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Abstract

We provide exact expressions for the volume of polyhedral neighborhoods for the sequence of pre-
fractal graphs which converge to the Weierstrass Curve, called Weierstrass Iterated Fractal Drums
(in short, Weierstrass IFDs), associated with a suitable (and geometrically meaningful) sequence
of values of a parameter ε tending to zero, also known as the cohomology infinitesimal, due to
its connections with fractal cohomology, as developed in an earlier work of the authors. We then
introduce the associated local and global polyhedral fractal zeta functions, and prove that the poles
of the global polyhedral fractal zeta function are exactly the same as the Complex Dimensions of
the Weierstrass function itself. Contrary to the set of possible Complex Dimensions usually (and
classically) obtained by means of tubular neighborhoods, as in an earlier work of ours about the
Weierstrass IFD, not only is our result more precise (we obtain the set of actual or exact Complex
Dimensions, instead of the set of possible Complex Dimensions), but it also enables us to build a

bridge with fractal cohomology, where, for any nonnegative integer m, the m
th

cohomology group
is constituted of continuous functions which possess a generalized Taylor expansion, with fractional
derivatives of orders the underlying – and actual – Complex Dimensions.
Then, the aforementioned exact expressions of the polyhedral neighborhoods also enables us to
revisit the computation of the box-counting (or Minkowski) dimension of the Weierstrass Curve,
in a fully rigorous manner, and thereby to provide a complete and geometric proof of part of Man-
delbrot’s conjecture about the fractal dimension of the Weierstrass Curve.
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sions of an IFD, box-counting (or Minkowski) dimension, cohomology infinitesimal, intrinsic scale,
Hodge Diamond Star relation, polyhedral measure, tubular neighborhoods, polyhedral (or polygonal)
neighborhoods, effective local and global polyhedral zeta functions.
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1 Introduction

Fractal zeta functions are classically often obtained in terms of tube formulas (see [LvF13], [LRŽ17],
[LRŽ18], [Lap19]). However, when it comes to fractals defined by means of a nonlinear and noncontrac-
tive iterated function system (i.f.s.), as is the case for the Weierstrass Curve (see [Dav18]), difficulties
arise. Indeed, we cannot obtain an explicit expression for the volume of the general tubular neigbor-
hood of the m

th
prefractal approximation – and, hence, of the associated geometric tube zeta function.

Note that, in addition, nonlinearity makes the geometry awfully complicated; in particular, one cannot
obtain the exact values of the underlying elementary lengths and angles. As a consequence, we only
dispose of an approximate expression for the tube zeta function. In practice, since the approximation
only concerns the coefficients in factor of the residues, and since we dispose of sharp estimates for
those coefficients, we can obtain the exact values of the poles – and, hence, of the Complex Dimen-
sions associated to each prefractal approximation. However, a natural question is wether the Complex
Dimensions of the fractal itself are the same as those of the prefractal approximations, at least for
sufficiently large values of these approximations.

In [DL24a], we gave a partial anwser to the latter question, by introducing the concept of Weier-
strass Iterated Fractal Drums (in short, Weierstrass IFDs), by analogy with the relative fractal drums
involved, for instance, in the case of the Cantor Staircase, in [LRŽ17], Section 5.5.4, and in [LRŽ18].
Weierstrass IFDs simply consist in a sequence of polygonal domains which contain the Weierstrass
Curve ΓW , and are sufficiently close to ΓW . As is first explained in [DL22] and [DL24a], we could
expect the Complex Dimensions of the IFD to be the same as the Comple Dimensions of the Weier-
strass Curve ΓW . An interesting argument arises if we consider the fractal Complex Dimensions as
dynamical quantities, which evolve with the scales: to each prefractal approximation ΓWm

of ΓW ,
we can associate specific values of the Complex Dimensions, as is shown in [DL24d]. In this light,
it is natural to define the Complex Dimensions of the Weierstrass Curve as the set of the Complex
Dimensions of the Weierstrass IFD.

In [DL24c], we have introduced a specific polyhedral measure, by means of polygonal neighbor-
hoods of the Weierstrass Curve ΓW . It so happens that the sequence of polygonal neighborhoods and
the sequence of tubular neighborhoods associated with the Weierstrass IFD are nested: given any
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integer m ∈ N, there exists k1 ∈ N such that, for all k ⩾ k1, the polygonal neighborhood of the m
th

prefractal approximation contains, but for a finite number of wedges, the (m + k, εm+km+k)-neighborhood.
On the other hand, there also exists k2 ∈ N such that, for all k ⩾ k1, the polygonal neighborhood of
the m

th
tubular neighborhood contains the (m + k, εm+km+k) polygonal neighborhood. Here, the se-

quence (εmm)m∈N is the so-called cohomology infinitesimal introduced in [DL22] and [DL24d] and ex-
pressed in terms of the geometry of the Weierstrass Curve – where ε

m
m = (εm)m, with εm > 0, ε

m
m ⟶
m→∞

0

and εm ⟶
m→∞

L, for some L > 0.

In light of this fact, it was natural to consider the fractal zeta functions associated with the se-
quence of polygonal neighborhoods, instead of the fractal zeta functions associated with the sequence
of tubular neighborhoods. For this sequence, as will be shown, in the present paper, not only do we
dispose of the exact expression for the volume (i.e., area) of the polygonal neighborhood, at a given
step of the prefractal approximation, but we also have the recurrence relation between consecutive
fractal zeta functions. This, in particular, enables us to obtain the poles of the limit fractal zeta
function – the one associated with the limit fractal object – and, hence, the Complex Dimensions of
the fractal.

More specifically, a key outcome of our study is that the (intrinsic) Complex Dimensions of the
Weierstrass IFD are all simple, exact and given by the following infinite sequence:

ωjk,m,k = DW − k (2 −DW) ± i `jk,m,k p , with m ∈ N arbitrary, 0 ⩽ k ⩽ m,

where the nonnegative integers `jk,m,k ∈ N (which depend on k and m, called the cohomological vertex
integers and are given in Theorem 5.4, on page 36), form a suitable infinite sequence having a natural
geometric and dynamical interpretation (see the discussion below). Here, DW is the Minkowski (or,
equivalently, box) dimension of the Weierstrass Curve ΓW and p denotes the oscillatory period of the
associated IFD. The codimension 2 −DW is the sharp Hölder exponent of the Weierstrass function W.

Note that, since `jk,m,k = 0 if and only if ωjk,m,k is real (i.e. if and only if ωjk,m,k = DW − k (2 −DW)).
Furthermore, on each vertical line of Complex Dimensions (of abscissa DW − k (2 −DW), for some
k = 0 , 1, 2, . . ., say), there are countably infinitely many nonreal complex conjugate pairs of Complex
Dimensions, as should be the case, geometrically.

We deduce from these results and from the construction of the cohomological vertex integers `jk,m,k

– provided in Definition 5.2, on page 35, in terms of the labeling of the vertices of the m
th

prefractal
graph approximation of the Weierstrass Curve ΓW – that the oscillations (or vibrations) associated
with the Complex Dimensions (see [LvF00], [LvF06], [LvF13], [LRŽ17], [Lap19]) have a very natural
geometric and dynamical interpretation in the context of our extended theory of Complex Dimensions
(developed in [DL22], [DL24d], [DL24a], [DL24c], [DL24b]) as well as in the present paper. As a result,
so do the (intrinsic) Complex Dimensions of ΓW themselves.

We point out that our result is stronger than the one obtained in [DL22], where the values of
the possible Complex Dimensions of the Weierstrass IFD – obtained via fractal zeta functions first
defined in terms of tubular neighborhoods – included, in addition to the aforementioned values, the
values −2, 0 and 1 − 2 k ± i `jk,m,k. While such a result can seem intriguing, it simply comes from
the fact that tubular neighborhoods involve wedges, whose contribution leads to the occurrence of −2
as a possible pole of the associated local fractal effective tube zeta function. Indeed, as we will see,
polyhedral neighborhoods, which are the natural neighborhoods adapted to fractal curves, do not
lead to this value as a possible pole of the associated local fractal effective polyhedral zeta function.
More precisely, since the volume of the polyhedral neighborhood of each prefractal approximation can
be expressed by means of values of the Weierstrass function, the possible Complex Dimensions are
exactly the same as the Complex Dimensions of the Weierstrass function itself, as obtained in [DL24d].
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Our main results in the present setting can be found in the following places:

i. In Definition 3.5, on page 11 and Property 4.4, on page 25, where we introduce and study the
sequence of polyhedral neighborhoods and show that it converges to the Weierstrass Curve ΓW .

ii. In Theorem 4.10, on page 28, and Corollary 4.11, on page 29, where we show that our polyhedral
measure is a quasi self-similar measure. This result extends the classical notion of self-similar
measure.

iii. In Property 5.1, on page 30, where we show that the polyhedral and tubular neighborhoods are
nested.

iv. In Theorem 5.4, on page 36, where we obtain recurrence relations satisfied by the coefficients
of the exact fractal (or Complex Dimensions) expansion for the complexified and the ordinary
Weierstrass functions.

v. In Property 5.5, on page 40, where we show that the (complex) coefficients associated with the
Complex Dimensions series expansion of the Weierstrass function satisfy a Hodge Diamond Star
relation, reminiscent of Poincaré duality (see [DL24d]).

vi. In Theorem 5.6, on page 41, where we obtain an exact fractal power series expansion for the
volume of suitable m

th
polyhedral neighborhoods of the Weierstrass Curve.

vii. In Theorem 5.9, on page 61, where we introduce the local and global effective polyhedral zeta
function, obtain fractal power series expansions and recurrence relations for the local zeta func-
tions, and show that the global zeta function is well defined, meromorphic in all of C, and is
given by an explicit fractal power series, evaluated along the cohomology infinitesimal.

viii. In Theorem 5.12, on page 74, where we prove that the global effective tube zeta function of the
Weierstrass IFD exists and coincides with the global effective polyhedral zeta function.

ix. In Theorem 6.1, on page 81, where we introduce a new and comple proof of the computation
of the box-counting dimension (or, equivalently, of the Minkowski dimension) of the Weierstrass
Curve ΓW , by simply using the covers of ΓW by polyhedral neighborhoods – therefore fully
establishing part of Mandelbrot’s conjecture [Man82] about the fractal dimension of ΓW .

2 Basic Notation

Notation 1 (Set of all Natural Numbers, and Intervals).

As in Bourbaki [Bou04] (Appendix E. 143), we denote by N = {0, 1, 2, . . .} the set of all natural
numbers, and set N⋆ = N \ {0}.
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Given a, b with −∞ ⩽ a ⩽ b ⩽∞, ]a, b[ = (a, b) denotes an open interval, while, for example,
]a, b] = (a, b] denotes a half-open, half-closed interval.

Notation 2 (Lebesgue Measure on R2
).

In the sequel, we denote by µL the Lebesgue measure on R2
.

Notation 3 (Logarithm).

Given y > 0, ln y denotes the natural logarithm of y.

Notation 4 (Signum Function).

The signum function of a real number x is defined by

sgn (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1, if x < 0,
0, if x = 0,
+1, if x > 0 .

3 Geometry of the Weierstrass Curve

We begin by reviewing the main geometric properties of the Weierstrass Curve (and of the associ-
ated IFD), which will be needed in this paper.

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical axes will be
respectively referred to as (x′x) and (y′y).

Notation 5 (Weierstrass Parameters).

In the sequel, λ and Nb are two real numbers such that

0 < λ < 1 , Nb ∈ N⋆ and λNb > 1 ⋅ (♣) (R 1)

Note that this implies that Nb > 1; i.e., Nb ⩾ 2, if Nb ∈ N⋆, as will be the case in this paper.

As explained in [Dav19], we deliberately made the choice to introduce the notation Nb which
replaces the initial number b, in so far as, in Hardy’s paper [Har16] (in contrast to Weierstrass’
original article [Wei75]), b is any positive real number satisfying λ b > 1, whereas we deal here with
the specific case of a natural integer, which accounts for the natural notation Nb.
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Definition 3.1 (Weierstrass Function, Weierstrass Curve).

We consider the Weierstrass function W (also called, in short, the W-function) defined, for any
real number x, by

W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x) ⋅ (R 2)

We call the associated graph the Weierstrass Curve, and denote it by ΓW .

Due to the one–periodicity of the Weierstrass function (since Nb ∈ N⋆), from now on, and without
loss of generality, we restrict our study to the interval [0, 1[= [0, 1). Note that W is continuous, and
hence, bounded on all of R. In particular, ΓW – which is also the graph of W restricted to [0, 1[ – is
a (nonempty) compact subset of R2

.

Definition 3.2 (Complexified Weierstrass function).

We introduce the Complexified Weierstrass function Wcomp, defined, for any real number x, by

Wcomp(x) =
∞

∑
n=0

λ
n
e

2 i π N
n
b x .

Clearly, Wcomp is also a continuous and 1-periodic function on R and W is the real part of Wcomp.

Notation 6 (Minkowski Dimension and Hölder Exponent).

For the parameters λ and Nb satisfying condition (♣) (see Notation 5, on page 5), we denote by

DW = 2 +
lnλ

lnNb
= 2 − lnNb

1

λ
∈ ]1, 2[

the box-counting dimension (or Minkowski dimension) of the Weierstrass Curve ΓW , which happens
to be equal to its Hausdorff dimension [KMPY84], [BBR14], [She18], [Kel17]. We point out that the
results in our previous paper [DL22], combined with those obtained in the present paper in Section 6
below, will provide a direct geometric and fully rigorous proof of the fact that DW , the Minkowski
dimension (or box-counting dimension) of ΓW , exists and takes the above values, as well as of the fact
that W is Hölder continuous with optimal Hölder exponent

2 −DW = −
lnλ

lnNb
= lnNb

1

λ
.

Convention (The Weierstrass Curve as a Cyclic Curve).

In the sequel, we identify the points (0,W(0)) and (1,W(1)) = (1,W(0)). This is justified by the
fact that the Weierstrass function W is 1–periodic, since Nb is an integer.
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Remark 3.1. The above convention makes sense, because, in addition to the periodicity property of
the W-function, the points (0,W(0)) and (1,W(1)) have the same vertical coordinate.

Property 3.1 (Symmetry with Respect to the Vertical Line x =
1

2
).

Since, for any x ∈ [0, 1],

W(1 − x) =
∞

∑
n=0

λ
n

cos (2πNn
b − 2πN

n
b x) =W(x) ,

the Weierstrass Curve is symmetric with respect to the vertical straight line x =
1

2
.

Proposition 3.2 (Nonlinear and Noncontractive Iterated Function System (IFS)).

Following our previous work [Dav18], we approximate the restriction ΓW to [0, 1[×R, of the Weier-
strass Curve, by a sequence of finite graphs, built via an iterative process. For this purpose, we use
the nonlinear (and noncontractive) iterated function system (IFS) consisting of a finite family of C

∞

bijective maps from R2
to R2

and denoted by

TW = {T0, . . . , TNb−1} ,

where, for any integer i belonging to {0, . . . , Nb − 1} and any point (x, y) of R2
,

Ti(x, y) = (x + i
Nb

, λ y + cos (2π (x + i
Nb

))) .

Note that unlike in the classical situation, these maps are not contractions. Nevertheless, ΓW can
be recovered from this IFS in the usual way, as we next explain.

Remark 3.2 (Further Comments About Nonlinear and Noncontractive Iterated Function
Systems).

In [Dav19], the first author has begun to lay the foundations for a theory of non-classical, non-affine
iterated function systems, of the form

{T0, . . . , TN−1} , N ∈ N, N ⩾ 2 ,

where, for any integer i ∈ {0, . . . , N − 1}, Ti is a map from Rn to Rn obtained by means of:

i. a set {φi}0⩽i⩽N−1 of affine contractive maps of ratio
1

N
and integer constants from Rn−1

to Rn−1
;

ii. a set {ϕi}0⩽i⩽N−1 of linear contractive maps of ratio r >
1

N
from Rn−1

to R ;

iii. a T -periodic, bounded function ψ from R to R satisfying a Lipschitz condition (T > 0).
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By placing oneself in the Euclidean space of dimension n, referred to a direct orthonormal frame,
with Cartesian coordinates (x1, . . . , xn), the maps Ti, for 0 ⩽ i ⩽ N − 1, are defined, for any (x1, . . . , xn) ∈ Rn,
by

Ti (x1, . . . , xn) = (φi (x1, . . . , xn−1) , ϕi(xn) + ψ ◦ φi (T x1, . . . , T xn−1)) .
This i.f.s. is related to a function of Weierstrass type

(x1, . . . , xn−1)↦W(x1, . . . , xn−1) =
+∞

∑
n=0

r
n
ψ (T Nn (x1, . . . , xn−1)) ⋅

Contrary to self-affine fractals such as the Sierpiński gasket or the Koch Curve, the Gluing
Lemma [BD85] does not apply. Yet, one has an equivalent property, in so far as, for any inte-
ger i ∈ {0, . . . , N}, the map Ti is a bijection of the set (x1, . . . , xn−1,W(x1, . . . , xn−1)) ∈ Rn.

In addition, those maps possess what can be viewed as a property that is essentially equivalent to
the contractive property of classical IFSs, since, at each step of the iterative process which enables one
to obtain the prefractal graphs, they reduce the two-dimensional Lebesgue measures of a given sequence
of polyhedra covering the curve. Such maps play a role in the first step of the horseshoe map process
introduced by Stephen Smale; we refer the interested reader to the book of Robert L. Devaney [Dev03].

Property 3.3 (Attractor of the IFS [Dav18], [Dav19]).

The Weierstrass Curve ΓW is the attractor of the IFS TW , and hence, is the unique nonempty

compact subset K of R2
satisfying K =

Nb−1

⋃
i=0

Ti(K); in particular, we have that ΓW =

Nb−1

⋃
i=0

Ti(ΓW).

Lemma 3.4 (Fixed Points).

For any integer i belonging to {0, . . . , Nb − 1}, we denote by

Pi = (xi, yi) = ( i

Nb − 1
,

1

1 − λ
cos ( 2π i

Nb − 1
))

the unique fixed point of the map Ti; see [Dav19].

Definition 3.3 (Sets of Vertices, Prefractals).

We denote by V0 the ordered set (according to increasing abscissae) of the points

{P0, . . . , PNb−1} .
The set of points V0 – where, for any integer i in {0, . . . , Nb − 2}, the point Pi is linked to the

point Pi+1 – constitutes an oriented finite graph, ordered according to increasing abscissae, which we
will denote by ΓW0

. Then, V0 is called the set of vertices of the graph ΓW0
.

For any positive integer m, i.e., for m ∈ N⋆, we set Vm =

Nb−1

⋃
i=0

Ti (Vm−1).
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The set of points Vm, where two consecutive points are linked, is an oriented finite graph, ordered
according to increasing abscissae, called the m

th
order W-prefractal. Then, Vm is called the set of

vertices of the prefractal ΓWm
; see Figure 2, on page 13. We call Weierstrass Iterated Fractal Drums

(IFD) the sequence of prefractal graphs which converge to the Weierstrass Curve.

Property 3.5 (Density of the Set V
⋆
= ⋃
n∈N

Vn in the Weierstrass Curve [DL24d]).

The set V
⋆
= ⋃
n∈N

Vn is dense in the Weierstrass Curve ΓW .

Definition 3.4 (Adjacent Vertices, Edge Relation).

For any m ∈ N, the prefractal graph ΓWm
is equipped with an edge relation ∼

m
, as follows: two

vertices X and Y of ΓWm
(i.e., two points belonging to Vm) are said to be adjacent (i.e., neighboring

or junction points) if and only if the line segment [X,Y ] is an edge of ΓWm
; we then write X ∼

m
Y .

Note that this edge relation depends on m, which means that points adjacent in Vm might not remain
adjacent in Vm+1.

Property 3.6 (Scaling Properties of the Weierstrass Function, and Consequences [DL22]).

Since, for any real number x, W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x), one also has

W(Nb x) =
∞

∑
n=0

λ
n

cos (2πN
n+1
b x) = 1

λ

∞

∑
n=1

λ
n

cos (2πNn
b x) =

1

λ
(W(x) − cos (2π x)) ,

which yields, for any strictly positive integer m and any j in {0, . . . ,#Vm},

W ( j

(Nb − 1)Nm
b

) = λW ( j

(Nb − 1)Nm−1
b

) + cos ( 2π j

(Nb − 1)Nm
b

) .

By induction, one then obtains that

W ( j

(Nb − 1)Nm
b

) = λmW ( j

(Nb − 1)) +
m−1

∑
k=0

λ
k

cos( 2πN
k
b j

(Nb − 1)Nm
b

) .

We refer to part iv. of Property 3.7, on page 9, along with Figure 1, on page 12, for the definition
of the polygons Pm,k and Qm,k associated with the Weierstrass Curve.

Property 3.7. [Dav18] For any m ∈ N, the following statements hold :

i. Vm ⊂ Vm+1 .
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ii. #Vm = (Nb − 1) Nm
b + 1, where #Vm denotes the number of elements in the finite set Vm.

iii. The prefractal graph ΓWm
has exactly (Nb − 1) Nm

b edges.

iv. The consecutive vertices of the prefractal graph ΓWm
are the vertices of N

m
b simple nonregular

polygons Pm,k with Nb sides, where 1 ⩽ k ⩽ N
m
b − 1 (note that contrary to the numbering of

the vertices of the prefractal graph ΓWm
, the numbering of the polygons starts with k = 1 and

not k = 1). For 1 ⩽ k ⩽ N
m
b − 1, the vertices of Pm,k are the following points

((Nb − 1) k + k′
(Nb − 1)Nm

b

,W ( (Nb − 1) k + k′
(Nb − 1)Nm

b

)) , 0 ⩽ k
′
⩽ Nb − 1 .

Hence, for any strictly positive integer m, the junction point between two consecutive poly-
gons Pm,k and Pm,k+1 is the point

( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 1 .

Hence, the total number of junction points is N
m
b − 1. For instance, in the case Nb = 3, the

polygons are all triangles; see Figure 1, on page 12.

We call extreme vertices of the polygon Pm,k the junction points

Vinitial (Pm,k) = ( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 0 ⩽ k ⩽ N
m
b − 1 ,

and

Vend (Pm,k) = ((Nb − 1) (k + 1)
(Nb − 1)Nm

b

,W ( (Nb − 1) (k + 1)
(Nb − 1)Nm

b

)) , 0 ⩽ k ⩽ N
m
b − 2 .

In the sequel, we will denote by P0 the initial polygon, whose vertices are the fixed points of
the maps Ti, 0 ⩽ i ⩽ Nb − 1, introduced in Notation 3.4, on page 8 and Definition 3.3, on page 8,
i.e., {P0, . . . , PNb−1}; see, again, Figure 1, on page 12.

In the same way, the consecutive vertices of the prefractal graph ΓWm
, distinct from the fixed

points P0 and PNb−1 (see Notation 3.4, on page 8), are also the vertices of N
m
b − 1 simple nonreg-

ular polygons Qm,j, for 1 ⩽ j ⩽ N
m
b − 2. For any integer j such that 1 ⩽ j ⩽ N

m
b − 2, one obtains

each polygon Qm,j by connecting the point number j (i.e., with the notation of Definition 3.6,
on page 14, the vertex Mj,m) to the point number j + 1 (i.e., the vertex Mj+1,m) if j ≡ imod Nb,
for 1 ⩽ i ⩽ Nb − 1, and the point number j to the point number j −Nb + 1 if j ≡ 0 mod Nb.

For 1 ⩽ k ⩽ N
m
b − 1, the vertices of Qm,k are the following points:

a. When the integer Nb is odd:

(
(Nb − 1) k + Nb−1

2
+ k′

(Nb − 1)Nm
b

,W (
(Nb − 1) k + Nb−1

2
+ k′

(Nb − 1)Nm
b

)) , 0 ⩽ k
′
⩽ Nb − 1 .

10



b. When the integer Nb is even:

(
(Nb − 1) k + Nb

2
+ k′

(Nb − 1)Nm
b

,W (
(Nb − 1) k + Nb

2
+ k′

(Nb − 1)Nm
b

)) , 0 ⩽ k
′
⩽ Nb − 2 .

As previously, we call extreme vertices of the polygon Qm,k the points

Vinitial (Qm,k) = ( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 1 ,

and

Vend (Qm,k) = ((Nb − 1) (k + 1)
(Nb − 1)Nm

b

,W ( (Nb − 1) (k + 1)
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 2 .

Definition 3.5 (Polygonal Sets).

For any m ∈ N, we introduce the following polygonal sets

Pm = {Pm,k , 0 ⩽ k ⩽ N
m
b − 1} and Qm = {Qm,k , 0 ⩽ k ⩽ N

m
b − 2} .

We then introduce the sequence of domains delimited by the Weierstrass IFD, or polygonal neigh-
borhood of the Weierstrass Curve as the sequence (D (ΓWm

))m∈N of open, connected polygonal
sets (Pm ∪Qm)m∈N, where, for each m ∈ N, Pm and Qm respectively denote the polygonal sets
introduced just above.

Given ∈ N, we call D (ΓWm
) the m

th
polyhedral neighborhood (of the Weierstrass Curve ΓW).

Notation 7. For any m ∈ N, we denote by:

ii. X ∈ Pm (resp., X ∈ Qm) a vertex of a polygon Pm,k, with 0 ⩽ k ⩽ N
m
b − 1 (resp., a vertex of

a polygon Qm,k, with 1 ⩽ k ⩽ N
m
b − 2).

ii. Pm⋃Qm the reunion of the polygonal sets Pm and Qm, which consists in the set of all the
vertices of the polygons Pm,k, with 0 ⩽ k ⩽ N

m
b − 1, along with the vertices of the polygons Qm,k,

with 1 ⩽ k ⩽ N
m
b − 2. In particular, X ∈ Pm⋃Qm simply denotes a vertex in Pm or Qm.

iii. Pm⋂Qm the intersection of the polygonal sets Pm and Qm, which consists in the set of all the
vertices of both a polygon Pm,k, with 0 ⩽ k ⩽ N

m
b − 1, and a polygon Qm,k′ , with 1 ⩽ k

′
⩽ N

m
b − 2.

11



P0 P2

P1

polygon P1,0

polygon P1,1

polygon P1,2

polygon Q1,2polygon Q1,1

Initial polygon 

1
x

-1

1

y

Figure 1: The initial polygon P0, and the respective polygons P1,0, P1,1, P1,2, Q1,1, Q1,2,

in the case when λ =
1

2
and Nb = 3. (See also Figure 2, on page 13.)
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1
x

-1

1

y

(a) The prefractal graph ΓW0
, in the

case when λ =
1

2
and Nb = 3.

1
x

-1

1

y

(b) The prefractal graph ΓW1
, in the

case when λ =
1

2
and Nb = 3.

1
x

-1

1

y

(c) The prefractal graph ΓW2
, in the

case when λ =
1

2
and Nb = 3.

1
x

-1

1

y

(d) The prefractal graph ΓW3
, in the

case when λ =
1

2
and Nb = 3.

1
x

-1

1

y

(e) The prefractal graph ΓW4
, in the

case when λ =
1

2
and Nb = 3.

1
x

-1

1

y

(f) The prefractal graph ΓW5
, in the

case when λ =
1

2
and Nb = 3.

Figure 2: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case when λ =
1

2
and Nb = 3.
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Definition 3.6 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles).

Given a strictly positive integer m, we denote by (Mj,m)0⩽j⩽(Nb−1)Nm
b

the set of vertices of the

prefractal graph ΓWm
. One thus has, for any integer j in {0, . . . , (Nb − 1)Nm

b }:

Mj,m = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) .

We also introduce, for any integer j in {0, . . . , (Nb − 1)Nm
b − 1}:

i. the elementary horizontal lengths:

Lm =
1

(Nb − 1)Nm
b

; (R 3)

ii. the elementary heights:

hj,j+1,m =

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»

;

iii. the elementary lengths:

lj,j+1,m = d (Mj,m,Mj+1,m) =
√
L2
m + h

2
j,j+1,m ;

iv. the minimal height:

h
inf
m = inf

0⩽j⩽(Nb−1)Nm
b −1

hj,j+1,m , (R 4)

along with the maximal height:

hm = sup
0⩽j⩽(Nb−1)Nm

b −1

hj,j+1,m , (R 5)

v. the geometric angles:

θj−1,j,m = ̂((y′y), (Mj−1,mMj,m)) , θj,j+1,m = ̂((y′y), (Mj,mMj+1,m)) ,

where (y′y) denotes the vertical axis, which yield the following value of the geometric angle
between consecutive edges, namely, [Mj−1,mMj,m,Mj,mMj+1,m], with arctan = tan

−1
:

θj−1,j,m + θj,j+1,m = arctan
Lm

hj−1,j,m
+ arctan

Lm
hj,j+1,m

.

(Note that, of course, θj−1,j,m = arctan
Lm

hj−1,j,m
and θj,j+1,m = arctan

Lm
hj,j+1,m

.)

Property 3.8. For the geometric angle θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b , m ∈ N, we have the following

relation:

tan θj−1,j,m =
hj−1,j,m

Lm
.
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Property 3.9 (A Consequence of the Symmetry with Respect to the Vertical Line x =
1

2
).

For any strictly positive integer m and any j in {0, . . . ,#Vm}, we have that

W ( j

(Nb − 1)Nm
b

) =W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

) ,

which means that the points

((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

are symmetric with respect to the vertical line x =
1

2
; see Figure 3, on page 15.

Definition 3.7 (Left-Side and Right-Side Vertices).

Given natural integers m, k such that 0 ⩽ k ⩽ N
m
b − 1, and a polygon Pm,k, we define:

i. The set of its left-side vertices as the set of the first [Nb − 1

2
] vertices, where [y] denotes the

integer part of the real number y.

ii. The set of its right-side vertices as the set of the last [Nb − 1

2
] vertices.

When the integer Nb is odd, we define the bottom vertex as the (Nb − 1

2
)
th

one; see Figure 4, on

page 16.

M j-1,m

M j-1+p,m

M(Nb-1)Nb
m
- j+1,m

M(Nb-1)Nb
m
- j+1-p,m

x =
1

2

1
x

-1

1

y

Figure 3: Symmetric points with respect to the vertical line x =
1

2
.
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Left - side vertices Right - side vertices

Bottom vertex

x

y

Left - side vertices

Right - side vertices

Bottom vertex

1
x

-1

1

y

Figure 4: The Left and Right–Side Vertices, in the case when Nb = 7.

Property 3.10 ([DL22]).

For any integer j in {0, . . . , Nb − 1}:

W ( j

Nb − 1
) =

∞

∑
n=0

λ
n

cos (2πN
n
b

j

(Nb − 1)) =
∞

∑
n=0

λ
n

cos ( 2π j

Nb − 1
) = 1

1 − λ
cos ( 2π j

Nb − 1
) .

Property 3.11 ([DL22]).

For 0 ⩽ j ⩽
(Nb − 1)

2
(resp., for

(Nb − 1)
2

⩽ j ⩽ Nb − 1), we have that

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩽ 0 (resp., W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩾ 0) .

Property 3.12 ([DL22]).

Given any strictly positive integer m, we have the following properties:

i. For any j in {0, . . . ,#Vm}, the point

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

is the image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i)) = (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

,W (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

under the map Ti, where i ∈ {0, . . . , Nb − 1} is arbitrary.
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Consequently, for 0 ⩽ j ⩽ Nb − 1, the j
th

vertex of the polygon Pm,k, 0 ⩽ k ⩽ N
m
b − 1, i.e.,

the point

((Nb − 1) k + j
(Nb − 1)Nm

b

,W ((Nb − 1) k + j
(Nb − 1)Nm

b

)) ,

is the image of the point

⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

,W
⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

⎞
⎟
⎠
⎞
⎟
⎠

under the map Ti, where i ∈ {0, . . . , Nb − 1} is again arbitrary. This latter point is also the j
th

vertex of the polygon Pm−1,k−i (Nb−1)Nm−1
b

. Therefore, there is an exact correspondence be-
tween vertices of the polygons at consecutive steps m − 1, m.

ii. Given j in {0, . . . , Nb − 2} and k in {0, . . . , N
m
b − 1}, we have that

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) .

Proof.

i. Given m ∈ N⋆, let us consider i ∈ {0, . . . , Nb − 1}. The image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i))

under the map Ti is obtained by applying the analytic expression given in Property 3.2, on page 7,
to the coordinates of this point, which, thanks to Property 3.6, on page 9 above, yields the expected
result, namely,

( j

(Nb − 1)Nm
b

, λW ( j

(Nb − 1)Nm−1
b

− i) + cos
2π j

(Nb − 1)Nm
b

) = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) ,

since, by 1-periodicity,

W ( j

(Nb − 1)Nm−1
b

− i) =W ( j

(Nb − 1)Nm−1
b

) .

ii. See [DL22].

Property 3.13 (Lower Bound and Upper Bound for the Elementary Heights [DL22]).

For any strictly positive integer m and any j in {0, . . . , (Nb − 1)Nm
b }, we have the following esti-

mates, where Lm is the elementary horizontal length introduced in part i. of Definition 3.6, on page 14:
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Cinf L
2−DW
m ⩽ ∣W ((j + 1)Lm) −W (j Lm)∣

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
hj,j+1,m

⩽ Csup L
2−DW
m , m ∈ N, 0 ⩽ j ⩽ (Nb − 1)Nm

b , (✠)

where the finite and positive constants Cinf and Csup are given by

Cinf = (Nb − 1)2−DW min
0⩽j⩽Nb−1,W( j+1

Nb−1
)≠W( j

Nb−1
)

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) .

One should note, in addition, that these constants Cinf and Csup depend on the initial polygon P0,
but are independent of m ∈ N sufficiently large (the fact that m has to be sufficiently large is in rela-
tion with the fact that ε

m
has to be close to 0).

As a consequence, we also have that

Cinf L
2−DW
m ⩽ h

inf
m ⩽ Csup L

2−DW
m and Cinf L

2−DW
m ⩽ hm ⩽ Csup L

2−DW
m ,

where h
inf
m and hm respectively denote the minimal and maximal heights introduced in part iv. of Def-

inition 3.6, on page 14.

Theorem 3.14 (Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Func-
tion [DL22]).

For any natural integer m (i.e., for any m ∈ N), let us consider a pair of real numbers (x, x′)
such that

x =
(Nb − 1) k + j
(Nb − 1)Nm

b

= ((Nb − 1) k + j) Lm , x
′
=

(Nb − 1) k + j + `
(Nb − 1)Nm

b

= ((Nb − 1) k + j + `) Lm ,

where 0 ⩽ k ⩽ N
m
b − 1. We then have the following (discrete, local) reverse-Hölder inequality, with

sharp Hölder exponent −
lnλ

lnNb
= 2 −DW :

Cinf ∣x′ − x∣2−DW
⩽

»»»»»W(x′) −W(x)»»»»» ,

where (x,W(x)) and (x′,W(x′)) are adjacent vertices of the same m
th

prefractal approximation, ΓWm
,

with m ∈ N arbitrary. Here, Cinf is given as in Property 3.13, on page 17 just above.
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Corollary 3.15 (Optimal Hölder Exponent for the Weierstrass Function (see [DL22])).

The local reverse Hölder property of Theorem 3.14, on page 18 just above – in conjunction with
the Hölder condition satisfied by the Weierstrass function (see also [Zyg02], Chapter II, Theorem 4.9,

page 47) – shows that the Codimension 2 −DW = −
lnλ

lnNb
∈ ]0, 1[ is the best (i.e., optimal) Hölder

exponent for the Weierstrass function (as was originally shown, by a completely different method,
by G. H. Hardy in [Har16]).

Note that, as a consequence, since the Hölder exponent is strictly smaller than one, it follows that
the Weierstrass function W is nowhere differentiable.

Corollary 3.16 (of Property 3.13 (see [DL22])).

Thanks to Property 3.13, on page 17, one may now write, for any strictly positive integer m and
any integer j in {0, . . . , (Nb − 1)Nm

b − 1}, and with Cinf and Csupf defined as in Property 3.13, on
page 17:

i. for the elementary heights:

hj−1,j,m = L
2−DW
m O (1) ; (R 6)

ii. for the elementary quotients:

hj−1,j,m

Lm
= L

1−DW
m O (1) , (R 7)

and where

0 < Cinf ⩽ O (1) ⩽ Csup <∞ .

Note that, thanks to Property 3.13, on page 17, O (1) may depend on m, but is bounded away
from 0 and ∞.

Corollary 3.17 (Nonincreasing Sequence of Geometric Angles (Coming from Property 3.12;
see [DL22])).

For the geometric angles θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b , m ∈ N, introduced in part v. of Defini-

tion 3.6, on page 14, we have the following result:

tan θj−1,j,m =
Lm

hj−1,j,m
(Nb − 1) > tan θj−1,j,m+1 ,

which yields

θj−1,j,m > θj−1,j,m+1 and θj−1,j,m+1 ≲ L
DW−1
m .

Corollary 3.18 (Local Extrema (Coming from Property 3.12, on page 16; see [DL22]) ).
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i. The set of local maxima of the Weierstrass function on the interval [0, 1] is given by

{((Nb − 1) k
Nm
b

,W ((Nb − 1) k
Nm
b

)) ∶ 0 ⩽ k ⩽ N
m
b − 1, m ∈ N} ,

and corresponds to the extreme vertices of the polygons Pm,k and Qm,k (i.e., they are the vertices
connecting consecutive polygons; see part iv. of Property 3.7, on page 9).

ii. For odd values of Nb, the set of local minima of the Weierstrass function on the interval [0, 1]
is given by

{(
(Nb − 1) k + Nb−1

2

(Nb − 1)Nm
b

,W (
(Nb − 1) k + Nb−1

2

(Nb − 1)Nm
b

)) ∶ 0 ⩽ k ⩽ N
m
b − 1, m ∈ N} ,

and corresponds to the bottom vertices of the polygons Pm,k and Qm,k at a given step m; see also
part iv. of Property 3.7, on page 9.

Property 3.19 (Existence of Reentrant Angles [DL22]).

i. The initial polygon P0, admits reentrant interior angles, at a vertex Pj, with 0 < j ⩽ Nb − 1,
in the sense that, with the right-hand rule (according to which angles are measured in a coun-
terclockwise direction), we have that

̂((PjPj+1) , (PjPj−1)) > π ,

for

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1

(see Figure 5, on page 21), which does not occur for values of Nb < 7.

The number of reentrant angles is then equal to 2 [Nb − 3

4
].

ii. At a given step m ∈ N⋆, with the above convention, a polygon Pm,k admits reentrant interior
angles in the sole cases when Nb ⩾ 7, at vertices Mk+j, 1 ⩽ k ⩽ N

m
b , 0 < j ⩽ Nb − 1, as well as

in the case when

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1 .

The number of reentrant angles is then equal to 2N
m
b [Nb − 3

4
], where [y] denotes the integer

part of the real number y.

Remark 3.3. Note that, still when Nb ⩾ 7, due to the respective definitions of the polygons Pm,k
and Qm,k, the existence of reentrant interior angles for Pm,k at a vertexMk+j , 1 ⩽ k ⩽ N

m
b , 0 < j ⩽ Nb − 1,

also results in the existence of reentrant interior angles for Qm,k at the verticesMk+j−1, 1 ⩽ k ⩽ N
m
b , 1 < j ⩽ Nb − 1

and Mk+j+1, 1 ⩽ k ⩽ N
m
b , 0 < j ⩽ Nb − 2.
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Figure 5: An interior reentrant angle. Here, Nb = 7 and λ =
1

2
.

4 Polyhedral Measure

Our results on fractal cohomology obtained in [DL24d] (see also [DL22], [DL24a]) have highlighted
the role played by specific threshold values for a sequence of geometric invariants at any step m ∈ N
of the prefractal graph approximation; namely, the sequence of the m

th
cohomology infinitesimals

introduced in Definition 4.1, on page 21 just below, which also plays a major part in studying the
polyhedral neighborhoods associated with the sequence of prefractal approximations of the Weierstrass
Curve (or, equivalently, of the Weierstrass IFD). Those polyhedral neighborhoods have enabled us
in [DL24c] to construct a specific polyhedral measure. We hereafter recall the main corresponding
results.

Definition 4.1 (m
th

Cohomology Infinitesimal [DL22], [DL24d] and m
th

Intrinsic Coho-
mology Infinitesimal).

From now on, given any m ∈ N, we will call m
th

cohomology infinitesimal the number ε
m
m > 0

which, modulo a multiplicative constant equal to
1

Nb − 1
, i.e., ε

m
m =

1

Nb − 1

1

Nm
b

(recall that Nb > 1),

stands as the elementary horizontal length introduced in part i. of Definition 3.6, on page 14; i.e.,

1

Nm
b

.

Observe that, clearly, εm itself – and not just ε
m
m – depends on m; hence, we should really

write ε
m
m = (εm)m, for all m ∈ N.

In addition, since Nb > 1, ε
m
m satisfies the following asymptotic behavior,

ε
m
m → 0 , as m→∞,

which, naturally, results in the fact that the larger m, the smaller ε
m
m. It is for this reason that we

call ε
m
m – or rather, the infinitesimal sequence (εmm)∞m=0 of positive numbers tending to zero as m→∞,

with ε
m
m = (εm)m, for each m ∈ N – an infinitesimal. Note that this m

th
cohomology infinitesimal is

the one naturally associated to the scaling relation of Property 3.6, on page 9.
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In the sequel, it is also useful to keep in mind that the sequence of positive numbers (εm)∞m=0 itself
satisfies

εm ∼
1

Nb
, as m→∞ ;

i.e., εm →
1

Nb
, as m→∞. In particular, εm /→ 0, as m→∞, but, instead, εm tends to a strictly

positive and finite limit.

We also introduce, given anym ∈ N, them
th

intrinsic cohomology infinitesimal, denoted by ε
m
> 0,

such that

ε
m
=

1

Nm
b

,

where

ε =
1

Nb
.

We call ε the intrinsic scale, or intrinsic subdivision scale.

Remark 4.1. Note that

ε
m
m =

ε
m

Nb − 1
.

and that the m
th

intrinsic cohomology infinitesimal ε
m

is asymptotic (when m tends to ∞, and up to

a positive multiplicative constant) to the m
th

cohomology infinitesimal ε
m
m.

Remark 4.2. We point out that the choice of the m
th

intrinsic cohomology infinitesimal – instead
of the m

th
cohomology infinitesimal, as is done in [DL22], [DL24d] – will considerably simplify the

computation of the polyhedral fractal volumes, the polyhedral global zeta functions, and hence also,
of the (intrinsic) Complex Dimensions of the Weierstrass Curve.

Remark 4.3 (Addressing Numerical Estimates).

From a practical point of view (i.e., the amount of detail that becomes visible at certain levels),
an important question is the choice of the integer m, in connection with the value of the ratio

Cohomology infinitesimal

Maximal height
=
ε
m
m

hm
;

see relation (R5), on page 14.

In order to quantify m, we rely on the fact that the ration
ε
m
m

hm
drecreases to 0 when m increases.

It is therefore useful to consider the number of digits q such that

1

10q
Cinf ⩽

ε
m
m

hm
⩽

1

10q
Csup ,
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since, thanks to the estimates given in relation (R7), on page 19, we have that

ε
m
m

hm
= L

1−DW
m O (1) = εm (1−DW)

m O (1) ,

with
0 < Cinf ⩽ O (1) ⩽ Csup <∞ ,

where Cinf and Csup are given in Property 3.13, on page 17.

Given q ∈ N⋆, we then have

1

10q
Cinf ⩽

ε
m
m

hm
⩽

1

10q
Csup

when

Cinf
10q

⩽ e
(1−DW) lnLm

⩽
Csup
10q

,

or, equivalently, when

−
1

lnNb
ln((Nb − 1) (

Csup
10q

)
1

1−DW ) ⩽ m ⩽ −
1

lnNb
ln((Nb − 1) (

Cinf
10q

)
1

1−DW ) .

Numerical values for Nb = 3 and λ =
1

2
yield:

i. For q = 1: 2 ⩽ m ⩽ 3.

ii. For q = 2: 7 ⩽ m ⩽ 9.

iii. For q = 3: 13 ⩽ m ⩽ 15.

Hence, when m increases, the ratio
ε
m
m

hm
decreases, and tends to 0. This numerical – but very

practical and explicit argument – also accounts for our forthcoming use of the sequence of polyhedral
neighborhoods, of width equal to the cohomology infinitesimal.

We refer to part iv. of Property 3.7, on page 9 above, along with Figure 1, on page 12 for the defi-
nition of the polygons Pm,j (resp., Qm,j) associated with the Weierstrass Curve in the next definition,
as well as throughout the rest of this section. See also Definition 3.5, on page 11 where the polygonal
families are introduced.

Definition 4.2 (Power of a Vertex of the Prefractal Graph ΓWm
, m ∈ N⋆, with Respect to

the Polygonal Families Pm and Qm).

Given a strictly positive integer m, a vertex X of the prefractal graph ΓWm
will be said to be:

i. of power one relative to the polygonal family Pm if X is a vertex of one and only one Nb-
gon Pm,j , 0 ⩽ j ⩽ N

m
b − 1;

ii. of power
1

2
relative to the polygonal family Pm if X is a common vertex to two consecutive Nb-

gons Pm,j and Pm,j+1, 0 ⩽ j ⩽ N
m
b − 2;

iii. of power zero relative to the polygonal family Pm ifX is not a vertex of anyNb-gon Pm,j , 0 ⩽ j ⩽ N
m
b − 1.
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Similarly, given m ∈ N, a vertex X of the prefractal graph ΓWm
is said to be:

i. of power one relative to the polygonal family Qm if X is a vertex of one and only one Nb-gon
Qm,j , 0 ⩽ j ⩽ N

m
b − 2;

ii. of power
1

2
relative to the polygonal family Qm if X is a common vertex to two consecutive Nb-

gons Qm,j and Qm,j+1, 0 ⩽ j ⩽ N
m
b − 3;

iii. of power zero relative to the polygonal family Qm ifX is not a vertex of anyNb-gon Qm,j , 0 ⩽ j ⩽ N
m
b − 2.

Notation 8. In the sequel, given a strictly positive integer m, the power of a vertex X of the prefractal
graph ΓWm

relative to the polygonal families Pm and Qm will be respectively denoted by

p(X,Pm) and p(X,Qm) .

Notation 9. For any m ∈ N, and any vertex X of Vm, we set:

µ
L (X,Pm,Qm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Nb
p (X,Pm) ∑

0⩽j⩽Nm
b −1,X vertex of Pm,j

µL (Pm,j) , if X ∉ Qm ,

1

Nb
p (X,Qm) ∑

1⩽j⩽Nm
b −2,X vertex of Qm,j

µL (Qm,j) , if X ∉ Pm ,

1

2Nb

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p (X,Pm) ∑

0⩽j⩽Nm
b −1,X vertex of Pm,j

µL (Pm,j) + p (X,Qm) ∑
1⩽j⩽Nm

b −2,X vertex of Qm,j

µL (Qm,j)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

if X ∈ Pm ∩Qm .

Property 4.1. For any m ∈ N, and any pair (X,Y ) of adjacent vertices of Vm belonging to the
same polygon Pm,j, with 0 ⩽ j ⩽ N

m
b − 1 (resp., Qm,j, with 0 ⩽ j ⩽ N

m
b − 2), we have that (with dEucl

denoting the Euclidean distance on R2
),

dEucl(X,Y ) =
√
h2
j,j+1,m + L

2
m > ∣hj,j+1,m∣ ,

which, due to the inequality given in Property 3.13, page 17, ensures that

1

dEucl(X,Y ) <
1

∣hj,j+1,m∣ = O (LDW−2
m ) = O (N (2−DW)m

b ) .

At the same time, we also have that

dEucl(X,Y ) = O (hm) = O (L2−DW
m ) = O (N (DW−2)m

b ) .

Proof. This follows at once from Property 3.13, on page 17.
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Corollary 4.2. For any m ∈ N, any natural integer j of {0, . . . , N
m
b − 1}, and any pair of points (X,Y )

of Pm,j or of Qm,j, we have that

1

dEucl(X,Y ) = O (LDW−2
m ) = O (N (2−DW)m

b )

and
dEucl(X,Y ) = O (hm) = O (L2−DW

m ) = O (N (DW−2)m
b ) .

Property 4.3. For any m ∈ N, and any vertex X of Vm:

µ
L (X,Pm,Qm) = O (hm Lm) = O (L3−DW

m ) = O (N (DW−3)m
b )

and

µ
L (X,Pm,Qm) = O (hm Lm) = O (L3−DW

m ) = O (N (DW−3)m
b ) .

Proof. This also directly follows from Property 3.13, on page 17.

Definition 4.3 (Trace of a Polygon on the Weierstrass Curve [DL24c]).

Givenm ∈ N, and 0 ⩽ j ⩽ N
m
b − 1 (resp., 0 ⩽ j ⩽ N

m
b − 2), of extreme vertices Vinitial (Pm,j) ∈ Vm

and Vend (Pm,j) ∈ Vm (resp., Vinitial (Qm,j) ∈ Vm and Vend (Qm,j) ∈ Vm; see Property 3.7, on page 9),
we define the trace of the polygon Pm,j (resp., Qm,j) on the Weierstrass Curve as the set trγW (Pm,j)
(resp., trγW (Qm,j)) of points {Vinitial (Pm,j) ,M⋆,Vend (Pm,j)} (resp., {Vinitial (Qm,j) ,M⋆,Vend (Qm,j)}),
where we denote by M⋆ any point of the Weierstrass Curve strictly located between Vinitial (Pm,j)
and Vend (Pm,j) (resp., Vinitial (Qm,j) and Vend (Qm,j)).

Property 4.4 (Domain Delimited by the Weierstrass IFD).

We call domain, delimited by the Weierstrass IFD, the set which is equal to the following limit,

D (ΓW) = lim
m→∞

D (ΓWm
) ,

where the convergence is interpreted in the sense of the Hausdorff metric on R2
; see [DL24c]. In fact,

we have that

D (ΓW) = ΓW .

Proposition 4.5 (Minimal and Maximal Values of the Weierstrass Function W on [0, 1]).

We set

mW = min
t∈ [0,1]

W(t) = − 1

1 − λ
, MW = max

t∈ [0,1]
W(t) = 1

1 − λ
.
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Then, when the integer Nb is odd, we have that

mW = −
1

1 − λ
, MW =

1

1 − λ
.

Notation 10. Henceforth, for a given m ∈ N, the notation ∑
X ∈Pm⋃Qm

means that the associated

finite sum runs through all of the vertices of the polygons belonging to the sets Pm or Qm introduced
in Definition 3.5, on page 11; see also Notation 7, on page 11 following that definition.

Lemma 4.6 ([DL24c]).

Given a continuous function u on [0, 1] × [mW ,MW], we have that, for any m ∈ N, and any
vertex X of Vm:

»»»»»µ
L (X,Pm,Qm) u (X)»»»»» ⩽ µ

L (X,Pm,Qm) ( max
[0,1]×[mW ,MW]

∣u∣) .

Consequently, with the notation of Definition 4.1, on page 21, we have that

ε
m (DW−2) »»»»»µ

L (X,Pm,Qm) u (X)»»»»» = O (ε−mm ) .

Since the sequence
⎛
⎜
⎝

∑
X ∈Pm⋃Qm

ε
−m⎞

⎟
⎠
m∈N

is a positive and increasing sequence (the number of

vertices involved increases as m increases), this ensures the existence of the finite limit

lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) u (X) ,

where we have used Notation 10, on page 26.

Property 4.7 (Polyhedral Measure on the Weierstrass IFD [DL24c]).

We introduce the polyhedral measure on the Weierstrass IFD, denoted by µ, such that for any con-
tinuous function u on the Weierstrass Curve, with the use of Notation 9, on page 24 and Notation 10,
on page 26,

∫
ΓW

u dµ = lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) u (X) , (⋆)

which, thanks to Property 3.5, on page 11, can also be understood in the following way,

∫
ΓW

u dµ = ∫
D(ΓW)

u dµ .

Remark 4.4. In a sense, our polyhedral measure can be seen as a measure which is an extension of
the Riemann integral, where the step functions are replaced by upper and lower affine functions which
approximate the Weierstrass Curve.
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Theorem 4.8 ([DL24c]).

The polyhedral measure µ is well defined, positive, as well as a bounded, nonzero, Borel measure
on D (ΓW). The associated total mass is given by

µ (D (ΓW)) = lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) , (⋆⋆)

and satisfies the following estimate:

0 < µ (D (ΓW)) ⩽ 2

Nb
(Nb − 1)2

Csup . (⋆ ⋆ ⋆)

Furthermore, the support of µ coincides with the entire curve:

suppµ = D (ΓW) = ΓW .

In addition, µ is the weak limit as m→∞ of the following discrete measures (or Dirac Combs),
given, for each m ∈ N, by

µm = ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) δX ,

where ε
m
m denotes the cohomology infinitesimal introduced in Definition 4.1, on page 21, δX is the Dirac

measure concentrated at X, and we have used Notation 9, on page 24 for µ
L (X,Pm,Qm), along with

Notation 10, on page 26.

We next establish a useful new result concerning the polyhedral measure, according to which it is
a quasi self-similar measure; see Property 4.9, on page 27 and Theorem 4.10, on page 28.

Property 4.9 (The Quasi Self-Similar Sequence of Discrete Polyhedral Measures).

The sequence of discrete polyhedral measures (µm)m∈N introduced in Theorem 4.8, on page 27 just
above, satisfies the following recurrence relation, for all m ∈ N⋆,

µm = N
DW−2
b ∑

Tj ∈TW

µm+1 ◦ T
−1
j , (♠)

where for TW = {T0, . . . , TNb−1} is the nonlinear iterated function system (IFS) introduced in Propo-
sition 3.2, on page 7.

Note that relation (♠) can be viewed as a generalization of classical self-similar measures, as
considered in [Hut81], page 714.

Proof. First, we can note that, for m ∈ N⋆,

ε
m+1
m+1 =

1

Nb
ε
m
m ,

which ensures that

ε
(m+1) (DW−2)
m+1 =

1

N
DW−2
b

ε
m (DW−2)
m = N

2−DW
b ε

m (DW−2)
m .
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We then simply use the result of Property 3.12, on page 16, according to which, for 0 ⩽ j ⩽ Nb − 1,
the j

th
vertex of the polygon Pm+1,k, 0 ⩽ k ⩽ N

m
b − 1, is the image of the j

th
vertex of the poly-

gon Pm,k−i (Nb−1)Nm
b

under the bijective map Tj , where 0 ⩽ j ⩽ Nb − 1 is arbitrary. Therefore, there
is an exact correspondence between polygons at consecutive steps m, m + 1: indeed, polygons at
the (m + 1)th step of the prefractal approximation process are obtained by applying each (bijective)

map Ti, for 0 ⩽ i ⩽ Nb − 1, to the polygons at the m
th

step of the prefractal approximation process:

Nb−1

⋃
j=0

{T−1
j (X) , X ∈ Vm+1} = Vm ,

which can equivalently be written as

Nb−1

⋃
j=0

{T−1
j (X) , X ∈ Pm+1⋃Qm+1} = {X ∈ Pm⋃Qm} .

We can then deduce that

∑
X ∈Pm⋃Qm

µ
L (X,Pm,Qm+) δX = ∑

Tj ∈TW

∑
X ∈Pm+1⋃Qm+1

µ
L (X,T−1

j (Pm+1) , T−1
j (Qm+1)) δX ,

which yields the desired result.

Theorem 4.10 (The Quasi Self-Similar Polyhedral Measure).

The polyhedral measure µ satisfies the following quasi self-similarity relation,

µ = N
DW−2
b ∑

Tj ∈TW

µ ◦ T
−1
j , (♠♠)

where TW = {T0, . . . , TNb−1} is the nonlinear iterated function system (IFS) introduced in Proposi-
tion 3.2, on page 7.

Proof. As in the proof of Property 4.9, on page 27, we use the fact that, for all m ∈ N⋆,

Nb−1

⋃
j=0

{T−1
j (X) , X ∈ Pm⋃Qm} = {X ∈ Pm−1⋃Qm−1} .

We then have that, for any continuous function u on the Weierstrass Curve,
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∑
Tj ∈TW

∫
ΓW

u d (µ ◦ T−1
j ) = ∑

Tj ∈TW

lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (T−1

j (X),Pm,Qm) u (T−1
j (X))

= lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm−1⋃Qm−1

µ
L (X,Pm−1,Qm−1) u (X)

= lim
m→∞

N
DW−2
b ε

(m−1) (DW−2)
m−1 ∑

X ∈Pm−1⋃Qm−1

µ
L (X,Pm−1,Qm−1) u (X)

= N
2−DW
b lim

m→∞
ε
(m−1) (DW−2)
m−1 ∑

X ∈Pm−1⋃Qm−1

µ
L (X,Pm−1,Qm−1) u (X)

= N
2−DW
b ∫

ΓW

u dµ ,

from which we deduce, as desired, that

µ = N
DW−2
b ∑

Tj ∈TW

µ ◦ T
−1
j .

Corollary 4.11. The polyhedral measure is the unique fixed point, with respect to the Kantorovich
distance, of the map Φ which, to any Borel probability measure ν associates

Φ(ν) = NDW−2
b ∑

Tj ∈TW

ν ◦ T
−1
j .

Remark 4.5. The results of Theorem 4.10, on page 29 and of Corollary 4.11, on page 29 just above,
foreshadow and announce the recurrence relation satisfied by the sequence of effective polyhedral
volumes, and established in the proof of Theorem 5.9, on page 61.

5 Polyhedral Neighborhoods

Definition 5.1 ((m,εmm)-Neighborhood [DL22]).

Given m ∈ N sufficiently large (so that ε
m
m be a sufficiently small positive number), we define

the (m, εmm)-neighborhood of the m
th

prefractal approximation ΓWm
as follows:

D (ΓWm
, ε
m
m) = {M = (x, y) ∈ R2

, d (M,ΓWm
) ⩽ εmm} ,

where d (M,ΓWm
) = min {dEucl (M,P ) , P ∈ ΓWm

}.
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Property 5.1 (The Nested Neighborhoods).

i. Given m ∈ N sufficiently large, there exists k1 ∈ N such that, for all k ⩾ k1, the polygonal neigh-
borhood D (ΓWm

) introduced in Definition 3.5, on page 11 contains, but for a finite number of wedges,

the (m + k, εm+km+k)-neighborhood; see Figures 6–9, on pages 32–33.

ii. Given m ∈ N sufficiently large, there exists k2 ∈ N such that, for all k ⩾ k2, the (m, εmm)-neighborhood
contains the polygonal neighborhood D (ΓWm+k

) introduced in Definition 3.5, on page 11; see Figure 10,
on page 34.

iii. Given m ∈ N sufficiently large, there exists k3 ∈ N such that, for all k ⩾ k3, the polygonal
neighborhood D (ΓWm

) introduced in Definition 3.5, on page 11 contains the polygonal neighbor-
hood D (ΓWm+k

).

Proof.

i. At a given step m ⩾ 0, for k ⩾ 0, between two adjacent vertices Mi,m and Mi+1,m of Vm, there

are N
k
b − 1 consecutive vertices of Vm+k \ Vm, (Mj+1,m+k, . . . ,Mj+Nk

b −1,m+k) ∈ V
N
k
b −1

m+k such that

Mi,m =Mj,m+k and Mi+1,m =Mj+Nk
b ,m+k

.

Thanks to Property 3.12, on page 16, we obtain an exact correspondence between vertices of the
polygons at the step m + k, and at the initial step m = 0. Since reentrant angles occur when Nb ⩾ 7 (see
Property 3.19, on page 20), we can restrict ourselves to the cases Nb ⩽ 6 (in the case of reentrant angles,

the following arguments can be suitably adjusted). We then simply have to consider the [Nb − 2

2
]

vertices Mj+k′,m+k, with 1 ⩽ k
′
⩽ [Nb − 2

2
] (the same arguments hold for the vertices Mj+Nb−k

′,m+k).

Also, again thanks to Property 3.12, on page 16, given j in {0, . . . , Nb − 2} and k
′
in {0, . . . , N

m+k
b − 1},

we have that

sgn (W (k
′ (Nb − 1) + j + 1

(Nb − 1)Nm+k
b

) −W ( k
′ (Nb − 1) + j

(Nb − 1)Nm+k
b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ;

i.e., equivalently,

sgn (W ((k′ (Nb − 1) + j + 1)Lm+k) −W ((k′ (Nb − 1) + j)Lm+k)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ,

where sgn has been defined in Notation 4, on page 5.

Due to the symmetry of the initial polygon P0 (or, equivalently, of the initial prefractal graph ΓW0
)

with respect to the vertical line x =
1

2
(see Property 3.1, on page 7), this means that we can restrict

ourselves to the case when

W (j Lm+k) ⩾W ((j + 1)Lm+k) ⩾ . . . ⩾W ((j + [Nb − 2

2
]) Lm+k)

and
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W (j Lm+k) ⩾W ((j +Nb) Lm+k) ,
since

W (j Lm+k) =W (i Lm) and W ((j +Nk
b )Lm+k) =W ((i + 1)Lm) .

Thanks to Property 3.13, on page 17, we deduce, by the triangle inequality, for 1 ⩽ k
′
⩽ [Nb − 2

2
],

that

»»»»»»»»»»»»»»»

W ((j + k′)Lm+k) −W (j Lm+k)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

»»»»»»»»»»»»»»»

⩽ [Nb − 2

2
] Csup L2−DW

m+k .

Since

Lm+k =
Lm

Nk
b

,

we then obtain that

»»»»»»»»»»»»»»»

W ((j + k′)Lm+k) −W (j Lm+k)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

»»»»»»»»»»»»»»»

⩽ [Nb − 2

2
] Nk (DW−2)

b Csup L
2−DW
m .

Recall now (see Property 3.13, on page 17) that

Cinf = (Nb − 1)2−DW min
0⩽j⩽Nb−1,W( j+1

Nb−1
)≠W( j

Nb−1
)

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) .

Here, we have that

W ( j

Nb − 1
) = 1

1 − λ
cos

2π j

Nb − 1
.

This ensures that

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
⩽

2π

Nb − 1

1

1 − λ
.

Since Nb ⩾ 3 and 0 < DW − 2 < 1, we can check that there exist m0 ⩾ 0 such that, for all k ⩾ m0,

[Nb − 2

2
] Nk (DW−2)

b Csup ⩽ Cinf ,

from which we immediately deduce that for, 1 ⩽ k
′
⩽ [Nb − 2

2
],

»»»»»»»»»»»»»»»

W ((j + k′)Lm+k) −W (j Lm+k)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

»»»»»»»»»»»»»»»

⩽ ∣W ((i + 1)Lm) −W (i Lm)∣ .
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For 1 ⩽ k ⩽ [Nb − 2

2
], the verticesMj+k′,m+k are then strictly between the verticesMi,m andMi+1,m.

As was explained previously, we can show, in a similar way, that for 1 ⩽ k ⩽ [Nb − 2

2
], the ver-

tices Mj+Nb−k
′,m+k are also strictly between the vertices Mi,m and Mi+1,m.

By induction, we then obtain that, given Nb + 1 consecutive adjacent vertices Mi,m, Mi+1,m, Mi+3,m

andMi+Nb,m of Vm, with 0 ⩽ i ⩽ #Vm −Nb and k ∈ N, the vertices of Vm+k \ Vm located betweenMi,m

and Mi+Nb,m can be all contained in the simple and convex polygon Mi,mMi+1,mMi+2,m . . .Mi+Nb,m,
which coincides with the union of two consecutive polygons Pm,j and Qm,j . Thus, there exists m0 ∈ N
such that, for all k ⩾ m0, the (m + k, εm+km+k)-neighborhood

D (ΓWm+k
, ε
m+k
m+k) = {M = (x, y) ∈ R2

, d (M,ΓWm+k
) ⩽ εm+km+k} ,

from which we remove the wedges associated to the vertices Mi,m, Mi+1,m, Mi+3,m and Mi+4,m

(see [DL22]), can be fully contained in the polygon Mi,mMi+1,mMi+2,m . . .Mi+Nb,m. Hence, there
exists k1 ∈ N such that, for all k ⩾ k1, the (m, εmm)-neighborhood but for a finite number of wedges,

the (m + k, εm+k)-neighborhood D (ΓWm+k
, ε
m+k
m+k), can be fully contained in the polygonal domain D (ΓWm

).

ii. This latter result has been obtained in [DL24c]. It comes from the fact that, in the sense of the
Hausdorff metric on R2

,

lim
m→∞

D (ΓWm
) = ΓW .

iii. This is an immediate consequence of i. and ii.

Figure 6: The polygonal neigborhood D (ΓW2
), in the case when λ =

1

2
and Nb = 3.
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Figure 7: The exterior boundary of the polygonal neigborhood D (ΓW2
) (in red), and the

tubular neighborhood D (ΓW7
, ε

7
7), in the case when λ =

1

2
and Nb = 3.

Figure 8: The polygonal neigborhood D (ΓW3
), in the case when λ =

1

2
and Nb = 3.

Figure 9: The exterior boundary of the polygonal neigborhood D (ΓW3
) (in red), and the

tubular neighborhood D (ΓW7
, ε

7
7), in the case when λ =

1

2
and Nb = 3.
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Figure 10: The polygonal neigborhood D (ΓW5
), in the case when λ =

1

2
and Nb = 3.

Corollary 5.2 (of Property 5.1, given on page 30).

We immediately deduce from Property 5.1 that there exists m0 ∈ N such that, for all k ⩾ m0, the
polyhedral neighborhood D (ΓWm

) introduced in Definition 3.5, on page 11 contains the vertices of
the prefractal approximation ΓWm+k

to the the Weierstrass Curve; i.e., the set of vertices Vm+k. In
particular, the density Property 3.5, on page 9, also ensures that the Weierstrass Curve is contained
in ΓWm

:

∀m ⩾ m0 ∶ ΓW ⊂ D (ΓWm
) .

Next, we give the Complex Dimensions series expansion of the Weierstrass function, required to
obtain a key exact fractal formula for the volume (i.e., area) of the polyhedral neighborhoods of
the prefractal approximations. Note that the classical theory of Complex Dimensions (see, for in-
stance, [LRŽ17]) cannot be applied in the context of our fractal curve. Building on the fact that the
imaginary part of the Complex Dimensions aims at characterizing the oscillations of the fractal under
study, which are, also, connected to the evolution in scales – in real life (fractal-shaped living forms),
the occurrence of new details keeps on appearing with characteristic spatial oscillations – we choose to
use the existing cohomological vertex integers, which enable us to label each vertex at a given step of
the prefractal approximation. By introducing cross scale paths (see Definition 5.3 below, on page 35),
we can, in some sense, track the evolution of vertices starting from the initial step of the prefractal
approximation. In this light, our approach differs from the classical one – we a priori introduce the
imaginary parts of the expected Complex Dimensions, by means of a very useful term e

2 i ` π
, where `

is an integer (in Z). Of course, in the theory developped by the second author and his collaborators
in [LvF13], [LRŽ17], [Lap19], a geometric object is said to be fractal if it admits at least one nonreal
Complex Dimension (defined as a pole of the associated geometric or fractal zeta function, see below),
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where the imaginary part of the complex dimension characterizes the local oscillations (changes of
direction) of the object structure in the neighborhood of points as one zooms in the object, i.e. as a
function of the scale of observation of the object. We are still working along these lines: in our present
work, our cross scale paths and associated sequences of cohomological vertex integers characterize
fractality, in the sense that they provide a faithful reflection of the change of shape and the occurrence
of new details when switching from a prefractal graph approximation to the next one.

Another important point has to be taken into account: indeed, the sequence of prefractal graphs
involves discrete graphs. In real life – for instance, in biology – the process which gives birth to
fractal-shaped living forms is a continuous one. To name a few, ferns, cauliflowers (see the recent
work of the biomathematician Christophe Godin, the biologist Frano̧is Parcy and their collaborators
in [ATM

+
21]), trees, clouds, mountains, coastlines, rivers, lungs, networks of blood vessels, etc. . ..

Indeed, in nature, growth is a continuous process. In this light, the notion of oscillatory period in-
troduced by the second author and his collaborators in [LvF00], [LvF06], [LRŽ17], [LP06], appears
as a useful and powerful tool, by providing a way to bridge the gap between the consecutive discrete
approximations. Intuitively, it relies on the fact that the oscillations intrinsic to the fractal involved
come from the subdivision process. Hence, it naturally involves the number of divisions (Nb in the
present context), and is obtained by considering the Fourier series expansion of a suitable 1-periodic
map, where the 1-periodicity reflects, in a sense, the conservation of intrinsic characteristics at each
step m ∈ N of the prefractal approximation process.

Much of the remainder of this paper will rely on our new method.

Definition 5.2 (Cohomological Vertex Integers [DL24c]).

Given m ∈ N, and a vertex Mj,m =M(Nb−1) k′+k” ,m ∈ Vm, of abscissa ((Nb − 1) k′ + k”) εmm, where

0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, we introduce the cohomological vertex integer `j,m associated to

the vertex Mj,m (which is also the (k”)th vertex of the polygon Pm,k′ ; see part iv. of Property 3.7, on
page 9), as

`j,m = `k′,k”,m = (Nb − 1) k′ + k” . (R 8)

Depending on the context; that is,

i. when the cohomological vertex integer enables one to locate the vertex Mj,m.

ii. When it is used in a more general framework, i.e., in order to describe the generators of coho-
mology groups (see [DL24b]);

we will use the best suited notation between `j,m, in case i., or `k′,k”,m, in case ii.

Proposition 5.3 (Cross-Scales Paths, and Associated Sequence of Vertex Integers).

Given m ∈ N, 0 ⩽ j ⩽ #Vm − 1 and a vertex Mj,m =M(Nb−1) k′+k”,m in Vm, with

0 ⩽ k
′
⩽ N

m
b − 1 and 0 ⩽ k” ⩽ Nb − 1, we introduce the cross-scales path Path (Pk”,Mj,m), where Pk′

is the (k′)th fixed point of the map Tk′ (see Proposition 3.2, on page 7, along with Notation 3.4, on

page 8), as the ordered set (Mjk,m,k)0⩽k⩽m
such that:

35



i. For 0 ⩽ k ⩽ m, each vertex Mjk,m,k is in Vk \ Vk ∩ Vm (which means that Mjk,m,k strictly belongs

to Vk, i.e., it is in the k
th

prefractal approximation ΓWk
, and not in ΓWk+1

).

ii. For 1 ⩽ k ⩽ m, each vertex Mjk,m,k =M(Nb−1) k′k,m+k”,k, with 0 ⩽ k
′
k,m ⩽ N

k
b − 1, is the image of

the point Mjk−1,m,k−1 under the map Ti (see again Proposition 3.2, on page 7), where i ∈ {0, . . . , Nb − 1}
is the smallest admissible value. We thus also have that

Mjk−1,m,k−1 =
⎛
⎜
⎝
(Nb − 1) (k′k,m − i (Nb − 1)Nk−1

b ) + k”

(Nb − 1)Nk−1
b

,W
⎛
⎜
⎝
(Nb − 1) (k′k,m − i (Nb − 1)Nk−1

b ) + k”

(Nb − 1)Nk−1
b

⎞
⎟
⎠
⎞
⎟
⎠
.

This latter point is also the (k”)th vertex of the polygon k
′
k,m − i (Nb − 1)Nk−1

b (see part iv.
of Property 3.7, on page 9).

The sequence of vertex integers associated with the cross-scales path Path (Pk”,Mj,m) (or, in
short, and equivalently, also refered to as the sequence of vertex integers associated with Mj,m) is the

sequence (`jk,m,k)0⩽k⩽m
, where, for 0 ⩽ k ⩽ m, `jk,m,k is the cohomological vertex integer associated

with the vertex Mjk,m,k (see Definition 5.2, on page 35).

Proof. We simply use the results of Property 3.12, on page 16.

Theorem 5.4 (Complex Dimensions Series Expansion of the Complexified Weierstrass
function Wcomp [DL24d], and of the Weierstrass function W).

For any sufficiently large positive integer m and any j in {0, . . . ,#Vm − 1}, we have the following
exact expansion, indexed by the Complex Codimensions k (DW − 2) + i k `jk,m,k p, with 0 ⩽ k ⩽ m,

Wcomp (j εmm) = Wcomp (
j ε

m

Nb − 1
)

= ε
m (2−DW) Wcomp (

j

Nb − 1
) +

m−1

∑
k=0

ck,j,m ε
k (2−DW)

ε
i `k,j,m p

=

m

∑
k=0

ck,j,m ε
k (2−DW)

ε
i `jk,m,k p ,

(R 9)

where, for 0 ⩽ k ⩽ m, ε
k

is the k
th

intrinsic cohomology infinitesimal, introduced in Definition 4.1,

on page 21, with p =
2π

lnNb
denoting the oscillatory period of the Weierstrass Curve, as introduced

in [DL22] and where:

i. `jk,m,k ∈ Z is the cohomological vertex integer associated with the vertex Mjk,m,k (see Defini-
tion 5.2, on page 35);
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ii. cm,j,m =Wcomp (
j

Nb − 1
) and, for 0 ⩽ k ⩽ m − 1, ck,j,m ∈ C is given by

ck,j,m = exp ( 2 i π

Nb − 1
j ε

m−k) . (⋄⋄) (R 10)

For 0 ⩽ k ⩽ m, the coefficient ck,j,m will also be referred to as the k
th

Weierstrass coefficient asso-
ciated with the vertex Mjk,m,k ∈ Vk.

For any m ∈ N, the complex numbers {c0,j,m+1, . . . , cm+1,j,m+1} satisfy the following recurrence
relations:

cm+1,j,m+1 =W ( j

Nb − 1
) = cm,j,m (R 11)

and

∀ k ∈ {1, . . . ,m} ∶ ck,j,m+1 = ck−1,j,m . (R 12)

In addition, since relation (R9) is valid for any m ∈ N⋆ (and since, clearly, relation (R10) im-
plies that the coefficients ck,j,m are nonzero for 0 ⩽ k ⩽ m), we deduce that the associated Complex
Dimensions (i.e., in fact, the Complex Dimensions associated with the Weierstrass function) are

DW − k (2 −DW) + i `jk,m,k p ,

where m ∈ N⋆ is arbitrary, 0 ⩽ k ⩽ m and `jk,m,k ∈ Z is the cohomological vertex integer associated
with the vertex Mjk,m,k (see Definition 5.2, on page 35). Those Complex Dimensions are all exact and
simple.

This immediately ensures, for the Weierstrass function (i.e., the real part of the Complexified
Weierstrass function Wcomp), that, for any strictly positive integer m and for any j in {0, . . . ,#Vm − 1},

W (j εmm) = ε
m (2−DW) Wcomp (

j

Nb − 1
) +

m−1

∑
k=0

ε
k (2−DW) Re (ck,j,m ε

i `jk,m,k p

k )

= ε
m (2−DW) Wcomp (

j

Nb − 1
) + 1

2

m−1

∑
k=0

ε
k (2−DW) (ck,j,m εi `jk,m,k p + ck,j,m ε− i `jk,m,k p)

=
1

2

m

∑
k=0

ε
k (2−DW) (ck,j,m εi `jk,m,k p + ck,j,m ε− i `jk,m,k p) ,

(R 13)
where z̄ denotes the complex conjugate of z ∈ C.

More generally, for any strictly positive integer m and for any integer j,

Wcomp (j εm) =
∞

∑
k=0

ε
k (2−DW)

ck,j,m ε
k (2−DW)

ε
i `jk,m,k p , (R 14)

where, for all k ∈ N,

ck,j,m = ε
2 i π N

k
b j ε

m

. (R 15)
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We also note that, if a vertex Mj,m =Mj ′,m+m′ is in Vm ∩ Vm+m′, for m
′
∈ N, we of course have

that, for 0 ⩽ k ⩽ m,

ck,j,m = ck,j ′,m+m′ , (R 16)

along with

ε
i `jk,m,k = ε

i `jk,m+m”,k . (R 17)

For m + 1 ⩽ k ⩽ m +m′
, we have that

ck,j,m = ck,j ′,m+m′ = 0 . (R 18)

In addition, we have that, for m
′
∈ N,

ck,j,m+m′ = λ
m
′

ck,j,m = ε
m
′ (2−DW)

ck,j,m , (R 19)

Proof. Thanks to Property 3.6, on page 9 (the Scaling Property of the Weierstrass function W), for
any strictly positive integer m and any j in {0, . . . ,#Vm − 1}, we then have that

W ( j

(Nb − 1)Nm
b

) = λmW ( j

Nb − 1
) +

m−1

∑
k=0

λ
k

cos( 2πN
k
b j

(Nb − 1)Nm
b

) .

By using the Minkowski Dimension DW introduced in Notation 6, on page 6, this latter expression
can be rewritten as

W (j εmm) = N
m (DW−2)
b W ( j

Nb − 1
) +

m−1

∑
k=0

N
k (DW−2)
b cos ( 2π

Nb − 1
j ε

m−k)

= ε
m (2−DW) W ( j

Nb − 1
) +

m−1

∑
k=0

ε
k (2−DW)

cos ( 2π

Nb − 1
j ε

m−k)

= ε
m (2−DW) W ( j

Nb − 1
) +

m−1

∑
k=0

ε
k (2−DW) Re (exp ( 2 i π

Nb − 1
j ε

m−k)) .

We must then show that there exist complex numbers {c0,j,m, . . . , cm,j,m} such that, for any inte-
ger k in {0, . . . ,m},

exp ( 2 i π

Nb − 1
j ε

m−k) = ck,j,m εi `jk,m,k p = ck,j,m exp (i `jk,m,k p ln ε) = ck,j,m exp (−2 i π `jk,m,k) ,

where, for 0 ⩽ k ⩽ m, `jk,m,k ∈ Z is the cohomological vertex integer associated with the vertex Mjk,m,k

(see Definition 5.2, on page 35).

We obviously obtain that cm,j,m =Wcomp (
j

Nb − 1
) and that, for 0 ⩽ k ⩽ m − 1,

ck,j,m = exp ( 2 i π

Nb − 1
j ε

m−k) .

We note that, since, for any positive integer m and any j in {0, . . . ,#Vm − 1} (see Property 3.6,
on page 9),

Wcomp (
j

(Nb − 1)Nm+1
b

) = λW ( j

(Nb − 1)Nm
b

) + exp ( 2π j

(Nb − 1)Nm+1
b

) ,
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this ensures that

Wcomp (
j

(Nb − 1)Nm+1
b

) = λ ε
m (2−DW) W ( j

Nb − 1
) + λ

m−1

∑
k=0

ε
k (2−DW)

exp ( 2 i π

Nb − 1
j ε

m−k)

+exp ( 2π j

(Nb − 1)Nm+1
b

)

= ε
2−DW ε

m (2−DW) W ( j

Nb − 1
) + ε2−DW

m−1

∑
k=0

ε
k (2−DW)

exp ( 2 i π

Nb − 1
j ε

m−k)

+exp ( 2π j

(Nb − 1)Nm+1
b

)

= ε
(m+1) (2−DW) W ( j

Nb − 1
) +

m−1

∑
k=0

ε
(k+1) (2−DW)

exp ( 2 i π

Nb − 1
j ε

m+1−k−1))

+exp ( 2π j

(Nb − 1)Nm+1
b

)

= ε
(m+1) (2−DW) W ( j

Nb − 1
) +

m

∑
k=1

ε
k (2−DW) (exp ( 2 i π

Nb − 1
j ε

m+1−k))

+exp ( 2π j

(Nb − 1)Nm+1
b

)

= ε
(m+1) (2−DW) W ( j

Nb − 1
) +

m

∑
k=0

ε
k (2−DW) (exp ( 2 i π

Nb − 1
j ε

m+1−k)) .

At the same time, we have that

Wcomp (
j

(Nb − 1)Nm+1
b

) =

m+1

∑
k=0

ck,j,m+1 ε
k (2−DW)

ε
i `k,j,m+1 p ,

We thus deduce that the stated recurrence relations (R11), on page 37, hold:

cm+1,j,m+1 =W ( j

Nb − 1
) = cm,j,m

and that, for 1 ⩽ k ⩽ m + 1,

ck,j,m+1 = ck−1,j,m , ε
i `jk,m+1,k p = ε

i `jk,m,k p .

Note that, by using the series expansion of the Weierstrass function, we also obtain that, since,
for any positive integer m and any integer j,

Wcomp (j εm) =
∞

∑
k=0

ε
k (2−DW)

ε
2 i π N

k
b j ε

m

,

which can be written in the following form,
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Wcomp (j εm) =
∞

∑
k=0

ε
k (2−DW)

ck,j,m ε
k (2−DW)

ε
i `jk,m,k p ,

where, for all k ∈ N,

ck,j,m = ε
2 i π N

k
b j ε

m

.

In addition, by applying the results in Property 3.6, on page 9, we have that, for all m
′
∈ N,

Wcomp (
j

(Nb − 1)Nm0+m
b

) = λmWcomp (
j

(Nb − 1)Nm0

b

) +
m0−1

∑
k=0

λ
k

exp ( 2 i π N
k
b j

(Nb − 1)Nm+m0

b

) ,

or, equivalently,

m+m′

∑
k=0

ε
k (2−DW)

ck,j,m+m′ ε
i `j

k,m+m′
,k p

= λ
m
′

W ( j

(Nb − 1)Nm
b

) +
m−1

∑
k=0

λ
k
ck,j,m+m′ ε

i `j
k,m+m′

,k p

= λ
m
′
m

∑
k=0

ε
k (2−DW)

ε
i `jk,m,k p ck,j,m +

m−1

∑
k=0

λ
k
ck,j,m+m′ ε

i `j
k,m+m′

,k p

This ensures that, for all m
′
∈ N, and all k ∈ {m, . . . ,m +m′},

ck,j,m+m′ ε
i `j

k,m+m′
,k p

= λ
m
′

ck,j,m = ε
m
′ (2−DW)

ck,j,m ε
i `jk,m,k p ,

or, in an equivalent form,

ck,j,m+m′ = λ
m
′

ck,j,m = ε
m
′ (2−DW)

ck,j,m . (R 20)

Remark 5.1. We note that the results obtained in Theorem 5.4 will play a key role in the remainder
of this paper. In particular, relations (R11) and (R12), on page 37 above, will be the key to obtain
the recurrence relations satisfied by the local polyhedral effective fractal zeta functions and thereby,
to establish the existence of the global polyhedral effective fractal zeta function.

Property 5.5 (A Hodge Diamond Star Relation).

For any m ∈ N⋆, any k in {1, . . . ,m} and any j in {0, . . . ,#Vm − 1}, we have the following Hodge
Diamond Star relation

ck,(Nb−1)Nm
b −j,m

= ck,j,m . (R 21)

Remark 5.2. The Hodge Diamond Star relation (R21) just above is directly connected to the symmetry

with respect to the vertical line x =
1

2
, stated in Property 3.9, on page 15, since the points

((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))
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are symmetric with respect to the vertical line x =
1

2
; see Figure 3, on page 15. It is also reminiscent

of Poincaré duality (see our previous work [DL24d]).

Proof. (of Property 5.5, on page 40)

We have that, for 1 ⩽ k ⩽ m − 1,

ck,(Nb−1)Nm−1
b −j,m = exp ( 2 i π

Nb − 1
((Nb − 1) Nm−1

b − j) εm−k)

= exp (2 i π N
m−1
b ε

m−k) exp (− 2 i π j

Nb − 1
ε
m−k)

= exp (2 i π N
m−1
b N

k−m
b )

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
1

exp (− 2 i π j

Nb − 1
ε
m−k)

= ck,j,m .

Definition 5.3 (The Weierstrass Complex Curve).

We place ourselves in the Riemann sphere (or complex projective line) P
1(C) = C ∪∞. We define

the Weierstrass Curve as the graph in P
1(C) = C ∪∞ associated with the Weierstrass complefixied

function Wcomp; i.e., the set denoted by ΓW,comp and such that

ΓW,comp = {(x,Wcomp(x)) , x ∈ [0, 1]} = ΓW + iΓW,I ,

where ΓW,I is the graph (in R2
) associated with the imaginary part WI of the Weierstrass complefixied

function Wcomp and defined, for any real number x, by

WI(x) =
∞

∑
n=0

λ
n

sin (2πNn
b x) . (R 22)

Theorem 5.6 (Exact Expression for the Volume of the m
th

Polyhedral Neighborhood

(or m
th

Natural Polyhedral Volume)).

Given m ∈ N⋆ sufficiently large (i.e., for all m ⩾ m0, where m0 ∈ N⋆ is optimal, i.e., smallest),

the volume (or two-dimensional Lebesgue measure) Vm(ε) of the m
th

polygonal neighborhood D (ΓWm
),

or m
th

natural polyhedral volume, is given by
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Vm(ε) = µL (D (ΓWm
))

= ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)W ((Nb − 1) j + q
(Nb − 1)Nm

b

)

= ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

ε
k (2−DW) Re (ck,(Nb−1) j+q,m ε

i `k,(Nb−1) j+q,m p) ,

(R 23)

where ε
m
= (Nb − 1) εmm is the m

th
intrinsic cohomology infinitesimal introduced in Definition 4.1, on

page 21, while the real numbers αq(Nb), with 0 ⩽ q ⩽ Nb, are coefficients which depend on Nb and where
the complex numbers ck,(Nb−1) j+q,m ∈ C have been introduced in part ii. of Theorem 5.4, on page 36,
while (`k,(Nb−1) j+q,m)

0⩽k⩽m
denotes the sequence of cohomological vertex integers associated with the

vertex M(Nb−1) j+q,m ∈ Vm (see Definition 5.3, on page 35, along with Theorem 5.4, on page 36), with

a. When the integer Nb is odd:

α0(Nb) = αNb−1(Nb) = −αNb−1
2

(Nb) = −αNb−1
2

+Nb−1(Nb) =
Nb − 2

2 (Nb − 1)

and for 1 ⩽ q ⩽ Nb − 2,

αNb−1
2

+q(Nb) = −αq(Nb) = −αNm
b ,(Nb−1)Nm

b −(Nb−1)+q(Nb) =
1

Nb − 1
,

along with

αNm
b ,(Nb−1)Nm

b −(Nb−1)(Nb) = αNm
b ,1

(Nb) =
Nb − 2

2 (Nb − 1) .

b. When the integer Nb is even:

α0(Nb) = αNb−1(Nb) = −αNb
2
(Nb) = −αNb

2
+Nb−1(Nb) =

Nb − 2

2 (Nb − 1)

and for 1 ⩽ q ⩽ Nb − 2,

αNb
2
+q(Nb) = −αq(Nb) = −αNm

b ,(Nb−1)Nm
b −(Nb−1)+q(Nb) = −

1

Nb − 1
,

along with

αNm
b ,(Nb−1)Nm

b −(Nb−1)(Nb) = αNm
b ,1

(Nb) =
Nb − 2

2 (Nb − 1) .

Given the form of the expression in relation (R23) just above, it is natural to introduce, for

any m ∈ N⋆ sufficiently large, the associated m
th

complex natural polyhedral volume Vm,comp(ε),
such that

Vm,comp(ε) = ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

ck,(Nb−1) j+q,m ε
k (2−DW)+i `k,(Nb−1) j+q,m p

. (R 24)
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By using relation (R14), on page 37, we also have that

Vm,comp(ε) = ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

ck,(Nb−1) j+q,m ε
k (2−DW)+i k `k,(Nb−1) j+q,m p

. (R 25)

where the complex coefficients ck,(Nb−1) j+q,m are given by relation (R15), on page 37, with `k,(Nb−1) j+q,m ∈ Z.

By considering, in the same manner, given m ∈ N⋆ sufficiently large, the volume (or two-dimensional

Lebesgue measure) VI,m(εmm) of the m
th

polygonal neighborhood D (ΓW,Im), associated with the m
th

prefractal approximation to the graph ΓW,I of the imaginary part WI of the Weierstrass complefixied
function Wcomp (see Definition 5.3, on page 41 above), we note that the complex volume Vm,comp(εmm)
can be envisioned as the volume associated with the Weierstrass complex curve ΓW,comp (see again

Definition 5.3, on page 41) in the Riemann sphere (or complex projective line) P1(C) = C ∪∞.

Remark 5.3. Observe that much as for its Euclidean counterpart obtained in our earlier work, [DL22],

the m
th

polyhedral fractal formula obtaind in relation (R23) of Theorem 5.6, on page 41, is expressed

at the m
th

cohomology infinitesimal ε
m
m, for any m ∈ N⋆ sufficiently large (instead of being expressed

at any ε > 0).

Also, the complex powers of ε are required, for the sake of the determination of the Complex
Dimensions; see the comments just before Definition 5.2, on page 35.

Figure 11: The orthogonal projections Hj,m of the vertices Mj,m, for 0 ⩽ j ⩽ #Vm − 1, onto
the horizontal line y =mW .
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Proof.

i. The special case Nb = 3

First, note that since Nb = 3, the polygons involved are triangles.

Given m ∈ N⋆ sufficiently large, and 0 ⩽ j ⩽ #Vm, we introduce the (vertical) orthogonal projec-
tion Hj,m of the vertex Mj,m onto the horizontal line y = mW , where mW is introduced in Notation 4.5,
on page 25; see Figure 11, on page 43.

We note that, for 0 ⩽ j ⩽ 3
m − 1, with the notation of Definition 3.6, on page 14, the two-

dimensional Lebesgue measure (i.e., area) of the polygon Pm,j+1, with (consecutive) vertices

M2 j,m , M2 j+1,m and M2 j+2,m ,

is obtained by substracting from the area of the trapezoid

H2 j,mM2 j,mM2 j+2,mH2 j+2,m

the area of the trapezoid

H2 j,mM2 j,mM2 j+1,mH2 j+1,m

and the area of the trapezoid

H2 j+1,mM2 j+1,mM2 j+2,mH2 j+2,m ;

i.e.,

µL (Pm,j) =
2 ε

m
m

2
(mW +W ( 2 j

2 × 3m
) +mW +W ( 2 j + 2

2 × 3m
))

−
ε
m
m

2
(mW +W ( 2 j

2 × 3m
) +mW +W ( 2 j + 1

2 × 3m
))

−
ε
m
m

2
(mW +W ( 2 j + 1

2 × 3m
) +mW +W ( 2 j + 2

2 × 3m
))

=
ε
m
m

2
(W ( 2 j

2 × 3m
) +W ( 2 j + 2

2 × 3m
) − 2W ( 2 j + 1

2 × 3m
))

Similarly, for 0 ⩽ j ⩽ 3
m − 1, still with the notation of Definition 3.6, on page 14, the area of the

polygon (triangle) Qm,j+1, with (consecutive) vertices

M2 j+1,m , M2 j+2,m and M2 j+3,m ,

is obtained by adding the area of the trapezoid

H2 j+1,mM2 j+1,mM2 j+2,mHj2 j+2,m

to the area of the trapezoid

H2 j+2,mM2 j+2,mM2 j+3,mH2 j+3,m

and then, by substracting from this result the area of the trapezoid
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H2 j+1,mM2 j+1,mM2 j+3,mH2 j+3,m ;

i.e.,

µL (Qm,j+1) =
ε
m
m

2
(mW +W ( 2 j

2 × 3m
) +mW +W ( 2 j + 1

2 × 3m
) +mW +W ( 2 j + 2

2 × 3m
) +mW +W ( 2 j + 3

2 × 3m
))

−
2 ε

m
m

2
(mW +W ( 2 j + 1

2 × 3m
) +mW +W ( 2 j + 3

2 × 3m
))

=
ε
m
m

2
(W ( 2 j

2 × 3m
) +W ( 2 j + 2

2 × 3m
) −W ( 2 j + 1

2 × 3m
) − 2W ( 2 j + 3

2 × 3m
)) .

We thus have that

Vm(ε) =
3
m−2

∑
j=0

(µL (Pm,j+1) + µL (Qm,j+1)) + µL (Pm,3m)

=

3
m−2

∑
j=0

ε
m
m

2
(W ( 2 j

2 × 3m
) +W ( 2 j + 2

2 × 3m
) − 2W ( 2 j + 1

2 × 3m
))

+
3
m−2

∑
j=0

ε
m
m

2
(W ( 2 j

2 × 3m
) +W ( 2 j + 2

2 × 3m
) −W ( 2 j + 1

2 × 3m
) − 2W ( 2 j + 3

2 × 3m
))

+2
ε
m
m

2
(W (2 × 3

m − 2

2 × 3m
) +W (2 × 3

m

2 × 3m
))

−
ε
m
m

2
(W (2 × 3

m − 2

2 × 3m
) + 2W (2 × 3

m − 1

2 × 3m
) +W (2 × 3

m

2 × 3m
))

=

3
m−2

∑
j=0

ε
m
m

2
(2W ( 2 j

2 × 3m
) + 2W ( 2 j + 2

2 × 3m
) − 3W ( 2 j + 1

2 × 3m
) − 2W ( 2 j + 3

2 × 3m
))

+
ε
m
m

2
(W (2 × 3

m − 2

2 × 3m
) − 2W (2 × 3

m − 1

2 × 3m
) + 3W(1))

=

3
m−2

∑
j=0

ε
m

4
(2W ( 2 j

2 × 3m
) + 2W ( 2 j + 2

2 × 3m
) − 3W ( 2 j + 1

2 × 3m
) − 2W ( 2 j + 3

2 × 3m
))

+
ε
m

4
(W (2 × 3

m − 2

2 × 3m
) − 2W (2 × 3

m − 1

2 × 3m
) + 3W(1)) ,

since

ε
m
m =

1

2
ε
m
.

For the sake of concision, we will write it in the following form

Vm(ε) = εm
3
m−1

∑
j=0

3

∑
q=0

αq(3)W ( 2 j + q
2 × 3m

) ,
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where, for 0 ⩽ j ⩽ 3
m − 2,

α0(3) =
1

2
, α1(3) =

1

2
, α2(3) = −

3

4
, α3(3) = −

1

2

and where

α3m−1,0(3) =
1

4
, α3m−1,1(3) = −

1

2
, α3m−1,2(3) =

3

4
, α3m−1,4(3) = 0 .

Hence, by using the respective expressions for the m
th

cohomology infinitesimal ε
m
m and for the m

th

intrinsic cohomology infinitesimal ε
m
= 2 ε

m
m given in Definition 4.1, on page 21, we have that

Vm(ε) = µL (D (ΓWm
))

= ε
m

3
m−1

∑
j=0

3

∑
q=0

αq(3)
m

∑
k=0

ε
k (2−DW) Re (ck,2 j+q,m εi k `k,2 j+q,m p) ,

where the complex coefficients ck,2 j+q,m are given in part ii. of Theorem 5.4, on page 36, with `m,k,2 j+q ∈ Z
given in part i. of Theorem 5.4, on page 36.

An important comment: by using relation (R14), on page 37, we also have that

Vm(ε) = µL (D (ΓWm
))

= ε
m

3
m−1

∑
j=0

3

∑
q=0

αq(3)
∞

∑
k=0

ε
k (2−DW) Re (ck,2 j+q,m εi k `k,2 j+q,m p) ,

where the complex coefficients ck,2 j+q,m are given by relation (R15), on page 37, with `k,2 j+q,m ∈ Z .

ii. The general case Nb ⩾ 4

Figure 12: The polygons Pm,j and Pm,j, in the case when λ =
1

2
and Nb = 4.
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As for the general case, when Nb ⩾ 4, it can be obtained in a similar manner.

↝ More generally, given Nb ⩾ 6, the polygons Pm,j involved are Nb-gons, while the polygons Qm,j

are Nb′-gons, with Nb′ ⩽ Nb. The cases Nb odd and Nb even have to be studied separately.

a. When Nb is an odd number:

For 0 ⩽ j ⩽ N
m
b − 1, the two-dimensional Lebesgue measure (i.e., area) of the Nb-gon Pm,j+1, with

(consecutive) vertices

M(Nb−1) j,m, . . . , M(Nb−1) j+Nb−1,m

is obtained by substracting from the area of the trapezoid

H(Nb−1) j,mM(Nb−1) j,mM(Nb−1) j+Nb−1,mH(Nb−1) j+Nb−1,m

the respective areas of the following Nb − 1 trapezoids

H(Nb−1) j,mM(Nb−1) j,mM(Nb−1) j+1,mH(Nb−1) j+1,m

⋮

H(Nb−1) j+Nb−2,mM(Nb−1) j+Nb−2,mM(Nb−1) j+Nb−1,mH(Nb−1) j+Nb−1,m ;

i.e.,

µL (Pm,j+1) =
(Nb − 1) εmm

2
(W ( (Nb − 1) j

(Nb − 1)Nm
b

) +W ((Nb − 1) j +Nb − 1

(Nb − 1)Nm
b

))

−
ε
m
m

2

Nb−2

∑
q=0

(W ((Nb − 1) j + q
(Nb − 1)Nm

b

) +W ((Nb − 1) j + q + 1

(Nb − 1)Nm
b

))

=
(Nb − 1) εmm

2
(W ( (Nb − 1) j

(Nb − 1)Nm
b

) +W ((Nb − 1) j +Nb − 1

(Nb − 1)Nm
b

))

−
ε
m
m

2

Nb−2

∑
q=1

2W ((Nb − 1) j + q
(Nb − 1)Nm

b

) − ε
m
m

2
W ( (Nb − 1) j

(Nb − 1)Nm
b

) .

We note that, for 0 ⩽ j ⩽ N
m
b − 1, the two-dimensional Lebesgue measure (i.e., area) of the non

necessarily convex Nb-gon Qm,j+1, with (consecutive) vertices

M(Nb−1) j+Nb−1
2

,m, . . . , M(Nb−1) j+Nb−1
2

+Nb−1,m

is obtained by substracting the area of the trapezoid

H(Nb−1) j+Nb−1
2

,mM(Nb−1) j+Nb−1
2

,mM(Nb−1) j+Nb−1
2

+Nb−1,mH(Nb−1) j+Nb−1
2

+Nb−1,m ,

from the sum of the respective areas of the trapezoids

H(Nb−1) j+Nb−1
2

,mM(Nb−1) j+Nb−1
2

,mM(Nb−1) j+Nb−1
2

+1,mH(Nb−1) j+Nb−1
2

+1,m
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⋮

H(Nb−1) j+Nb−1
2

+Nb−2,mM(Nb−1) j+Nb−1
2

+Nb−2,mM(Nb−1) j+Nb−1
2

+Nb−1,mH(Nb−1) j+Nb−1
2

+Nb−1,m ;

i.e.,

µL (Qm,j+1) =
ε
m
m

2

Nb−2

∑
q=0

(W (
(Nb − 1) j + Nb−1

2
+ q

(Nb − 1)Nm
b

) +W (
(Nb − 1) j + Nb−1

2
+ q + 1

(Nb − 1)Nm
b

))

−
(Nb − 1) εmm

2
(W (

(Nb − 1) j + Nb−1
2

(Nb − 1)Nm
b

) +W (
(Nb − 1) j + Nb−1

2
+Nb − 1

(Nb − 1)Nm
b

))

= W (
(Nb − 1) j + Nb−1

2
+ 1

(Nb − 1)Nm
b

) + ε
m
m

2

Nb−1

∑
q=1

2W (
(Nb − 1) j + Nb−1

2
+ q

(Nb − 1)Nm
b

)

−
(Nb − 1) εmm

2
(W (

(Nb − 1) j + Nb−1
2

(Nb − 1)Nm
b

) +W (
(Nb − 1) j + Nb−1

2
+Nb − 1

(Nb − 1)Nm
b

)) .

We thus have that

Vm(ε)=
N
m
b −2

∑
j=0

(µL (Pm,j+1) + µL (Qm,j+1)) + µL (Pm,Nm
b
)

=

N
m
b −2

∑
j=0

(Nb − 1) εmm
2

(W ( (Nb − 1) j
(Nb − 1)Nm

b

) +W ((Nb − 1) j +Nb − 1

(Nb − 1)Nm
b

))

−
N
m
b −2

∑
j=0

ε
m
m

2

Nb−2

∑
q=1

2W ((Nb − 1) j + q
(Nb − 1)Nm

b

) − ε
m
m

2
W ( (Nb − 1) j

(Nb − 1)Nm
b

)

+
N
m
b −2

∑
j=0

W (
(Nb − 1) j + Nb−1

2
+ 1

(Nb − 1)Nm
b

) + ε
m
m

2

Nb−1

∑
q=1

2W (
(Nb − 1) j + Nb−1

2
+ q

(Nb − 1)Nm
b

)

−
N
m
b −2

∑
j=0

(Nb − 1) εmm
2

(W (
(Nb − 1) j + Nb−1

2

(Nb − 1)Nm
b

) +W (
(Nb − 1) j + Nb−1

2
+Nb − 1

(Nb − 1)Nm
b

))

+
(Nb − 1) εmm

2
(W ((Nb − 1)Nm

b − (Nb − 1)
(Nb − 1)Nm

b

) +W ((Nb − 1)Nm
b

(Nb − 1)Nm
b

))

−
ε
m
m

2

Nb−2

∑
q=0

(W ((Nb − 1)Nm
b − (Nb − 1) + q

(Nb − 1)Nm
b

) +W ((Nb − 1)Nm
b − (Nb − 1) + q + 1

(Nb − 1)Nm
b

)) .

As previously, taking into account the fact that

48



ε
m
m =

1

Nb − 1
ε
m
,

we write Vm(ε) in the following form

Vm(ε) = εm
N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)W ((Nb − 1) j + q
(Nb − 1)Nm

b

) ,

where

α0(Nb) =
Nb − 1

2 (Nb − 1) −
1

2 (Nb − 1) =
Nb − 2

2 (Nb − 1)
and for 1 ⩽ q ⩽ Nb − 2,

αNb−1
2

+q(Nb) =
2

2 (Nb − 1) =
1

Nb − 1
, αq(Nb) = −

2

2 (Nb − 1) = −
1

Nb − 1
,

αNm
b ,(Nb−1)Nm

b −(Nb−1)+q(Nb) = −
2

2 (Nb − 1) = −
1

Nb − 1
,

along with

αNb−1
2

(Nb) =
1

2 (Nb − 1) −
(Nb − 1)

2 (Nb − 1) = −
(Nb − 2)

2 (Nb − 1) ,

αNb−1
2

+Nb−1(Nb) =
1

2 (Nb − 1) −
(Nb − 1)

2 (Nb − 1) = −
(Nb − 2)

2 (Nb − 1) ,

αNb−1(Nb) = −
1

2 (Nb − 1) +
Nb − 1

2 (Nb − 1) =
Nb − 2

2 (Nb − 1) = α0(Nb) ,

αNm
b ,(Nb−1)Nm

b −(Nb−1)(Nb) = αNm
b ,1

(Nb) =
Nb − 1

2 (Nb − 1) =
1

Nb − 1
.

Hence, by using the respective expressions of the m
th

cohomology infinitesimal ε
m
m and of the m

th

intrinsic cohomology infinitesimal ε
m
= (Nb − 1) εmm given in Definition 4.1, on page 21, we have that

Vm(ε) = µL (D (ΓWm
))

= ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

ε
k (2−DW) Re (ck,(Nb−1) j+q,m ε

i k `k,(Nb−1) j+q,m p) ,

where the complex coefficients ck,(Nb−1) j+q,m are given in part ii. of Theorem 5.4, on page 36,
with `m,k,(Nb−1) j+q ∈ Z given in part i. of Theorem 5.4, on page 36.

b. When Nb is an even number:

For 0 ⩽ j ⩽ N
m
b − 1, the two-dimensional Lebesgue measure (i.e., area) of the Nb-gon Pm,j+1, with

(consecutive) vertices

M(Nb−1) j,m, . . . , M(Nb−1) j+Nb−1,m
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is obtained exactly as in part a. It is the computation, for 0 ⩽ j ⩽ N
m
b − 1, of the two-dimensional

Lebesgue measure (i.e., area) of the nonconvex Nb-gon Qm,j+1 with slight changes. More precisely,
for 0 ⩽ j ⩽ N

m
b − 1, the area of the non necessarily convex Nb-gon Qm,j+1 with (consecutive) vertices

M(Nb−1) j+Nb
2
,m, . . . , M(Nb−1) j+Nb

2
+Nb−1,m

is obtained by substracting the area of the trapezoid

H(Nb−1) j+Nb
2
,mM(Nb−1) j+Nb

2
,mM(Nb−1) j+Nb

2
+Nb−1,mH(Nb−1) j+Nb

2
+Nb−1,m ,

from the sum of the respective areas of the trapezoids

H(Nb−1) j+Nb
2
,mM(Nb−1) j+Nb

2
,mM(Nb−1) j+Nb

2
+1,mH(Nb−1) j+Nb

2
+1,m

⋮

H(Nb−1) j+Nb
2
+Nb−2,mM(Nb−1) j+Nb

2
+Nb−2,mM(Nb−1) j+Nb

2
+Nb−1,mH(Nb−1) j+Nb

2
+Nb−1,m ;

i.e.,

µL (Qm,j+1) =
ε
m
m

2

Nb−2

∑
q=0

(W (
(Nb − 1) j + Nb

2
+ q

(Nb − 1)Nm
b

) +W (
(Nb − 1) j + Nb

2
+ q + 1

(Nb − 1)Nm
b

))

−
(Nb − 1) εmm

2
(W (

(Nb − 1) j + Nb
2

(Nb − 1)Nm
b

) +W (
(Nb − 1) j + Nb

2
+Nb − 1

(Nb − 1)Nm
b

))

= W (
(Nb − 1) j + Nb

2
+ 1

(Nb − 1)Nm
b

) + ε
m
m

2

Nb−1

∑
q=1

2W (
(Nb − 1) j + Nb

2
+ q

(Nb − 1)Nm
b

)

−
(Nb − 1) εmm

2
(W (

(Nb − 1) j + Nb
2

(Nb − 1)Nm
b

) +W (
(Nb − 1) j + Nb

2
+Nb − 1

(Nb − 1)Nm
b

)) .

We thus have that
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Vm(ε)=
N
m
b −2

∑
j=0

(µL (Pm,j+1) + µL (Qm,j+1)) + µL (Pm,Nm
b
)

=

N
m
b −2

∑
j=0

(Nb − 1) εmm
2

(W ( (Nb − 1) j
(Nb − 1)Nm

b

) +W ((Nb − 1) j +Nb − 1

(Nb − 1)Nm
b

))

−
N
m
b −2

∑
j=0

ε
m
m

2

Nb−2

∑
q=1

2W ((Nb − 1) j + q
(Nb − 1)Nm

b

) − ε
m
m

2
W ( (Nb − 1) j

(Nb − 1)Nm
b

)

+
N
m
b −2

∑
j=0

W (
(Nb − 1) j + Nb

2
+ 1

(Nb − 1)Nm
b

) + ε
m
m

2

Nb−1

∑
q=1

2W (
(Nb − 1) j + Nb

2
+ q

(Nb − 1)Nm
b

)

−
N
m
b −2

∑
j=0

(Nb − 1) εmm
2

(W (
(Nb − 1) j + Nb

2

(Nb − 1)Nm
b

) +W (
(Nb − 1) j + Nb

2
+Nb − 1

(Nb − 1)Nm
b

))

+µL (Pm,Nm
b
) .

As previously, taking into account the fact that

ε
m
m =

1

Nb − 1
ε
m
,

we write Vm(ε) in the following form,

Vm(ε) = εm
N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)W ((Nb − 1) j + q
(Nb − 1)Nm

b

) ,

where

α0(Nb) =
Nb − 1)

2 (Nb − 1) −
1

2 (Nb − 1) =
Nb − 2

2 (Nb − 1)
and for 1 ⩽ q ⩽ Nb − 2,

αNb
2
+q(Nb) =

2

2 (Nb − 1) =
1

Nb − 1
, αq(Nb) = −

2

2 (Nb − 1) = −
1

Nb − 1
,

along with

αNb
2
(Nb) =

1

2 (Nb − 1) −
(Nb − 1)

2 (Nb − 1) = −
(Nb − 2)

2 (Nb − 1) ,

αNb
2
+Nb−1(Nb) =

1

2 (Nb − 1) −
(Nb − 1)

2 (Nb − 1) = −
(Nb − 2)

2 (Nb − 1) ,

αNb−1(Nb) = −
1

2 (Nb − 1) +
Nb − 1

2 (Nb − 1
=

Nb − 2

2 (Nb − 1) = α0(Nb) .

Hence, by using the respective expressions of the m
th

cohomology infinitesimal ε
m
m and of the m

th

intrinsic cohomology infinitesimal ε
m
= (Nb − 1) εmm given in Definition 4.1, on page 21, we have that
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Vm(ε) = µL (D (ΓWm
))

= ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

ε
k (2−DW) Re (ck,(Nb−1) j+q,m ε

i `k,(Nb−1) j+q,m p) ,

where the complex coefficients ck,(Nb−1) j+q,m are given in part ii. of Theorem 5.4, on page 36,
with `m,k,(Nb−1) j+q ∈ Z given in part i. of Theorem 5.4, on page 36.

As previously, by using relation (R14), on page 37, we also have that

Vm(ε) = µL (D (ΓWm
))

= ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
∞

∑
k=0

ε
k (2−DW) Re (ck,(Nb−1) j+q,m ε

i `k,(Nb−1) j+q,m p) ,

or, equivalently,

Vm(ε) =

=
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
∞

∑
k=0

ε
k (2−DW) (ck,(Nb−1) j+q,m ε

i k `k,(Nb−1) j+q,m p
+ ck,(Nb−1) j+q,m ε

−i k`k,(Nb−1) j+q,m p) ,

where the complex coefficients ck,(Nb−1) j+q,m are given by relation (R15), on page 37, with `k,(Nb−1) j+q,m ∈ Z.

iii. Examples

↝ The case Nb = 4.

Still with the notation of Definition 3.6, on page 14, the polygons Pm,j involved are quadrilaterals,
while the polygons Qm,j are triangles (see Figure 12 above). We note that, for 0 ⩽ j ⩽ N

m
b − 1, the

two-dimensional Lebesgue measure (i.e., area) of the quadrilateral Pm,j+1, with (consecutive) vertices

M3 j,m , M3 j+1,m , M3 j+2,m and M3 j+3,m ,

is obtained by substracting from the area of the trapezoid

H3 j,mM3 j,mM3 j+3,mH3 j+3,m ,

the respective areas of the following three trapezoids

H3 j,mM3 j,mM3 j+1,mH3 j+1,m ,

H3 j+1,mM3 j+1,mM3 j+2,mH3 j+2,m

and

H3 j+2,mM3 j+2,mM3 j+3,mH3 j+3,m ;

i.e.,
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µL (Pm,j+1) =
3 ε

m
m

2
(W ( 3 j

3 × 4m
) +W ( 3 j + 3

3 × 4m
))

−
ε
m
m

2
(W ( 3 j

3 × 4m
) +W ( 3 j + 1

3 × 4m
))

−
ε
m
m

2
(W ( 3 j + 1

3 × 4m
) +W ( 3 j + 2

3 × 4m
))

−
ε
m
m

2
(W ( 3 j + 2

3 × 4m
) +W ( 3 j + 3

3 × 4m
))

=
ε
m
m

2
(2W ( 3 j

3 × 4m
) + 2W ( 3 j + 3

3 × 4m
))

−
ε
m
m

2
(2W ( 3 j + 1

3 × 4m
) + 2W ( 3 j + 2

3 × 4m
) .)

For 0 ⩽ j ⩽ 4
m − 2, the area of the triangles Qm,j+1 are obtained in the same manner as in the

case when 4 = 3; i.e., in the context of 4 = 4; i.e.,

µL (Qm,j+1) =
ε
m
m

2
(W ( 3 j + 1

3 × 4m
) +W ( 3 j + 2

3 × 4m
) +W ( 3 j + 3

3 × 4m
) +W ( 3 j + 4

3 × 4m
))

−
2 ε

m
m

2
(W ( 3 j + 2

3 × 4m
) +W ( 3 j + 4

3 × 4m
))

=
ε
m
m

2
(W ( 3 j + 1

3 × 4m
) −W ( 3 j + 2

3 × 4m
) +W ( 3 j + 3

3 × 4m
) −W ( 3 j + 4

3 × 4m
)) .

We thus have that

Vm(ε) =
4
m−2

∑
j=0

(µL (Pm,j+1) + µL (Qm,j+1)) + µL (Pm,4m)

=

4
m−2

∑
j=0

ε
m
m

2
(2W ( 3 j

3 × 4m
) − 2W ( 3 j + 1

3 × 4m
) − 2W ( 3 j + 2

3 × 4m
) + 2W ( 3 j + 3

3 × 4m
))

+
ε
m
m

2
(W ( 3 j + 1

3 × 4m
) −W ( 3 j + 2

3 × 4m
) +W ( 3 j + 3

3 × 4m
) −W ( 3 j + 4

3 × 4m
))

+
ε
m
m

2
(W (3 (4

m − 1)
3 × 4m

) − 2W (3 (4
m − 1) + 1

3 × 4m
) − 2W (3 (4

m − 1) + 2

3 × 4m
) +W (3 (4

m − 1) + 3

3 × 4m
) )

=

4
m−2

∑
j=0

ε
m
m

2
(2W ( 3 j

3 × 4m
) −W ( 3 j + 1

3 × 4m
) − 3W ( 3 j + 2

3 × 4m
))

+
4
m−2

∑
j=0

ε
m
m

2
(3W ( 3 j + 3

3 × 4m
) −W ( 3 j + 4

3 × 4m
)) + ε

m
m

2
(W (3 (4

m − 1)
3 × 4m

) − 2W (3 (4
m − 1) + 1

3 × 4m
)

−2W (3 (4
m − 1) + 2

3 × 4m
) +W (3 (4

m − 1) + 3

3 × 4m
) ) .
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As previously, taking into account the fact that

ε
m
m =

1

3
ε
m
,

we write Vm(ε) in the following form,

Vm(ε) = εm
4
m−1

∑
j=0

4

∑
q=0

αq(4)W ( 3 j + q
3 × 4m

) ,

where, for 0 ⩽ j ⩽ 4
m − 2,

α0(4) =
1

3
, α1(4) = −

1

6
, α2(4) = −

3

6
,

α3(4) =
3

6
, α4(4) = −

1

6

and

α4m−1,0(4) =
1

6
, α4m−1,1(4) = −

1

3
, α4m−1,2(4) = −

1

3
,

α4m−1,3(4) =
1

6
, α4m−1,4(4) = 0 .

Hence, by using the respective expressions of the m
th

cohomology infinitesimal ε
m
m and of the m

th

intrinsic cohomology infinitesimal ε
m
= 3 ε

m
m given in Definition 4.1, on page 21, we have that

Vm(ε) = µL (D (ΓWm
))

= ε
m

4
m−1

∑
j=0

4

∑
q=0

αq(4)
m

∑
k=0

ε
k (2−DW) Re (ck,3 j+q,m εi k `k,3 j+q,m p) ,

where the complex coefficients ck,3 j+q,m are given in part ii. of Theorem 5.4, on page 36, with `m,k,3 j+q ∈ Z
given in part i. of Theorem 5.4, on page 36.

↝ The case Nb = 5.

The polygons involved are pentagons and quadrilaterals. We note that, for 0 ⩽ j ⩽ N
m
b − 1, the

two-dimensional Lebesgue measure (i.e., area) of a pentagon Pm,j+1, (consecutive) vertices

M4 j,m , M4 j+1,m , M4 j+2,m , M4 j+3,m and M4 j+4,m ,

is obtained by substracting from the area of the trapezoid

H4 j,mM4 j,mM4 j+3,mH4 j+4,m

the respective areas of the following four trapezoids

H4 j,mM4 j,mM4 j+1,mH4 j+1,m , H4 j+1,mM4 j+1,mM4 j+2,mH4 j+2,m ,

H4 j+2,mM4 j+2,mM4 j+3,mH4 j+3,m , H4 j+3,mM4 j+3,mM4 j+4,mH4 j+4,m ;

i.e.,
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µL (Pm,j+1) =
4 ε

m
m

2
(W ( 4 j

4 × 5m
) +W ( 4 j + 3

4 × 5m
)) − ε

m
m

2
(W ( 4 j

4 × 5m
) +W ( 4 j + 1

4 × 5m
))

−
ε
m
m

2
(W ( 4 j + 1

4 × 5m
) +W ( 4 j + 2

4 × 5m
)) − ε

m
m

2
(W ( 4 j + 2

4 × 5m
) +W ( 4 j + 3

4 × 5m
))

−
ε
m
m

2
(W ( 4 j + 3

4 × 5m
) +W ( 4 j + 4

4 × 5m
))

=
ε
m
m

2
(W ( 4 j

4 × 5m
) − 2W ( 4 j + 1

4 × 5m
) − 2W ( 4 j + 2

4 × 5m
))

=
ε
m
m

2
(3W ( 4 j + 3

4 × 5m
) − 2W ( 4 j + 4

4 × 5m
)) .

As previously, for 0 ⩽ j ⩽ 5
m − 2, the area of the quadrilaterals are obtained similarly as in the

case when Nb = 4.

Definition 5.4 (m
th

Tubular Volume [DL22]).

Given m ∈ N sufficiently large (so that ε
m
m be a sufficiently small positive number), we call m

th

tubular volume the two-dimensional Lebesgue measure Vtubem (εmm) of the (m, εmm)-neighborhood

D (ΓWm
, ε
m
m) of the m

th
prefractal approximation ΓWm

introduced in Definition 5.1, on page 29.

There now remains to overcome the following difficulty: contrary to our previous work involving
ordinary tubular neighborhoods (see [DL22]), the formulae respectively obtained in relation (R23),
on page 42 above and in relation (R27), on page 56 below, which give, for all m ∈ N, the respective

expressions for the m
th

natural polyhedral volume Vm(εmm) and the m
th

natural complex polyhedral

volume Vm,comp(ε), do not have the same form as the expression computed in [DL22] for the m
th

tubular volume Vtubem .
In our present context, the m

th
natural polyhedral volume Vm(εmm) and the m

th
natural complex poly-

hedral volume Vm,comp(ε) are expressed in function of the m
th

intrinsic cohomology infinitesimal ε
m

,

but associated with a sum of N
m
b = ε

−m
terms, themselves expressed in terms of the k

th
intrinsic coho-

mology infinitesimals ε
k
, for 0 ⩽ k ⩽ m. Therefore, Vm(εmm) and Vm,comp(ε) cannot thus be expressed

in an explicit way at an arbitrary value ε > 0.

For those reasons, when it comes to obtaining the associated fractal zeta function, we cannot, as
in the case of an arbitrary bounded subset of R2

(see [LRŽ17], Definition 2.2.8, page 118), directly
use an integral formula of the form

ζ̃m(s) = ∫
εm

0
t
s−3 Vm(t) dt = ∫

εm

0
t
s−2 Vm(t) dt

t
. (R 26)

We can bypass these difficulties by noting that, given m ∈ N sufficiently large,
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i. them
th

intrinsic cohomology infinitesimal ε
m

associated with the aforementioned sum ofN
m
b = ε

−m

terms has to be considered as a constant value in any computation of a fractal zeta function
associated with the m

th
polyhedral volume. This means, in particular, that we cannot substitute

an integration variable for this specific ε
m

.

ii. As for the terms of the sum of N
m
b = ε

−m
terms, themselves expressed in terms of the k

th
intrinsic

cohomology infinitesimals ε
k
, for 0 ⩽ k ⩽ m, we note that due to Property 3.6, on page 9 above,

they can be interpreted as the expansion of the m
th

intrinsic cohomology infinitesimal ε
m

with
respect to a specific polynomial basis.

Lemma 5.7 (Natural Polyhedral Volume Extension Formula).

Given m ⩾ 1 sufficiently large, we set

Vm,comp(ε) = ε
m Vpartial,m,comp (ε) , (R 27)

where

Vpartial,m,comp (ε) =
1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)+i `k,(Nb−1) j+q,m p

+
1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)−i `k,(Nb−1) j+q,m p

,

or, equivalently,

Vpartial,m,comp (ε) =
1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)+i `k,(Nb−1) j+q,m p

+
1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)−i `k,(Nb−1) j+q,m p

,

where the complex coefficients ck,(Nb−1) j+q,m are given by relation (R15), on page 37, with `k,(Nb−1) j+q,m ∈ Z.

Here, ε
m
= (Nb − 1) εmm is the m

th
intrinsic cohomology infinitesimal introduced in Definition 4.1,

on page 21, while the real numbers αq(Nb), with 0 ⩽ q ⩽ Nb, have been introduced in Theorem 5.6, on
page 41, and the complex numbers ck,(Nb−1) j+q,m ∈ C have been introduced in part ii. of Theorem 5.4,
on page 36, while (`k,(Nb−1) j+q,m)

0⩽k⩽m
denotes the sequence of cohomological vertex integers asso-

ciated with the vertex M(Nb−1) j+q,m ∈ Vm (see also Definition 5.2, on page 35). We have used the
notation Vpartial,m,comp (εm), since, as was mentioned previously, the sum

1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)+i `k,(Nb−1) j+q,m p

+
1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)−i `k,(Nb−1) j+q,m p

,

or, equivalently,
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1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)+i `k,(Nb−1) j+q,m p

+
1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)+i `k,(Nb−1) j+q,m p

(where the complex coefficients ck,(Nb−1) j+q,m are given by relation (R15), on page 37, with `k,(Nb−1) j+q,m ∈ Z),

can be considered as a function of the m
th

intrinsic cohomology infinitesimal ε
m

.

We then introduce, for all sufficiently large m ∈ N⋆, Ṽpartial,m,comp as the continuous function de-
fined for all t ∈ [0, ε] by substituting t for ε on the right-hand side of the expression for Vpartial,m,comp (ε),
in relation (R27) just above; i.e.,

Ṽpartial,m,comp (t) =
1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m t
k (2−DW)+i `k,(Nb−1) j+q,m p

+
1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m t
k (2−DW)− `k,(Nb−1) j+q,m p

,

(R 28)

or, equivalently,

Ṽpartial,m,comp (t) =
1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m t
k (2−DW)+i `k,(Nb−1) j+q,m p

+
1

2

N
m
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m t
k (2−DW)−i `k,(Nb−1) j+q,m p

,

(R 29)

where the complex coefficients ck,(Nb−1) j+q,m are given by relation (R15), on page 37, with `k,(Nb−1) j+q,m ∈ Z.

As is explained in [DL22] (in the case of the ordinary Euclidean volume), one can think of

ε
m Ṽpartial,m,comp (t) as being the effective polyhedral volume of the m

th
prefractal approximation to

the Weierstrass Curve.

Also, Ṽpartial,m,comp (ε) and Ṽpartial,m+1,comp (ε) satisfy the following recurrence relation,

ε
m+1 Vpartial,m+1,comp (ε) =

= ε × εm Vpartial,m,comp (ε) +
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)+i ((Nb−1) j+q)p

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)−i ((Nb−1) j+q)p

.

(R 30)

57



Proof. Given m ∈ N, we aim at obtaining a recurrence relation satisfied by Ṽpartial,m,comp (ε) and

Ṽpartial,m+1,comp (ε).

We note that, given m ∈ N, the expression of Ṽpartial,m,comp (ε) involves vertices in Vm ⊂ Vm+1,
which correspond to the value q = 0. By using relation (R16), on page 38, we thus have that

N
m+1
b −1

∑
j=0

∞

∑
k=0

α0(Nb) ck,(Nb−1) j,m+1 ε
k (2−DW)+i ((Nb−1) j)p

=

=

N
m
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)+i ((Nb−1) j+q)p

and, similarly,

N
m+1
b −1

∑
j=0

∞

∑
k=0

α0(Nb) ck,(Nb−1) j,m+1 ε
k (2−DW)−i ((Nb−1) j)p

=

=

N
m
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j,m+1 ε
k (2−DW)+− ((Nb−1) j+q)p

(Note that the indices j in the first and second parts in the equality are dummy indices; in the
first expression, they refer to the vertices Mj,m+1 ∈ Vm ∩ Vm+1, while, in the second expression, they
refer to the vertices Mj,m ∈ Vm.)

We then obtain, for the first sum involved in the expression for Vpartial,m+1,comp (ε) (i.e., the
expression without the complex conjugates) that

N
m+1
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)+i ((Nb−1) j+q)p

=
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=

N
m+1
b −1

∑
j=0

∞

∑
k=0

α0(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)+i ((Nb−1) j+q)p

+
N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)+i ((Nb−1) j+q)p

=

N
m+1
b −1

∑
j=0

∞

∑
k=0

α0(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)+i ((Nb−1) j)p

+
N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)+i ((Nb−1) j+q)p

=

N
m+1
b −1

∑
j=0

∞

∑
k=0

α0(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)+i ((Nb−1) j)p

=

N
m
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)+i ((Nb−1) j+q)p

+
N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)+i ((Nb−1) j+q)p

(and similarly, for the second sum involved in the expression for Vpartial,m+1,comp (ε) (i.e., the expression
with the complex conjugates)), from which we deduce that

ε
m+1 Vpartial,m+1,comp (ε) =

1

2
ε
m+1

N
m
b −1

∑
j=0

Nb

∑
q=0

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m ε
k (2−DW)+i ((Nb−1) j+q)p

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)−i ((Nb−1) j+q)p

= ε × εm Vpartial,m,comp (ε)

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)+i ((Nb−1) j+q)p

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)−i ((Nb−1) j+q)p

.

as desired.
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Notation 11 (Natural Polyhedral Complex Volume Extension).

For the sake of simplicity, given m ∈ N⋆ sufficiently large, we will from now on call the m
th

natural
polyhedral complex volume extension, the volume extension function Ṽm,comp = ε

m Ṽpartial,m,comp asso-

ciated in Lemma 5.7, on page 56, with the m
th

natural polyhedral complex volume Vm,comp introduced

in Theorem 5.6, on page 41. Alternatively, Ṽm,comp will be called the m
th

effective polyhedral complex
volume.

In the same way, as is done in [DL22], and given m ∈ N⋆ sufficiently large, we call the m
th

natural volume extension, the volume extension function Ṽtubem associated with the the m
th

tubular
volume Vtubem . Alternatively, Ṽtubem will be called the m

th
effective tubular volume.

Proposition 5.8 (Zeta Function Associated With the Weierstrass Function at a Vertex X).

We introduce the zeta function associated with the Weierstrass function at a vertex X ∈ V
⋆
= ⋃
n∈N

Vn,

of associated sequence of vertex integers (`X,k)0⩽k⩽m defined, for all s ∈ C, by the convergent series

ζW,X(s) =

∞

∑
k=1

cX,k
ε
s−2+k (2−DW)+i `X,k p

s − 2 + k (2 −DW) + i `X,k p
,

(R 31)

where, for each integer k ⩾ 1, cX,k ∈ C is the k
th

Weierstrass coefficient associated with the vertex X
(see Theorem 5.4, on page 36).

We note that the (global) zeta function associated with the Weierstrass function can be defined, for
all s ∈ C, by the following convergent Riemann sums:

ζW(s) = lim
m→∞

1

Nm
b

N
m
b −1

∑
j=0

ζW,Mj,m
(s)

= lim
m→∞

ε
m

N
m
b −1

∑
j=0

ζW,Mj,m
(s) .

= lim
m→∞

ε
m

Nb−1

∑
q=1

N
m
b −1

∑
j=0

ζW,M(Nb−1) j+q
(s)

= ∫
ε

0
∑

X ∈V ⋆

∞

∑
k=1

cX,k t
s−3

t
k (2−DW)+i `k,X p

dt .

(R 32)

For the sake of concision, we note that the convergence of the Riemann sum in relation (R32),
on page 60, can be established exactly in the same way as the convergence of the Riemann sum in rela-
tion (R46) in the proof of Theorem 5.9 below (the same proof holds by letting, for 1 ⩽ q ⩽ Nb − 1, αq(Nb) = 1).
Furthermore, one shows similarly that the convergence of the Riemann sum in relation (R32), on
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page 60, is locally uniform on C; see Remark 5.5 below, on page 63.

The following key theorem completes the main results of [DL22].

Theorem 5.9 (Local and Global Polyhedral Effective Zeta Functions).

Given any m ∈ N⋆ sufficiently large (i.e., for all m ⩾ m0, where m0 ∈ N⋆ is optimal, as in The-

orem 5.6, on page 41), we introduce the m
th

local polyhedral effective zeta function ζ̃
e
m, such that,

for Re (s) > DW ,

ζ̃
e
m(s) = ∫

ε

0
t
s−3

ε
m Ṽpartial,m,comp(t) dt (R 33)

where ε
m Ṽpartial,m,comp is the m

th
effective polyhedral complex volume, introduced in Notation 11,

on page 60 above, with ε denoting the m
th

intrinsic cohomology infinitesimal introduced in Defini-
tion 4.1, on page 21. We caution the reader that Ṽpartial,m,comp depends on m, and is such that, for

all t ∈ [0, ε], εm Ṽpartial,m,comp(tm) is bounded, independently of m.

Then, still for all m ∈ N⋆ sufficiently large (i.e., for all m ⩾ m0), we have that, for all s ∈ C,

ζ̃
e
m(s) =

1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−2+k (2−DW)+i `k,(Nb−1) j+q,m p

s − 2 + k (2 −DW) + i `k,(Nb−1) j+q,m p

+
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−2+k (2−DW)−i `k,(Nb−1) j+q,m p

s − 2 + k (2 −DW) − i `k,(Nb−1) j+q,m p
,

(R 34)

or, equivalently,

ζ̃
e
m(s) =

1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)+i `k,(Nb−1) j+q,m p

s −DW + (k − 1) (2 −DW) + i `k,(Nb−1) j+q,m p

+
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)−i `k,(Nb−1) j+q,m p

s −DW + (k − 1) (2 −DW) − i `k,(Nb−1) j+q,m p
,

(R 35)

where, for 0 ⩽ j ⩽ N
m
b − 1 and 0 ⩽ q ⩽ Nb, the complex coefficients ck,(Nb−1) j+q,m are given by rela-

tion (R10), on page 37, (`k,(Nb−1) j+q,m)
0⩽k⩽m

denotes the sequence of cohomological vertex integers
associated with the vertex M(Nb−1) j+q,m ∈ Vm (see Definition 5.2, on page 35, along with Defini-
tion 5.3, on page 35), and where ε is the intrinsic scale introduced in Definition 4.1, on page 21).
In addition, the coefficients αq(Nb) ∈ R are introduced in Theorem 5.6, on page 41, while the coeffi-
cients ck,(Nb−1) j+q,m belong to C. (See also Remark 5.6 below, on page 63.)

We note that, still for all m ∈ N⋆ sufficiently large, by letting, for all s ∈ C,

Zm(s) =
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= ln
⎛
⎜
⎝

N
m
b −1

∏
j=0

Nb

∏
q=0

m

∏
k=1

(s −DW + (k − 1) (2 −DW) + i `k,(Nb−1) j+q,m p)αq(Nb)ck,(Nb−1)j+q,m ε
s−DW+(k−1) (2−DW )+i`k,(Nb−1)j+q,m p⎞

⎟
⎠

+ ln
⎛
⎜
⎝

N
m
b −1

∏
j=0

Nb

∏
q=0

m

∏
k=1

(s −DW + (k − 1) (2 −DW) − i `k,(Nb−1) j+q,m p)αq(Nb)ck,(Nb−1)j+q,m ε
s−DW+(k−1) (2−DW )−i`k,(Nb−1)j+q,m p⎞

⎟
⎠
,

(R 36)

we then obtain, for the m
th

local polyhedral effective zeta function ζ̃
e
m, the following expression, valid

for all s ∈ C:

ζ̃
e
m(s) = 1

2
ε
m (dZm(s)

ds
−

1

ln ε
Zm(s)) = 1

2
ε
m (dZm(s)

ds
+

p

2π
Zm(s)) . (R 37)

Furthermore, Zm is meromorphic on all of C.

In addition, still for all m ∈ N⋆ sufficiently large, the function ζ̃
e
m = ζ̃

e
m(s) – initially given by

relation (R33) for Re(s) > DW – admits a (necessarily unique) meromorphic extension to C (still
denoted by ζ̃

e
m) and is given, for all s ∈ C, by the well-defined expressions in relation (R34) (or,

equivalently, (R35)) above.

Moreover, the associated sequence (ζ̃em)
m∈N

satisfies the following recurrence relation, for all values
of the positive integer m sufficiently large, and for all s ∈ C:

ζ̃
e
m+1(s)= ε ζ̃

e
m(s)

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−DW+(k−1) (2−DW)+i ((Nb−1) j+q)p

s −DW + (k − 1) (2 −DW) + i ((Nb − 1) j + q) p

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−DW+(k−1) (2−DW)−i ((Nb−1) j+q)p

s −DW + (k − 1) (2 −DW) − i ((Nb − 1) j + q) p
,

(R 38)
where the complex coefficients ck,(Nb−1) j+q,m+1 are given by relation (R10), on page 37.

This ensures the existence of the limit fractal zeta function ζ̃
e
W , i.e., the fractal zeta function

associated with the Weierstrass Curve ΓW (or, rather, with the Weierstrass IFD), called the global
polyhedral effective zeta function and given, for all s ∈ C, by

ζ̃
e
W(s) = lim

m→∞
ζ̃
e
m(s) , (R 39)

where the convergence in relation (R39) is locally uniform on C (see Remark 5.5 below, on page 63),
along with the existence of an integer m0 ∈ N such that, for any integer integer m ⩾ m0, the set of
poles of ζ̃

e
W is a subset of the set of poles of ζ̃

e
m+1 – and hence also, of that of ζ̃

e
W . More specifically, ζ̃

e
W

is meromorphic in all of C and its (necessarily unique) meromorphic extension to C (still denoted ζ̃
e
W)

is given, for all s ∈ C, by the following limit of Riemann sums:

ζ̃
e
W(s) =

1

2

1

1 − ε
lim
m→∞

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−DW+(k−1) (2−DW )+i ((Nb−1) j+q)p

s −DW + (k − 1) (2 −DW) + i ((Nb − 1) j + q) p

+
1

2

1

1 − ε
lim
m→∞

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−DW+(k−1) (2−DW )−i ((Nb−1) j+q)p

s −DW + (k − 1) (2 −DW) − i ((Nb − 1) j + q) p
,

(R 40)
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where the complex coefficients ck,(Nb−1) j+q,m+1 are given by relation (R10), on page 37.

In addition, P (ζ̃eW), the set of poles, in C, of the meromorphic function ζ̃
e
W on C, is given by the

following discrete (and countably infinite) subset of C:

P (ζ̃eW) = P⋆ = ⋃
m∈N,m⩾m0

P (ζ̃em) ;

see Lemma 5.10 below, on page 64, along with Theorem 5.13 above, on page 77.

In other words, ζ̃
e
W admits a (necessarily unique) meromorphic continuation, given, for all s ∈ C,

by relation (R40) just above.

Here, m0 ∈ N⋆ is the optimal (i.e., the smallest) positive integer such that ζ̃
e
m is meromorphic, for

all m ⩾ m0 (i.e., such that Theorem 5.6 above, on page 41 and Lemma 5.10 below, on page 64, hold).

Remark 5.4. As was mentioned in the introduction, we note that our result is stronger than the one
previously obtained in [DL22], where, in particular, the values of the possible Complex Dimensions of
the Weierstrass IFD included −2, 0 and 1 − 2 k, with k ∈ N arbitrary. As we can see in relation (40)
just above, the poles of the limit effective fractal zeta function ζ̃

e
W are exactly the same as the Complex

Dimensions of the Weierstrass function itself; see Theorem 5.4, on page 36. Note that, in [DL22], the
Complex Dimensions are defined in terms of the volume of the tubular (rather than polyhedral)
neighborhood of the Weierstrass IFD.

Remark 5.5. Both the local uniform convergence on C of the Riemann sums in relation (R32), on
page 60 (in Proposition 5.8) and of the Riemann sums in relation (R39) in Theorem 5.9, hold when the
meromorphic functions involved are viewed as continuous functions on C with values in the Riemann
sphereP

1(C) = C ∪∞, equipped with the chordal metric (as, for example, in [LvF00], [LvF13], [LRŽ17]);
see the discussion surrounding relations (R50) and (R51), on page 72, towards the end of the proof
of Theorem 5.9 given below.

Remark 5.6. As we will see in the proof of Theorem 5.9 below, the zeta functions ζ̃
e
m used in the state-

ment of Theorem 5.9, on page 61, are the restricted ones (still denoted ζ̃
e
m, for simplicity), obtained

from the original ones defined by relation (R33), on page 61, by removing the pole part corresponding
to the simple pole at s = 2; see the discussion immediately following relation (R41) below, on page 66.

We will implicitly make the same assumption throughout the remainder of this paper – including
in Definition 5.5, on page 76, in Theorem 5.12, on page 74, and Theorem 5.13, on page 77, along with
its corollaries.

Remark 5.7. The zeta functions introduced in Theorem 5.9, on page 61, have a tilde, in order to
distinguish them from the zeta functions of the classical theory [LRŽ17].

The following lemma will be used in part iii. of the proof of Theorem 5.9.
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Lemma 5.10 (A Preliminary Result About the Sets of Poles of the Local Polyhedral Zeta
Functions).

Let us denote by P⋆ = ⋃
m⩾m0

P (ζ̃em) the union of the discrete sets of poles of the local polyhedral

zeta functions ζ̃
e
m, for all m ∈ N such that m ⩾ m0. Then, the sequence (P (ζ̃em))

m⩾m0
of subsets of C

is increasing.

Furthermore, the set P⋆ is discrete and countably infinite. It is, also, the set of poles of the global
polyhedral zeta function ζ̃

e
W .

In addition, its complement U in C is an open, connected subset of C (since P⋆ is necessarily
closed).

Proof. (of Lemma 5.10)

The proof relies on the fact that, for all m ∈ N sufficiently large,

P (ζ̃em) = {DW − (k − 1) (2 −DW) ± i `k,(Nb−1) j+q,m p , 1 ⩽ k ⩽ m} ⊊ P (ζ̃em+1) .
This ensures that, as a countable union of discrete sets, and without any accumulating points,

the set P⋆ is itself discrete and, hence, countably infinite. This ensures that its complement U ⊂ C is
an open, connected subset of C. This implies that P⋆ intersects each compact set K ⊂ C at a finite
number of points.

The fact that P⋆ is the set of poles of the global polyhedral zeta function ζ̃
e
W comes from the

expression given in relation (R40), on page 62.

Also, the fact that, for all m ⩾ m0, P (ζ̃em) ⊆ P (ζ̃em+1), is established in the proof of Theorem 5.9
below.

Proof. (of Theorem 5.9)

i. We first give the explicit expression for the m
th

local effective polyhedral zeta function ζ̃
e
m.

In light of relation (R33), on page 61, along with relation (R28), on page 57, or relation (R29),
on page 57, we restrict ourselves to sufficienly large values of m ∈ N, i.e., m ⩾ m0, for some suitable
integer m0 ∈ N.

We have that, for Re (s) > DW ,
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ζ̃
e
m(s) = ∫

ε

0
t
s−3 Ṽpartial,m,comp(t) dt (for Re (s) > DW)

=
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

ck,(Nb−1) j+q,m ε
s−2+k (2−DW)+i `k,(Nb−1) j+q,m p

s + 2 (k − 1) − kDW + i `k,(Nb−1) j+q,m p

+
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

ck,(Nb−1) j+q,m ε
s−2+k (2−DW)−i `k,(Nb−1) j+q,m p

s + 2 (k − 1) − kDW + − `k,(Nb−1) j+q,m p
,

or, equivalently,

ζ̃
e
m(s) =

1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
∞

∑
k=1

ck,(Nb−1) j+q,m ε
s−2+k (2−DW)+i `k,(Nb−1) j+q,m p

s + 2 (k − 1) − kDW + i `k,(Nb−1) j+q,m p

+
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
∞

∑
k=1

ck,(Nb−1) j+q,m ε
s−2+k (2−DW)−i `k,(Nb−1) j+q,m p

s + 2 (k − 1) − kDW − i `k,(Nb−1) j+q,m p
,

where the complex coefficients ck,(Nb−1) j+q,m are given by relation (R10), on page 37.

We note that this expression involves the pole s = 2, which comes from the Euclidean polygons
themselves involved in the sequence of polyhedral neighborhoods (see Theorem 5.6, on page 41). For

this reason, we hereafter exclude the terms
c0,(Nb−1) j+q,m ε

s−2+i `k,(Nb−1) j+q,m p

s − 2 + i `0,(Nb−1) j+q,m p
from the expression for

the m
th

local effective polyhedral zeta function ζ̃
e
m, so that

ζ̃
e
m(s) =

1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−2+k (2−DW)+i `k,(Nb−1) j+q,m p

s + 2 (k − 1) − kDW + i `k,(Nb−1) j+q,m p

+
1

2
ε
m

N
m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=1

ck,(Nb−1) j+q,m ε
s−2+k (2−DW)−i `k,(Nb−1) j+q,m p

s + 2 (k − 1) − kDW − i `k,(Nb−1) j+q,m p
.

For the sake of simplicity, we still use the same notation ζ̃
e
m for this m

th
restricted local effective

polyhedral zeta function.

By using the recurrence relation (R30), on page 57, we then compute
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ζ̃
e
m+1(s) = ∫

ε

0
t
s−3 Ṽpartial,m+1,comp(t) dt (for Re (s) > DW)

= ε ∫
ε

0
t
s−3 Ṽpartial,m,comp(t) dt

+
1

2
ε
m+1 ∫

ε

0
t
s−3

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)+i ((Nb−1) j+q)p

dt

+
1

2
ε
m+1 ∫

ε

0
t
s−3

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 ε
k (2−DW)−i ((Nb−1) j+q)p

dt

= ε ζ̃
e
m(s)

+
1

2
ε
m+1 ∫

ε

0
t
s−3

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 t
k (2−DW)+i ((Nb−1) j+q)p

dt

+
1

2
ε
m+1 ∫

ε

0
t
s−3

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1 t
k (2−DW)−i ((Nb−1) j+q)p

dt

= ε ζ̃
e
m(s)

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=0

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)−i ((Nb−1) j+q)p

s − 2 + k (2 −DW) − i ((Nb − 1) j + q) p
.

(R 41)
As previously, we note that this expression involves the pole s = 2, which comes from the Euclidean

line segments themselves involved in the sequence of polyhedral neighborhoods (see Theorem 5.6, on

page 41). For this reason, we also exclude the terms
c0,(Nb−1) j+q,m+1 ε

s−2+i `k,(Nb−1) j+q,m p

s − 2 + i `0,(Nb−1) j+q,m p
from the last

expression, so that the recurrence relation we will use is

ζ̃
e
m+1(s) = ε ζ̃

e
m(s)

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)−i ((Nb−1) j+q)p

s − 2 + k (2 −DW) − i ((Nb − 1) j + q) p
.

(R 42)
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Thanks to relation (R16), on page 38, given m ∈ N, we have that, for all k ⩾ m + 2

ck,(Nb−1) j+q,m+1 = 0 .

We then obtain that

ζ̃
e
m+1(s) = ε ζ̃

e
m(s)

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p

+
1

2
ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)−i ((Nb−1) j+q)p

s − 2 + k (2 −DW) − i ((Nb − 1) j + q) p
.

(R 43)
ii. For all m ∈ N⋆ sufficiently large, by letting, for all s ∈ C,

Zm(s) =

= ln
⎛
⎜
⎝

N
m
b −1

∏
j=0

Nb

∏
q=0

m

∏
k=1

(s −DW + (k − 1) (2 −DW) + i `k,(Nb−1) j+q,m p)αq(Nb)ck,(Nb−1)j+q,m ε
s−DW+(k−1) (2−DW )+i`k,(Nb−1)j+q,m p⎞

⎟
⎠

+ ln
⎛
⎜
⎝

N
m
b −1

∏
j=0

Nb

∏
q=0

m

∏
k=1

(s −DW + (k − 1) (2 −DW) − i `k,(Nb−1) j+q,m p)αq(Nb)ck,(Nb−1)j+q,m ε
s−DW+(k−1) (2−DW )−i`k,(Nb−1)j+q,m p⎞

⎟
⎠

=

N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=1

ln ((s −DW + (k − 1) (2 −DW) + i `k,(Nb−1) j+q,m p)αq(Nb)ck,(Nb−1)j+q,m ε
s−DW+(k−1) (2−DW )+i`k,(Nb−1)j+q,m p

)

+
N

m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=1

ln ((s −DW + (k − 1) (2 −DW) − i `k,(Nb−1) j+q,m p)αq(Nb)ck,(Nb−1)j+q,m ε
s−DW+(k−1) (2−DW )−i`k,(Nb−1)j+q,m p

) ,

,

(R 44)

we then obtain that, for all s ∈ C,

dZm(s)
ds

=
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=

N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)+i `k,(Nb−1) j+q,m p

s −DW + (k − 1) (2 −DW) + i `k,(Nb−1) j+q,m p

+
N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=1

(ln ε) αq(Nb) ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)+i `k,(Nb−1) j+q,m p

×

× ln (s −DW + (k − 1) (2 −DW) + i `k,(Nb−1) j+q,m p)

+
N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)−i `k,(Nb−1) j+q,m p

s −DW + (k − 1) (2 −DW) − i `k,(Nb−1) j+q,m p

+
N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=1

(ln ε) αq(Nb) ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)−i `k,(Nb−1) j+q,m p

×

× ln (s −DW + (k − 1) (2 −DW) − i `k,(Nb−1) j+q,m p)

=

N
m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m ε
s−DW+(k−1) (2−DW)+i `k,(Nb−1) j+q,m p

s −DW + (k − 1) (2 −DW) + i `k,(Nb−1) j+q,m p

i.e., equivalently,

dZm(s)
ds

=
2

εm
ζ̃
e
m(s) + (ln ε) Zm(s) ,

since, for all s ∈ C,

dε
s

ds
=
de
s ln ε

ds
= (ln ε) es ln ε

= (ln ε) εs .

We then obtain, for the m
th

local polyhedral effective zeta function ζ̃
e
m, the following expression,

valid for all s ∈ C:

ζ̃
e
m(s) = 1

2
ε
m (dZm(s)

ds
−

1

ln ε
Zm(s)) = 1

2
ε
m (dZm(s)

ds
+

p

2π
Zm(s)) . (R 45)

Note that Zm is meromorphic on all of C.

iii. We first note that, by using relation (R32), on page 60, we have the following Riemann sum

lim
m→∞

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p
=

= lim
m→∞

1

Nm+1
b

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

αq(Nb) ζW,M(Nb−1) j+q,m+1
(s) .

(R 46)
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We then aim at proving that the convergence of the Riemann sum in relation (R46) is locally
uniform.

We note that, for all m0 ∈, N, and all m ⩾ m0,

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m+1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p
=

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

m0−1

∑
k=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p

+ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p

=

m0−1

∑
k=1

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p

+ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p
.

(R 47)

By placing ourselves in a compact set K ⊂ C, located away from the potential poles of ζ̃
e
m, for

all m ⩾ m0, we have that

»»»»»»»»»»»»

m0−1

∑
k=1

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p

»»»»»»»»»»»»
⩽

⩽

m0−1

∑
k=1

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∣αq(Nb)∣
ε
s−2+k (2−DW)

inf
0⩽j⩽Nm+1

b +1, s∈K
∣s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p∣

⩽

m0−1

∑
k=1

ε
m+1

N
m+1
b ( max

1⩽q⩽Nb−1
∣αq(Nb)∣)

ε
s−2+k (2−DW)

inf
0⩽j⩽Nm+1

b +1, s∈K
∣s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p∣

⩽

m0−1

∑
k=1

( max
1⩽q⩽Nb−1

∣αq(Nb)∣)
ε
s−2+k (2−DW)

inf
0⩽j⩽Nm+1

b +1, s∈K
∣s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p∣ ,

which ensures the (local) normal convergence – and hence, the (local) uniform convergence – of the
first part of the sum involved in relation (R47), on page 69.

We then aim at proving the (local) uniform convergence of the second part of the sum involved in
relation (R47), on page 69; i.e., the (local) uniform convergence of

ε
m+1

N
m+1
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p
.
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For this purpose, we will rely on the Cauchy criterion (Weierstrass M test). We thus consider, for
all m ⩾ m0, the difference

ε
m+1

N
m0+m
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m0+m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p

−ε
m+1

N
m0
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m0+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p
.

(R 48)
The first sum in relation (R47) just above, on page 69, involves terms associated with the vertices

of Vm0+m, while the second sum (still in relation (R47)) comprises terms associated with the vertices
of Vm0

⊂ Vm0+m, so that, for all k ⩾ m0 (see relation (R18), on page 38), we have that, for all k ⩾ m0,

ck,(Nb−1) j+q,m0+1 = 0 .

This ensures that

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m0+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p
= 0 .

We then simply have to prove that

lim
m→∞

ε
m+1

N
m0+m
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m0+m+1
ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p
= 0 .

Thanks to relation (R19), on page 38, we have that, for all k ⩾ m0,

ck,j,m0+m+1 = λ
m+1

ck,j,m0
= ε

(m+1) (2−DW)
ck,j,m0

.

Therefore, this amounts to proving that

lim
m→∞

ε
m+1+m (2−DW)

N
m0+m
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=m0

αq(Nb) ck,j,m0

ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p
= 0 .

Note that, for all 0 ⩽ j ⩽ N
m0+m
b , the sum

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m0

ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p
(R 49)

is convergent, uniformly for all s ∈ C in a given bounded set not containing a pole of ζ̃
e
m. In-

deed, 0 < ε < 1 and all the coefficients of the fractal power series are uniformly bounded.

We then place ourselves in a compact set K ⊂ C contained in the connected open set U ⊂ C which
is the complement in C of the discrete set P⋆ = ⋃

n∈N, n⩾m0

P (ζ̃en), the countable (and hence, closed)

union of the sets of poles of the local polyhedral zeta functions ζ̃
e
n, for all n ⩾ m0 (see Lemma 5.10,

on page 64).

We then have that, for all m ⩾ m0,
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»»»»»»»»»»»»
ε
m+1+m (2−DW)

N
m0+m
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m0

ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p

»»»»»»»»»»»»
⩽

⩽ ε
m+1+m (2−DW) ( max

1⩽q⩽Nb−1
∣αq(Nb)∣)

N
m0+m
b −1

∑
j=0

∣ck,(Nb−1) j+q,m0
∣ εs−2+k (2−DW)

inf
0⩽j⩽N

m0+m
b +1, s∈K

∣s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p∣

⩽ ε
m+1+m (2−DW) ( max

1⩽q⩽Nb−1
∣αq(Nb)∣)

N
m0+m
b −1

∑
j=0

ε
s−2+k (2−DW)

inf
0⩽j⩽N

m0+m
b +1, s∈K

∣s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p∣

⩽ ε
m+1+m (2−DW) ( max

1⩽q⩽Nb−1
∣αq(Nb)∣) Nm0+m

b

ε
s−2+k (2−DW)

inf
0⩽j⩽N

m0+m
b +1, s∈K

∣s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p∣ .

Note that the above infimum is really a minimum and is strictly positive because K ⊆ C is a com-
pact set and, by construction and, by construction, does not intersect P (ζ̃em).

Since

ε
m+1+m (2−DW)

N
m0+m
b = ε

m (2−DW)−m0 ,

where m (2 −DW) −m0 > 0 and 0 < ε < 1, we obviously have that

lim
m→∞

ε
m+1+m (2−DW)

N
m0+m
b = ε

m (2−DW)−m0
= 0 ,

from which we deduce the desired result; i.e., uniformly for all s ∈ K,

lim
m→∞

»»»»»»»»»»»»
ε
m+1+m (2−DW)

N
m0+m
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m0

ε
s−2+k (2−DW)+i ((Nb−1) j+q)p

s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p

»»»»»»»»»»»»
= 0 .

The same result obviously also holds for the conjugate sum (recall that all of the coefficients αq(Nb)
are real); namely,

lim
m→∞

»»»»»»»»»»»»
ε
m+1+m (2−DW)

N
m0+m
b −1

∑
j=0

Nb−1

∑
q=1

∞

∑
k=m0

αq(Nb) ck,(Nb−1) j+q,m0

ε
s−2+k (2−DW)−i ((Nb−1) j+q)p

s − 2 + k (2 −DW) − i ((Nb − 1) j + q) p

»»»»»»»»»»»»
= 0 .

For any integer m ⩾ m0, we now denote by P (ζ̃em) ⊂ C the set of poles of the zeta function ζ̃
e
m.

We set

U = {s ∈ C , Re(s) < 3} .
We note that, for all m ⩾ m0, we have that

P (ζ̃em0
) ⊂ P (ζ̃em) ⊂ U .
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The remainder of our proof – in the case when we place ourselves in a compact set K ⊂ C contain-
ing some of the potential poles (necessarily, finitely many of them, since K is compact and the poles
are isolated) of ζ̃

e
m – can be obtained by using the chordal metric.

For this purpose, a (complex-valued) meromorphic function f is viewed as a continuous function
with values in P

1(C), equipped with the chordal metric, and such that, for any pole ω of f , f(ω)
takes the value ∞ (for instance, as in [LvF13], Section 3. 4 and Appendix C).

More precisely, if P
1(C) = C ∪∞ denotes the Riemann sphere (or complex projective line), we

can show that, for the chordal metric, defined, for all (z1, z2) ∈ (P1(C))2
by

∥z1, z2∥ =
∣z1 − z2∣√

1 + ∣z2
1∣

√
1 + ∣z2

2∣
, if z1 ≠∞ and z2 ≠∞ , (R 50)

and

∥z1,∞∥ = 1√
1 + ∣z2

1∣
, if z1 ≠∞ . (R 51)

Since the discrete set P⋆ = ⋃
m∈N

P (ζ̃em) intersects each compact set K ⊂ C at a countably finite

number of points (see Lemma 5.10 above, on page 64), we can restrict ourselves to the case when K
contains one single pole of a given ζ̃

e
n, for some n ⩾ m0.

The only difference with the first case, when the compact set K ⊂ C does not intersect P⋆, is about
the (previously) involved infimum inf

N
m1
b ⩽j⩽N

m2
b +1, s∈K

∣s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p∣, which

has to be replaced by

sup
N
m1
b ⩽j⩽N

m2
b +1, s∈K

1√
1 + ∣s − 2 + k (2 −DW) + i ((Nb − 1) j + q) p∣2

.

The limit of the Riemann sums in relation (R46), on page 68, i.e., the (uniform) limit fractal zeta
function ζ̃

e
W , is holomorphic on U , as the (locally) uniform limit of a sequence of holomorphic functions

on U . By applying Weierstrass’ Theorem, we then deduce that, for all m ⩾ m0, the zeta function ζ̃
e
m

is meromorphic on C.

Moreover, the counterpart of the results obtained in [DL22] for the sequence of tube zeta functions
associated with the Weierstrass IFD, which admit a meromorphic continuation to all of C, obviously
holds for the sequence of polyhedral tube zeta functions: hence, ζ̃

e
m is meromorphic on C, with only

simple poles, as specified in Theorem 5.13, on page 77 below.

More specifically, our earlier discussion (ending just after relation (R49), on page 70, shows the

uniform convergence of (ζ̃em)
m⩾m0

on K – and, hence also, the existence of the global polyhedral effec-

tive zeta function ζ̃
e
W , whenever the compact set K ⊂ C does not intersect P⋆ (i.e., K ⊆ U = C \ P⋆).

The fact that ζ̃
e
W is holomorphic on the (connected) open set U ⊆ C then follows at once from Weier-

strass’ Theorem about the holomorphicity of a (locally) uniformly convergent sequence of holomorphic

functions (here, the sequence of holomorphic functions (ζ̃em)
m⩾m0

on U).

In the above case when K ∩ P⋆ is nonempty – and, without loss of generality, when K ∩ P⋆ = {ω},
where ω is a pole of ζ̃

e
m1

, for some integer m1 ⩾ m0 (and, thus, for any m ⩾ m1), our above argu-

ment shows that ζ̃
e
W is well defined and is continuous on K (as the uniform limit on the compact
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set K of of the sequence (ζ̃em)
m⩾m0

of continuous functions on K, with all the functions involved be-

ing viewed as taking their values in the compact – and thus, complete – metric space (P1(C),∥⋅∥)
(i.e., lim

m→∞
sup
s∈K

ÂÂÂÂÂζ̃
e
m(s), ζ̃eW(s)ÂÂÂÂÂ = 0) and such that ζ̃

e
W (ω) =∞ since ζ̃

e
m (ω) =∞, for all m ⩾ m1. Con-

sequently, ζ̃
e
W is meromorphic on U and ω is also a pole of ζ̃

e
W (i.e., ω ∈ P (ζ̃eW)).

In summary, we deduce that ζ̃
e
W is well defined (by the locally uniform limit in relation (R39), on

page 62), is meromorphic on all of C and P (ζ̃eW) = P⋆.

This concludes the proof of Thorem 5.9, on page 61.

Property 5.11 (From the m
th

Local Effective Polyhedral Zeta Function to the m
th

Local
Effective Tube Zeta Function).

Given m ∈ N⋆ sufficiently large (i.e., m ⩾ m0), the Lebesgue measure Vtubem (εmm) of the tubular

neighborhood D (ΓWm
, ε
m
m) can be connected to the Lebesgue measure Vm (εmm) of the m

th
polyhedral

neighborhood D (ΓWm
) introduced in Definition 3.5, on page 11, by means of the following relation:

Vm (ε) = Vtubem (ε) +Rm , (R 52)

where Rm is a suitable error term and

Vtubem (ε) = µL (D (ΓWm
)) .

As is done in Lemma 5.7, on page 56, we extend relation (R55) to the corresponding effective
volumes; i.e., for 0 ⩽ t ⩽ ε

m
m,

Ṽm (t) = Ṽtubem (t) + R̃m(t) , (R 53)

where, for all sufficiently large n ∈ N⋆, Ṽn (resp., Ṽtuben or R̃n) is the continuous function defined

for all t ∈ [0, ε] by substituting t for ε in the expression for Vn (ε) (resp., Vtuben or Rn), obtained in
Theorem 5.6, on page 41.

This ensures, for the associated zeta function Zm,R, given by

s↦ ∫
ε

0
t
s−3 R̃m(t) dt ,

that (locally, uniformly on C)

lim
m→∞

∫
ε

0
t
s−3 R̃m(t) dt = 0 .

Proof. This follows directly from Property 3.5, on page 11, in conjunction with Property 5.1, on
page 30. Given η > 0, there exists m0 ∈ N such that, for all m ⩾ m0,

»»»»»Vm (ε) − Vtubem (ε)»»»»» ⩽ η .
We then proceed as in the proof of Theorem 5.9, on page 61. Since, for Re (s) > DW ,
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∫
ε

0
t
s−3 R̃m(t) dt = ∫

ε

0
t
s−3 (Ṽm(t) − Ṽtubem (t)) dt ,

we obtain the expected (local) uniform convergence.

Theorem 5.12 (Local and Global Tube Zeta Function for the Weierstrass Iterated Fractal
Drums [DL22], [DL24a]).

Given m ∈ N⋆ sufficiently large, we denote by ζ̃
e,exact
m,ΓWm

the exact expression for the m
th

local
effective tube zeta function by exact, we refer to the expression which could be obtained if we had the
knowledge of the exact expression for the volume of the m

th
tubular neighborhood, which is not the

case and might never be obtained). We then set, for any s ∈ C:

ζ̃
e,strict
m,ΓWm

(s) = ζ̃e,exactm,ΓWm
(s) − π ε

s

s +
π ε

s+2

4 (s + 2) ,

since the contribution of the m
th

prefractal approximation ΓWm
to ζ̃

e
W , the global effective tube zeta

function of the Weierstrass IFD, is obtained by excluding the (artificial) terms
π ε

s

s and −
π ε

s+2

4 (s + 2)
coming from the extreme wedges (see Remark 5.8 just below, on page 74). Here, ζ̃

e,exact
m,ΓWm

= ζ̃
e,tube
m ,

the m
th

local tubular effective zeta function of ΓW studied in [DL22]. Note that we thereby consider
the exact expression for this local tubular effective zeta function, which, thus far, cannot be determined
explicitly (in [DL22], we only give an approximate expression for this local tubular effective zeta func-
tion; we cannot go to the limit in this approximate expression).

The global effective tube zeta function of the Weierstrass IFD exists and coincides with the global
effective polyhedral zeta function ζ̃

e
W . Hence, it is given not only by the (locally) uniform limit of

the strict prefractal zeta functions but also by the limit of the Riemann sums defining ζ̃
e
W , given in

relation (R40) of Theorem 5.9, on page 61. It admits a (necessarily unique) meromorphic continuation
to all of C, and is given, for any s ∈ C, by the following expression:

ζ̃
e
W(s) = lim

m→∞
ζ̃
e,strict
m,ΓWm

(s) . (R 54)

Note that ζ̃
e,strict
m,ΓWm

is a (tamed) Dirichlet-type integral (in the sense of [LRŽ17], Appendix A) and

hence, admits, for all sufficiently large positive integers m, an abscissa of (absolute) convergence.

Furthermore, the abscissa of convergence of ζ̃
e
W is equal to

DW = 2 +
lnλ

ln b
= 2 − lnb

1

λ
.

The proof of Theorem 5.12 is given on page 75, right after Remark 5.9.

Remark 5.8 (About the excluded poles 0 and −2 [DL24a]).

We do not include the (artificial) terms coming from the extreme wedges. Indeed, due to the peri-
odicity of the Weierstrass function, we have restricted our study to the values of the abscissa x ∈ [0, 1].
In a sense, this amounts to cut the Curve, so that the poles arising because of this cut do not have to be

taken into account. More precisely, given m ∈ N⋆ sufficiently large, the involved terms are −
π (εmm)4

2
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and π (εmm)2
, which would have given rise to the terms

π ε
s

s and −
π ε

s+2

2 (s + 2) in the expression for the

associated m
th

local effective tube zeta function).

Remark 5.9 (About the possible pole 1 obtained in [DL22]).

In our previous work [DL22], we obtained the value 1 as a possible pole of the m
th

local effective
tube zeta function. Note that this possible pole was associated to the approximate expression for
the m

th
local effective tube zeta function (coming from the contributions of triangles and parallelo-

grams to the tubular neighborhood, for which the associated residues may cancel each other), and not
to the exact expression, which explains why this value 1 is not an actual pole of the global effective
tube zeta function of the Weierstrass IFD.

Proof. (of Theorem 5.12, on page 74)

Thanks to Property 5.11, on page 73, (and since lim
m→∞

ε
m
m = 0), and given m ∈ N⋆ sufficiently

large, the m
th

strict effective tubular volume

Ṽe,strictm,ΓWm
(ε) = Ṽe,exactm,ΓWm

(ε) +
π (εmm)4

2
− π (εmm)2

can be connected to the m
th

effective polyhedral volume ṼP
m (εmm) by means of the following relation:

ṼP
m (ε) = Ṽstrictm,ΓWm

(ε) + R̃m , (R 55)

where R̃m is a suitable error term such that the associated zeta function Zm,R, given by

s↦ ∫
ε

0
t
s−3 R̃m(t) dt

(where ε =
1

Nb
is the intrinsic scale, as introduced in Definition 4.1, on page 21) locally, uniformly

on C, converges to 0:

lim
m→∞

∫
ε

0
t
s−3 R̃m(t) dt = 0 .

We then obtain that (locally, uniformly on C)

lim
m→∞

ζ̃
e,strict
m,ΓWm

(s) = lim
m→∞

ζ̃
P,e
m,ΓWm

(s) = ζ̃eΓW (s) ,

where, for all m ∈ N⋆, ζ̃
P,e
m,ΓWm

is the effective fractal zeta function associated with the sequence of

polyhedral neihborhoods of the Weierstrass IFD (and called the m
th

local polyhedral effective zeta
function).

We note that both sequences of local effective zeta functions (ζ̃ P,e
m,ΓWm

)
m∈N

and (ζ̃e,strictm,ΓWm
)
m∈N

thus

have the same limit, the global fractal zeta function ζ̃
e
W of the Weierstrass IFD. As was mentioned

above, an interesting comment to be made is that we do not pass to the limit in the approximate ex-

pression for the strict tubular zeta function ζ̃
e,strict
m,ΓWm

obtained in [DL22]). Indeed, the exact expression

for this local tubular effective zeta function cannot, thus far, be determined explicitly. (It is the reason
why, in [DL22], we only give an approximate expression for this local tubular effective zeta function:

75



we cannot go to the limit in this approximate expression.)

Hereafter (as was the case in the proof of Theorem 5.9), a (complex-valued) meromorphic func-
tion f is viewed as a continuous function with values in the Riemann sphere (or complex projective
line) P1(C), equipped with the chordal metric, and such that, for any pole ω of f , f(ω) takes the
value ∞ (for instance, as in [LvF13], Section 3. 4 and Appendix C).

We can show that, for the chordal metric, defined, for all (z1, z2) ∈ (P1(C))2
by

∥z1, z2∥ =
∣z1 − z2∣√

1 + ∣z2
1∣

√
1 + ∣z2

2∣
, if z1 ≠∞ and z2 ≠∞ ,

and

∥z1,∞∥ = 1√
1 + ∣z2

1∣
, if z1 ≠∞ ,

we have, thanks to the local uniform convergence on C,

lim
m→∞

ÂÂÂÂÂζ̃
e,strict
m , ζ̃

e
W
ÂÂÂÂÂ = 0 .

Indeed, for any η > 0 and any compact set K ⊂ C, we can choose m1 ∈ N⋆ such that, for all
integers m ⩾ m1 and all s ∈ K, we have that

»»»»»ζ̃
e,strict
m (s) − ζ̃eW(s)»»»»» ⩽ η ,

and hence, still for m ⩾ m1 and all s ∈ K,

ÂÂÂÂÂζ̃
e,strict
m (s), ζ̃eW(s)ÂÂÂÂÂ ⩽

»»»»»ζ̃
e,strict
m (s) − ζ̃eW(s)»»»»» ⩽ η .

Definition 5.5 (Complex Dimensions of the Weierstrass Curve and of its Prefractal Ap-
proximations).

The Complex Dimensions of the Weierstrass Curve ΓW (or, rather, of the Weierstrass IFD) are the
poles of the global polyhedral effective zeta function ζ̃

e
W . To distinguish these Complex Dimensions

from those defined in our earlier paper [DL22] (via local effective tube zeta functions, we may wish to
call them intrinsic Complex Dimensions of ΓW (or, rather, of the associated IFD).

More specifically, the phrase “possible (or potential) Complex Dimensions” refers to those ω ∈ C
which appear as an ω-exponent in the fractal power series expansion (R40), on page 62; accordingly, its

associated residue may vanish (i.e., res (ζ̃eW , ω) = 0) or else, it may be nonzero (i.e., res (ζ̃eW , ω) ≠ 0).
In the latter case, ω is called an exact Complex Dimension of ΓW (or of the associated IFD).

We use an entirely similar definition for the Complex Dimensions of the prefractal approxima-
tions ΓWm

, for any m ∈ N⋆ sufficiently large, except for ζ̃
e
m instead of ζ̃

e
W and for the fractal powers

series in relation (R34), on page 61, instead of in relation (R40), on page 62.
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Theorem 5.13 (Exact (Intrinsic) Complex Dimensions of the Weierstrass Curve and of
its Prefractal Approximations).

i. Intrinsic Complex Dimensions of the m
th

Prefractal Approximation.

For all m ∈ N⋆ sufficiently large (i.e., for m ⩾ m0, for some optimal m0 ∈ N⋆), the Complex

Dimensions of the m
th

Prefractal Approximation ΓWm
to the Weierstrass Curve (i.e., the poles of ζ̃

e
m)

are given as follows:

ωjk,m,k = DW − k (2 −DW) ± i `jk,m,k p , with m ∈ N , 0 ⩽ k ⩽ m, (R 56)

where the integers `jk,m,k ∈ N (which depend on k and m) are given in Theorem 5.4, on page 36).

Note that the ± sign comes from the conjugate sums in the expression of ζ̃
e
m given in relation (R35),

on page 61.

We note that they only partly coincide with the possible poles of the tube fractal zeta function
ζ̃
e,tube
m = ζ̃

e,exact
m,ΓWm

. In particular, we then deduce that the following possible Complex Dimensions pre-

viously obtained in [DL22], i.e., 1 − 2 k ± i `p, with k ∈ N and ` ∈ Z, along with −2 and 0, are not
actual Complex Dimensions, in the sense introduced in the present paper.

Furthermore, without loss of generality, we may assume that for 0 ⩽ k ⩽ m, `jk,m,k ⩾ 0 (i.e., `jk,m,k ∈ N).
In addition, `jk,m,k = 0 if and only if ωjk,m,k is real (i.e., if and only if ωjk,m,k = DW − k (2 −DW)).

So that, as should be the case, the nonreal prefractal Complex Dimensions come in complex conju-
gate pairs.

ii. Intrinsic Complex Dimensions of the Weierstrass Curve.

The intrinsic Complex Dimensions of the Weierstrass Curve (i.e., the poles of ζ̃
e
W) are given as

follows:

ωjk,m,k = DW − k (2 −DW) ± i `jk,m,k p , with m ∈ N arbitrary and 0 ⩽ k ⩽ m, (R 57)

where the integers `jk,m,k ∈ N (which depend on k and m) are given in Theorem 5.4, on page 36).
Also, `jk,m,k = 0 if and only if ωjk,m,k = DW − k (2 −DW).

Moreover, they are simple and actual Complex Dimensions of ΓW ; i.e., they are simple and exact
Complex Dimensions of ΓW , in the sense of Definition 5.5, on page 76.

So that, as should be the case, the nonreal Complex Dimensions come in conjugate pairs.
In short, all of the possible (intrinsic) Complex Dimensions of ΓW (or of the associated IFD) are given
by relation (R57) above, are exact (still in the sense of Definition 5.5). There are infinitely many
(countably) of them. Furthermore, there are no other Complex Dimensions.

For the exceptional cases (depending on the values of the parameters λ and Nb), we refer to [DL22]
for a closely related discussion.
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Proof.

Let ω be a pole (i.e., a possible Complex Dimension) of the global effective fractal zeta function ζ̃
e
W ,

given by relation (R40) of Theorem 5.9, on page 61. ω is of the following form

ω = ωk,` = DW − k (2 −DW) + i `k,(Nb−1) j+q,m+1 p ,

with (k, j,m) ∈ N3
, 0 ⩽ q ⩽ Nb and `k,(Nb−1) j+q,m+1 ∈ Z arbitrary.

The residue of ζ̃
e
W at ωk,` is given by

res (ζ̃eW , ωk,`) = lim
s→ωk,`

(s − ωk,`) ζ̃eW(s)

= ε
m+1

αq(Nb) ck,(Nb−1) j+q,m+1 ,

(R 58)

where the nonzero coefficients αq(Nb) and ck,(Nb−1) j+q,m+1 are respectively given in Theorem 5.6, on

page 41 and in part ii. of Theorem 5.4, on page 36. This ensures that the residue of ζ̃
e
W at ωk,` is

nonzero: ωk,` is an actual Complex Dimension of the Weierstrass Curve.

Recall that in the standard mathematical theory of Complex Dimensions (see, e.g., [LvF13], [LRŽ17],
[Lap19]), a geometric object is said to be fractal if it admits at least one nonreal Complex Dimension
(defined as a pole of the associated geometric or fractal zeta function). [In the present context, the
fractal zeta function is the global polyhedral effective zeta function in the case of the Weierstrass
Curve ΓW (resp., the m

th
local polyhedral effective zeta function of its m

th
prefractal approximation,

with m ⩾ m0; see Definition 5.5, on page 76 above).]

In addition, given d ∈ R, it is fractal in dimension d if it has at least one nonreal Complex Dimen-
sion with real part d. (Note that nonreal Complex Dimensions come in complex conjugate pairs.) In
particular, it is principally fractal if it is fractal in dimension d (here, DW), the abscissa of convergence
of ζ̃

e
W (resp., of ζ̃

e
m, with m ⩾ m0), which is the largest possible value of d.

Accordingly, we have the following two corollaries (Corollaries 5.14 and 5.15) of Theorems 5.9, on
page 61 and 5.13, on page 77.

Corollary 5.14 (Fractality of the Weierstrass Curve).

The Weierstrass Curve ΓW (or the Weierstrass IFD) is fractal; in fact, it has infinitely (and
countably) many intrinsic Complex Dimensions given by Theorem 5.13, on page 77. In particular,
it is both principally fractal (since it has infinitely many intrinsic Complex Dimensions with real
part DW , the Minkowski dimension of ΓW) and is fractal in infinitely (and countably) many values
of d (namely, d = DW − k (2 −DW), with k ∈ N arbitrary and unrestricted).
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Figure 13: The Complex Dimensions of the Weierstrass IFD. The nonzero Complex

Dimensions are periodically distributed (with the same period p =
2π

lnNb
, the oscilla-

tory period of the Weierstrass IFD) along countably many vertical lines, with abscis-
sae DW − (k − 1) (2 −DW), where k ∈ N is arbitrary.
For the sake of representation, there is a different color for each vertical line, and a spe-
cific symbol is used to plot the imaginary parts of the Complex Dimensions associated
with a given vertical line.
For the sake of simplicity, we have omitted the exact Complex Dimensions 2 and 0, as
well as the possible Complex Dimensions 1 + inp, with n ∈ Z arbitrary. Note that in
light of Theorem 5.13, on page 77, the intrinsic Complex Dimensions form an appro-
priate subset of the set of Complex Dimensions depicted in the figure. They appear on
each vertical line (which they necessarily intersect at countably many points), both on
the real axis and in (nonreal) complex conjugate pairs.

Corollary 5.15 (Fractality of the Prefractal Approximations).

For all sufficiently large positive integers m (i.e., for all m ⩾ m0; see the proof on page 64 (of

Theorem 5.9, on page 61), the m
th

prefractal approximation ΓWm
to the Weierstrass Curve ΓW is

fractal and even, principally fractal. More specifically, it is fractal in dimension d, for precisely the
following values of d:

d = DW − k (2 −DW) ,
with k being an arbitrary integer satisfying 0 ⩽ k ⩽ m.
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Indeed, the intrinsic Complex Dimensions of ΓWm
(for any m ⩾ m0) are all simple and exact;

furthermore, they are given by

ωjk,m,k = DW − k (2 −DW) ± i `jk,m,k p , with m ∈ N , 0 ⩽ k ⩽ m,

where the integers k ∈ N and the integers `jk,m,k ∈ N (which depend on k and m) are given in The-
orem 5.4, on page 36, with `jk,m,k = 0 if and only if ωjk,m,k is real, i.e., ωjk,m,k = DW − k (2 −DW)).

Note that the ± sign comes from the complex conjugate sums in the expression of ζ̃
e
m given in rela-

tion (R35), on page 61.

Proof. Corollary 5.15 follows at once from Theorem 5.13, on page 77.

The statement regarding the exactness of the Complex Dimensions in Corollary 5.14, on page 78,
is proved in the same way as its counterpart in the proof of Theorem 5.13.

Remark 5.10 (Difference Between the Fractal and Prefractal Cases).

Observe that there is an important and natural difference between ΓW and of the m
th

prefrac-
tal approximation ΓWm

itself, for any m ⩾ m0. Namely, ΓW is fractal for infinitely many values
of d (namely, d = dk = DW − k (2 −DW), for any k ∈ N), whereas, for all m ⩾ m0, ΓWm

is only
fractal for finitely many values of d ∈ R (namely, d = dk = DW − k (2 −DW), for any k ∈ N such
that 0 ⩽ k ⩽ m).

Here, by analogy with [LRŽ17], [Lap19], given d ∈ R, we say that ΓW is fractal in dimension d
if ΓW has nonreal (intrinsic) Complex Dimensions with real part d; and similarly for ΓWm

.

Remark 5.11 (Connections with Fractal Cohomology).

In our previous work [DL24d], we proved that the cohomology groups associated with the Weier-
strass Curve ΓW consist of continuous functions (on ΓW) which are expressed in terms of (finite, or
countably infinite) sums indexed by the Complex Dimensions 2 − k (2 −DW) − i `k p, where p de-
notes the oscillatory period of the Weierstrass Curve, for k ∈ N arbitrary, and where `k ∈ Z satisfies
a specific condition governed by the underlying geometry of the Curve. Except for this latter and
specific condition, our results in Theorem 5.13, on page 77 just above, are precisely of the same form
as in [DL24d], with an additional condition expressed in terms of the integers involved in the imaginary
part of the Complex Dimensions associated with the fractal cohomology group, which appears as a
natural feature in the fractal cohomological context of [DL24d].

6 Revisiting the Computation of the Minkowski Dimension

In this section, we provide a fully rigorous proof of the fact that the Minkowski dimension –
which, as is well known, coincides with the box-counting (or box) dimension DW of the Weierstrass
Curve ΓW – is given by the expected formula, originally conjectured by Benôıt Mandelbrot in [Man82]
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(in Chapter XI, on top of page 390). Note that B. Mandelbrot only mentioned he was talking about
the fractal dimension and did not specify wether it was the Hausdorff or the Minkowski dimension.

In our present context (see Theorem 6.1, on page 81 below), we have that DW = 2 −
ln 1

λ

lnNb
.

It appears that earlier proofs of this fact were either not full rigorous or complete. The methods
developed in the present paper and in our earlier work, especially, [DL22] and [DL24c], building in
part upon the geometric approach of [Dav18], enable us to establish, in a new manner, Mandelbrot’s
conjecture.

When it comes to computing the box-counting – or Minkowski dimension – of a fractal, one usu-
ally proceeds by using a (classical) cover of the fractal under study, constituted of balls; namely, in
dimension 2, disks or squares; see Definition 6.1, on page 81 below.

However, when a non self–affine, complicated fractal curve, as the Weierstrass Curve is involved,
such methods are not optimal. In fact, covering such a curve with disks or squares is not natural. We
hereafter propose to consider, instead, the polyhedral neighborhoods introduced in Definition 3.5, on
page 11.

Definition 6.1 (Box-Counting Dimension).

As can be found, for instance, in [Fal86], we recall that the box-counting dimension (or box dimen-
sion, in short), of ΓW , is given by

DW = − lim
δ→0+

lnNδ (ΓW)
ln δ

, (⋄)

where Nδ (ΓW) stands for any of the following quantities:

i. the smallest number of sets (here, subsets of R2
) of diameter at most δ that cover ΓW on [0, 1[ ;

ii. the smallest number of closed balls (disks, here) of radius δ that cover ΓW on [0, 1[ ;

iii. the smallest number of cubes (squares, here) of side δ that cover ΓW on [0, 1[;

iv. the number of δ–mesh cubes (squares, here) that intersect ΓW on [0, 1[;

v. the largest number of disjoint balls (disks, here) of radius δ with centers in ΓW on [0, 1[.

Furthermore, for the Weierstrass Curve ΓW , as, more generally, for any bounded subset of Eu-
clidean space – the box-counting dimension coincides with the Minkowski dimension.

Theorem 6.1. The box-counting dimension – or, equivalently, the Minkowski dimension – of the

Weierstrass Curve ΓW exists and is equal to DW = 2 +
lnλ

lnNb
.

Proof. We simply apply the result given in Corollary 5.2, on page 34. We then have the existence of
an integer m0 ∈ N such that
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∀m ⩾ m0 ∶ ΓW ⊂ D (ΓWm
) .

In other words, for all integers m ⩾ m0, the polyhedral neighborhood D (ΓWm
) covers the Weier-

strass Curve ΓW .

Note that we thus dispose, with the sequence of polyhedral domains (D (ΓWm
))m⩾m0

, of a nonusual

(but admissible, in the sense of Definition 6.1, on page 81 above) sequence of covers. However, (D (ΓWm
))m⩾m0

is the most natural and optimal sequence of covers of the Weierstrass Curve ΓW , insofar that for
any m ⩾ m0, each domain D (ΓWm

) contains the Weierstrass Curve ΓW , while, at the same time,
the sequence (D (ΓWm

))m⩾m0
converges to ΓW . This, in particular, means that when m→∞, the

two-dimensional Lebesgue measure (i.e., area) of each polygon belonging to D (ΓWm
) tends to 0.

For allm ∈ N⋆, each polygon belonging to D (ΓWm
) has a vertical height at most equal to (Nb − 1)hm

(this directly comes from the definition of hm; see relation (R5), on page 14, and an horizontal width at
most equal to (Nb − 1) εmm. Note now that, thanks to Remark 4.3, on page 22, we have that hm ≫ ε

m
m .

Hence, it is the cohomology infinitesimal ε
m
m which plays the role of the elementary diameter δ in

Definition 6.1, on page 81. Moreover, the area of each polygon belonging to D (ΓWm
) also corresponds

to the area of the reunion of
(Nb − 1)hm

εmm
elementary and smaller polygons, each of diameter ε

m
m,

where the diameter of a polygon is to be understood in the sense of the largest distance between any
pair of vertices of the considered polygon.

Since D (ΓWm
) consists itself of the reunion of (2Nm

b − 1) = 2 ε
−m
m

Nb − 1
− 1 polygons, we then obtain

the box-counting dimension as

− lim
m→∞

ln(( 2 ε
−m
m

Nb − 1
− 1) (Nb − 1)hm

εmm
)

ln εmm
= − lim

m→∞

ln (ε−2m
m hm)
ln εmm

.

Thanks to the estimate given in Property 3.13, on page 17, we have that

Cinf (εmm)2−DW
⩽ hm ⩽ Csup (εmm)2−DW ,

where the constants Cinf and Csup do not depend on m, and are such that

0 < Cinf < Csup <∞ ,

which ensures that

Cinf (εmm)−DW
⩽ ε

−2m
m hm ⩽ Csup (εmm)−DW ,

and, consequently,

lnCinf −DW ln (εmm) ⩽ ln (ε−2m
m hm) ⩽ lnCsup −DW ln (εmm) .

Since lim
m→∞

ε
m
m = 0, we obviously have that

lim
m→∞

lnCinf

ln (εmm) = lim
m→∞

lnCsup

ln (εmm) = 0 ,

from which we immediately deduce that the value of the box-counting dimension of the Weierstrass
Curve is exactly
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− lim
m→∞

ln (ε−2m
m hm)
ln εmm

= DW .

This concludes the proof of the existence of the box-counting (i.e., the Minkowski) dimension and

of the fact that it is given by DW = 2 +
lnλ

lnNb
.

7 A Bridge to Fractal Cohomology

In [DL24d], we established the connections between the Complex Dimensions of a fractal object,
and the associated fractal cohomology. In the test case of the Weierstrass Curve ΓW , we obtained a
complete characterization of all the elements of the cohomology groups associated to the Curve, which
consist of continuous functions (on the Weierstrass Curve ΓW), expressed in terms of Taylor–like ex-
pansions, with fractional derivatives of orders the underlying – and actual – Complex Dimensions of
the Weierstrass function W. As powerful as this result stands, there remained an unanswered ques-
tion, insofar as the Complex Dimensions involved did not comprise all the possible values obtained
in [DL22] by means of the (classical) tube zeta functions, defined via ordinary (Euclidean) neighbor-
hoods; namely, −2, 0 and 1.

Our effective local and global polyhedral fractal zeta functions enables us to finally answer this
remaining question: their poles, which exactly correspond to the Complex Dimensions both of the
Weierstrass Curve ΓW and of the Weierstrass function W, do not include the values −2, 0 and −1 + i `p
where, contrary to our present results, ` ∈ Z is arbitrary.

More specifically, the possible Complex Dimensions are all exact and precisely of the following
form: DW − k (2 −DW) + i `p, where k ∈ N and for a specific choice of ` ∈ Z. Note that the afore-
mentioned classical approach gives a less precise result, without any condition on ` ∈ Z.

For this reason, we claim that the polyhedral approach, by means of polyhedral neighborhoods and
polyhedral fractal zeta functions, is intrinsic, as well as appears to be more natural and better suited
than the tubular (or Euclidean) approach introduced in [DL22] to the study of a more general class of
fractal curves, including the Takagi function, the Knopp functions, along with the Koch function and
the Koch Curve. The connections with fractal cohomology – and the fact that we fall back on the same
values of the Complex Dimensions of the fractal curve involved – open new perspectives in terms of the
understanding of those everywhere singular objects. In particular, the polygons which constitute the
polyhedral neighborhoods certainly play an important role in the simplicial (and natural) homology,
dual to the fractal cohomology introduced in [DL23] and [DL24d], and to be developed in a later book
of the authors.
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