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Abstract 
 

Objectives  

 

COVID-19 pandemic seems to be under control. However, despite the vaccines, 5 to 10% of the 

patients with mild disease develop moderate to critical forms with potential lethal evolution. In 

addition to assess lung infection spread, chest CT helps to detect complications. Developing a 

prediction model to identify at-risk patients of worsening from mild COVID-19 combining simple 

clinical and biological parameters with qualitative or quantitative data using CT would be relevant to 

organizing optimal patient management. 

 

Methods  

 

Four French hospitals were used for model training and internal validation. External validation was 

conducted in two independent hospitals. We used easy-to-obtain clinical (age, gender, smoking, 

symptoms’ onset, cardiovascular comorbidities, diabetes, chronic respiratory diseases, 

immunosuppression) and biological parameters (lymphocytes, CRP) with qualitative or quantitative 

data (including radiomics) from the initial CT in mild COVID-19 patients. 

 

Results 

 

Qualitative CT scan with clinical and biological parameters can predict which patients with an initial 

mild presentation would develop a moderate to critical form of COVID-19, with a c-index of 0.70 

(95% CI 0.63; 0.77). CT scan quantification improved the performance of the prediction up to 0.73 

(95% CI 0.67; 0.79) and radiomics up to 0.77 (95% CI 0.71; 0.83). Results were similar in both 

validation cohorts, considering CT scans with or without injection. 

 

Conclusion  

 

Adding CT scan quantification or radiomics to simple clinical and biological parameters can better 

predict which patients with an initial mild COVID-19 would worsen than qualitative analyses alone. 

This tool could help to the fair use of healthcare resources and to screen patients for potential new 

drugs to prevent a pejorative evolution of COVID-19. 

 

 

Clinical relevance statement  

 

CT scan quantification or radiomics analysis is superior to qualitative analysis, when used 

with simple clinical and biological parameters, to determine which patients with an initial 

mild presentation of COVID-19 would worsen to a moderate to critical form. 

 

 

 

 

 



Key Points 

 

• Qualitative CT scan analyses with simple clinical and biological parameters can predict 

which patients with an initial mild COVID-19 and respiratory symptoms would worsen with a 

c-index of 0.70. 

 

• Adding CT scan quantification improves the performance of the clinical prediction model to 

an AUC of 0.73. 

 

• Radiomics analyses slightly improve the performance of the model to a c-index of 0.77. 

 

Keywords  

 

COVID-19 ・ Tomography, X-ray computed ・ Clinical decision rules ・ Artificial 

intelligence 

 

 

Abbreviations 

 

BMI Body mass index, CI Confidence interval, COPD Chronic obstructive pulmonary disease 

COVID-19 Coronavirus disease 2019, CRP C-reactive protein, CT Computed tomography, 

DLP Dose length product, HU Hounsfield Unit, ILD Interstitial lung disease, kV Kilovoltage, 

LR Logistic regression, mAs Milliampere second, NA Not applicable, OR Odds ratio, SD 

Standard deviation, SVM Support vector machine.  

 

 

 

-- 

 

Introduction 
 

 

Few patients infected with coronavirus disease 2019 (COVID- 19) rapidly develop acute respiratory 

distress leading to respiratory failure, with high short-term mortality rates [1]. However, only 5% of 

patients infected with COVID-19 experienced this pejorative evolution [2]. Despite the vaccines, the 

pandemic is not over yet and a progression from a mild to moderate or severe form could not be 

excluded for at-risk subjects [3]. However, there is still no reliable risk stratification tool for non-

severe COVID-19 patients at admission especially among those with respiratory symptoms further 

overwhelming the health system [4]. Patients with a mild disease typically recover at home [5], 

especially, because there is no fully proven therapy for these mild COVID-19 to prevent adverse 

evolution [6]. Nevertheless, new expansive strategies are emerging to prevent worsening from mild to 

severe COVID-19 [7], without distinction of a specific population likely to worsen.  

 

Chest computed tomography (CT) is widely used to manage COVID-19 pneumonia because 

of its availability and rapid acquisition; it remains crucial in case of prolonged symptoms or 

new emergency signs. In addition to its role in early diagnoses during the first months of the 

pandemic, CT has a pivotal role in detecting complications such as thromboembolism [8], 

which can occur even in mild diseases [9]. Also, a prognostic role of chest CT has been 

reported in evaluating the extent of COVID-19 lung abnormalities [10, 11] while previous 

data have shown that it could predict severe outcomes [12–14]. Besides, clinical and 

biological parameters with artificial intelligence (AI) analyses of imaging data seemed to 



identify patients with severe outcomes in COVID- 19 pneumonia [15]. However, most 

publications are based on small cohorts or severe forms [16–18], and there is no data about 

mild COVID-19, which are dramatically more frequent. 

 

The goals of this multicenter study were to develop and validate clinical prediction models for 

the risk of progression from mild to moderate, severe, or critical COVID-19 combining 

simple clinical and biological parameters with qualitative or quantitative data (including 

radiomics) from the initial chest CT in mild COVID-19 patients with respiratory symptoms. 

This strategy could help to identify patients with low-risk worsening of SARS-CoV-2 

pneumonia despite respiratory symptoms. Early identifying at-risk patients may address a 

major issue of a fair use of healthcare resources and would allow better screening for new 

expansive therapeutics to prevent a pejorative evolution of COVID-19. 

 

Materials and methods 
 

Ethics considerations 

 

The study was conducted by international guidance and approved by a national Ethics 

Committee on 06/18/2020 (NCT04481620). The study conducts adhere to the TRIPOD 

statement recommended for developing and validating a prediction model. Study data were 

collected and managed using REDCap electronic data capture tools hosted at the University 

Hospital of Bordeaux [19]. 

 

Study design and participants 

 

In the development cohort (from 3 university hospitals in Bordeaux, Grenoble, and 

Montpellier and a private hospital in Bordeaux, France), patients were eligible if they were at 

least 18 years old, and had a first chest CT performed without injection of contrast agent for 

respiratory symptoms which led to highly suspicious or compatible according to standardized 

visual analysis of COVID-19. Besides, they should have either a biological diagnosis (RT-

PCR) or a clinical suspicion (cough and/or dyspnea and/or fever and/ or need to use oxygen-

therapy as part of routine care) of COVID-19 at the time of the CT scan, between March 1, 

2020, and May 5, 2021 (Figure S1). Non-inclusion criteria were patients with moderate or 

severe forms (defined as oxygen-therapy ≥ 3 L/min to obtain a SpO2 > 97%) or critical forms 

of COVID-19 (defined by the need for non-invasive or invasive ventilation and/or orotracheal 

intubation) on the date of the first chest CT. In the validation cohort (university hospitals in 

Nancy and Poitiers, France), eligibility criteria were similar, except that half of the patients 

had chest CT with a contrast agent injection. 

 

Outcome of interest and predictors 

 

The composite outcome of significant clinical deterioration from a mild form of COVID-19 

within 30 days after chest CT was defined by the occurrence of a moderate, severe (defined as 

oxygen-therapy > 5 L/min to obtain SpO2 > 97%), or critical form of COVID-19 or death 

[20]. The clinical and biological candidate predictors were selected from a literature review 

[8, 11, 21–23] and retrieved from the electronic medical records: age, gender, smoking, time 

elapsed since symptoms’ onset, and any pre-existing cardiovascular comorbidities such as 

coronary artery disease, hypertension, diabetes, obesity, respiratory diseases (COPD or 

interstitial lung disease), or immunosuppression. Clinical and biological parameters were 

collected in a 24-h window after CT scans. 



 

Validation cohort 

 

We internally validated the model and estimated its performance in an independent validation 

cohort. Half of the validation cohort (n = 228) used participants with non-injected CT scans 

included between March 19, 2020, and January 28, 2021. The other half (n = 246) included 

participants with injected CT scans, between March 23, 2020, and April 23, 2021 (Figure S1). 

 

Chest CT 

 

CT were acquired on 9 CT models (Table S1, supplemental data). The standardized report 

proposed by the French Society of Radiology (https:// ebull etin. radio logie. fr/ comptes- 

rendus- covid- 19) was largely used by French radiologists across the participating centers. It 

includes a 5-scale score of severity (0% = absent; < 10% = mild; 10–25% = moderate; 25–

50% = extended; 50–75% = severe; > 75% = critical) and a 4-point scale to categorize the risk 

of COVID-19: highly suspicious, compatible, not suspicious, and normal. Different patterns 

of COVID-19 lung lesions and their distributions were reported (ground-glass opacities, 

consolidations, and crazy paving) [24, 25]. 

 

Quantitative assessment of CT 

 

An AI-based software tool for chest CT analysis (syngo.via CT Pneumonia Analysis 

prototype) from Siemens Healthineers (Version 1.0.4.2) was used to assess the severity of 

COVID-19. It automatically segments the lungs/lobes and delineates lung opacities (ground-

glass and consolidations) based on a convolutional neural network trained with data manually 

labeled by expert radiologists [26]. If needed, lung segmentation was adjusted manually. Low 

attenuation areas were defined when below -950 HU (LAA-950). 

 

Radiomics analyses of CT 

 

Before extracting radiomics features, images were resampled on a 1 mm × 1 mm × 1 mm grid 

by PyRadiomics [27]. Preprocessing, harmonization, and normalization of features were 

scaled using the RobustScaler from scikit-learn framework [31], which removes the median 

and scales the data according to the quantile range. 

 

Then, from the CT of each patient, PyRadiomics was used to extract two sets of radiomics 

features on two different ROIs for each patient: the COVID-19 lesion and the lung region not 

including the COVID-19 part. For each of these ROIs, we extracted a total of 107 radiomics 

features—with a bin width of 34—corresponding to first-order (n = 18), shape (n = 14), and 

second-order (gray-level co-occurrence matrix with 1-voxel distance to neighbors, gray-level 

run length matrix, neighborhood gray-level different matrix, and gray-levels zone length 

matrix, n = 75) groups of radiomics features. With the development cohort, the best model 

(i.e., a chain of preprocessing, selection, oversampling, model methods) was selected using 

mean values of the c-indexes metric over the repeated (n = 30) tenfold cross-validation [28]. 

The complete procedure was then retrained on the whole cohort and used for obtaining the 

predictions on the validation cohort. An additional filter was applied to the images before 

extraction (Laplacian of Gaussian filter with sigma = 2 mm), giving 186 extra features from 

each ROI. As these additional features did not significantly improve the results, we chose to 

discard them from our analysis. Thus, for each CT, 214 radiomics features were extracted. 

 



An ablation study was also performed to investigate the importance of the different groups of 

imaging features. Results are shown in the two cohorts of the validation set (Table S5). 

“Lesion radiomics” considers only the set of radiomics features (107 features) extracted from 

the lesion; “Lesion + Lung radiomics” considers radiomics extracted from the lesion and 

parenchyma (214 features) and “Complete radiomics” was the model obtained with the full 

set of imaging features and clinical and biological features (226 features). 

 

Statistical analyses 

 

A sample size of the development cohort was calculated using Riley and colleagues’ approach 

[29]. We hypothesized an incidence of significant clinical deterioration within 30 days at 

20%; among mild COVID-19 [1, 2], 16 parameters included in the clinical prediction models 

and an expected Harrell’s c-index of 0.78 (Nagelkerke’s R2 of 0.25). The resulting sample 

size was at least 826 patients. For the external validation, we aimed to recruit at least one 

hundred clinical deterioration events for each validation cohort, as recommended by 

Vergouwe [30]. 

 

Three clinical prediction models were developed, combining clinical and biological factors 

with imaging parameters of increasing complexity: 5-scale score of severity based on CT 

visual assessment (model 1 or qualitative model); quantitative assessment of ground-glass, 

consolidation, and low attenuation areas on CT (model 2 or quantitative model); radiomics 

features (model 3) where 6 features were selected among the COVID lesions and lungs ROIs 

as the best features from the univariate analysis of the development cohort in each of the 

classical radiomics classes (shape-based features, first-order intensity features, and second-

order intensity features), 2 features per group. In addition, we predefined the percentage of 

consolidation as a characteristic of interest to retain in the model. 

 

The development of the prediction models was based on a logistic regression model whose 

response variable was defined by the outcome of interest described above. The missing data 

on outcome and predictors (Table S2) were handled as appropriate (supplemental data). 

 

The predictive performances of the clinical prediction models were evaluated on samples of 

participants recruited in independent study centers (external validation). Finally, to estimate 

sensitivities, specificities, and predictive values of clinical prediction models, we 

dichotomized the outcome probability by using the median of the thresholds calculated in 

each imputed dataset in the development process to obtain a minimal desired specificity of 

0.90 to select patients to avoid unnecessary hospitalizations/treatments. 

 

Development and exploration of machine learning model 

 

We evaluated the predictive capacity of a larger set of radiomics features with machine 

learning algorithms. They were trained on the development cohort using repeated cross-

validations. Model selection was performed on the development cohort and its performance 

was evaluated in the validation cohort. The computations were run in Python using the 

Scikitlearn platform [31]. Feature selection: first, the pairwise correlation between features 

was computed using Spearman rank correlation. When two features were highly correlated 

(correlation coefficient > 0.95), the last one was dropped (columns were randomly shuffled 

beforehand, and no significant change in performance was observed). Then, we kept the 50 

best features from the univariate analysis (the procedure was done separately for each cross-

validation fold, yielding potentially a different set of selected features for each fold) 



Results 
 

 

 

 

Baseline characteristics and outcomes of the development cohort 

 

A total of 827 participants were included in the development cohort (Fig. 1). The study 

demographics are presented in Table 1 and Table S3. Briefly, mean age was 65.5 [IQR 54; 

79] years; there were 495 (59.9%) men, with a median BMI of 27.4 [23; 30] kg/m2 and a 

median time between first symptoms and CT of 6 [2; 10] days. Comorbidities were mainly 

hypertension (373, 45.1%), obesity (178, 21.7%), and diabetes mellitus (170, 20.6%). Asthma 

and COPD affected respectively 9.3 and 8.5% of the population. A positive RTPCR during 

the acute phase was reported for 461 (64.8%) participants. Mean lymphocyte level was 1.16 } 

1.35 G/L, CRP 86 •} 82 mg/L. CT features were distributed as follows: ground-glass 

opacities affecting 805 (97.3%). The extent of the COVID-19 suspected lesions were mild 

(182, 22.0%), moderate (389, 47.0%), extended (200, 24.2%), severe (52, 6.3%), or critical 

(4, 0.5%). Finally, 440 (53.2%) participants were graded highly suspicious for COVID-19 

diagnosis, the others being compatible. Significant clinical degradation was observed in 212 

(28.4%) participants (Table S2). Severe and critical forms occurred respectively in 105 

(14.1%) and 46 (6.2%) participants. The 30-day mortality rate was 9.3%, with a mean time 

from COVID-19 diagnosis of 11.5 (•} 8.8) days (Table 1). 

 

Baseline characteristics and outcomes of the external validation cohort 

 

A total of 474 patients were included from two independent centers (in the external validation 

cohort (228 patients with non-injected and 246 with injected CT, Fig. 1). Clinical 

characteristics were similar, as shown in Table 1, except for the gender with fewer men, a 

higher rate of obesity in both validation cohorts and more occasional smokers in the 

validation cohort with injected scans. A significant clinical degradation occurred in 90 

(40.5%) participants from the non-injected validation cohort and 102 (41.8%) participants 

from the injected validation cohort. The 30-day mortality rate was 16.3% in the non-injected 

validation cohort and 7.4% in the injected validation cohort (Table 1). 

 

Performance of the qualitative model (model 1) 

 

Model 1 (Table 5 and S8) showed good overall internal and external validation performance. 

The optimism-corrected c-index of the model was 0.68 (95% CI 0.62; 0.71). Discrimination 

was similar in both external validation cohorts: a c-index of 0.70 (95% CI 0.63; 0.77) for the 

cohort with noninjected scans and 0.66 (95% CI 0.59; 0.72) for the cohort with injected scans 

(Table 2, Fig. 2). Figure 2 C and D display the calibration graph of prediction models. 

 



 

 
 



 

 
 

Performance of the quantitative model (model 2) 

 

Using CT quantification (Table 5 and S8) improved the discrimination of the clinical 

prediction model up to a c-index of 0.72 (95% CI, 0.67; 0.74). The improvement from model 

1 to model 2 was 0.04 (95% CI, 0.01; 0.07). Discrimination was similar in both external 

validation cohorts: a c-index of 0.73(95% CI 0.67; 0.80) with non-injected scans and 

0.72(95% CI 0.66; 0.79) with injected scans (Table 2, Fig. 2).  

 

A risk threshold of 0.49 was selected to achieve a specificity of at least 90% [6, 7] in the 

development cohort. Using this threshold for identification of high-risk population in the 

validation cohorts, sensitivity and negative predictive value were improved (0.23, 95% CI: 

0.14; 0.32 and 0.07, 95% CI: 0.02; 0.11) at the expense of specificity (− 0.09, 95% CI: − 0.16; 

− 0.03) in comparison with model 1 in the cohort with injected scans (Table S4). The adjusted 

association of predictors with the outcome is detailed in Table 5. 



 
 



 
 

 

Performance of the model 3 

 

In addition to the percentage of consolidation, six radiomics features were selected (namely 

volume of lesion and shape sphericity of lungs ROI from the shape groups, first order_Energy 

for lesion and lungs ROIs from the first order groups, and gldm_Dependence Entropy from 

lesion ROI, ngtdm_Busyness from lungs ROI from the second order groups, using 

pyradiomics canonical names). Using these 6 selected radiomics features instead of CT scan 

quantification of ground-glass and low attenuation areas (Table 5 and S8, Figure S2) 

improved slightly discrimination of the prediction model (optimism-corrected c-index 0.74, 

95% CI: 0.69; 0.76). The improvement from model 1 to model 3 was 0.06 (95% CI, 0.03; 

0.10). However, the improvement from model 2 to model 3 was not significant at 0.02 (95% 

CI, 0.00; 0.05). Discrimination was consistent in both external validation cohorts, although 

slightly lower among patients with injected scans: c-index of 0.77 (95% CI 0.71; 0.83) with 

non-injected scans and 0.72 (95% CI 0.66; 0.79) with injected scans (Table 2, Fig. 2). 

 

Similarly, a risk threshold of 0.52 was selected to achieve a specificity of at least 90% in the 

development cohort. In the cohort with non-injected scans, sensitivities and negative 

predictive values were improved in comparison with models 1 and 2 (0.17, 95% CI: 0.07; 

0.27, 0.06, 95% CI: 0.01; 0.11, 0.17, 95% CI: 0.08; 0.27 and 0.04, 95% CI: 0.01; 0.09 

respectively), at the expense of specificity (− 0.08, 95% CI: − 0.15; − 0.02) in comparison 

with model 2. In the cohort with injected scans, sensitivity was increased (0.10, 95% CI: 0.00; 

0.23) in comparison with model 1 whereas sensitivity was decreased (− 0.12, 95% CI: − 0.20; 

− 0.05) and specificity was increased (0.08, 95% CI: 0.03; 0.14) in comparison with model 2 

(Table S4). 



 

 
 

 
 

 

 

Performance of the machine learning model 

 

Using the development cohort, we selected the procedure (imputation, feature selection, 

oversampling classification) that gave the best mean c-index (Table 3, Table S6). We only 

show results for feature selection by taking the 50 best features after univariate analysis, 

taking a fixed percentile of features, or keeping the first components of a PCA yield inferior 

or similar c-index. We retrained the best-selected procedure on the whole development 

cohort. A threshold was selected for predictions to achieve a specificity of at least 90% in the 

development cohort. We obtained a c-index similar to the ones of the development cohort, 

which may hint at a good generalization ability of this model (Table 4). To analyze multi-

centric variability, we have also evaluated the results on each center of the development 

cohort with no significant difference (Table S7). The ablation study (Table S5) shows the 

interest of considering imaging features from the parenchyma in addition to those from the 

lesion. Yet the results of this model are a bit worse than model 3 (Table 5). 

 

 



 

 
 



 

Discussion 
 

 

While the COVID-19 pandemic is not over yet, identifying at-risk of worsening patients from 

mild COVID-19, by developing easy-to-use prediction models, remains a major issue, 

especially for potential new patient management strategies. Here, qualitative CT scan analyses 

combined with simple clinical and biological parameters could predict the worsening of 

COVID-19 pneumonia from mild forms with a c-index of 0.70. Using CT scan quantification 

improves the discrimination of the prediction model up to 0.73 and radiomics data up to 0.77. 

Discrimination was similar in both external validation cohorts with non-injected and injected 

CT scans. We also defined thresholds with high specificity in order to avoid false positive 

findings in order to optimize healthcare resources and/or to screen patients who would 

undergo new therapeutic options. 

 

One may suggest that the prediction of clinical deterioration could be disappointing. 

However, similar data in more severe COVID-19 population reached the same performance of 

predicted clinical deterioration towards critical forms at day 14, varying from c-index 0.70 

(95% CI 0.68; 0.72) to 0.78 (95% CI 0.74; 0.82) [11, 32]. Even when adding blood and 

physiological parameters, prognosis performance modestly improved discrimination (c-index 

= 0.735; 95% CI 0.715; 0.75) [21]. More recently, Davies et al developed a model to predict 

the need for intensive oxygen supplementation during hospitalization, including seven clinical 

and biological variables [22]. However, contrary to our study, validation on an external cohort 

was missing, probably inducing overestimated results. Kamran et al developed another model 

based on nine clinical characteristics which achieved a c-index of 0.80 (95% CI 0.77; 0.84). 

Performance was consistent when validated in external centers [23]. However, similar to most 

published studies, these patients, all needing hospitalization, are more severe than those 

selected in the present study, probably explaining these discrepancies [14, 33]. Besides, we 

have also decided to select easily available clinical and biological data to improve the 

feasibility of our models in the future. Prediction performance remained consistent despite 

temporal changes in management and treatment during the different COVID-19 waves. 

Application within the validation cohorts shows that this tool could guide clinician decisions, 

including treatment escalation. 

 

Most of the already reported prediction scores were built on hospitalized cohort with more 

severe forms than our cohort, in addition to the use of a large number of parameters that are 

not systematically recorded in routine [8, 21–23]. We paid a particular attention to only 

include mild forms of COVID-19 and to use in our prediction model simple clinical and 

biological parameters along with chest CT data. Indeed, CT, apart from precluding 

thromboembolism complication, might have a predictive value on the progression to 

moderate/severe forms of COVID, helping for the development of new strategies. 

 

One of the strengths of the present study was to compare the performance of two validation 

cohorts: first among patients with non-injected CT scans and second with injected CT scans. 

Interestingly, discrimination performance was similar in both external validation cohorts. 

We only noticed a decrease in discrimination performance in radiomics model. These results 

are important as an injection is now recommended regarding thromboembolism risk [8], 

which can occur even in mild COVID-19 [9] and will help to extrapolate our prediction model 

to larger real-life cohorts. 



 

The frequent use of corticosteroids, based on its interest in lowering 28-day mortality, among 

patients with severe forms of COVID-19 [34, 35] but also in milder forms [36] must be 

considered. Indeed, patients from the validation cohort were more often treated with 

corticosteroids, as included later in the pandemic (Figure S1). The prediction performance of 

our models remains similar even though the therapeutic management of COVID- 19 has 

improved, which supports the robustness of this model. 

 

Contrary to previously published data [15], AI-enhanced imaging and clinical and biological 

information did not significantly improve the capacity to identify patients with pejorative 

outcomes. Direct comparison is difficult as we used a different dataset. External validation 

using an independent dataset is critical before implementation in a real-world environment 

and has been performed in the present study. Besides, opaque machine-learning algorithm 

black-box models have been avoided as much as possible by controlling valid clinical 

endpoints. 

 

Limitations 

 

First, other clinical and biological characteristics not always available in standard practice 

[21–23] have been described as predictors of adverse outcomes, although in severe COVID-

19 population. We thus decided not to include all these parameters in our predictive model 

which focuses on ambulatory patients. Second, the biological confirmation of COVID-19 was 

not systematically available, with 35% not having an initial positive RT-PCR. This might 

have negatively affected our evaluation, since several patients with negative RT-PCR but 

positive CT findings were considered having COVID-19. However, this limitation reflects 

real-life events where RT-PCR is not performed systematically in outdoor patients. 

Furthermore, previous data have shown that patients with a negative first RT-PCR test do not 

differ considering mortality or hospital stay length [37]. Besides, we selected patients with 

highly suspicious or compatible lesions on scans. Although the models showed consistent 

performance across five various centers, the ongoing performance of our models will need to 

be assessed in the context of increasing deployment of immunomodulatory agents [7, 38] and 

COVID-19 vaccines, as well as emerging SARSCoV- 2 variants. 

 

 

Conclusion 
 

 

Models to predict clinical deterioration from mild to moderate forms were developed in 

response to the COVID-19 pandemic at five different hospitals, and were applied externally 

and performed well across the different medical centers, showing its potential as a tool for use 

in optimizing healthcare resources and selecting at-risk patients for new therapeutic strategies. 

Qualitative CT scan analyses combined with simple clinical and biological parameters could 

predict the worsening of COVID-19 pneumonia. The use of CT scan quantification or 

radiomics increased the performance of this prediction model. 
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