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How the architecture of gene regulatory networks shapes gene expression patterns is an open question, which
has been approached from a multitude of angles. The dominant strategy has been to identify nonrandom features
in these networks and then argue for the function of these features using mechanistic modeling. Here we
establish the foundation of an alternative approach by studying the correlation of network eigenvectors with
synthetic gene expression data simulated with a basic and popular model of gene expression dynamics: Boolean
threshold dynamics in signed directed graphs. We show that eigenvectors of the network adjacency matrix can
predict collective states (attractors). However, the overall predictive power depends on details of the network
architecture, namely the fraction of positive 3-cycles, in a predictable fashion. Our results are a set of statistical
observations, providing a systematic step towards a further theoretical understanding of the role of network
eigenvectors in dynamics on graphs.

DOI: 10.1103/PhysRevE.108.014402

I. INTRODUCTION

Understanding how collective dynamical states can be
predicted just from network architecture remains a major
challenge in network science. In a few cases exemplified by
Turing patterns on graphs, collective states near the instability
threshold are given by eigenvectors of the graph’s Laplacian
matrix [1,2]. Beyond such examples, the research is in an
early phase where we still need systematic elements founding
a broader theory [3,4].

In several disciplines, a common approach is to study
relationships between structural and functional connectivity
[5–9]. However, due to its inherent link-by-link comparison
of structure and dynamics, it is not well adapted for the study
of collective dynamical states.

We chose to consider Boolean attractors in threshold
dynamics on signed directed graphs and to investigate numer-
ically under which topological conditions (involving, e.g., the
cycle composition of the graph) eigenvectors can also predict
collective states.

Introduced in particular by Stuart Kauffman in 1969
[10,11] the random Boolean networks (RBN) model is a math-
ematical language to explore networks of interacting genes in
a highly stylized form. In its original formulation with random
Boolean update rules and random networks, where each node
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has the same number, K , of inputs, this model displayed
remarkable statistical properties—such as the transition from
stable to chaotic behavior as a function of K and the scaling
of attractor numbers with network size [12].

By including a threshold on the input in the dynamical rules
(“threshold update rules,” see below Sec. II A), the predictive
power of this stylized model for real-life biological systems
became apparent [13,14] (see also Ref. [15]).

Similar discrete dynamics on graphs have been explored
in the context of spin glasses [16], cellular automata [17], and
excitation spreading [18]. Technically, the threshold dynamics
from Refs. [13,19] belong to a category of totalistic cellular
automata (see Refs. [20,21]).

For its biological application and biological interpretabil-
ity, random Boolean networks require signed directed graphs
(in contrast to other types of discrete dynamics on graphs, like
cellular automata). An edge (v1, v2) ∈ E , vi ∈ V of a graph
G(V, E ) denotes the regulatory effect of the expression of a
gene v1 on the expression of another gene v2. It is therefore
a condensed representation of an intricate set of biological
processes (e.g., v1 encoding a transcription factor, which has
a binding site in the regulatory region of gene v2). The formal
language of Boolean dynamics is now firmly established as
one modeling approach in systems biology, among for exam-
ple ODE models and metabolic flux models [22–25]. The Cell
Collective database [26] is devoted to this topic, as well as a
segment of the BioModels database [27].

Threshold Boolean models have been criticized as models
of biological systems [28], as they do not discriminate be-
tween functionally different nodes in the biological network,
which are expected to follow distinct dynamical rules. While
this criticism may also hold for gene regulatory networks (see,
e.g., Ref. [29]), the case of uniform (threshold-type) update
rules is still a meaningful setting to further our understand-
ing of these types of systems—in particular the relationship
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FIG. 1. General outline of our investigation. (a) Example of a small stylized gene regulatory network with n = 16 nodes and m+ = m− =
32 directed positive (activating) and negative (inhibitory) links shown in solid green lines and dashed red lines, respectively. (b) Example of a
simulated time course starting from random initial conditions on the network from (a) with a binary state space and the threshold-based update
rule from Ref. [13]. The asymptotic state (fixed-point attractor) is reached after a short transient. (c) Set of 25 examples of fixed-point attractors
for the network from (a). The attractor shown in (b) is given as the first entry in this set. (d) Top: Visual comparison of an attractor [attractor
�a22 from (c)] with one left eigenvector, �e6, of the adjacency matrix of the network shown in (a) with the real and imaginary parts, Re(�e6)
and Im(�e6), shown in separate panels under the attractor pattern. Bottom: Numerical result for the Pearson correlation coefficient between the
Boolean attractor �a22 and the (complex) eigenvector �e6, corr(�e6, �a22), together with the modulus of this quantity, |corr(�e6, �a22)|.

between network architecture and the dynamics of gene
activity—as evidenced by the success of the approaches devel-
oped in Refs. [13,14]. An early example of a detailed model
with biologically motivated update rules designed individu-
ally for each node is presented in Ref. [30] (see also Ref. [31]).

Beyond Boolean threshold dynamics the relationship be-
tween network architecture and stable attractors has been
addressed in a range of works. In Ref. [32] the notion of
an energy landscape known for continuous systems is re-
formulated for discrete systems, a work of relevance to cell
type reprogramming. Adding to the previous understanding of
the original random Boolean network (RBN) model [10,11],
in Ref. [33] the role of subsets of update rules, canalyzing
functions, for global stability has been discussed. Tools for
studying RBNs on scalefree graphs have been developed in
Ref. [34]. In Refs. [35,36] the evolvability of robust attrac-
tors has been discussed. The diverse research directions are
also excellently summarized in Ref. [37]. However, the rela-
tionship between attractors and spectral characteristics of the
network is not addressed in these works.

Here we show (1) that signed directed random graphs differ
strongly from each other in the correlation between eigen-
vectors of the graph and attractors under threshold Boolean
dynamics and (2) that the asymmetry of proportions of neg-
ative and positive cycles in the graph is a good predictor
of this coupling of eigenvectors and dynamical attractors. In

case of an over-representation of positive three-node cycles,
a large percentage of attractors is structurally determined
by the eigenvectors.

II. METHODS

A. Boolean network model

The general design of our investigation is summarized in
Fig. 1.

Throughout the investigation the adjacency matrix A of
a directed network G with nodes {1, 2, . . . n} is defined as
follows: Ai j = 0 if there is no link from i to j in G, Ai j = 1
if the link from i to j is activating, and Ai j = −1 if it is
inhibitory. We consider only networks without self-loops, so
Aii = 0, i ∈ {1, 2, . . . , n}.

The dynamical model used in this study is Boolean thresh-
old dynamics. Every node i ∈ {1, 2, . . . n} in the network G
has two possible states, Si = 1 and Si = 0. At every time step
t , future node states Si(t + 1) are determined from present
states Si(t ) via the following update rule [13]:

Si(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

1,
∑n

j=1 a jiS j (t ) > 0

0,
∑n

j=1 a jiS j (t ) < 0

Si(t ),
∑n

j=1 a jiS j (t ) = 0

.
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Since the network is directed, its adjacency matrix is not
necessarily symmetric, and hence its right and left eigen-
vectors are different (and possibly complex). Given the
expression

∑n
j=1 AjiS j (t ) in the above update rules, we are

only considering left eigenvectors of A in our analysis.
Note that in contrast to Ref. [13] we do not add in-

hibitory self-links to nodes, which only have positive input.
In Ref. [13] this was done with the goal of a quantitative
comparison of the model’s dynamics with (discretized) gene
expression time series. For our statistical investigation, it is
more appropriate to fully control the number of edges in the
random graphs investigated here. As pointed out in Ref. [28],
the last row in the update rule given above already implies
some level of self-regulation. This is not present in the original
Kauffman model [10,11]. Also, in a typical network analysis
of transcriptional regulatory networks (e.g., the analysis of
network motifs as in Ref. [38]) self-links are not considered.

The main object of our investigation is a quantity that we
call the predictability of a given attractor �a j . It is defined as
the maximal (Pearson) correlation of this attractor with a left
eigenvector �ek :

π (�a j ) = max
k

|corr(�ek, �a j )|, (1)

where the maximum is taken over all (left) eigenvectors of the
adjacency matrix of the network.

In Fig. 1(d) eigenvector �e1 has been selected for compari-
son, because for this eigenvector the correlation to the given
attractor, �a19, is maximal.

B. Attractor predictability

For the network shown in Fig. 1(a) we have obtained 67
distinct attractors by starting from all 65.536 possible initial
conditions. The corresponding attractor predictabilities π (�a j )
are shown as a histogram. We then define a global quantity,
Network-level attractor predictability π (G) of a network G,
as the fraction of attractor predictabilities more than two stan-
dard deviations away from randomness, which is determined
using the predictability distribution of randomized attractors.
The randomization of attractors is performed by randomly
shuffling each attractor vector (i.e., conserving the number
of 0s and 1s in each attractor). For the sake of convenience,
we abbreviate the name of this quantity as network-level pre-
dictability throughout the paper. For this particular example
[the network shown in Fig. 1(a)] the network-level predictabil-
ity is 0.29.

A summary of the pipeline for finding predictability dis-
tributions of observed and shuffled attractors is shown in
Fig. 2(a). Figure 2(b) illustrates the definition of network-level
predictability.

C. Network generation model for varying asymmetry
in positive and negative directed cycles

In a stylized regulatory network a directed cycle is said to
be positive if it contains an even number of inhibitory links
(possibly zero), and is said to be negative otherwise. Adopting
the standard definition of an asymmetry (see, e.g., Ref. [40]),
we introduce a quantity Ak (G), quantifying the difference
between the numbers of positive and negative cycles of length

k in network G:

Ak (G) = Nk,+(G) − Nk,−(G)

Nk,+(G) + Nk,−(G)
,

where Nk,+(G) and Nk,−(G) denote the numbers of positive
and negative cycles of length k in G, respectively. We call
this quantity k-cycle asymmetry or, for the case k = 3, dom-
inantly considered in the following discussion, simply cycle
asymmetry.

To create a directed network of n nodes with m+ positive
and m− negative links, which has a value of 3-cycle asym-
metry close to atarget, we first generate a random directed
Erdös-Rényi network with exactly m+ + m− unsigned links.
Then we iterate through all of its 3-cycles in random order,
allocating signs of links in those cycles in a way which brings
3-cycle asymmetry closer to atarget whenever possible. The al-
gorithm also strives to maintain a balance between the number
of different positive and negative 3-cycle compositions in the
resulting network. As the final step, signs of links that are not
part of any 3-cycle are chosen randomly, subject to m+ and
m− constraints.

The sets of high- and low-asymmetry networks used in
this study contain 10.000 samples each, with n = 16, m+ =
m− = 32 and ahigh

target = 0.8, alow
target = −0.8, respectively. They

have average 3-cycle asymmetries of 0.79308 and −0.80284,
with the standard deviation of less than 0.05.

D. Generation of signed directed regular random networks

For a specific network node, we denote by k+
out, k−

out, k+
in ,

and k−
in the number of links of corresponding sign and di-

rection. A signed directed regular network of degree k is a
directed signed network where each node has k+

out = k−
out =

k+
in = k−

in = k.

In order to generate a signed directed random regular net-
work of degree k on n nodes, we first create an undirected un-
signed connected random regular network of degree 4k. Next,
we iterate through the nodes in random order and distribute
link directions randomly, compliant with degree constraints
kout = k+

out + k−
out = 2k and kin = k+

in + k−
in = 2k. Afterwards,

subsets of k positive outgoing links and k positive incom-
ing links are randomly chosen for each node, which fully
determines signs of the remaining links. During those two
steps, only random assignments of directions and signs, which
do not lead to immediate conflicts (such as making a link
whose sign is fully determined by the process of elimination
with respect to one node violate degree constraints of another
node) in the network, are performed. Finally, in order to avoid
biasing the output towards specific topological configurations,
direction- and sign-preserving pairwise switch randomization
is run on the network for a large number of steps.

In this study, we use a set of 10 000 connected signed
directed regular random networks of degree 2 with 16 nodes.
The numbers are chosen for consistency with the ER dataset
(see Sec. III B), since resulting networks also have 64 links in
total.

We define sets of regular networks with high and
low network-level predictability by using the 2% quantile-
motivated thresholds T+ : π (G) � 0.66, T− : π (G) � 0.13.

014402-3



RUMIANTSAU, LESNE, AND HÜTT PHYSICAL REVIEW E 108, 014402 (2023)

(a)

(b) (c)

FIG. 2. (a) A schematic illustration of the computation of observed and shuffled attractor predictability distributions for a single net-
work. Distinct attractors appear from many dynamical runs starting from different initial conditions. In practice, the number of dynamical
runs is usually much larger than the number of observed attractors M, since distinct initial conditions often yield the same attractor.
Random permutations of observed attractors which produce randomized attractors are chosen independently for each observed attractor.
(b) Quantification of the network-level predictability π (G) of an Erdös-Rényi (ER) network G with n = 16 nodes and m+ = m− = 32
directed positive and negative links (see Table ST1 [39]). Histogram of attractor predictabilities shown in blue (solid line), together with
the corresponding histogram for randomized attractors (see Methods) shown in orange (dash-dotted line). Cases contributing positively
to π (G) (i.e., those with π (�aj ) > 〈C〉 + 2σ , with the average predictability of random attractors, 〈C〉, and its standard deviation σ ) are
highlighted in green (to the right of vertical dashed line). (c) Distribution of network-level predictability, together with the thresholds
T− = 0.01 and T+ = 0.39 for networks with high and low network-level predictability, respectively. T+ was chosen as the largest value
(up to two decimal paces) that labels at least 2% of all synthetic ER networks described in Sec. III B as those with high network-level
predictability, and T− was chosen similarly with the same 2% threshold in mind. Only networks with at least 50 distinct attractors enter this
histogram.

E. Numerical experiments

1. Standard settings

Our main example will be stylized gene regulatory
networks—random Erdös-Rényi networks with n = 16 nodes
and m+ = 32 directed positive and m− = 32 directed negative
links. We created a database by running simulations on 50 000
such networks of this size and for each network computing
all distinct attractors from the complete set of 65 536 possible
initial conditions.

2. Filtering criteria for biological networks

We analyze network-level attractor predictability for the 78
networks of models from the Cell Collective database [26],
as well as the nine-node network from Ref. [41] and six bio-
logical networks from Ref. [42]. In order to have meaningful
structural information in these networks, we apply filtering
criteria on connectivity (weak connectivity in [0.15,1]), num-
ber of observed fixed-point attractors (at least 10), number
of cycles (at least 1 cycle of length 3 or 4), and the ratio of
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positive and negative links (between 0.3 and 0.65). This leads
to 15 networks included in our analysis.

3. GeneNetWeaver experiments

Simulations with GeneNetWeaver [43] were performed
in the following way: We considered the averaging
GeneNetWeaver model (see Ref. [39]) with measurement
noise, as well as a stochastic version with both intrinsic and
measurement noise using GeneNetWeaver default parame-
ters. We used 400 stylized gene regulatory networks from
the database described in standard settings, and calculated
GeneNetWeaver attractors for each of them from 250 random
initial conditions.

4. Analysis of small networks

We define in-degree asymmetry of a node k in a network
G as

aG(k) = nk
+ − nk

−
nk+ + nk−

,

where nk
+ and nk

− denote the numbers of positive and negative
links incoming to node k, respectively.

In Fig. 5(b) a threshold of ±0.6 is used to define 3-cycle
asymmetry extremes. The other quantity studied in that exper-
iment is the number of network nodes with extreme in-degree
asymmetry, with node k considered extreme if |aG(k)| > 0.6.
Due to network architecture, the number of such nodes has
three possible values: 3, 4, or 5. All 128 link sign assignments
are analyzed, with no constraints on the fraction of positive
links.

The algorithm employed in Fig. 5(d) performs a single link
sign swap on every iteration. To provide a smoother trajectory
of network-level predictability, changes 3-cycle asymmetry as
gradually as possible in the desired direction, while also trying
to affect the smallest number of cycles. Among candidates
that satisfy those two costraints, selection of link sign swap
is random, to eliminate possible bias.

III. RESULTS

A. Attractor predictability as a network-level property

We investigate network-level predictability in three ways:
(1) We create a database of ER networks with high and low
network-level predictability values and discover that the two
populations differ systematically in cycle asymmetry. To en-
sure that this effect is not a consequence of node degree,
we generate a large set of signed directed regular random
networks and use it to validate our findings (Sec. III B). (2)
Using an algorithm which allows us to systematically vary
the cycle asymmetry of a network, we validate the statistical
significance of cycle asymmetry’s ability to discriminate high
and low network-level predictability (Sec. III C). (3) We study
small graphs of only few cycles to gather some analytical in-
sight about the way attractor-eigenvector relationship emerges
and how this relationship changes as a function of cycle sign
(Appendix B).

We checked that our results are not qualitatively affected
by changes in network size, connectivity, or the nonexhaustive

(random) sampling of initial conditions (see the various cases
listed in the supplementary material [39]).

B. Topological properties of networks with high
and low attractor predictability

With the basic outline of our approach given in Fig. 1
and the key quantity we analyze (network-level predictabil-
ity of a network) illustrated in Fig. 2(b), we can now turn
to the quantitative investigation of a larger ensemble of
graphs. The settings for those numerical experiments are de-
scribed as “standard settings” in Methods. Figure 2(c) shows
the distribution of network-level predictability together with
the thresholds we used to define the subsets of networks
with high and low network-level predictability, respectively.
These two sets now allow us to investigate topological differ-
ences between networks with extreme values of network-level
predictability.

While most of the usual topological quantities (degree
distributions, centrality measures, assortativity, etc.) were sur-
prisingly uninformative in discriminating these two sets of
networks (see Figs. S11–S13), striking topological differences
become visible on the level of small directed cycles, if the
signs of links which form the cycle are taken into account.
Figure 3(a) shows the asymmetry of positive and negative
3-cycles (see Methods) for the two sets of graphs. Those
sets display a difference in observed cycle asymmetry that
is significant with a p value of 6.53 × 10−53 according to a
two-sample Kolmogorov-Smirnov test [see Fig. 3(a)]. Fur-
thermore, while using a 2-standard-deviation network-level
predictability threshold [see Fig. 2(b)], we see that networks
with high network-level predictability assume relatively high
[A3(G) � 0.4] positive values of 3-cycle asymmetry 662%
more often than those with low network-level predictabil-
ity. Conversely, networks from the latter set exhibit a high
[A3(G) � −0.4] fraction of negative 3-cycles 462% more of-
ten than those from the former one.

To ensure that observed topological difference between
sets of networks with high and low network-level pre-
dictability is not a consequence of the properties of degree
distribution, it is necessary to eliminate it as an interven-
ing factor. We approach the problem by constructing signed
directed regular random networks of the same size and con-
nectivity (see Methods) and studying this new dataset with
the same methods that we describe for ER networks in this
section.

We discover that asymmetry of positive and negative
3-cycles discriminates between networks with high and
low network-level predictability (see Methods) as well (see
Fig. S7 in Ref. [39]).

C. Network-level predictability for networks
with varying cycle asymmetry

The main topological difference between highly pre-
dictable and poorly predictable networks, so far, has been
observed on a statistical level using a large set of random
networks.

Next, in order to assess whether indeed this topological
difference can also be causally linked to network-level
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FIG. 3. (a) Histogram of 3-cycle asymmetry distributions for
sets of networks with high (solid blue line) and low (dash-dotted
red line) network-level predictability, defined using 2 standard de-
viation threshold [see Fig. 2(b)]. (b) Histograms of network-level
predictability for networks with many negative cycles (negative
3-cycle asymmetry; orange dash-dotted line) and many cycles (posi-
tive 3-cycle asymmetry; blue solid line).

predictability, we create networks with controlled asymmetry
of positive and negative cycles (see Methods) and analyze
the network-level predictability for sets of networks with
high and low cycle asymmetry, respectively. We discover that
networks where the majority of cycles are positive exhibit
predictability values in [0.3, 0.6] 614% more often than their
counterparts with low cycle asymmetry. Conversely, networks
with low cycle asymmetry have network-level predictability
in [0, 0.15] 243% more often than those with high cycle
asymmetry [see Fig. 3(b)].

D. Continuous dynamics and noise

An important question is whether network-level attractor
predictability goes beyond the specific Boolean dynamical
model and extends to, for example, continuous gene expres-
sion dynamics simulated via differential equations. In order
to address this point, we use the GeneNetWeaver tool [43], a
model based on ordinary differential equations (in the case of
no noise or just measurement noise) or stochastic differential

FIG. 4. Comparison of network-level attractor predictabilities
derived from the Boolean model with those derived from the
GeneNetWeaver data simulator. (a) GeneNetWeaver simulation with
measurement noise but no intrinsic noise. Pearson correlation be-
tween the quantities is 0.51 (b) GeneNetWeaver simulation with
both measurement noise and intrinsic noise. Default values are
used for measurement noise, while intrinsic noise corresponds to
noiseCoefficientSDE = 0.5 in GeneNetWeaver settings (10 times the
default value). Pearson correlation between the quantities is 0.37.

equations (in the case of intrinsic noise). GeneNetWeaver
has served as a generator of synthetic gene expression data
for several DREAM gene network inference competitions
[44,45]. Note that GeneNetWeaver has by default a multi-
plicative activation term [43]. For our simulations we rewrote
this as an additive activation function to be comparable to
the threshold dynamics used in our Boolean model. A sum-
mary of these activation functions and results for the original
GeneNetWeaver model are given as supplementary material
(see Fig. S10 and relevant text in Ref. [39]). We simulate
steady states for several initial conditions (see Methods) and
we compute, as in the case of Boolean dynamics, the corre-
lation of these asymptotic states with the eigenvectors of the
graph and thus obtain network-level predictabilities.

Figure 4(a) shows that in spite of the markedly different
nature of the two models the predictabilities show a clear
positive correlation. This positive correlation persists even in
the presence of intrinsic noise [Fig. 4(b)].

E. Small networks

In order to develop some intuition about the observed sta-
tistical association between network-level predictability and
network architecture, we study a minimal example consisting
of five nodes and seven edges arranged to form three over-
lapping triangles, as depicted in Fig. 5(a). Starting from this
template we create all possible signed graphs and study the
two topological quantities, cycle asymmetry and the number
of nodes with extreme in-degree asymmetry (see Methods
for definitions) as candidates for explaining network-level
attractor predictability. Structurally, this procedure leads to
four values of 3-cycle asymmetries (all three cycles nega-
tive, A = −1, two cycles negative, one positive, A = −1/3,
etc.) and three values of extreme in-degree asymmetry node
count (see Methods for details). For all signed graphs we
compute attractor predictability as previously described and
assign categories of high and low predictability via thresholds.

014402-6
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FIG. 5. Case study on a small graph with three 3-cycles and
design of highly predictable networks. (a) Graph with N = 5 nodes
and M = 7 edges, arranged to form three 3-cycles. (b) Distribution
of high (orange, predominantly on the right) and low (blue, predomi-
nantly on the left) predictability in the plane of cycle asymmetry and
extreme in-degree asymmetry node count. For defining such extreme
nodes, in-degree asymmetry threshold of 0.6 has been employed.
Predictability thresholds >0.2 and <0.1 have been used to define
high and low predictability, respectively. Note that a small random
shift of points has been applied for visual clarity. (c) Initial graph
used for the design of highly predictable networks (N = 16, M = 64,
number of 3-cycles NC = 28. Positive and negative edges are shown
with solid green and dashed red lines, respectively. (d) Changes of
predictability under stepwise cycle sign switches. Starting from the
graph displayed in (c) we gradually increase the number of positive
cycles (to the right) or the number of negative cycles (to the left) and
observe the corresponding change in network-level predictability.
Four independent trajectories are shown in different colors.

Figure 5(b) shows the distribution of these two categories in
the plane spanned by the two topological quantities. Cases
of high and low predictability are almost perfectly separated
along the cycle asymmetry axis. The few remaining excep-
tions are situated at high in-degree asymmetry. We verified
that this general picture does not change qualitatively when
varying these choices of thresholds used for predictability
categories within reasonable ranges. The supplementary mate-
rial shows a distribution of network-level predictabilities (see
Fig. S16 in Ref. [39]).

Summarizing, we see that even in these small stylized
graphs, high positive cycle asymmetry leads to high pre-
dictability, with a slight secondary influence from in-degree
asymmetry.

As a next step, we can attempt to design highly predictable
networks by adjusting the cycle content. In order to do this,
we create a random directed ER graph, randomly distribute an
equal number of positive and negative signs on the edges (with
the subsidiary constraint that the initial 3-cycle asymmetry
is zero), and then switch signs (conserving the balance of
positive and negative edges) such that 3-cycles are iteratively
turned into positive and into negative cycles, respectively.
The initial graph is given in Fig. 5(c). Examples of the

FIG. 6. Normalized predictability histograms of tumor cell in-
vasion and migration model network attractors and their shuffled
versions. For each attractor (except the constant zero vector) five
random permutations are considered. The network has 3-cycle asym-
metry of A3(G) = 0.53, and network-level predictability of π (G) =
0.36 when the 2-standard deviation threshold is used [see Fig. 2(b)].

corresponding trajectories of predictability as a function of
cycle asymmetry are shown in Fig. 5(d).

F. Application to biological examples

To assess how relevant the notion of predictability is for
real-life biological networks we apply our methods to net-
works of models from Cell Collective database [26], as well
as networks studied in Ref. [41] and Ref. [42] (see Methods).
Figure 6 shows an example of attractor predictability distribu-
tion for a tumor cell invasion and migration network.

In line with studying attractor predictabiltiy as a network
level property, we analyze its connection to 3-cycle asym-
metry for a subset of networks obtained after applying a
set of filtering criteria to the collection described above (see
Methods). Table I shows that this topological property still
discriminates between networks with high and poor network-
level predictability.

Even though the overall agreement between cycle content
and network-level predictability is not as clear as in our inves-
tigation of random graphs, the association is still quite visible
in Table I. Note that in spite of the selection criteria we impose
(see Methods), the real networks tend to be rather sparse. As
a consequence, the numerical values of cycle asymmetry may
not always be reliable, due to the small number of cycles in the
graph (cycle statistics are provided in Table ST2 in Ref. [39])
and, in contrast to random graphs, where the cycle asymmetry
derived from 3-cycles was by far the most dominant topolog-
ical feature, here both 3-cycles and 4-cycles need to be taken
into account.

IV. DISCUSSION

As with any systematic investigation of this type, our
analysis contains several tunable parameters and one needs to
understand, how the observations made here depend on these
parameters.
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TABLE I. Predictability π (G), asymmetries A3(G) and A4(G) and agreement with theory for biological networks. Thresholds for high
and low cycle asymmetry are ±0.25. Low and high network-level predictability thresholds are π (G) < 0.1 (upper solid line) and π (G) > 0.3
(lower solid line). Agreement is assigned as follows: If both A3(G) and A4(G) are below −0.25 for low or above 0.25 for high network-level
predictability, then the results is ++. If the previous condition holds for either A3(G) or A4(G), and the other asymmetry is between the
thresholds, then the result is a +. If network-level predictability and one of asymmetry values are extreme in the opposite sense, and the other
asymmetry value is between the thresholds, then the result is a −. Results of −+ and −− are defined similarly, and are not present in the table.

Model name π (G) A3(G) A4(G) Agreement

Mammalian Cell Cycle 2006 0.01 0.20 −0.25
Budding Yeast Cell Cycle 2009 0.07 −0.33 −0.76 ++
CD4+ T Cell Differentiation and Plasticity 0.07 0.33 0.04 −
Oxidative Stress Pathway 0.08 −1.00 −1.00 ++
Budding Yeast Cell Cycle 0.11 1.00 −0.27
Arabidopsis thaliana Cell Cycle 0.15 −0.52 0.00
emt26network.csv 0.16 0.80 0.93
Lac Operon 0.21 nan 1.00

T-LGL Survival Network 2011 Reduced Network 0.31 −0.33 0.00 −
B cell differentiation 0.32 1.00 1.00 ++
gonadalsexdet.csv 0.34 0.64 0.62 ++
Tumour Cell Invasion and Migration 0.36 0.53 0.27 ++
sclcnetwork.csv 0.78 0.50 0.37 ++
gastricnetwork.csv 0.79 0.42 0.30 ++
Aurora Kinase A in Neuroblastoma 0.95 0.20 0.43 +

The main parameters are as follows:
(1) The connectivity of the network. There the factors

limiting the range of this parameter are connectedness of the
network (distinguish between strongly and weakly connected
graphs) at the lower end and the rapid decline of the number of
distinct attractors on the upper end (see Fig. S2 in Ref. [39]).
Nevertheless, we found that our results remain valid for a
range of weak connectivity values in [0.15, 0.6] (see Fig. S3
in Ref. [39]).

(2) The asymmetry of positive and negative links. The
main part of our investigation has been performed with equal
numbers of positive and negative links. In order to gain some
insight in how the results depend on the positive-negative link
asymmetry, we first look at an estimate of the average number
of attractors as a function of this asymmetry (see Fig. S1 in
Ref. [39]) As expected, the number of attractors decreases
when the fraction of positive links is very high. This does
not happen for very low fraction of positive links, but those
values are excluded from consideration to eliminate possible
bias they introduce into the dynamical behavior of the system.

This delineates a range of asymmetries for which pre-
dictability can be meaningfully investigated.

Next we can look at the average predictability as a function
of asymmetry between positive and negative links. This can
be done in two ways: (i) on the level of attractors, studying
the distribution of the attractor-eigenvector correlations (in
comparision with a null model of shuffled attractors) as a
function of the positive-negative link asymmetry, and (ii) on
the level of networks, where we can look at the network-level
predictability (i.e., the fraction of attractors with value of
predictability more than two standard deviations way from the
average of random predictions). Based on our analysis, results
of this study do not change qualitatively when asymmetry of
positive and negative links lies within this range (see Fig. S4
in Ref. [39]).

(3) The last parameter to be addressed is the most chal-
lenging one: network size. A full enumeration of all initial
conditions quickly becomes unfeasible when we depart from
network sizes explored here. As this parameter increases,
random sampling covers an ever smaller percentage of initial
conditions, thus biasing the investigation towards attractors
with large basins.

In order to see, whether this bias towards attractors with a
large basin has already a substantial effect in the case of the
network sizes under investigation here, we also conduct an
investigation of larger networks with attractor sets drawn from
randomly sampled initial conditions. Supplementary experi-
ments indicate that our results remain valid for networks of
size 40 with 50 000 random initial conditions each (see Fig. S6
in Ref. [39]), and although sampling of large basin attractors
tends to somewhat amplify extreme cases of network-level
predictability, results of this study are not affected qualita-
tively (see Fig. S9 in Ref. [39]). In addition, we verified
that even if complete enumeration of initial conditions is
impossible, network-level predictability is robust with respect
to different samplings of initial conditions performed on the
same network (see Fig. S8 in Ref. [39]). We furthermore
checked that our key results do not depend on the exact
choice of the minor technical parameters of our investigation,
namely the number of sampled initial conditions (see Fig. S5
in Ref. [39]), the attractor predictability threshold (i.e., two
standard deviations away from randomness, or quantile-based
definitions; see Figs. S14 and S15 in Ref. [39]), and the thresh-
olds used to identify highly predictable and poorly predictable
networks [see Fig. 3(a)].

To summarize the above discussion, we expect results of
our study to remain valid at least for the following parameter
ranges: weak connectivity in [0.15, 0.6] (for small networks
lower bound is greater since it is difficult to observe a
meaningful amount of cycles at low connectivity there),
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proportion of positive links in [0.3, 0.65], network size be-
tween 4 and 40 (but likely larger networks as well, since
random sampling strategy does not change), predictability
threshold between 1 and 3 standard deviations away from ran-
domness, and a threshold between 0.01 and 0.1 of total dataset
size for composing sets of highly and poorly predictable net-
works. A meaningful lower bound on the number of observed
distinct attractors can be chosen by analyzing the distribu-
tion of those numbers for fixed connectivity, positive/negative
link ratio and network size. For n = 16 with m+ = m− = 32,
which has been dominantly considered in this study, we re-
quire at least 50 distinct attractors.

In Ref. [42] the parallel of the Boolean model to an asym-
metric spin glass model is used to define frustration (in the
sense of Ref. [46]). It is argued that the level of frustration
may indeed be a nonrandom feature of biological regula-
tory networks. As in Ref. [42], our research is motivated
by two questions, which to date are not fully answered: (1)
Which constraints does the gene regulatory network impose
on attractors? and (2) Which nonrandom features do gene
regulatory networks have and how are they of relevance for
their biological function?

We point out that there is no one-to-one relationship be-
tween eigenvectors (whose number is given by network size)
and attractors (which for the networks discussed here are
typically a much larger set). We observe that often several
attractors have their maximal correlation (see Methods) with
the same eigenvector. However, further evaluating these at-
tractor groups (and these “eigenvector multiplicities,” i.e.,
how often an eigenvector is providing maximal correlation to
some attractor) is not related to the nature of network-level
predictability.

V. CONCLUSION

We provide a way of quantifying predictability of collec-
tive dynamical states by eigenvectors and we offer heuristics
when networks have a high predictability (a strong relation-
ship between eigenvectors and attractors) and when they have
a low predictability. We also show that the link between eigen-
vectors and attractors are not universal or omnipresent, but the
details of the underlying network matters, in a systematic and
predictable way.

In particular, our findings install some confidence that
genetic programs and patterns of gene activity are tightly
constrained by the architecture of the underlying regulatory
network. Our findings also highlight the importance of accu-
mulating enough knowledge about regulatory machineries.

We have not been able to achieve a more mathemati-
cal understanding of this relationship between network-level
predictability and 3-cycle asymmetry. The fact that this rela-
tionship is seen even in very small graphs (see Fig. 5) suggests
that indeed 3-cycles might mediate the relationship between
attractors and eigenvectors. However, a deeper understanding
will need to be developed in future work.

It is an obvious next step to extend these findings to real
gene expression patterns. Such an application is limited at the
moment by two major factors: (1) the incompleteness of our
knowledge of gene regulatory networks, even for the simplest
organisms. Today, the most comprehensive transcriptional

FIG. 7. The network of four nodes with six links used throughout
this section. Red dashed and green solid arrows denote negative and
positive links, respectively.

regulatory network is the one stored in RegulonDB [47]. How-
ever, our knowledge about most interactions in this network
is partial. In particular, the regulation of many promoters is
presently unknown [48]. Transition to multicellular organisms
further complicates research, because the data become less
and less complete [47]. (2) The fact that real gene expression
patterns do not exclusively arise from the action of the tran-
scriptional regulatory network but are subject to a multitude
of other biological mechanisms; in the case of bacterial gene
regulation, for example, the influence of chromosomal spatial
organization has been explored in much detail over the past
few years [49].

In our investigation we focus on the predictability of attrac-
tors from eigenvectors of the underlying regulatory network.
Noise, a topic of high relevance in studying gene expression
patterns [41,50,51], therefore is less important in our inves-
tigation, as it can be thought of as an influencing factor of
the transient towards an attractor and consequently as a selec-
tive mechanism affecting only the statistics of the attractors.
However, the robustness of an attractor with respect to (e.g.,
update timing) noise [36,52,53] is an important characteristic
that deserves further investigation. In future work we intend to
explore whether highly predictable attractors are more likely

FIG. 8. Structure of the state space, with nodes represent-
ing states and arrows representing transitions under the Boolean
dynamical rule.
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FIG. 9. (a) Directed topology of a network on five nodes with
eight links used in this section. (b) Arrangement of link signs
G1 with 3-cycle asymmetry A3(G1) = −1. Dashed red and solid
green arrows denote negative and positive links, respectively. (c) Ar-
rangement of link signs G2 with 3-cycle asymmetry A3(G2) = 1.
Dashed red and solid green arrows denote negative and positive links,
respectively.

robust than poorly predictable attractors, which would suggest
that the robustness of a dynamical state would be structurally
determined. Some evidence of such structural effects of ro-
bustness is provided in Ref. [52].

More generally, our work suggests to resort to eigenvectors
to predict collective dynamical states, substantially beyond the
well-known example of Turing patterns. So far, our results
are a set of statistical observations. However, this statisti-
cal approach appears very powerful to unravel unexplored

relationships between network architecture and collective
states. The challenge is now open to elaborate definite the-
oretical statements in specific situations from these broad
statistical relationships.
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APPENDIX A: ILLUSTRATION OF THE NUMERICAL
PROCEDURE FOR A SMALL GRAPH

In this Appendix, we provide a step by step computation of
network-level predictability for a small network. The network
G of four nodes with six links is given in Fig. 7. Its adjacency
matrix A is given by:

a =

⎛
⎜⎜⎝

0 0 1 1
0 0 0 0
1 0 0 −1

−1 −1 0 0

⎞
⎟⎟⎠.

Normalized left eigenvectors of A are as follows:

�e1 =

⎡
⎢⎢⎢⎣

−0.356i
0.3062 − 0.5303i
0.3062 + 0.1768i

0.6124

⎤
⎥⎥⎥⎦, �e2 =

⎡
⎢⎢⎢⎣

0.356i
0.3062 + 0.5303i
0.3062 − 0.1768i

0.6124

⎤
⎥⎥⎥⎦,

�e3 =

⎡
⎢⎢⎢⎣

−0.7071
0

−0.7071
0

⎤
⎥⎥⎥⎦, �e4 =

⎡
⎢⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎥⎦.

Since network size allows, Boolean dynamics is run from all
possible initial conditions. State space structure is summa-
rized in Fig. 8:

After discarding �0 (for which computation of correlations
is impossible), we are left with the following set of fixed-point
attractors:

�a1 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦, �a2 =

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦, �a3 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦, �a4 =

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦, �a5 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦.

To calculate predicability of every attractor, we compute abso-
lute values of correlation coefficients for every pair (�ek, �a j ):

|corr(�ek, �aj )| �e1 �e2 �e3 �e4

�a1 0.5 0.5 1 0.5773
�a2 0.5773 0.5773 0.5773 0.3333
�a3 0.5773 0.5773 0.5773 0.3333
�a4 0.5773 0.5773 0.5773 1
�a5 0.5773 0.5773 0.5773 1
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FIG. 10. Predictability of actual and randomized attractors for G1

and G2, computed similarly to Appendix A. Dashed green and solid
black lines represent means and medians, respectively.

Based on the above table, π (�a1) = π (�a4) = π (�a5) =
1, π (�a2) = π (�a3) = 0.5773.

In order to compute network-level predictability of G, pre-
dictability distribution of shuffled attractors is required. For
every ai, we consider all of its permutations that do not equal
another ai:

�a1 :

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦,

�a2 :

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦, �a3 :

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦,

�a4 :

⎡
⎢⎢⎣

1
1
0
1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦, �a5 :

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦.

Distribution of π (�a) for those shuffled attractors has 〈C〉 =
0.6543 and σ = 0.1437. Using the 2σ threshold yields
network-level predictability π (G) = 0.6.

APPENDIX B: EXAMPLE OF INDIVIDUAL POSITIVE
AND NEGATIVE CYCLES

In this Appendix, we illustrate for small graphs how
alteration of 3-cycle asymmetry changes network-level

FIG. 11. Scatterplot of 3-cycle asymmetry and network-level
predictability of all 70 labeled balanced sign arrangements of topol-
ogy in Fig. 9(a). To clearly show the number of networks with
coinciding pairs of values, small random shifts have been applied.

predictability of a small network. To that end, we fix the di-
rected unsigned topology depicted in the Fig. 9(a) and endow
it with different arrangements of links signs.

For the sake of consistency with the main text, we only
consider sign arrangements which have equal number of pos-
itive and negative links and refer to those as balanced sign
arrangement.

Figure 9(b) features an example of a balanced sign arrange-
ment G1 where A3(G1) = −1, i.e., every 3-cycle is negative.
Predictability of observed and shuffled attractors is shown in
Fig. 10. Resulting network-level predictability π (G1) = 0.

Conversely, if we consider a sign arrangement G2 with
A3(G2) = 1 [see Figs. 9(c) and 10], then we see a significant
increase in network-level predictability (π (G2) = 0.42).

To verify existence of relationship between A3(G) and
π (G), we construct all labeled balanced link sign arrange-
ments on the directed topology shown in Fig. 9(a). The
scatterplot of 3-cycle asymmetry and network-level pre-
dictability for those arrangements is featured in Fig. 11. Based
on cycle asymmetry, two distinct groups of networks can
be naturally defined: one with A3(G) � −0.5 and another
with A3(G) � 0.5. Between those two groups, distributions of
network-level predictability are markedly different: networks
from the first group dominantly exhibit low values of π (G),
while networks of the second tend to have high network-level
predictability. Pearson correlation of A3(G) and π (G) is equal
to 0.504 if all balanced networks are considered and becomes
0.4618 without duplicate value pairs.
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