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Highlights 8 

 A large database about the autogenous shrinkage of concrete with SCM is built 9 

 Ensemble machine learning models can predict the autogenous shrinkage efficiently 10 

 ML models can perform better than B4 and CEB models modified versions. 11 

 SCM influence can be interpreted using SHAP analysis 12 

 Insights into blended cement concrete shrinkage behavior can be envisioned. 13 

 14 

Abstract 15 

Supplementary cementitious materials (SCM) are key components of low-carbon 16 

cementitious materials. However, their effects, especially for the emerging high cement 17 

replacement ratio formulations, are sometimes very challenging to predict, leading to restrictions 18 

in most standards. Through advanced Machine Learning techniques, this study provides novel 19 

insights into the autogenous shrinkage properties of concrete containing various kinds of 20 

supplementary cementitious materials such as slag, fly ash, silica fume, calcined clay, and filler. 21 

Four machine learning models are optimized and their predictions are compared on a dedicated 22 

database, including ternary and quaternary cement blends. The Extreme Gradient Boosting 23 

(XGBoost) model exhibited the highest accuracy among these models. Interpretative tools such as 24 

SHAP analysis are then used to obtain novel information about the relative influence of the SCM 25 

on the autogenous shrinkage depending on their dosage. The model is finally compared to the 26 

recently modified versions of the B4 and the CEB analytical models to predict the autogenous 27 

shrinkage of unknown concrete formulations. The model showed significantly better predictions 28 

than the analytical models, and a web application is proposed, paving the way for precise and 29 
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interpretable autogenous shrinkage predictions of cementitious materials incorporating SCM. 30 

 31 

Keywords: Concrete; Autogenous Shrinkage; Supplementary Cementitious Material (SCM); 32 

Machine Learning; XGBoost; Shrinkage Models. 33 

 34 

1 Introduction 35 

Decreasing cementitious materials’ carbon footprint is necessary to limit the overall 36 

environmental impact of the construction industry. This decrease can be achieved through several 37 

techniques such as the construction and demolition waste (CDW) usage, for example, the use of 38 

crushed concrete waste into Recycled Aggregate Concrete (RAC) [1], or the extensive use of 39 

supplementary cementitious materials, some of them being industrial byproducts [2–4]. However, 40 

these additions considerably impact the behavior of cementitious materials, and, because of these 41 

rapid evolutions, such novel components are rarely very well understood nor precisely considered 42 

in the construction standards. More specifically, it is generally admitted that concrete early age 43 

deformations can induce severe structural evolutions. Apart from environmental degradations, 44 

these deformations are mostly due to shrinkage and creep mechanisms [5]. For example, high-45 

performance and ultra-high performance concrete (HPC and UHPC) exhibit significant early age 46 

deformations because of their low water-to-cement ratio. Indeed, while deformation of normal 47 

strength concrete is primarily governed by drying shrinkage, which occurs some weeks or months 48 

after setting due to a water loss,  deformation in low water-to-cement concrete can develop very 49 

quickly at an early age because of the rapid evaporation of water from the surface of the specimen, 50 

namely plastic shrinkage, or because of the consumption of water during the hydration directly 51 

causing chemical shrinkage, and generating capillary depressions leading to macroscopic 52 

deformations referred to as autogenous shrinkage. It has been found that autogenous shrinkage can 53 

represent more than half of the total deformation in ultra-high performance concrete [6], creating 54 

considerable stresses at a microscale that can lead to cracking. As cracking should generally be 55 

avoided, either because of structural concerns or aesthetic reasons[7,8], specific attention should 56 

be paid to early-age deformation of low water-to-cement ratio high and ultra-high performance 57 

concrete. 58 

Several analytical models have been introduced during the last decades to predict shrinkage. 59 

The major construction codes provide quick ways to estimate the shrinkage amplitude of several 60 
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concrete mixes based on their composition and, in some cases, by considering standard strength 61 

characteristics such as the 28-days compressive strength. Power and exponential laws have been 62 

introduced to describe the shrinkage amplitude evolution relatively to time [9,10]. Thanks to these 63 

laws, the quick increase in autogenous shrinkage amplitude during the first weeks can be grasped. 64 

Most of these models are a combination between empirical laws and advanced theories. For 65 

example, B4 model [10] is supported by the solidification theory, the theory of microprestress 66 

relaxation, activation energy concepts, the moisture diffusion theory, and damage models for 67 

microcracking, and proved very good results in predicting autogenous and drying shrinkage of 68 

structural elements [11]. Other models have been proposed in reference codes such as Eurocode 2, 69 

fib CEB MC 10 [9,12,13]. Recent improvements of both the B4 and the CEB MC 10 model have 70 

been proposed to take into consideration the influence of some supplementary cementitious 71 

materials [14,15]. These models have been found particularly effective in predicting long-term 72 

predictions deformation of concrete, but several shortcomings have been noticed concerning early-73 

age prediction and regarding actual concrete formulations, which can include a high proportion of 74 

additions [15,16]. Moreover, the growing use of various supplementary cementitious materials 75 

(SCM), leading to ternary or quaternary concrete mixes is which synergistic effects may arise, is 76 

rarely taken into consideration. 77 

Indeed, due to economic and environmental considerations, an increasing amount of SCM is 78 

being used in recent concrete formulations. Various SCM such as calcined clay, fly ash, ground 79 

granulated blast furnace slag, later referred to as slag, and silica fume commonly replace cement, 80 

while additions like fillers may partially replace cement or only play a physical role in increasing 81 

the overall compacity of the mix. These additions influence shrinkage mechanisms to various 82 

extents, especially autogenous shrinkage. It is commonly admitted that silica fume, commonly 83 

used in UHPC due to its filling properties and high pozzolanic activity, increases shrinkage even 84 

for small replacement ratios [5]. Conversely, fly ash alone has been reported to decrease shrinkage 85 

in most studies because of the slower hydration reaction [17,18]. In most published studies, slag 86 

increased autogenous shrinkage, especially long-term autogenous shrinkage, because its fineness 87 

leads to high reactivity and higher chemical shrinkage than pure cement concrete [19–22]. Some 88 

uncertainty remains concerning the influence of slag on the autogenous shrinkage of UHPC since 89 

it has been reported that the addition of slag increased the autogenous shrinkage in some cases 90 

[15]. With the demand for low-cement concrete, calcined clay, which is readily available around 91 

the globe, has been proved to be an interesting product to cut CO2 emissions due to concrete 92 
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formulation. Though calcined clay, generally associated with limestone to produce LC3 cement, 93 

induces novel chemical reactions during hydration, and leads to a fine porosity [23], its influence 94 

on the autogenous shrinkage is rarely reported and might not be prejudicial [24–26]. Finally, fillers 95 

have been found to decrease shrinkage as they act like small aggregates restricting deformations 96 

[27,28], but their interactions with other additions are often only considered from a chemical point 97 

of view and are rarely addressed from a shrinkage point of view [27,29]. 98 

Therefore, with the increasing complexity of concrete formulations, a better understanding of 99 

fundamental evolutions such as autogenous shrinkage is needed. Recent studies have proposed 100 

adaptation to the aforementioned analytical models to consider the use of SCM and their eventual 101 

combination [15,30]. In [15], CEB Model Code 2010 has been improved by introducing correction 102 

factors using an extensive experimental campaign. However, such parameters might not represent 103 

other concrete formulation behaviors, and more extensive shrinkage databases should be built. 104 

Recent developments in Machine Learning (ML) have provided novel insights into concrete 105 

properties-related issues [31]. Since the publication of the first Artificial Neural Network model 106 

(ANN) to predict concrete compressive strength [32], numerous research works have been 107 

published to predict concrete compressive strength with ML-based models [33–36]. ML-based 108 

models have also proved their interest in predicting other concrete properties such as fresh 109 

properties [37], creep [38,39], chloride [40], carbonation resistance [41], frost resistance [42] and 110 

shrinkage [43,44]. They can also be used for microscale properties determination and 111 

enhancement, such as during indentation [45,46], image analysis [47–50], or large-scale structural 112 

monitoring [51,52]. While ML models might have initially appeared as black-box models, recent 113 

advances such as features analysis and dubbed SHapley Additives exPlanations (SHAP) 114 

introduced novel ways to explore the impacts of the model inputs on the final predictions [53]. 115 

Such tools have been used recently in several studies related to concrete [44,54] and might help 116 

build advanced autogenous shrinkage prediction models comparable to the existing most 117 

performant analytical models such as B4 and CEB models. 118 

This study develops an interpretable ensemble ML model to predict the autogenous shrinkage 119 

evolution in low-carbon cementitious materials with SCM. An extensive dedicated database is 120 

built, including ternary and quaternary formulations, and optimized ML models are compared to 121 

the classic and improved versions of B4 and CEB Model Code models using interpretative tools 122 

such as SHAP. Then, a web application is proposed to provide fast and precise shrinkage 123 
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predictions to the Civil Engineering community. The manuscript is structured as follows: a first 124 

section describes the new shrinkage database developed during this study, then a section presents 125 

the numerical methods employed before analyzing and discussing the results and a conclusion. 126 

 127 

2 Autogenous Shrinkage Database description and analysis 128 

To develop an accurate model for autogenous shrinkage prediction of concrete incorporating 129 

SCM, a comprehensive experimental database is required. To this end, we adopted the method 130 

published in [44]. The original NU database containing various creep and shrinkage evolutions of 131 

cementitious materials has been extended by low water-to-cement ratio cement paste, mortar or 132 

concrete samples autogenous shrinkage curves. This database has been further extended to include 133 

more autogenous shrinkage data of various concrete of binary, ternary or quaternary formulations 134 

from various sources [15,26,55–60]. In total, a database comprising 347 autogenous shrinkage 135 

observations and 28d compressive strength of various concrete mixes has been built. To the authors 136 

knowledge, this is the most comprehensive autogenous shrinkage database to date. The final 137 

database covers a wide range of water-to-cement and water-to-binder ratios (from normal strength 138 

to ultra-high strength concrete) as well as a wide variety of binary, ternary and quaternary 139 

formulations. These shrinkage curves were interpolated to obtain 1d, 2d, 7d, 14d, and 28d 140 

shrinkage values. Twelve input variables have been considered: water-cement ratio (W/C), water-141 

binder ratio (W/B), aggregate-cement ratio (A/C), cement content (kg/m3), silica fume content (% 142 

cement mass), fly ash content (% cement mass), slag content (% cement mass ), calcined clay 143 

content (% cement mass ) (denoted as metakaolin content), filler content (kg/m3), amount of 144 

superplasticizer (% cement mass), time since the beginning of shrinkage measurements (days) and 145 

28-d compressive strength (MPa). After removing data points with missing data, a database with 146 

1482 datapoints ha been finally obtained. The descriptions and statistical attributes of the input 147 

variables are given in Table 1, and Fig. 1 displays their statistical distributions. It can be seen that 148 

a wide range of compositions has been investigated as water-to-binder ratios range from 0.16 to 149 

0.86, cement content ranges from 167.4  kg/m3 to 1632 kg/m3 (cement paste) with a large 150 

proportion of values between 167 kg/m3 and 700 kg/m3 for concretes. Supplementary cementitious 151 

materials contents reflect the actual wide variety of formulations, some of them with important 152 

substitution amounts. Indeed silica fume content, fly ash content, slag content, calcined clay and 153 

filler content up to 50%, 150%, 400%, 57.4% and 125% relatively to cement mass were 154 
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considered. A maximum shrinkage value of around -2089 µ has been obtained and a median 155 

shrinkage value of -114.7 µ can be calculated. Common autogenous shrinkage features can be 156 

retrieved from the 2D scatter plots exposed in Fig. 1 by plotting linear regressions: shrinkage 157 

increases with smaller W/B and A/C values, while it generally increases with higher cement or 158 

silica fume content as well as higher compressive strength as they are generally associated to low 159 

W/B values. 160 

Correlations between the model parameters were calculated too. Fig. 2 gives a graphical 161 

representation of the correlation matrix. As expected, strong positive correlations can be observed 162 

between, W/B, A/C and shrinkage, and strong negative correlations can be observed between 163 

shrinkage and fc28, cement content or silica fume content. However, no strong correlations 164 

between input variables, and as such, all these variables were used as the input for ML. 165 

 166 

Table 1. Description of the database used in this study 167 

 Unit Min Q25% Mean Median Q75% Max Std Skw 
W/C - 0.180 0.320 0.444 0.390 0.500 1.600 0.188 2.807 
W/B - 0.160 0.290 0.360 0.336 0.400 0.860 0.117 1.295 
A/C - 0.00 3.28 3.90 3.90 4.73 11.56 1.77 0.36 
Cement content kg/m3 167.4 360.0 472.1 440.0 496.0 1632.0 222.3 2.9 
Silica fume content % cem 0.0 0.0 3.0 0.0 0.0 50.0 7.2 3.7 
Fly Ash % cem 0.0 0.0 8.2 0.0 0.0 150.0 18.3 3.1 
Slag content % cem 0.0 0.0 9.8 0.0 0.0 400.0 40.6 6.7 
Metakaolin content % cem 0.0 0.0 1.6 0.0 0.0 57.4 8.2 5.7 
Filler content % cem 0.0 0.0 4.7 0.0 0.0 125.0 14.5 4.1 
Superplasticizer 
content % cem 0.0 0.0 1.5 0.8 1.8 11.8 2.2 2.3 
Compressive strength 
fc28 MPa 16.5 45.9 67.1 63.0 85.7 162.0 29.4 0.8 
Time of measurement days 1.0 2.0 9.7 7.0 14.0 28.0 9.6 1.0 
Shrinkage/Swelling μm -2089.600 -243.000 -182.832 -114.700 -28.650 78.900 237.617 -2.576 

Skw=Skewness; Std=Standard deviation; 168 

  169 



 

7 
 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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i) 

 

j) 

 

k) 

 

l) 

 

Fig. 1. Data distribution of each input variable and the output variable (shrinkage/swelling).  170 

 171 
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 172 

Fig. 2. Pearson correlation of all feature and Shrinkage/Swelling 173 

 174 

3 Shrinkage prediction using Machine Learning and Analytical 175 

models 176 
3.1 Modeling strategy 177 

The modeling strategy is four steps presented in Figure 3: 178 

 Step 1: Collection a database consisting 12 input variables and one output variable 179 

“shrinkage/swelling”.  180 

 Step 2: Determination the best performance of ML model 181 

All the observation data from the original database have been classically split into 182 

training and testing datasets. 70% of whole dataset is used to building the four ML 183 

models including SVM, ANN, GB and XGB with aided of metaheuristic optimization 184 

algorithm Simulated Annealing (SA) Optimization algorithm which tunes the 185 

hyperparameters of four ML algorithms. The K-Fold Cross Validation (CV) is 186 

integrated in the tuning hyperparameter process for validating the cost function R2 of 187 

optimization process. The evaluation ML performances are carried out with aided of 188 

three metrics, such as R2, RMSE and MAE, in prediction of Shrinkage/Swelling. 189 

Based on the best performance, the best ML model is proposed for the next steps. 190 
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 Step 3: Interpretation of XGB black box with SHAP value 191 

In this step, the SHAPley Additive exPlanations (SHAP) [61] based on the best ML 192 

model is used for the interpretation of predicted Shrinkage/swelling values. The effect 193 

of each feature is quantified by SHAP global and SHAP local. 194 

 Step 4: Comparison of predicted value based on the best ML model with B4 and CEB 195 

analytical models 196 

The concrete formulations in the original database have been divided into a training 197 

and a test set to guarantee that no shrinkage value from any concrete with all time of 198 

measurement in the test set is known. Then the best Machine Learning model is fitted 199 

on this training set, and its performance is compared to the performance of the 200 

analytical models on the test set. 201 

 202 

Fig 3. Conception of shrinkage/swelling investigation 203 

 204 
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3.2 Machine learning models 205 

3.2.1 Support Vector Machine (SVM) 206 
The support vector machine algorithm introduced by Vapnik [62] can be used to address 207 

classification difficulties. For the solution of regression and prediction issues, the support vector 208 

machine was further modified and dubbed support vector machine regression (SVR) [63]. The SVR 209 

method sought to reduce the generalization error and get the best solution using the structural risk 210 

minimization concept. The Gaussian radial basis function was used in this work to transition from 211 

a lower-dimensional feature space to a higher one, allowing for linear regression and improved 212 

fitting of the training dataset. The following linear function can be used to represent the output 213 

variable: 214 

𝑓(𝑥) =  〈𝜔 ∙ 𝜑(𝑥)〉 + 𝑏  (1) 

where 〈∙〉 denotes the dot function; 𝜑(𝑥) is a transformation that translates the input feature to a 215 

higher dimensional feature space; b is the function's parameter vector (model bias); 𝜔 are the 216 

minimum values derived from the following equation: 217 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
1

2
‖𝜔‖ + 𝐶 𝜉 +  𝜉∗  

(2) 

𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 

𝑦 −  𝜔 ∙ 𝜑 𝑥  −  𝑏 ≤  𝜀 +  𝜉

𝜔 ∙ 𝜑 𝑥  +  𝑏 − 𝑦  ≤  𝜀 +  𝜉∗

𝜉 , 𝜉∗  ≥ 0 

 (3) 

where 𝜉 , 𝜉∗ are the slack variables; C is the regularization parameter; 𝜀 is the insensitive loss function 218 

(error between the test and forecast values); yj is the test result; and n is the sample size. 219 

 220 

3.2.2 Artificial Neural Network (ANN)  221 
The most widely used machine learning model is ANN, which is based on biological neural 222 

networks. It is made up of input neurons (similar to synapses), multiplied by weights representing 223 

the intensities of the relevant impulses, and then determined by the neuron's activation function. 224 

Finally, the required result will be computed by another function (perhaps an identity function). It 225 

is feasible to acquire the output matching to certain inputs by altering the weight of the artificial 226 

neuron. However, when there are too many neurons, calculating these weights becomes problematic. 227 

At this time, numerous ways are being developed to modify the weights of the neurons in order to 228 

get the output as rapidly as feasible. In this study, the solver for weight optimization contains three 229 

methods including ‘LBFGS’ Limited-Memory Broyden-Fletcher-Goldfarb-Shanno method of 230 

quasi-Newton methods, ‘SGD’ refers to stochastic gradient descent and the last ‘ADAM’ referring 231 
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to a Stochastic Gradient-Based Optimizer proposed by Kingma et al. [64]. In this investigation, the 232 

best optimization solver will be selected by the metaheuristic algorithm in the process of tuning 233 

hyperparameters. 234 

 235 

3.2.3 Gradient Boosting (GB) 236 
Gradient Boosting (GB) improves predictions by using a method called as augmentation. 237 

The algorithm in boosting attempts to examine and correct predictions that are not acceptable on the 238 

first iteration [65]. The algorithm's iterative process for correction then continues until the desired 239 

prediction is obtained. Increased assistance for decreasing bias and variation in order to strengthen 240 

poor learners. 241 

Gradient Boosting is the process of combining several weak predictive models into a single 242 

strong model [66]. In this case, a poor prediction model may perform somewhat better than random 243 

guesses. 244 

The model using the Boosting ensemble learning strategy can be expressed as follows: 245 

   
1





M

N n n
n

F x f x  (4) 

The ensemble learning model FN(x) is generated by the linear combination of N basic 246 

learning machine models, where fn(x) represents the mth basic learning machine and n represents 247 

the weight of the nth basic learning machine. 248 

The gradient boosting algorithm operates on the gradient descent approach, which is based 249 

on the functional. To begin, the goal function is as follows: 250 

     
1 1

, ,
 

   
T T

t N t t n n t
t t

E L y F x L y f x  (5) 

The number of samples is T, the number of basic learning machines is N, and the loss 251 

function is L. The training procedure is to train each basic learning machine fn, n-1, 2,..., N in turn 252 

so that the objective function value E is the smallest, that is, the training outcomes for the nth basic 253 

learning machine are as follows. 254 

          1 1
1 1 1 1

, , 
   

 
       

  
T T T

t n t n n t t n t n t
t t t n t

L
L y F x f x L y F x f x

F x
 (6) 

According to the principle of gradient descent, the optimal model should be the negative 255 

gradient direction of the objective function, that is: 256 
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T

n tf
t n t

L
f x L f x

F x
 (7) 

After obtaining the best A, coefficient S can be found by minimizing the objective 257 

function, namely: 258 

    * *
1

1

arg min ,


 


  
n

T

n t n t n n t
t

L y F x f x  (8) 

The preceding steps are repeated until all N basic learning machines and coefficients have 259 

been trained, and a learning model based on Equation 1 has been generated. The gradient boosting 260 

approach is used in the learning model, and the next fundamental machine learning model may 261 

further increase the accuracy based on the previous underlying machine learning models, reducing 262 

the model's deviation. This is the distinction with the Bagging. Basic machine learning can be a low-263 

accuracy model; through the improvement approach, the accuracy of the entire model can be 264 

steadily increased, but there is a certain degree of fit at the same time. 265 

 266 

3.2.4 Extreme Gradient Boosting (XGB) 267 
The Extreme Gradient Boosting (XGB) algorithm is a cutting-edge method for solving 268 

supervised learning problems with high precision [26]. If Deep Learning only accepts raw data in 269 

numerical form (which must typically be converted to n-vectors in the real number space), XGB 270 

accepts tabular datasets of any size, including categorical data. Furthermore, XGB has a rapid 271 

training speed, can scale for parallel computing on several servers, and can be GPU-accelerated, 272 

therefore Big Data is not an issue for this model. The earliest and most well-known model of the 273 

most recent generation of tree booster ensembles is the XGB; a representation of this approach is 274 

the Gradient Boosting Decision Tree (GB) or Multiple Additive Regression Tree (MART). 275 

The basic idea behind XGB is to first train a tree with the training set and the real value of 276 

the sample (i.e. the standard response), and then use that tree to forecast the training set to acquire 277 

the proper value. The residuals are the predicted value of each sample, as well as the difference 278 

between the forecast and the real value. The second tree is then trained, but this time instead of using 279 

the real number, use the residual as the standard response. After training two trees, the residuals of 280 

the sample can be used to train more trees. To stop training, the total number of trees can be selected 281 

explicitly or based on particular indicators. 282 

The XGB algorithm can be thought of as a K-tree additive model: 283 
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1

ŷ ,


 
K

i k i k
k

f x f F  (9) 

The gradient boost model does not learn the weights of the d-dimensional space but directly 284 

learns the decision tree set, where F is a function space consisting of all trees (here the regression 285 

tree is also a partial function and the varied values of the different portions form a tree). The 286 

objective function of XGB is a sum of a particular loss function assessing overall predictions and a 287 

sum of all predictors' regularization terms (K trees). 288 

Mathematically: 289 

     
1

ˆ


    
n K

i i k
i k

obj l y y f  (10) 

Where l is the loss function, which is the difference between the expected and actual outputs ŷi and 290 

yi. While is a measure of how complicated the model is, it aids in preventing model over-fitting and 291 

is determined using: 292 

  21
T

2
   kf w  (11) 

The number T in the preceding equation reflects the number of leaves on the tree, and w 293 

represents the weight of each leaf. 294 

 295 

3.2.5 Simulated Annealing Optimization algorithm (SA) 296 
Kirkpatrick et al. [67] pioneered simulated annealing (SA) in 1983. This metaheuristic 297 

method is based on physical phenomena seen in continuum mechanics. To avoid becoming stuck in 298 

local minima, SA employs a random search engine represented by Markov chains. SA employs 299 

solution variants to increase the objective function while still maintaining the solutions, albeit the 300 

least efficient, within specified constraints. Any adjustment that improves the objective function, J, 301 

is permitted in the minimization problem; however, candidates that raise J are also included in the 302 

solution set with probability p, which is known as the transition probability [68]: 303 

exp
B

E
p

k T

 
  

 
 (12) 

where kB is Boltzmann's constant, T is the annealing process temperature, and E is the energy level, 304 

is connected with the goal function modification by the constant, [68]. 305 
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E J    (13) 

A random threshold, r, such that p > r, determines whether a solution modification is 306 

acceptable. T lowers and the system cools down during optimization. A high T indicates a high-307 

energy system that is difficult to reduce, whereas a low T indicates a low-energy system that may 308 

be trapped in a local minimum [69]. The proper decision T may be to first search the space for the 309 

global minimum and then, as the system cools down, converge to a solution with sufficient accuracy 310 

[68]. Stopping conditions, such as limiting the number of repeats or focusing on the improvement 311 

of the goal function, are incorporated in tf [70]. 312 

 313 

3.2.6 Performance evaluation of models 314 

In order to evaluate the performance of ML models, three popular statistical metrics, such as 315 

coefficient of determination R2, Root Mean Square Error (RMSE), and Mean Absolute Error 316 

(MAE), are introduced in following:  317 

𝑅 =
∑ 𝑝 , − 𝑝 𝑝 , − 𝑝

∑ 𝑝 , − 𝑝 ∑ 𝑝 , − 𝑝

 
(16) 

RMSE=
1

𝑁
(𝑝0,j-pt,j)

j=1

 (17) 

MAE=
1

𝑁
𝑝0,j-pt,j

j=1

 (18) 

Where 𝑝 ,  is the shrinkage/expansion value of the i-th sample point in the database; 𝑝 ,  is 318 

the machine learning model prediction value for the i-th sample point; 𝑝  is the averaged 319 

experimental value of shrinkage/expansion; and 𝑝  is the mean predicted value. Both MAE and 320 

RMSE explicitly quantify the residual error at each sample point and thus provide an accurate 321 

assessment of model performance. R2 normalizes the squared residual error with the database 322 

variance and generates dimensionless values ranging from 0 to 1. Because RMSE is often seen to 323 

be more understandable because it is equivalent to measured values and handy for comparing the 324 

performance of different models, it was chosen as the primary metric index. 325 



 

15 
 

3.2.7 K-Fold Cross Validation technique 326 
To tune hyperparameters in machine learning algorithms, K-fold cross-validation (CV) is 327 

utilized. Choosing k affects the variance; a low k value results in significant variance or bias. 328 

Furthermore, while deciding on k, the data quantity and computational capabilities of the system 329 

must be taken into account. The value of k in this study is set to10 [71,72], indicating that the number 330 

of training and testing rounds is ten . The dataset is split into two parts: training and testing. The 331 

training data area is partitioned into k sections of equal size. The model is then trained with different 332 

hyperparameters on k-1 subsets and evaluated on the last subset. The process is repeated k times 333 

before averaging the evaluation results as illustrated in Figure 4. 334 

 335 

 336 

Fig 4. 10-Fold CV of training dataset with cost function of R2 coefficient of determination 337 

 338 

3.3 Comparison with Analytical Models 339 

Three analytical models are also adopted for comparison to examine the prediction accuracy 340 

of the machine learning models detailed above. These models are the B4 model [10], CEB MC 10 341 

[9] model and a modified version of CEM MC 10 model to include the effect of SCM which has 342 

been introduced recently [15] and will be referred to as ‘CEBMC10SCM’ model in this study. The 343 

autogenous shrinkage model prediction are given as follows: 344 

 Modified B4 model [73]: 345 

Using this composition-based model, the autogenous shrinkage can be calculated at any time: 346 
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 𝜖 (𝑡) = 𝑘 𝑘 𝐶𝑡  (19) 

 347 

where 𝑘 depends on the cement type, 𝑘 = 1 + 3 1 + 2  takes into 348 

account the cement substitution by silica fume or slag, the prefactor 𝐶 depends on the water-to-349 

cement and aggregate-to-cement ratios : 𝐶 =
( / ) . / .   and the exponent factor 𝑛, close to 0.2, 350 

reads 𝑛 = 1.2 − 0.1(𝑎 𝑐⁄ ) + −0.14 + 0.005(𝑎/𝑐) ln 𝐶. 351 

 Modified B4 S model [73]: 352 

The autogenous shrinkage value can be calculated using the 28d compressive strength 353 

without any information regarding the formulation and reads: 354 

 𝜖 (𝑡) = 12𝑓 (1 − 𝑔) . 𝑡 .  (20) 

where 𝑓  is the 28d compressive strength and 𝑔 = (𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠)/355 

(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒) (default values of 0.7 and 0.0 can be used for concrete and cement pastes 356 

respectively). 357 

 CEB MC 10 model: 358 

 𝜖 (𝑡) = 𝜖 (𝑓 ) ∙ 𝛽 (𝑡) (21) 

where 𝛽 (𝑡) = 1 − exp −0.2√𝑡  the time function of autogenous shrinkage and 359 

𝜖 (𝑓 ) = −𝛼
.

.

.

∙ 10  the notional autogenous shrinkage coefficient, where 𝛼  360 

is a coefficient depending on cement type and 𝑓  is the 28-d compressive strength. 361 

 CEB MC 10 modified for SCM consideration [15]: 362 

 𝜖 (𝑡) = 𝑘 ∙ 𝜖 (𝑓 ) ∙ 𝛽 (𝑡) (22) 

where 𝑘  is a correction factor to included the impact of SCM which, in the case of 363 

autogenous shrinkage, reads 𝑘 = (1 + 0.24𝑓 + 0.4𝑚 − 0.35𝑠) ∙ 4𝑀 where 𝑓 is the replacement 364 

ratio of fly ash (%), 𝑚 the replacement ratio of calcined clay (%), 𝑠 the replacement ratio of slag 365 

and 𝑀 the multi-SCM coefficient (binary 𝑀 = 0.95, single 𝑀 = 1.0). 366 

 367 
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4 Results and Discussion 368 

4.1 Models hyperparameters tuning 369 

The ML model parameters have been tuned using the Simulated Annealing (SA) optimization 370 

to obtain the most performant model considering R² metric. Surface plots of the R² values for 371 

several hyperparameter values of the XGB model are reported in Fig. 5. As illustrated in these 372 

figures, extended zones of optimized parameter values could be found in most cases. For example, 373 

as illustrated in Fig. 5 a), R² values higher than 0.91 could be obtained for learning rates lower than 374 

0.5 and more than 500 iterations. A maximum depth of 4 led to the best results as illustrated in 375 

Fig. 5 b) while various values of the minimum loss reduction required to make a partition on a leaf 376 

node of the tree (min split loss) could generate good results, as illustrated in Fig. 5 c) and d). Based 377 

on this optimization analysis carried out by SA, the best hyperparameters values of the four ML 378 

models were selected. These values are reported in Table 2. 379 

a) 

 

b) 

 

c) d) 



 

18 
 

  

Fig 5. Tuning XGBoost hyperparameters: surface plots of R²-values using 10-fold cross-validation. 380 

 381 

Table 2. Tunned hyperparameters of the ML models. 382 

XGB Nb of 

trees 

1197 

Learning 

rate 

0.6680 

Max depth 

10 

 

Min split 

loss 

4 

  R² 

0.9311 

GB Nb of 

trees 

887 

Learning 

rate 

0.2740 

Max depth 

10 

 

Max 

features 

10 

Min 

samples 

split 

0.0560 

Min 

samples 

leaf 

0.0580 

R² 

0.9284 

SVM C 

1491 

γ 

0.3610 
 

0.0610 

Kernel 

RBF 

  R² 

0.8089 

ANN Nb of 

neurons 

(19,9) 

Activation 

RELU 

Solver 

LBFGS 

Max 

iteration 

4000 

  R² 

0.8054 

 383 

4.2 Machine learning models typical predictions 384 

The results obtained by the four models on the training and test sets are displayed in Fig. 6. As 385 

illustrated in the figure, all models performed well on the training sets with R² values higher than 0.94. 386 

Most training set predictions fall within the interval between 0.8 times and 1.2 times the measurement 387 

shrinkage value, except for very small shrinkage values. However, Gradient Boosting and XGBoost 388 

algorithms outperformed SVM and ANN models. The first two models provided high-quality predictions 389 

for various shrinkage values, while the latter two models were relatively prone to errors, even for small 390 
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shrinkage values. The detailed metrics corresponding to the model results are reported in Table 3. XGB 391 

model performed better than the other models, and the R² value associated with its prediction of the test 392 

set was 0.9733, which corresponds to an RMSE of around 38.9 µe. 393 

The mean absolute error (MAE) distribution has been analyzed for the four models, as illustrated in 394 

Fig. 7. It can be seen that the MAE remained limited for the XGB model as compared to the SVM and 395 

ANN models. Moreover, the maximum MAE measured for the XGB model, close to 200 µe was almost 396 

twice as small as the maximum MAE obtained by the SVM and the ANN model. 397 

a) 

 

b) 

 

c) 

 

d) 

 

Fig. 6. Shrinkage/Swelling predicted by different ML models: a) XGB, b) GB, c) SVM and d) ANN 398 

models 399 
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Table 3. Comparison of machine learning algorithms for autogenous shrinkage prediction of 400 

concrete incorporating SCM. 401 

 Train    Test   

 R2 
RMSE 
(µ) MAE (µ)  R2 

RMSE 
(µ) MAE (µ) 

XGB 0.999 6.341 3.993  0.973 38.909 25.249 
GB 0.998 7.816 4.620  0.965 45.797 31.039 
SVM 0.941 57.085 21.974  0.915 71.775 40.764 
ANN 0.949 50.695 37.303  0.910 79.288 56.594 

 402 

a) 

 

b) 

 

c) 

 

d) 

 

Fig 7. Distribution of the absolute error: a) XGB, b) GB, c) SVM, and d) ANN models. 403 
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4.3 Feature importance and sensitivity analysis 404 

4.3.1 Global interpretation 405 

The most influential features on the shrinkage predictions have been obtained from the model 406 

using SHAP. The global SHAP values are reported in Fig. 8, the features classified in descending 407 

order based on their influence from top to bottom. The results align with the previous study 408 

published by the authors dedicated to autogenous shrinkage prediction of cementitious materials 409 

incorporating SAP and SCM even if the database has been largely extended and the model results 410 

improved [44]. Indeed, the most influential parameters are the A/C ratio, time, W/B ratio, cement 411 

content, the 28d compressive strength, silica fume content, superplasticizer content, W/C ratio, fly 412 

ash, slag, filler, and last calcined clay content. The relative influence of the most influential 413 

parameters can still be easily determined: 414 

 increasing A/C ratio increases SHAP value, e.g., decrease shrinkage 415 

 increasing time values correspond to higher shrinkage values 416 

 increasing W/B and W/C ratios tend to decrease shrinkage 417 

 high silica fume replacement ratio or cement content predominantly induces higher 418 

shrinkage 419 

However, the global influence of the other parameters, mainly SCM other than silica fume, 420 

might not be that clear at first sight. Most fly ash highest values are associated with positive SHAP 421 

values, which means that a high fly ash content globally decreases shrinkage. Similarly, the highest 422 

filler contents are associated with positive SHAP values, i.e., decreased shrinkage. Since the 423 

highest calcined clay contents are associated with the most negative SHAP values, its adverse 424 

effect on autogenous shrinkage can be confirmed for high replacement ratios. Last, slag and 28d 425 

compressive strength effects cannot be analyzed easily from this global perspective. To this end, 426 

more detailed insights are needed using the features dependance plots. 427 

SHAP can also give information about the feature dependency of the results, as illustrated in 428 

Fig. 9. Indeed, feature dependence plots reveal how the SHAP values change depending on the 429 

values of the features. As illustrated in Fig. 9 a), the SHAP values largely increase when the A/C 430 

values increase, especially when A/C values increase from around 1.0 to 4.0, corresponding to the 431 

transition from mortar to concrete. This increase of around 800 µ highlights the relative influence 432 
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of the A/C ratio on the autogenous shrinkage phenomenon. For A/C values higher than 4.0, SHAP 433 

value is almost constant, meaning there is no interest in further increasing the A/C ratio to reduce 434 

the autogenous shrinkage. The water-to-binder ratio's influence can be analyzed using Fig. 9 b). 435 

From this figure, it can be seen that the SHAP value increases from the minimum w/b considered 436 

in this study, e.g. 0.16, to approximately 0.5. This gradual increase from around -300 µ  to around 437 

50 µ confirms that autogenous shrinkage arises in cementitious materials of W/B ratio smaller 438 

than 0.5. However, it is worth noting that the W/B relative influence is around twice as small as 439 

the A/C influence.  440 

 441 

Fig. 8. Global SHAP values of the tuned XGB model 442 

Based on Fig. 9 c), it can be seen that the increasing strength values up to around 100MPa 443 

negatively influence SHAP values, which means that transitioning from normal strength to high 444 

strength concrete leads to more autogenous shrinkage, independently from the other parameters 445 

such as the W/B ratio. Conversely, SHAP values increase for strength higher than around 100MPa 446 

up to final values around 140 µ, which means that autogenous shrinkage for this type of high 447 

performance and ultra-high performance concrete would have been more pronounced if their 448 

strength had been smaller. This novel insight might correlate to the quick strength and Young's 449 

modulus increase of these concretes, limiting early age autogenous shrinkage. 450 
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The influence of silica fume can be analyzed using Fig. 9 d). Based on this figure, it can be 451 

observed that increasing silica fume values, from 0% to 50% cement replacement, largely 452 

decreases SHAP values. However, a spread should be noticed when the silica fume replacement 453 

ratio is larger than 20%, and it should be noticed that a 50% replacement ratio can influence SHAP 454 

values less than a 20% replacement ratio in the case of some concretes. Therefore, although silica 455 

fume is known to increase considerably autogenous shrinkage, novel routes might be found to limit 456 

its influence. The other supplementary cementitious materials have a smaller influence on SHAP 457 

values. As illustrated in Fig. 9 e), fly ash influence on SHAP values becomes visible on this feature 458 

dependence plot for replacement ratios higher than 50%. In this case, cement substitution by fly 459 

ash leads to smaller autogenous shrinkage values explained by the slower hydration. Based on Fig. 460 

9 f), it can be observed that slag influence on SHAP values is relatively limited as most of the 461 

values belong to the [-100 µ, 50 µ] interval. However, it is worth noting that, according to this 462 

detailed analysis, slag negatively influences shrinkage for all the substitution ratios smaller than 463 

around 50%, which agrees with the literature [19,74]. On the opposite, different behaviors can be 464 

observed for replacement ratios higher than 50%: slag can positively affect shrinkage sometimes, 465 

while it still negatively influences shrinkage for other concrete mixes. It can be hypothesized that 466 

two competing interests are at stake: the refined pore structures that increase shrinkage and the 467 

slower hydration that decrease shrinkage at a given time. As illustrated in Fig. 9 g), filler globally 468 

slightly increases shrinkage for substitution rates smaller than 25%, which can be explained by the 469 

increased hydration speed. However, substitution ratios higher than 25% systematically positively 470 

influence SHAP values, highlighting the restraining effect of filler on the autogenous shrinkage.  471 

Finally, though the effect of calcined clay is relatively small according to the model, it can be 472 

observed that calcined clay does not influence SHAP values a lot for replacement ratios smaller 473 

than 20%, while increasing the substitution rate, the SHAP values decrease. This observation 474 

agrees with the literature [24,58]. To conclude, since SHAP gives the influence rules of the 475 

different features on the autogenous shrinkage predictions of the model, it can be used to provide 476 

novel insights into the shrinkage phenomenon. 477 

  478 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 

Fig. 9. Feature dependence plots associated with SHAP for the influential features: a) A/C, b) 479 

W/B, c) fc28, d) silica fume, e) fly ash, f) slag, g) filler, and h) calcined clay. 480 
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4.3.2 Local interpretation 481 

Besides global interpretations, SHAP also provides useful information to explain the model 482 

predictions on individual samples as SHAP decomposes the final prediction into a sum of 483 

contributions by all the input variables. Various 28d autogenous shrinkage predictions were thus 484 

analyzed for several unknown concrete samples containing various types of SCM. Fig. 10 485 

illustrates explanations for four typical samples.  486 

As shown in Fig. 10 a), the base prediction on the entire set is -229 µ. For this sample, the 487 

most significant reason for the final autogenous shrinkage prediction of -76 µ is the A/C ratio, 488 

whose individual contribution amounts to +152 µ, meaning this value decreases shrinkage 489 

compared to lower A/C ratios. Then time negatively influences the autogenous shrinkage 490 

prediction, which can be explained by the fact that 28 days is the final prediction associated with 491 

larger shrinkage deformations. The water to binder ratio is the third most influential parameter, as 492 

expected based on the global interpretation.  493 

For concrete incorporating silica fume, its relative influence on the outputs can be quantified 494 

as illustrated in Fig. 10 b). The presence of silica fume can considerably influence the model 495 

prediction. Indeed, as illustrated in the figure, silica fume content becomes the most influential 496 

parameter, and, at 28 days, the SHAP value associated to silica fume is around -160 µ.  497 

In most analyses, small replacement ratios of other SCM were found only slightly to affect 498 

shrinkage values as the A/C and the W/B ratios predominantly influenced the latter, as illustrated 499 

in Fig. 10 c) represents the inputs contributions on the autogenous shrinkage prediction of a 500 

concrete sample incorporating fly ash with the mass of fly ash equal to 11.1% of the one of cement. 501 

However, when larger proportions of cement are replaced, the influence of the SCM can become 502 

predominant. Indeed, as illustrated in Fig. 10 d), when half of the cement is replaced by slag, this 503 

slag proportion increases shrinkage by around 52 µ according to the model.  504 

  505 
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a) 

 

b) 

 

c) 
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d) 

 

Fig. 10. Local interpretation using SHAP of some of the XGB model autogenous shrinkage 506 

predictions: a) normal strength concrete without SCM, b) high strength concrete with silica fume, 507 

c) normal strength concrete with fly ash, d) high-strength concrete with 50% of cement replaced 508 

by slag. 509 

 510 

4.4 Comparison with B4 and CEB analytical models 511 

The developed XGBoost model, the modified B4 and B4s, the CEB MC10, and the CEB MC 512 
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10 model's modified version can be compared globally using their respective predictions on the 513 

test set composed of unknown concrete formulations. The performance of these four models has 514 

been compared with the observed shrinkage values, as illustrated in Fig. 11. It can be observed 515 

that, overall, the distribution of the shrinkage values predicted by the developed XGB model is in 516 

close agreement with the observed distribution, and the box plots are very similar. Indeed, 517 

interquantiles ranges and outliers present similar patterns. The XGB model slightly overestimates 518 

the overall shrinkage values, which is good regarding safety issues. Last but not least, the XGB 519 

model can predict small swelling values that might occur at an early age, while analytical models 520 

cannot be captured correctly this trend.  521 

The analytical models' performance considerably varies. Based on the overall distribution of 522 

the shrinkage values, the modified B4 model provides a distribution of the predictions that is in 523 

good agreement with the observed distribution. However, one can observe that the mean shrinkage 524 

value predicted by the modified B4 model slightly underestimates the observed shrinkage 525 

distribution, which might represent a risk regarding safety. The same conclusion applies to the 526 

modified version of the B4 S model. Moreover, the predictions made by this model cannot capture 527 

the experimental variability, probably due to its simplicity. CEB MC 10 model results clearly 528 

underestimate shrinkage, and the size of the overall distribution is considerably smaller than the 529 

observed distribution, highlighting the shortcomings of this analytical model. The modified 530 

version of the CEB MC 10 model performed better, and the overall distribution of the shrinkage 531 

values looks like the observed distribution as the interquartile range is close to the experimental 532 

one. However, an apparent overestimation of the shrinkage values and a disability to predict large 533 

shrinkage values can be noticed. 534 
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 535 

Fig. 11. Box plots of the shrinkage/swelling values predicted by the XGB model compared to 536 

the analytical models and the observed values 537 

 538 

The model results and the test data can be further compared using the Taylor diagram (Fig. 539 

12), which summarizes three valuable characteristics of the models compared to the measured 540 

values: the standard deviation associated with the model's predictions, the correlation between the 541 

predictions and the experimental values, and the centered root-mean-square (RMS) difference. As 542 

mentioned in the previous paragraph, the standard deviation of the simulated patterns reported on 543 

the X-axis largely differs between the models. The standard deviation of the experimental data is 544 

almost reproduced by the XGB and the modified version of the B4 model. Indeed, the standard 545 

deviations associated with these models are higher than 200 µ, close to the 250 µ experimental 546 

value. Then, the modified B4 S and modified version of the CEB MC 10 model exhibit a standard 547 

deviation of around 150 µ, which is in relatively good agreement with the observed values. Last, 548 

the standard deviation of the classic CEB Model 10 is smaller than 40 µ, clearly underestimating 549 

the experimental variation and highlighting the model's shortcomings in predicting shrinkage of 550 

concrete incorporating SCM. Concerning the correlation of the models with the experimental 551 

values, the best correlation is obtained by the XGB model (0.82). This correlation is largely higher 552 

than the second-best correlation obtained by the modified B4 model (0.58). The correlation of the 553 

modified B4 S model follows. The CEB MC 10 and the modified version of the CEB MC 10 model 554 

exhibit correlations close to 0.3-0.4, which is relatively small. Finally, the RMS value of the XGB 555 
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model (around 160 µ) is clearly better than the ones of the other models, which are higher than 556 

200 µ. For all these reasons, it can be concluded that the optimized XGB model significantly 557 

outperforms the best analytical models that have been proposed up to date. 558 

 559 

Fig. 12. Taylor diagram representing XGB, B4 and B4s modified, CEB MC 10 and CEB MC 560 

10 modified version models performance. 561 

 562 

 563 

Based on the XGB model, the autogenous shrinkage predictions of the eight concrete 564 

compositions containing various types of SCM have been compared to the analytical models' 565 

predictions, as shown in Fig. 13. The detailed formulations are given in Table 4. As illustrated in 566 

these figures, the prediction accuracy of the XGB model globally outperforms that of the analytical 567 

models in most cases which agrees with Taylor’s analysis.  568 

 569 

 570 

 571 

 572 

 573 
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Table 4. Mortar and concrete compositions of some typical test samples. 574 
Ref C1 C2 C3 C4 C5 C6 C7 C8 

W/C 0.42 0.38 0.34 0.64 0.29 0.43 0.31 0.44 
W/B 0.42 0.304 0.306 0.32 0.28 0.3 0.21 0.3 
A/C 4.39 3.95 3.74 6.22 4.21 3.68 3.94 3.74 

Cement (kg/m3) 400 377 450 263 428 408 497 416 
Silica fume (%) - 25 - - - 14.2 10 - 

Fly Ash (%) - - 11.1 - - 28.7 - - 
Slag (%) - - - 100 - - - - 

Metakaolin (%) - - - - 5.3 - - 10.5 
Filler (%) - - - - - - 34 36.2 

Sp (%) 1.8 - - 1.8 3.1 2.1 2.07 1.46 
fc28 (MPa) 46.1 89.2 53.4 66.7 91.5 69.7 93 84 
Time (days) 1-28 1-28 1-28 1-28 1-28 1-28 1-28 1-28 

 575 

In the case of a normal strength concrete with a water-to-binder ratio of 0.42 and without any 576 

SCM, the model's prediction agrees with the experimental values, and only a 20 µ difference is 577 

obtained after 28 days, as illustrated in Fig. 13 a). However, the B4 model better predicted the 578 

long-term 28-d shrinkage value. The CEB MC 10 model's modified version largely overestimated 579 

the autogenous shrinkage values. On the opposite, as observed in the global statistics, the CEB 580 

MC 10 model underestimates the autogenous shrinkage at 28 days.  581 

The effect of the cement substitution by silica fume is illustrated in Fig. 13 b). Both the XGB 582 

model and the modified version of the CEB MC 10 model can provide good predictions, while the 583 

modified versions of the B4 model largely underestimate autogenous shrinkage by around 300 µ 584 

and the CEB MC 10 model underestimates the shrinkage value by approximately 400 µ .  585 

As illustrated in Fig. 13 c), the XGB model prediction of the shrinkage values of concrete with 586 

a relatively low W/B around 0.3 incorporating fly ash closely matches the experimental values, 587 

even at an early age. The analytical models' predictions are relatively far from the experimental 588 

values at an early age, which might be attributed to these models' absent or relatively recent 589 

considerations of fly ash effects. It should be noticed that the 28d shrinkage values predicted by 590 

the modified versions of the B4 and CEB MC10 model are in relatively good agreement with the 591 

experimental values, but their prediction might deviate from the measured values for more 592 

extended periods. 593 

Fig. 13 d) displays the autogenous shrinkage predictions of the models in the case of high-594 
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strength concrete, with a water-to-binder ratio of 0.32, in which 50% of cement has been replaced 595 

by slag. In this case, exemplifying modern concretes with high substitution rates, the XGB model 596 

also performed well, though slightly underestimating the 28d autogenous shrinkage value. The 597 

modified B4 model provides the best prediction, but the modified version of the B4 S model 598 

underestimated the shrinkage values as well. The CEB MC 10 models underestimated the 599 

shrinkage values, while the modified version of the CEB MC 10 whose prediction can be qualified 600 

as correct, still overestimated the shrinkage value by around 75 µ. It would be interesting to 601 

combine analytical and machine learning models in such a case. 602 

Though more experimental data is needed regarding the influence of calcined clay on drying 603 

and autogenous shrinkage, the developed XGB model showed better results than the analytical 604 

models in predicting the autogenous shrinkage evolution of concrete mixes incorporating calcined 605 

clay, as illustrated in Fig. 13 e). The analytical models which do not consider the effect of calcined 606 

clay - modified B4, modified B4 S and CEB MC 10 models - largely underestimated the shrinkage 607 

values, while the modified version of the CEB MC 10 models overestimated its influence. 608 

The prediction quality of the models can also be calculated in the case of ternary cement 609 

blends. As illustrated in Fig. 13 f), the XGB model captured the combined effect of silica fume 610 

and fly ash satisfactorily, as the 28d autogenous shrinkage prediction differs by around 60 µ from 611 

the experimental value, but overestimates early age shrinkage. In this case, the modified version 612 

of the B4 model outputs good yet slightly underestimated results. However, the prediction of the 613 

autogenous shrinkage of some ternary formulations might be improved in the future. As illustrated 614 

in concrete in Fig. 13 g), the XGB and analytical models predictions are pretty far from the 615 

measured values for concrete in which cement is partially substituted by silica fume and filler. In 616 

this particular case, the modified version of the CEB MC 10 model provided the best estimation 617 

of the final 28-day shrinkage value.  618 

The XGB model's predictions are better in the case of LC3 concrete incorporating calcined 619 

clay and filler, as illustrated in Fig. 13 h) since several formulations of this type are present in the 620 

database. In that case, the model predictions are good, especially after 10 days, while the early 621 

shrinkage values are overestimated. Other models cannot capture the experimental shrinkage 622 

evolution. 623 

 624 
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a) 

 

b) 

 

c) 

 

d) 

 

e) f) 
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g) 

 

h) 

 

Fig. 13. Comparison of the autogenous shrinkage predictions of the XGB model and the 625 

analytical models for several unknown concrete formulations detailed in Table 4: a) normal 626 

strength concrete without SCM, b) high strength concrete with silica fume, c) normal strength 627 

concrete with fly ash, d) high-strength concrete with 50% of cement replaced by slag, e) high-628 

strength concrete incorporating calcined clay, f) high-strength concrete with cement replaced by 629 

silica fume and fly ash, g) high-strength concrete with silica fume and filler, h) normal strength 630 

concrete incorporating calcined clay and filler (LC3 concrete). 631 

 632 

4.5 Web application 633 

A web application has been built using the first model trained on the whole database to provide 634 

autogenous shrinkage predictions of various concrete formulations. The user can input the concrete 635 
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formulation using several sliders whose minimum and maximum values corresponds to the ones 636 

from the database, and then predictions of the shrinkage values at 1 day, 2 days, 7 days, 14 days 637 

and 28 days are computed online based on the model developed in this study. Default values 638 

corresponding to a high-strength concrete formulation incorporating silica fume are considered 639 

from a study not included in the database [75]. A graph is plotted to visualize the predictions as 640 

illustrated in Fig.14. The web application is available at https://share.streamlit.io/bhilloul/concrete-641 

auto-shrinkage-ai-streamlit/main . 642 

 643 

Fig. 14. Web application for autogenous shrinkage prediction of concrete incorporating SCM. 644 

 645 

5 Conclusions 646 

This study examined the usage and potential of several Machine Learning (ML) algorithms to 647 

precisely predict the autogenous shrinkage of low-carbon cementitious materials with various 648 

types of supplementary cementitious materials (SCM) and compared the results with analytical 649 

models, e.g., the modified version of the B4 and B4 S models, the CEB MC 10, and the CEB MC 650 
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10 modified version. To this end, an extensive database of autogenous shrinkage measurements 651 

has been built based on a previous study. First, Gradient Boosting (GB), XG Boost (XGB), Support 652 

Vector Machine (SVM), and an Artificial Neural Network (ANN) model have been optimized 653 

using grid search hyperparameter optimization, and their performance has been assessed using k-654 

fold cross-validation. The best model has been further analyzed using the Shapley Additives 655 

Explanations (SHAP) to facilitate interpretations and provide novel insights into the autogenous 656 

shrinkage mechanism. Finally, the developed model has been compared to the aforementioned 657 

analytical models, some recently adapted to consider the effect of SCM. Based on the results, the 658 

following main conclusions can be drawn: 659 

 An extensive database composed of 1482 autogenous shrinkage curves of various 660 

binary, ternary and quaternary cement paste, mortar, and concrete incorporating silica 661 

fume, fly ash, slag, calcined clay, and filler, containing also concrete 28-day 662 

compressive strength, has been built using data from the literature. 663 

 ML models can accurately predict the autogenous shrinkage, and their 664 

hyperparameters can be optimized through grid search. Indeed, R² values of around 665 

0.805 to 0.931 have been obtained on the test set. The best model identified in this 666 

study is XGB. 667 

 The relative influence of the model inputs on the predictions can be analyzed using 668 

SHAP values. Global SHAP values agreed with the experimental observations, and 669 

the A/C ratio, time, W/B ratio, and silica fume content are particularly impacting. 670 

Local SHAP analysis helped identify some evolutions of the shrinkage behavior with 671 

increasing amounts of SCM, for example, the competition between the shrinkage 672 

increase due to the pore refinement and the shrinkage delay due to slower hydration. 673 

 The model predictions of completely unknown shrinkage behavior of concretes 674 

incorporating SCM are significantly better than the predictions of analytical models 675 

such as the modified B4 models, the CEB MC 10, and the modified version CEB MC 676 

10, even though some analytical models can perform better predictions for specific 677 

formulations. Detailed comparisons of the models’ shrinkage predictions of various 678 

concrete compositions have been studied thoroughly. 679 

 A web application has been developed to provide fast and precise predictions to the 680 
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scientific and industrial community and drive further low-carbon cementitious 681 

materials developments. 682 

The study might open up novel research and industrial perspectives on shrinkage prediction 683 

of eco-friendly cementitious materials using advanced Machine Learning techniques. 684 
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