that
the time correlation of the channel response between two
adjacent OFDM symbols is high, TRFI define two sets of
subcarriers such that: (i) RSi set: that includes the reliable
subcarriers indices, and (ii) URSi set: which contains the
unreliable subcarriers indices. The estimated channels for the
URSi are then interpolated using theRSi channel estimates
by means of the frequency-domain cubic interpolation. This
procedure can be expressed in the following manner

• Equalize the previously received OFDM symbol by
ˆ̃
hTRFIi−1

[k] and ˆ̃
hDPAi

[k], such that

d̃′
i−1[k] = D

( ỹi−1[k]

ˆ̃
hDPAi

[k]

)
, d̃′′

i−1[k] = D
( ỹi−1[k]

ˆ̃
hTRFIi−1

[k]

)
.

(28)

• According to the demapping results, the subcarriers are
grouped as follows{
RSi ← RSi + k, d̃′

i−1[k] = d̃′′
i−1[k]

URSi ← URSi + k, d̃′
i−1[k] ̸= d̃′′

i−1[k]
.

(29)
• Finally, frequency-domain cubic interpolation is em-

ployed to estimate the channels at the URSi as follows

ˆ̃
hTRFIi [k] =

{
ˆ̃
hDPAi

[k], k ∈ RSi
Cubic Interpolation, k ∈ URSi

.

(30)

Performing frequency-domain interpolation in addition to the
DPA estimation enhances the performance. However, TRFI
still suffers from the demapping and interpolation errors
as the number of reliable subcarriers (RS) subcarriers is
inversely proportional to the channel variations. Additionally,
the condition where d̃′

i−1[k] ̸= d̃′′
i−1[k] is more dominant

in high mobility scenarios. It is for this reason that only a
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FIGURE 5. Block diagram of the studied DNN-based SBS estimators.

few RS subcarriers will be selected and the employed cubic
interpolation performance will be degraded.

Inspired by the work undertaken in STA-FNN, the authors
in [29] used the same optimized FNN architecture as in [28],
albeit with ˆ̃

hTRFIi [k] as an input instead of ˆ̃
hSTAi

[k]. TRFI-
FNN corrects the cubic interpolation error and also learns
the channel frequency domain correlation, thus leading to an
improved performance in high SNR regions.

D. LSTM-FNN-DPA
Unlike the FNN-based estimators, where the DL processing
is employed following the conventional estimators, the work
carried out in [53] shows that employing the DL processing
prior to the conventional estimator, specifically the DPA
estimation, could lead to a significant improvement in the
overall performance. In this context, the authors have pro-
posed to use two cascaded LSTM and FNN networks for both
channel estimation as well as noise compensation, as shown
in Figure 6.

The LSTM-FNN-DPA estimator employs the previous and
current pilot subcarriers besides the LSTM-FNN estimated
channel employed in the DPA estimation, such that

d̃LSTM-FNNi,d
[k] = D

( ỹi,d[k]

ˆ̃
hLSTM-FNNi−1,d

[k]

)
,
ˆ̃
hLSTM0 [k] =

ˆ̃
hLS[k],

(31)
ˆ̃
hDLi,d

[k] =
ỹi,d[k]

dLSTMi,d
[k]

. (32)

While this estimator can outperform the FNN-based estima-
tors, it experiences a considerable computational complexity
arising from the employment of two DL networks.

E. LSTM-DPA-TA
The authors in [43] propose to use only LSTM network
instead of two as implemented in the LSTM-FNN-DPA es-
timator. In addition, noise compensation is made possible
by applying time averaging (TA) processing as shown in

Figure 6. This methodology only requires the previous pilots
besides the LSTM estimated channel as an input. Then, the
LSTM estimated channel is employed in the DPA estimation
as follows

d̃LSTMi
[k] = D

( ỹi[k]

ˆ̃
hLSTMi−1 [k]

)
,
ˆ̃
hLSTM0

[k] =
ˆ̃
hLS[k], (33)

ˆ̃
hLSTM-DPAi

[k] =
ỹi[k]

d̃LSTMi
[k]

. (34)

Finally, to alleviate the impact of the AWGN noise, TA
processing is applied to the ˆ̃

hLSTM-DPAi [k] estimated channel,
such that

ˆ̄hDL-TAi,d
= (1− 1

α
)ˆ̄hDL-TAi−1,d

+
1

α
ˆ̄hLSTM-DPAi,d

. (35)

Here, α denotes the utilized weighting coefficient. In [43], the
authors use a fixed α = 2 for simplicity. Therefore, the TA
applied in (35) reduces the AWGN noise power σ2 iteratively
within the received OFDM frame according to the ratio

RDL-TAq =

(
1

4

)(q−1)

+

q∑
j=2

(
1

4

)(q−j+1)

=
4q−1 + 2

3× 4q−1
.

(36)

This corresponds to the AWGN noise power ratio of the
estimated channel at the q-th estimated channel, where
1 < q < I + 1 and RDL-TA1

= 1 denotes the AWGN noise
power ratio at ˆ̃

hLS[k]. From the derivation of RDL-TAq , it
can be seen that the noise power decreases over the received
OFDM frame, i.e., the SNR increases, resulting in an over-
all improved performance. Moreover, the input dimension
reduction, coupled with the simple TA processing, signifi-
cantly lowers the overall computational complexity. Intensive
experiments reveal that the performance of DL networks is
strongly related to the SNR considered in the training [54].
The training undertaken at the highest SNR value provides
the best performance. In fact, the DL network is able to
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FIGURE 6. Block diagram of the studied LSTM-based SBS estimators.

TABLE 1. Parameters of the studied DL-based SBS channel estima-
tors.

Parameter Values
DPA-FNN (Hidden layers; Neurons per layer) (3;40-20-40)
STA-FNN (Hidden layers; Neurons per layer) (3;15-15-15)
TRFI-FNN (Hidden layers; Neurons per layer) (3;15-15-15)

LSTM (Hidden layers; Neurons per layer) (1;128)
Activation function ReLU
Number of epochs 500
Training samples 800000
Testing samples 200000

Batch size 128
Optimizer ADAM

Loss function MSE
Learning rate 0.001
Training SNR 40 dB

learn better the channel when the training is performed at a
high SNR value because the impact of the channel is higher
than the impact of the noise in this SNR range. Owing to
the robust generalization properties of DL, trained networks
can still estimate the channel even if the noise increases,
i.e., at low SNR values. Therefore, FNN and LSTM based
estimators training is performed using SNR = 40 dB to attain
the best performance. Moreover, intensive experiments are
performed using the grid search algorithm [55] to select the
most suitable FNN and LSTM hyper parameters in terms of
performance as well as complexity. Figures 5 and 6 illustrate
the block diagram of the FNN and LSTM based estimators.
Furthermore, Table 1 presents their parameters.

V. DL-BASED FBF CHANNEL ESTIMATION SCHEMES
This section presents the DL-based FBF estimators intro-
duced to improve the channel estimation accuracy, partic-
ularly in very high mobility scenarios, where the channel

variation is found to be severe. Similar to the DL-based SBS
estimators, the DL-based FBF estimators apply first conven-
tional estimation followed by means of CNN processing.

A. CHANNELNET

In [30], the authors use forward a CNN-based channel es-
timator denoted as channel network (ChannelNet) scheme,
where 2D radial basis function (RBF) interpolation is imple-
mented as an initial channel estimation. The underlying mo-
tivation of the 2D RBF interpolation is to approximate multi-
dimensional scattered unknown data from their surrounding
neighbors known data by employing the radial basis function.
In order to achieve the purpose, the distance function is
calculated between every data point to be interpolated and
its neighbours, where closer neighbors are assigned higher
weights. Thereby, the RBF interpolated frame is considered
a low resolution image, where SR-CNN is utilized to obtain
an improved estimation. Finally, to ameliorate the effect of
noise within the high resolution estimated frame, DN-CNN
is implemented leading to a high resolution and noise allevi-
ated estimated channels. The ChannelNet estimator considers
sparsely allocated pilots within the IEEE 802.11p frame and
initially applies the LS estimation to the pilot subcarriers
within the received OFDM frame. Subsequently, the 2D RBF
interpolation is derived by the weighted summation of the
distance between each data subcarrier to be interpolated as
well as all the pilot subcarriers in the received OFDM frame,
such that

ˆ̃HRBF[k, i] =

KpI∑
j=1

ωjΦ(|k −Kf [j]|, |i−Kt[j]|). (37)

Kf = [Kp1 , . . . ,KpI ] ∈ R1×KpI and Kt =
[(1)×Kp

, . . . , (I)×Kp
] ∈ R1×KpI represent the frequency

and time indices vectors of the allocated pilot subcarriers
within the received OFDM frame, respectively. ωj is the RBF
weight multiplied by the RBF interpolation function Φ(.)
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TABLE 2. Main characteristics and features of the studied DL-based channel estimators.

Estimator
Type

Estimator
Reference

Conventional
Estimation

DL-based
Method Complexity BER

Performance Robustness Pros and Cons

SBS

[27] DPA
FNN

++ ++ ++

+ Significant performance
superiority over
conventional estimators.
- Ignore the time and
frequency correlation
between successive
received OFDM symbols.
- Complex FNN architecture
to compensate the
conventional DPA
demapping error.

[28] STA + +++ ++

+ STA averaging ameliorate the
impact of the AWGN noise
in low SNR regions.
+ Optimized FNN architecture.
- Fixed averaging coefficients.
- Performance degradation in
high mobility scenarios.

[29] TRFI + ++++ +++

+ Cubic Interpolation enhances
the performance in the entire
SNR region.
+ Optimized FNN architecture.
- Assume high correlation
between successive OFDM
symbols.
- Lack of robustness in very
high mobiliy scenarios.

[53] DPA LSTM and FNN +++ ++++ ++++

+ Outperform FNN-based
estimators.
+ Improved estimation
since LSTM is implemented
before DPA estimation
- Employ LSTM and
FNN in the same architecture.

[43] DPA and TA LSTM +++ ++++ ++++

+ TA processing results in
a considerable decline in
the AWGN noise.
+ Employ only one
optimized LSTM unit.
+ Reduced input dimension.

FBF
[30] 2D RBF SR-CNN and

DN-CNN +++++ ++ ++

- 2D RBF interpolation high
computational complexity.
- The 2D RBF function
and scale factor should be
optimized in accordance with
the channel variations.
- Employ two high-complexity
CNN architectures.

[31] ADD-TT SR-ConvLSTM +++++ +++ +++

+ Outperform ChannelNet
estimator [29].
- Fixed ADD-TT Averaging
coefficients.
- High computational complexity
owing to the integration of both
LSTM and CNN architectures.

[32] WI SR-CNN or
DN-CNN +++ ++++ ++++

+ Adaptive frame structure
according to the mobility
condition.
+ Reduced buffering time
at the receiver.
+ Transmission data rate gain.
+ Optimized CNN
architectures.
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between the (k, i) data subcarrier and the (Kf [j],Kt[j]) pilot
subcarrier. In [30], the RBF gaussian function is applied, such
that

Φ(x, y) = e−
(x+y)2

r0 . (38)

r0 refers to the 2D RBF scale factor that varies based on
the used RBF function. Notably, altering the value of r0 alters
the shape of the interpolation function. Moreover, the RBF
weights wRBF = [ω1, . . . , ωKpI ] ∈ RKpI×1 are calculated
using the following relation:

ARBFwRBF = h̄LS. (39)

Here, ARBF ∈ RKpI×KpI is the RBF interpolation matrix
of the pilots subcarriers, with entries ai,j = Φ(Kf [i],Kt[j])
where i, j = 1, . . . ,KpI . It is observed that, h̄LS =

vec
{
ˆ̃HLS

}
∈ CKpI×1 is a vector that contains the LS

estimated channels at all the pilot subcarriers within the
received OFDM frame. This is expressed as

ˆ̃HLS[k, i] =
Ỹ [k, i]

P̃ [k, i]
, k ∈ Kp, 1 ≤ i ≤ I, (40)

with P̃ [k, i] is the frequency-domain pre-defined pilot sub-
carriers, and Kp refers to the allocated sparse pilots indices
within the received OFDM symbol. After computing WRBF,
it is possible to calculate the RBF estimated channel for every
data subcarriers within the received OFDM frame, as shown
in (37). Finally, the RBF interpolation estimated frame ˆ̃HRBF
is fed as an input to SR-CNN and DN-CNN to improve the
channel estimation accuracy and reduce the noise impact.

The ChannelNet estimator limitations lie in: (i) 2D RBF
interpolation high computational complexity arising from
the computation of (39) for the channel estimation of all
data subcarriers. (ii) The 2D RBF function and scale fac-
tor needs to be optimized in accordance with the channel
variations. (iii) The integrated SR-CNN and DN-CNN archi-
tectures have significant computational complexity. Notably,
the ChannelNet estimator uses a fixed RBF function and
scale factor, thus experiencing a considerable degradation
in performance, particularly in low SNR regions, where the
noise impact remains dominant, as well as high mobility
vehicular scenarios, where the channel varies swiftly within
the OFDM frame.

B. TS-CHANNELNET

Temporal spectral ChannelNet (TS-ChannelNet) [31] is
based on applying average decision-directed with time trun-
cation (ADD-TT) interpolation to the received OFDM frame.
Thereafter, accurate estimation is achieved by implementing
SR-ConvLSTM network to track doubly-dispersive channel
variations by learning the vehicular channel’s time and fre-
quency correlations. It is observed that the ADD-TT interpo-
lation is an SBS estimator, where DPA estimation is initially
applied as explained in (23) and (25). Thereafter, the enlarged
DPA demapping error is reduced by applying time domain

TABLE 3. Parameters of the studied DL-based FBF channel estima-
tors.

Parameter Values
Input/Output dimensions 2Kon × I × 1

SR-CNN (Hidden layers - nl, fl) (3 - 9,64; 1,32; 5,1)
DN-CNN (Hidden layers - nl, fl) (18 - 64, 3)

Optimized SR-CNN (Hidden layers - nl, fl) (3 - 9,32; 1,16; 5,1)
Optimized DN-CNN (Hidden layers - nl, fl) (7 - 16, 3)

SR-ConvLSTM (Hidden layers - nl, fl) (3 - 9,64; 1,32; 5,1)
Activation function ReLU
Number of epochs 250
Training samples 8000
Testing samples 2000

Batch size 128
Optimizer ADAM

Loss function MSE
Learning rate 0.001
Training SNR 40 dB

truncation in the following manner

ĥDPAi
= F H

K
ˆ̃
hDPAi

, (41)

where FK ∈ CK×K denotes the K-DFT matrix, and ĥDPAi

represents the time-domain DPA estimated channel. There-
after, ĥDPAi

truncation is applied to the significant L channel
taps, such that

ĥDPAi,L
= ĥDPAi

(1 : L). (42)

Next, ĥDPAi,L
is converted back to the frequency domain such

that
ˆ̃
hTTi

= FKĥDPAi,L
, (43)

Implementing the average time truncation operation to
ˆ̃
hDPAi

[k] lowers the effect of noise and enlarged demap-
ping error. Moreover, ˆ̃

hTTi
[k] estimated channel is further

enhanced by applying frequency and time-domain averaging
consecutively as follows

ˆ̃
hFTTi

[k] =

λ=β∑
λ=−β

ωλ
ˆ̃
hTTi

[k + λ], ωλ =
1

2β + 1
. (44)

The final ADD-TT channel estimates are updated using time
averaging between the previously ADD-TT estimated chan-
nel and the frequency averaged channel in (44), such that

ˆ̃
hADD-TTi

[k] = (1− α)
ˆ̃
hADD-TTi−1

[k] + α
ˆ̃
hFTTi

[k]. (45)

The doubly-dispersive channel can be modeled as a time-
series forecasting problem. Here, historical data can be uti-
lized to forecast future observations [56]. Motiviated by
this possibility, the authors in [31] apply SR-ConvLSTM
network in addition to the ADD-TT interpolation, where
convolutional layers get added to the LSTM network to cap-
ture more doubly-dispersive channel features. Consequently,
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FIGURE 7. Block diagram of the studied CNN-based FBF channel estimators.

this improves the estimation performance. Accordingly, the
ADD-TT estimated channel for the entire received frame is
modeled as a low resolution image. Next, the SR-ConvLSTM
network is used after the ADD-TT interpolation. Unlike
ChannelNet estimator where two CNNs are employed,
TS-ChannelNet estimator uses only one SR-ConvLSTM net-
work, which relatively reduces the overall computational
complexity. However, TS-ChannelNet continues to be ridden
with high computational complexity due to the integration of
LSTM and CNN in a single network.

C. WI-CNN

To overcome the limitations of the ChannelNet and
TS-ChannelNet estimators, weighted interpolation (WI)-
CNN estimator has been proposed in [32]. In this method,
the frame structure is adapted in accordance with the mobility
condition employing varied pilot allocation schemes. Partic-
ularly, only P pilot OFDM symbols are required in the trans-
mitted frame, such that ỸP = [ỹ

(p)
1 , . . . , ỹ

(p)
q , . . . , ỹ

(p)
P ] ∈

CKon×P . The index 1 ≤ q ≤ P refers to the location of the
OFDM pilot symbol in the frame. The other Id = I − P
OFDM data symbols are employed for data transmission
purposes. As per the employed pilots allocation scheme, the
channel is estimated at the inserted pilot symbols, after which
WI is applied to estimate the channel at the OFDM data
symbols. The estimated frame is then modeled as a 2D noisy
image where optimized SR-CNN and DN-CNN are utilized
for noise elimination. Against this backdrop, the WI-CNN
proceeds as follows

• Channel estimation at the pilot symbols: Two pilot allo-
cation schemes are defined. The full pilot allocation (FP)
where K pilots are inserted within all pilot symbols and
LS estimation is applied to estimate the channel for each

inserted pilot symbol, such that

ˆ̃
hSLSq

[k] =
ỹ
(p)
q [k]

p̃[k]
. (46)

ˆ̃
hSLSq

[k] represents the simple LS (SLS) estimation at
the q-th inserted pilot symbol. In addition, the accu-
rate LS (ALS) that can be obtained by implementing
the DFT interpolation of estimated channel impulse
response at the q-th received pilot symbol ĥq,L, such
that

ˆ̃
hALSq

= FKĥq,L, ĥq,L = F †
K
ˆ̃
hLSq

. (47)

ALS relies on the fact that h̃q = FKhq,L, where
hq,L ∈ CL×1 signifies the channel impulse response
at the q-th received pilot symbol that can be estimated
by employing the pseudo inverse matrix of FK, namely,
F †

K = [(F H
K FK)

−1F H
K ] . However, if the number of

doubly dispersive-channel taps L remains known, only
Kp = L pilot subcarriers are sufficient in each inserted
pilot symbol. Accordingly, (47) can be rewritten as

ˆ̃
hDFTq

= FKĥq,L, ĥq,L = F †
p
ˆ̃
hLSq

. (48)

F †
p = [(F H

p Fp)
−1F H

p ] denotes the pseudo inverse ma-
trix of Fp ∈ CKp×L referring to the truncated DFT
matrix obtained by selecting Kp rows, and L columns
from the K-DFT matrix.

• Channel estimation at data symbols: The estimated
channels of the P pilot symbols are first grouped into
P matrices to estimate the channel for each received
OFDM data symbol, such that

ˆ̃Hq = [
ˆ̃
hq−1,

ˆ̃
hq], q = 1, · · ·P. (49)
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ˆ̃
h0 =

ˆ̃
hLS refers to the LS estimated channel at the

beginning of the received frame (24). Thus, the received
frame can be divided into P sub-frames, where f refers
to the sub-frame index, such that 1 ≤ f ≤ P . There-
fore, the estimated channel for the i-th received OFDM
symbol within each f -th sub-frame can be expressed as
follows

ˆ̃HWIf = ˆ̃HfCf . (50)

ˆ̃Hf ∈ CK×2 denotes the LS estimated channels at the
pilot symbols within the f -th sub-frame, and Cf ∈
R2×If the interpolation weights of the If OFDM data
symbols within the f -th sub-frame. The interpolation
weights Cf are calculated by minimizing the mean
squared error (MSE) between the ideal channel H̃f , and
the LS estimated channel at the OFDM pilot symbols
ˆ̃Hf as obtained in [57] and expressed in (51). There,
J0(.) is the zeroth order Bessel function of the first kind,
Ts signifies the received OFDM data symbol duration,
whereas Eq denotes the overall noise of the estimated
channel at the q-th pilot symbol.

• CNN-based Processing: The final step in the WI-CNN
estimators is to apply CNN processing to further im-
prove the WI estimated channels. Optimized SR-CNN
and DN-CNN are employed in this context. The inves-
tigations conducted in [32] reveal that both SR-CNN
and DN-CNN networks have similar performance in
low mobility scenarios, whereas DN-CNN outperforms
SR-CNN in high mobility scenarios. Figure 7 and Ta-
ble 3 illustrate the block diagram as well as configured
parameters of the studied CNN-based channel estima-
tors, respectively. Furthermore, the salient features of
the studied DL-based channel estimators are summa-
rized in Table 2. Notably, robustness feature alludes to
the ability of the studied estimation to maintain good
performance as the variation of the doubly-dispersive
channel increases.

VI. SIMULATION RESULTS
This section illustrates the performance evaluation of the
studied DL-based SBS and FBF estimators in relation to
BER, NMSE employing varied metrics and mobility scenar-
ios.

A. CONFIGURATION SETUP
To simulate doubly-dispersive channels, vehicular commu-
nications is considered a simulation case study, where three
tapped delay line (TDL) channel models [58] are defined as
follows

• Low mobility: where VTV Urban Canyon (VTV-UC)
vehicular channel model is considered. This channel
model is measured between two vehicles moving in
a dense urban traffic environment at V = 45 Kmph
equivalent to fd = 250 Hz.

• High and very high mobility: These scenarios measure
the communication channel between two vehicles mov-

ing on a highway having center wall between its lanes at
V = 100 Kmph and 200 Kmph equivalent to fd = 500
Hz and fd = 1000 Hz, respectively. This vehicular
channel model is referred to as VTV Expressway Same
Direction with Wall (VTV-SDWW).

The employed channel models are generated after the
wide-sense stationary uncorrelated scattering (WSSUS)
model [59]. Thus, we have

• Each path hl(t) is a zero mean Gaussian complex pro-
cess, E{hl(t)} = 0,∀t, and the mean of each path is
independent of the time variations. Moreover, the time
correlation function rhl

(t1, t2) = E{hl(t1)h
∗
l (t2)} can

only be written with the difference ∆(t) = (t1 − t2),
such that

rhl
(t1, t2) = rhl

(∆t). (52)

Then, each path hl(t) is the wide sense stationary
(WSS).

• Uncorrelated scattering (US) implies that the paths are
uncorrelated, so for l1 ̸= l2 we have

E[hl1(t)h
∗
l2(t)] = 0. (53)

Table 4 illustrates the main characteristics of the defined
TDL channel models.

The OFDM simulation parameters are based on the IEEE
802.11p standard as illustrated in Table 5. These simulations
are implemented using QPSK and 16QAM modulation or-
ders, the SNR range is [0, 5, . . . , 40] dB. In addition, the
performance evaluation is made according to: (i) modulation
order, (ii) mobility, (iii) frame length, and (iv) DL architec-
ture.

Finally, it is observed that the conventional 2D LMMSE
estimator [17] is included in the performance evaluation of
the DL-based FBF estimators as a lower bound performance
limit. The 2D LMMSE estimator almost achieves a similar
performance as the ideal channel, but is ridden with high
computational complexity. This renders it impractical in
terms of real-time applications.

B. DL-BASED SBS ESTIMATION SCHEMES
1) Modulation Order
For QPSK modulation order, we can notice from Figure 8,
and Figure 9 that conventional SBS estimators witness a
considerable performance degradation in different mobility
scenarios primarily due to the enlarged DPA demapping
error, particularly under very high mobility. Nevertheless,
employing DL techniques in the channel estimation process
results in a significant improvement in overall performance.
To begin with, the FNN-based estimators, where FNN is
employed as a post-processing unit after conventional estima-
tors, are discussed. As observed, FNN can implicitly learn the
channel correlations apart from preventing a high demapping
error arising from conventional DPA-based estimation, while
STA-FNN and TRFI-FNN outperform conventional STA and
TRFI estimators by at least 15 dB gain in terms of SNR for
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hH
q

]
E
[
H̃i

ˆ̃
hH
q+1

]]E
[∥∥∥h̃q

∥∥∥2]+ Eq E
[
h̃qh̃

H
q+1

]
E
[
h̃q+1h̃

H
q

]
E

[∥∥∥h̃q+1
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−1

=
[
J0(2πfd(f − 1)Ts) J0(2πfd(If + 1− f)Ts)

] [ 1 + EΦq
J0(2πfdIfTs)

J0(2πfdIfTs) 1 + Eq+1

]−1

.

(51)

TABLE 4. Main characteristics of the employed vehicular channel models following Jake’s Doppler spectrum.

Channel
model

Channel
taps

Vehicle velocity
[kmph]

Doppler
shift [Hz]

Average path gains [dB] Path delays [ns]

VTV-UC 12 45 250
[0, 0, -10, -10, -10, -17.8, -17.8,
-17.8, -21.1, -21.1, -26.3, -26.3]

[0, 1, 100, 101, 102, 200, 201,
202, 300, 301, 400, 401]

VTV-SDWW 12 100-200 500-1000
[0, 0, -11.2, -11.2, -19, -21.9, -25.3,

-25.3, -24.4, -28, -26.1, -26.1]
[0, 1, 100, 101, 200, 300, 400,

401, 500, 600, 700, 701]

TABLE 5. Simulation parameters of the IEEE 802.11p physical layer.

Parameter IEEE 802.11p
Bandwidth 10 MHz

Guard interval duration 1.6 µs
Symbol duration 8 µs

Short training symbol duration 1.6 µs
Long training symbol duration 6.4 µs

Total subcarriers 64
Pilot subcarriers 4
Data subcarriers 48

Subcarrier spacing 156.25 KHz

BER = 10−3. Meanwhile, STA-FNN estimator outperforms
DPA-FNN estimator by around 5 dB gain in terms of SNR
for BER = 10−3. However, STA-FNN suffers from error
floor beginning from SNR = 20 dB, particularly in very
high mobility scenarios. This is attributed to the fact that
conventional STA estimation outperforms DPA in low SNR
region due to the frequency and time averaging operations
that can alleviate the impact of noise and demapping error
in low SNR regions. On the other hand, the averaging oper-
ations are not useful in high SNR regions since the impact
of noise is low, and the STA averaging coefficients are fixed.
Therefore, TRFI-FNN is used to improve the performance
at high SNRs to compensate for the STA-FNN performance
degradation in high SNR region. Importantly, STA-FNN and
TRFI-FNN can be employed in an adaptive manner where
STA-FNN and TRFI-FNN are used in low and high SNR
regions, respectively.

For the LSTM-based estimators, employing LSTM as a
prepossessing unit rather than a simple FNN in the channel
estimation has shown to bring about a significant improve-
ment in the overall performance. This is because LSTM is
capable of efficiently learning the time correlations of the

channel by taking the advantage of the previous output apart
from the current input in order to estimate the current output.
LSTM-FNN-DPA estimator [53] outperforms STA-FNN and
TRFI-FNN estimators by approximately 4 dB gain in terms
of SNR for BER = 10−3. However, this estimator is not
impervious to high computational complexity, as discussed
in the next section, due to the utilization of two DL networks,
i.e, LSTM followed by FNN. On the other hand, the LSTM-
DPA-TA estimators performance gain in various scenarios
can be explained by employing the TA processing, which
significantly alleviates the noise impact aside from the strong
ability of the LSTM in learning the channel time correlations
compared with a simple FNN architecture. The LSTM-DPA-
TA estimator outperforms the LSTM-FNN-DPA estimator by
around 4 dB gain in terms of SNR for BER = 10−4. When
adopting high modulation order (16QAM), the LSTM-DPA-
TA estimator outperforms the other estimators by at least 7
dB and 3 dB gains in terms of SNR for BER = 10−3 in
high as well as very high mobility scenarios, respectively, as
illustrated in Figure 8b.

2) Mobility

The degraded performance with the increased mobility of
all the studied schemes can be observed from Figure 8.
However, the time diversity gain increases when there is an
increase in the Doppler spread, as evidenced by compar-
ing the case of the DL-based estimators in high mobility
(fd = 500) and very high mobility (fd = 1000). This
behavior can be explained by the ability of DL networks
to reduce the estimation error stemming from the AWGN
noise and the DPA demapping error. By contrast, the net gain
from the time diversity is influenced by the AWGN noise
and DPA demapping error, as is the case in conventional
SBS estimators. The performance degradation is attributed
as the mobility increases since the impact of the AWGN
noise and DPA demapping error is much more dominant
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(a) BER performance employing QPSK.
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(b) BER performance employing 16QAM.

FIGURE 8. BER for I = 100, mobility from left to right: low (v = 45 Kmph, fd = 250 Hz), high (v = 100 Kmph, fd = 500 Hz), very high
(v = 200 Kmph, fd = 1000 Hz).

than the time diversity gain. This observation is also valid
for high modulation orders such as 16QAM, as evidenced in
Figure 8b.

DLSBSFL

3) DL Architecture

The DPA-FNN estimator integrates three hidden layer FNN
in additon to the conventional DPA estimation with 40 −
20 − 40 neurons. However, as can be observed in Fig-
ure 8, correcting the estimation error of the DPA estima-
tion is insufficient even after the inclusion of more neurons
in the FNN hidden layers, because it merely corrects the
demapping error, neglecting the received symbols’requency
and time correlation. Meanwhile, the STA-FNN and TRFI-
FNN estimators have better optimized three hidden layers
FNN architecture where 15 − 15 − 15 neurons are used.
Consequently, the overall computational complexity is con-
siderably lowered when compared to the DPA-FNN, while
attaining performance superiority. This is due to the fact that
STA considers frequency as well a time correlation between
the received OFDM symbols, while the conventional TRFI

estimator employs frequency-domain cubic interpolation to
make further improvements in the DPA estimation.

Therefore, it can be concluded that the pre-estimation
should be good enough in order for the FNN processing to
be more useful. Put differently, with an increased accuracy of
the pre-estimation, low-complexity FNN architecture can be
taken advantage of while recording a significant performance
gain. On the contrary, if the pre-estimation is poor, employing
FNN processin |tional complexity. As is the case with LSTM-
based estimators, employing the TA processing in the LSTM-
DPA-TA estimator to ameliorate the AWGN noise impact
results in a less complex architecture in comparison to the
LSTM-FNN-DPA estimator, where two DL networks are
employed.

C. DL-BASED FBF ESTIMATION SCHEME
1) Modulation Order

Figure 11 illustrates the BER performance of the studied
DL-Based FBF estimators employing QPSK and 16QAM
modulation orders. The 2D LMMSE uses the channel and
noise statistics in the estimation, thus leading to compara-
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FIGURE 9. NMSE for I = 100, mobility from left to right: low (v = 45 Kmph, fd = 250 Hz), high (v = 100 Kmph, fd = 500 Hz), very high
(v = 200 Kmph, fd = 1000 Hz).
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FIGURE 10. BER for QPSK, very high mobility (v = 200 Kmph, fd = 1000 Hz) from left to right: I = 10, I = 100.

ble performance in terms of the ideal case. However, the
2D-LMMSE is ridden with high computational complexity.
Moreover, the significant BER performance superiority of
the WI-CNN estimators can be observed where FP-ALS-
CNN outperforms the ChannelNet as well as TS-ChannelNet
estimators by at least 6 dB and 3 dB gain in terms of SNR for
a BER = 10−3. Importantly, ChannelNet and TS-ChannelNet
estimators suffer from a considerable performance degrada-
tion that is dominant in very high mobility scenarios. This is
because their performance accounts for the predefined fixed
parameters in the applied interpolation scheme, where it is
important to update the RBF interpolation function and the
ADD-TT frequency and time averaging parameters in real-

time. Furthermore, the ADD-TT interpolation employs only
the previous and the current pilot subcarriers for the channel
estimation at each received OFDM symbol. By contrast, there
are no fixed parameters in the WI-CNN estimators. The
time correlation between the previous and the future pilot
symbols is considered in the WI interpolation matrix (51),
whereas the estimated channel is considered in the overall
estimation at all channel taps. These aspects lead to the
superior performance of WI-CNN estimators performance,
where a significant robustness is shown against high mobility
with varied performance gain according to the employed pilot
allocation scheme, i.e FP or LP. In addition, WI-CNN estima-
tors employ optimized SR-CNN and DN-CNN in accordance
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(a) BER performance employing QPSK.
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(b) BER performance employing 16QAM.

FIGURE 11. BER for I = 100, mobility from left to right: low (v = 45 Kmph, fd = 250 Hz), high (v = 100 Kmph, fd = 500 Hz), very high
(v = 200 Kmph, fd = 1000 Hz). The CNN refers to SR-CNN and DN-CNN in low and high/very high) mobility scenarios, respectively.

with the mobility condition, wherein SR-CNN is utilized in
low mobility scenarios, whereas, DN-CNN is employed in
high and very high mobility scenarios.

2) Mobility
A degradation is observed in the overall performance of
ChannelNet and TS-ChannelNet estimators as the mobility
increases, while the WI-CNN estimators reveal a robustness
against high mobility, as illustrated in Figure 11. This is
primarily attributed to the accuracy of the WI interpolation,
coupled with optimized SR-CNN and DN-CNN. Although
CNN processing is implemented in the ChannelNet and
TS-ChannelNet, this post CNN processing is unable to per-
form well due to the high estimation error of the 2D RBF and
ADD-TT interpolation techniques in the initial estimation.
Therefore, it can be concluded that employing robust initial
estimation as the WI interpolation schemes allows the CNN
to better learn the channel correlation with lower complexity,
thereby enhancing the channel estimation.

3) Frame Length

Figure 13 illustrates the BER performance of high mobility
vehicular scenario employing QPSK modulation and differ-
ent frame lengths. As can be clearly observed, the WI-FP-
ALS estimator outperforms ChannelNet and TS-ChannelNet
for different frame lengths without any post CNN process-
ing. This is because of the long codeword that shows the
robustness of the WI-FP-ALS estimator, unlike the 2D RBF
and ADD-TT interpolation techniques that suffer from a
significant estimation error even when considering a short
frame. Moreover, employing the optimized DN-CNN after
the WI-FP-ALS estimator significantly enhances the BER
performance.

However, although CNN processing is applied in the
ChannelNet and TS-ChannelNet, this post CNN processing
is unable to perform well. This is attributed to the high
estimation error of the 2D RBF and ADD-TT interpolation
techniques in the initial estimation. Thus, we can conclude
that employing robust initial estimation as the WI interpo-
lation schemes enable the CNN to better learn the channel
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FIGURE 12. NMSE for I = 100, mobility from left to right: low (v = 45 Kmph, fd = 250 Hz), high (v = 100 Kmph, fd = 500 Hz), very high
(v = 200 Kmph, fd = 1000 Hz).The CNN refers to SR-CNN and DN-CNN in low and high/very high) mobility scenarios, respectively.
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FIGURE 13. BER performance of VTV-SDWW high mobility vehicular
channel model employing QPSK modulation and different frame
lengths.

correlation with lower complexity, thereby enhancing the
channel estimation, as shown in Figure 12.

D. CNN ARCHITECTURE

The ChannelNet estimator employs SR-CNN and DN-CNN
following the 2D RBF interpolation. The employed SR-CNN
comprises three convolutional layers with (v1 = 9; f1 =
64), (v2 = 1, f2 = 32) and (v3 = 5, f3 = 1), respectively.
Moreover, the DN-CNN depth is D = 18 with 3 × 3 × 32
kernels in each layer. Meanwhile, SR-ConvLSTM network
comprises three ConvLSTM layers of (v1 = 9; f1 =
64), (v2 = 1, f2 = 32) and (v3 = 5, f3 = 1), respec-
tively, and is integrated after the ADD-TT interpolation in
the TS-ChannelNet estimator. The SR-ConvLSTM network

combines both the CNN and the LSTM networks [51], thus
increasing the overall computational complexity, as shall be
discussed later. By contrast, the employed optimized SR-
CNN and DN-CNN significantly reduces the complexity due
to the WI estimators’ accuracy. Put succinctly, the complexity
of the employed CNN decreases as the accuracy of the pre-
estimation increases, because low-complexity architectures
can be utilized and vice versa.

E. DL-BASED SBS VS. DL-BASED FBF ESTIMATION
SCHEME
This section further examines the performance assessment of
the studied estimators, where only the best DL-based SBS
and FBF estimators are compared. Figures 14 and 15 illus-
trate the BER and NMSE performance of the investigated
DL-based estimators in low, high, and very high mobility
scenarios, employing QPSK and 16QAM modulation orders.

In low-mobility scenario, the LSTM-DPA-TA SBS esti-
mator outperforms the WI-FP-ALS-SR-CNN FBF estimator.
This can be explained by the ability of LSTM to better
learn the channel time correlation than the SR-CNN, since
Doppler error is somehow negligible in low mobility sce-
nario. However, in high and very high mobility scenarios,
WI-FP-ALS-DN-CNN shows a significantly improved per-
formance, outperforming the LSTM-DPA-TA SBS estimator
by 3 dB gain in terms of SNR for a BER = 10−4. In
high mobility scenarios, where the Doppler error impact is
high, LSTM suffers from some performance degradation as
learning the time correlation between successive samples is
not achievable in the low mobility scenario case. Meanwhile,
DN-CNN network can significantly alleviate the impact of
noise and Doppler error, where it records at least 5 dB gain
in terms of SNR for a BER = 10−4. To conclude, it can be
inferred that employing LSTM network rather than FNN and
DN-CNN networks leads to improved performance in low-
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(a) BER performance employing QPSK.
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(b) BER performance employing 16QAM.

FIGURE 14. BER performance employing three scenarios: (i) first column - low mobility (v = 45 Kmph, fd = 250 Hz) (ii) second column - high
mobility (v = 100 Kmph, fd = 500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz). The CNN refers to SR-CNN and
DN-CNN in low and high/very high) mobility scenarios, respectively.

mobility scenarios. In By contrast, DN-CNN is more useful
in high as well as very high mobility scenarios because DN-
CNN uses the entire pilot subcarriers within the received
frame. To summarize, the time correlation between suc-
cessive received OFDM symbols decreases as the mobility
increases. Therefore, the performance of LSTM suffers from
performance degradation when compared with CNN. On the
other hand, the CNN-based estimators become more useful
than the LSTM-based estimators in high mobility scenarios.

Finally, it is observes that DL-based FBF estimators suffer
from high buffering time at the receiver, because it is nec-
essary to receive the full frame before the channel estimation
begins leading to high latency. However, this buffering time is
lowered in the WI-CNN estimators after dividing the received
frame into sub frames so that the channel estimation process
commences prior to the full frame reception. Moreover, the
WI-CNN estimators also help increase the transmission data
rate as fewer pilots are inserted into the transmitted frame.

VII. COMPLEXITY ANALYSIS
This section provides a detailed computational complexity
analysis of the studied DL-based SBS and FBF estima-
tors. The computational complexity analysis is performed in
accordance with the number of real-valued arithmetic op-
erations, multiplication/division and summation/subtraction
necessary to estimate the channel for one received OFDM
frame. Each complex-valued division requires 6 real-valued
multiplications, 2 divisions, 2 summations, and 1 subtraction.
In addition, each complex-valued multiplication is performed
by 4 real-valued multiplications and 3 summations.

A. DL-BASED SBS ESTIMATORS

The DPA estimation implemented in the DL-based SBS
estimators as an initial step needs two equalization steps (23),
and (25). Each equalization step comprises Kon complex-
valued divisions. Moreover, it needs the LS estimated chan-
nel at the preamble computed by 2Kon summation and 2Kon
divisions. Hence, the overall computational complexity of the
DPA estimation is 16Kon multiplications/divisions and 6Kon
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FIGURE 15. NMSE performance employing three scenarios: (i) first column - low mobility (v = 45 Kmph, fd = 250 Hz) (ii) second column - high
mobility (v = 100 Kmph, fd = 500 Hz) (iii) third column - very high mobility (v = 200 Kmph, fd = 1000 Hz). The CNN refers to SR-CNN and
DN-CNN in low and high/very high) mobility scenarios, respectively.
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FIGURE 16. Computational complexity comparison of the studied DL-based SBS estimators.

summations/subtractions.
The STA estimator applies frequency as well as time-

domain averaging in addition to DPA. The frequency-domain
averaging (26) coefficient is fixed (β = 2). Thus, each sub-
carrier requires 5 complex-valued summations multiplied by
a real-valued weight, which, in turn, are equivalent to 10 real-
valued summations, and 2 real-valued multiplications. Con-
sequently, the STA frequency-domain averaging step requires
10Kd real-valued summations, and 2Kd real-valued multipli-
cations. The STA time-domain averaging step (27) requires
4Kon real-valued divisions, and 2Kon real-valued summa-
tions. For this reason, the accumulated overall computational
complexity of STA estimator is 22Kon + 2Kd multiplica-
tions/divisions and 10Kon + 10Kd summations/subtractions.

The TRFI estimator implements another two equalization

steps after the DPA estimation (28). Thereafter, it applies
cubic interpolation as the last step. Based on the analysis
performed in [28], the computational complexity of TRFI is
34Kon+26Kint multiplications/divisions and 14Kon+30Kint
summations/subtractions, where Kint represents the number
of unreliable subcarriers in each received OFDM symbol.

1) FNN-based Estimators

For the FNN-based estimators, the DPA-FNN architec-
ture [27] consists of three hidden layers with J1 = J5 =
2Kon, J2 = J4 = 40, and J3 = 20 neurons, respectively.
Therefore, the DPA-FNN requires 4KonJ2 +2J2J3 multipli-
cations, and 2Kon+2J2+J3 summations. The computational
complexity of LS and the DPA estimation are accumulated
for DPA-FNN computational complexity resulting in total of
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TABLE 6. Detailed computation complexity of the studied DL-based SBS estimators.

Estimator Mul./Div. Sum./Sub.

FNN(J2-J3-J4) 2KonJ2 + J2J3 + J3J4 + 2KonJ4 2KonJ2 + J2J3 + J3J4 +2KonJ4

LSTM (P ) P 2 + 3P + PKin 4P +Kin − 2

Overall channel estimation

STA-FNN 82Kon + 2Kd + 450 70Kon + 10Kd + 450

TRFI-FNN 94Kon + 26Kint + 450 74Kon + 30Kint + 450

DPA-FNN 178Kon + 1600 168Kon + 1600

LSTM-FNN-DPA 512Kin + 98Kd + 71040 4Kin + 88Kd + 6776

LSTM-DPA-TA(64) 514Kon + 18Kd + 16576 10Kon + 8Kd + 824

LSTM-DPA-TA(128) 1026Kon + 18Kd + 65920 10Kon + 8Kd + 1656

178Kon + 1600 multiplications and 168Kon + 1600 summa-
tions/subtractions.

CCFNN = 2

L+1∑
l=0

Nl−1Nl, where N0 = NL+1 = 2Kon.

(54)
The STA-FNN and TRFI-FNN estimators employ a three-

hidden layer FNN architecture consisting of 15 neurons
each. This FNN architecture requires 4KonJ2 + 2J2

2 , and
2Kon + 3J2 summations. This architecture is less com-
plex when compared with the DPA-FNN one. Thus, the
STA-FNN overall computational complexity is 82Kon +
2Kd + 450 multiplications, and 70Kon + 10Kd + 450
summations/subtractions. Furthermore, the TRFI-FNN needs
94Kon+26Kint+450 multiplications, and 74Kon+30Kint+
450 summations/subtractions. The TRFI-FNN estimator re-
duces the number of multiplications as well as summations
by 48% and 56%, respectively, when compared with DPA-
FNN, while its computational complexity is similar to that of
STA-FNN.

2) LSTM-Based Estimators

The computational complexity of the LSTM unit can be cal-
culated with respect to the number of operations performed
by its four gates. Each gate applies P 2 + PKin real-valued
multiplications and 3P + Kin − 2 summations apart from
3P multiplications, and P summations required by (19),
and (21). As a result, the overall computational complexity
for the LSTM becomes

CCLSTM = 4(P 2 + PKin + 3P +Kin − 2) + 4P. (55)

Notably, FNN-based estimators need less computation than
LSTM, thus achieving lower complexity. The LSTM-FNN-
DPA estimator employs one LSTM unit with P = 128
and Kin = 112, followed by one hidden layer FNN net-
work with N1 = 40 neurons. In addition, the LSTM-FNN-
DPA estimator implements the DPA estimation that requires

18Kd real-valued multiplication/division and 8Kd summa-
tion/subtraction. Thus, the overall computational complexity
of the LSTM-FNN-DPA estimator is 512Kin+98Kd+71040
multiplication/division and 4Kin + 88Kd + 6776 summa-
tion/subtraction.

The LSTM-DPA-TA utilizes one LSTM unit with P =
128 as LSTM-FNN-DPA estimator. It also uses Kin =
2Kon, and applies TA as a noise alleviation technique
to the ˆ̄hLSTM-DPAi,d

estimated channel, that requires only
2Kon real-valued multiplication/division and 2Kon sum-
mation/subtraction. Hence, the LSTM-DPA-TA estimator
requires 4P 2 + P (8Kon + 3) + 18Kd + 2Kon real-valued
multiplication/division and 13P + 10Kon + 8Kd − 8 sum-
mation/subtraction. As per this analysis, the LSTM-DPA-
TA estimator achieves less computational complexity in
comparison to the LSTM-FNN-DPA estimator. It records
9.73% and 77.63% computational complexity decline in
the required real-valued multiplication/division and sum-
mation/subtraction, respectively. Importantly, replacing the
FNN network by the TA to achieve noise alleviation is
the primary factor in reducing the overall computational
complexity. Moreover, the LSTM-DPA-TA estimator outper-
forms the LSTM-FNN-DPA estimator while recording lower
computational complexity. As a matter of fact, employing
the LSTM-DPA-TA LSTM-based estimators as opposed to
the FNN-based estimators results in 89.10% and 62.18%
increase in the necessary multiplication/division and summa-
tion/subtraction, respectively. Nevertheless, it is possible to
achieve a significant performance gain. Table 6 and Figure 16
reveal a detailed summary of the computational complexities
for the various examined DL-based SBS estimators.

B. DL-BASED FBF ESTIMATORS
1) ChannelNet estimator
The ChannelNet estimator utilizes the RBF interpolation
followed by SR-CNN and DN-CNN networks. Therefore, the
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FIGURE 17. Computational complexity comparison of the studied DL-based FBF estimators.

overall computational complexity of the ChannelNet estima-
tor can be expressed as follows

CCChannelNet = CCRBF + CCSR-CNN + CCDN-CNN. (56)

The calculation of ˆ̃HLS requires 2KpI divisions. The com-
putation of wRBF requires 4K2

pI
2 multiplications/divisions

and 5K2
pI

2 − 2KpI summations/subtractions. Meanwhile,
ˆ̃HRBF requires KdI(K

2
pI

2+3KpI) multiplications/divisions
and 5KdKpI

2 subtractions/summations. Thus, the total com-
putational complexity of the RBF interpolation can be ex-
pressed by K2

pI
2(4 + KdI) + KpI(2 + 3KdI) multipli-

cations/divisions and KpI(5KpI + 5KdI − 2) summa-
tions/subtractions. Subsequently, the ChannelNet estimator
applies SR-CNN followed by DN-CNN in addition to the
RBF interpolation. CCSR-CNN and CCDN-CNN can be com-
puted as follows

CCSR-CNN =

L∑
l=1

hlwldlv
2
l fl + hlwldlfl

=

L∑
l=1

hlwldlfl(v
2
l + 1).

(57)

CCDN-CNN =

L∑
l=1

hlwldlfl(v
2
l + 1) +

D∑
j=1

4hjwjdj . (58)

L signifies the number of employed CNN layers. It
can be noted that the second term in CCDN-CNN signi-
fies the number of operations required by the batch nor-
malization employed in the DN-CNN network. Thus, the
SR-CNN employed in the ChannelNet estimator needs
16064KonI multiplications/divisions as well as 4288KonI
summations/subtractions, while the ChannelNet DN-CNN
computations require 334080KonI multiplications/divisions
and 38144KonI summations/subtractions.

2) TS-ChannelNet estimator

The TS-ChannelNet estimator applies the ADD-TT inter-
polation followed by the SR-ConvLSTM network. Hence,
the overall computational complexity of the TS-ChannelNet
estimator can be expressed in the following manner:

CCTS-ChannelNet = CCADD-TT + CCSR-ConvLSTM. (59)

The ADD-TT interpolation first applies the DPA estimation
requiring 18Kon multiplications/divisions and 8Kon sum-
mations/subtractions. The time-domain truncation operation
applied in (43) requires 4LKon multiplications as well as
5KonL − 2Kon summations. In the ADD-TT interpolation,
the frequency-domain averaging (44) requires 10Kon sum-
mations and 2Kon multiplications. Furthermore, the time-
domain averaging step (45) requires 4Kon real valued divi-
sions, and 2Kon real valued summations. Thus, the overall
computational complexity of the ADD-TT interpolation for
the whole received OFDM frame requires 24KonI+4LKonI
real-valued multiplications/divisions, and 18KonI +5KonIL
summations/subtractions. The total computational complex-
ity is expressed with respect to the overall operations im-
plemented in the input, forget, and output gates of the
SR-ConvLSTM network, such that

CCConvLSTM =

L∑
l=1

hlwldlfl(8v
2
l + 30). (60)

Based on (60), the SR-ConvLSTM network employed
in the TS-ChannelNet estimator requires 226880KonI
multiplications/divisions as well as 81472KonI summa-
tions/subtractions. TS-ChannelNet estimator is less compli-
cated than the ChannelNet estimator, because it employs only
one CNN in addition to the ADD-TT interpolation, unlike the
ChannelNet estimator where both SR-CNN and DN-CNN
are employed.
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TABLE 7. Detailed computation complexity of the studied CNN-based FBF estimators.

Scheme
Interpolation CNN

Mul./Div. Sum./Sub. Mul./Div. Sum./Sub.

ChannelNet
K2

pI
2(4 +KdI)

+ KpI(2 + 3KdI)

KpI(5KpI

+ 5KdI − 2)
350144KonI 42432KonI

TS-ChannelNet 24KonI + 4LKonI
18KonI

+ 5KonIL
226880KonI 81472KonI

FP-SLS-SR-CNN
2KonP + 2Kon

+ 4KonId

2Kon

+ 2KonId

7008KonId 1120KonId
FP-ALS-SR-CNN

4K2
onP + 2KonP

+ 2Kon + 4KonId

5K2
onP

+ 2KonId

LP-SR-CNN
2LP + 4KonLP

+ 2Kon + 4KonId

5KonLP

+ 2KonId

FP-SLS-DN-CNN
2KonP + 2Kon

+ 4KonId

2Kon

+ 2KonId

84096KonId 9856KonId
FP-ALS-DN-CNN

4K2
onP + 2KonP

+ 2Kon + 4KonId

5K2
onP

+ 2KonId

LP-DN-CNN
2LP + 4KonLP + 2Kon

+ 4KonId

5KonLP

+ 2KonId

3) WI-CNN estimators
The WI-CNN estimators computational complexity primarily
depends on the selected frame structure, the pilot allocation
scheme, as well as the selected optimized CNN. Thus, the
overall computational complexity of the WI-CNN estimators
can be expressed as follows

CCWI = CC ˆ̃HWI
+ CCO-CNN. (61)

When full pilot symbols are inserted, two options are taken
into consideration. The first option is the SLS estimator,
which is performed using 2KonP + 2Kon divisions, and
2Kon summations. The second option entails employing the
ALS estimator with 2KonP + 2Kon divisions. This is fol-
lowed by 4K2

onP multiplications, and 5K2
onP summations.

In the instance where Kp = L pilots are inserted with
each pilot symbol, the LS estimation requires 2LP + 2Kon
divisions, 4KonLP multiplications, and 5KonLP summa-
tions. In a similar manner, for employing only Kp = 4
pilot subcarriers, the WI-CP estimator needs 8P + 2Kon
divisions, 16KonP multiplications, as well as 20KonP sum-
mations. Following the selection of the required frame
structure and pilot allocation scheme, the WI-CNN esti-
mators apply the weighted interpolation as demonstrated
in (50).The channel estimation for each received OFDM
frame needs 4KonId divisions and 2KonId summations. Fi-

nally, the optimized SR-CNN is utilized in low-mobility
scenario and needs 7008KonId multiplications/divisions and
1120KonId summations/subtractions. For high-mobility sce-
narios, the optimized DN-CNN is employed, requiring
84096KonId multiplications/divisions and 9856KonId sum-
mations/subtractions. The WI-FP-ALS records the higher
computational complexity among the other WI estimators
in all mobility scenarios, due to WALS calculation in (47),
whereas, the WI-FP-SLS estimator refers to the simplest one.

Table 7 shows the studied estimators’ overall computa-
tional complexity with respect to real valued operations.
It is noteworthy that the WI estimators achieve signifi-
cant computational complexity decrease in comparison to
ChannelNet and TS-ChannelNet estimators. Figure 17 de-
picts the computational complexity of the studied DL-based
FBF estimators. The ChannelNet and TS-ChannelNet esti-
mators are 70 and 39 times more complex than the FP-ALS-
SR-CNN, respectively. In addition, the WI-CNN estimators
achieve a minimum of 7027.35 times less complexity than
the 2D LMMSE estimator, with an acceptable BER per-
formance, which makes them a feasible alternative to the
2D LMMSE. It is also observed that FP-ALS-DN-CNN is
12 times more complex than FP-ALS-SR-CNN since the
optimized DN-CNN architecture complexity employed in
high and very high scenarios is higher than the optimized
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SR-CNN architecture, which, in turn, is employed in low
mobility scenarios.

VIII. CONCLUSION
This survey sheds light on the recently proposed DL-based
SBS and FBF channel estimators in doubly-dispersive en-
vironments. First, we have defined the problem of signal
propagation in doubly-dispersive channels. Subsequently, a
review of different DL architectures employed in the doubly-
dispersive channel estimation has been undertaken, followed
by a detailed presentation of the studied DL-based estimators.
Finally, the studied estimators have been evaluated with re-
spect to NMSE, BER, and computational complexity, clearly
demonstrating a significant improvement of employing DL in
the channel estimation across different mobility conditions.
We have shown that, while the LSTM and CNN based esti-
mators do outperform the FNN based estimator, more com-
putational complexity is necessary where the LSTM-based
SBS estimator is 23.6 times more complex than the FNN-
based SBS estimators. Nevertheless, the complexity of the
CNN-based FBF estimator exceeds the complexity of LSTM-
based SBS estimator by approximately 3450 times because
of the significant difference in terms of required operations
between the CNN and LSTM networks. Finally, we have
observed that the choice of the channel estimator is primarily
related to the applications requirements as well as affordable
computational complexity. SBS estimators are more useful
when the application is sensitive to latency, whereas FBF
estimators can be employed if some latency can be accepted.
To summarize, a trade-off between the required performance,
computational complexity, and the accepted latency must
first be defined to select what is the most suitable channel
estimator to be employed.
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