
HAL Id: hal-04153049
https://hal.science/hal-04153049v1

Preprint submitted on 6 Jul 2023 (v1), last revised 22 Nov 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polyhedral Neighborhoods vs Tubular Neighborhoods:
New Insights for the Fractal Zeta Functions

Claire David, Michel L Lapidus

To cite this version:
Claire David, Michel L Lapidus. Polyhedral Neighborhoods vs Tubular Neighborhoods: New Insights
for the Fractal Zeta Functions. 2023. �hal-04153049v1�

https://hal.science/hal-04153049v1
https://hal.archives-ouvertes.fr


Polyhedral Neighborhoods vs Tubular Neighborhoods:

New Insights for the Fractal Zeta Functions

Claire David
1
and Michel L. Lapidus

2 ∗

July 5, 2023

1
Sorbonne Université

CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 4, place Jussieu 75005, Paris, France

2
University of California, Riverside, Department of Mathematics,

Skye Hall, 900 University Ave., Riverside, CA 92521-0135, USA

Abstract

MSC Classification: 28A75-28A80-35R02-57Q70.

Keywords: Weierstrass Curve, iterated fractal drum (IFD), fractal zeta functions, Complex Di-
mensions of an IFD, box–counting (or Minkowski) dimension, cohomology infinitesimal, polyhedral
measure, polyhedral neighborhood, effective local and global polyhedral zeta functions.

Contents

1 Introduction 2

2 Geometry of the Weierstrass Curve 3

3 Polyhedral Measure, Polyhedral Neighborhoods 19

4 Revisiting the Computation of the Minkowski Dimension 48

∗
The research of M. L. L. was supported by the Burton Jones Endowed Chair in Pure Mathematics, as well as by

grants from the U. S. National Science Foundation.

1



1 Introduction

Fractal zeta functions are classically often obtained ans of tube formulas. However, when it comes
to fractals obtained by means of nonlinear and noncontractive iterated function system (i.f.s.), as
is the case for the Weierstrass Curve (see [Dav18]), difficulties arise. Indeed, we cannot obtain the

expression of the volume of the general tubular neigborhood of the m
th

prefractal approximation –
and, hence, of the associated geometric tube zeta function. Note that, in addition, nonlinearity makes
the geometry awfully complicated; in particular, one cannot obtain the exact values of the underlying
elementary lengths and angles. As a consequence, we only dispose of an approximate expression of the
tube zeta function. In practise, since the approximation only concerns the coefficients in factor of the
residues, and since we dispose of sharp estimates of those coefficients, we can obtain the exact values
of the poles – and, hence, of the Complex Dimensions associated to each prefractal approximation.
However, a natural question is wether the Complex Dimensions of the fractal are the same as those
of the prefractal approximations.

In [DL22a], we gave a partial anwser, by introducing the concept of Weierstrass Iterated Fractal
Drums (in short, Weierstrass IFDs), by analogy with the relative fractal drums involved, for instance,
in the case of the Cantor Staircase, in [LRŽ17], Section 5.5.4, and in [LRŽ18]. Weierstrass IFDs
simply consist in a sequence of polygonal domains which contain the Weierstrass Curve ΓW , and are
sufficiently close to ΓW . As is first explained in [DL22a], we could expect the Complex Dimensions
of the IFD to be the same as the Comple Dimensions of the Weierstrass Curve ΓW . An interest-
ing argument arises if we consider the fractal Complex Dimensions as dynamical quantities, which
evolve with the scales: to each prefractal approximation ΓWm

of ΓW , we can associate specific values
of the Complex Dimensions, as is proved in [DL22d]. In this light, it is natural to define the Com-
plex Dimensions of the Weierstrass Curve as the set of the Complex Dimensions of the Weierstrass IFD.

In [DL22b], we have introduced a specific polyhedral measure, by means of a polygonal neigh-
borhood of the Weierstrass Curve ΓW . It so happens that the sequence of polygonal neighborhoods
and the sequence of tubular neighborhoods associated with the Weierstrass IFD are nested: given
any integer m ∈ N, there exists m1 ∈ N such that, for all k ⩾ m1, the polygonal neighborhood of
the m

th
prefractal approximation contains, but for a finite number of wedges, the (m + k, εm+km+k)–

neighborhood. On the other hand, there also exists m2 ∈ N such that, for all k ⩾ m1, the polygonal
neighborhood of the m

th
tubular neighborhood contains the (m + k, εm+km+k) polygonal neighborhood.

In light of this, it was natural to consider the fractal zeta functions associated with the sequence of
polygonal neighborhoods, instead of the fractal zeta functions associated with the sequence of tubular
neighborhoods. For this sequence, as will be shown, in the present paper, not only do we dispose of the
exact expression of the polygonal neighborhood, at a given step of the prefractal approximation, but
we also have the recurrence relation between consecutive fractal zeta functions. This, in particular,
enables us to prove that the limit fractal zeta function – the one associated with the limit fractal
object – has the same (possible) poles as the fractal zeta function at a given step of the prefractal
approximation, and, hence, that the Complex Dimensions of the fractal are exactly the same as the
Complex Dimensions of any sufficiently good prefractal approximation.

We point out that our result is stronger than the one obtained in [DL22c], where the values of
the possible Complex Dimensions of the Weierstrass IFD included −2. While such a result can seem
intriguing, it simply comes from the fact that tubular neighborhoods involve wedges, whose contri-
bution leads to the occurence of −2 as a possible pole of the associated local fractal effective tube
zeta function. Indeed, as we will see, polyhedral neighborhoods, which are the natural neighborhoods
adapted to fractal curves, do not lead to this value as a possible pole of the associated local fractal
effective polyhedral zeta function. More precisely, since the volume of the polyhedral neighborhood
of each prefractal approximation can be expressed by means of the Weierstrass function, the possible
Complex Dimensions are exactly the same as the Complex Dimensions of the Weierstrass function
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itself, as obtained in [DL22d].

Our main results in the present setting can be found in the following places:

i. In Definition 3.4, on page 23, where we introduce the sequence of polyhedral neighborhoods.

ii. In Property 3.11, on page 26, where we show that the polyhedral and tubular neighborhoods
are nested.

iii. In Property 3.13, on page 32, where we give the exact expression of the m
th

–polygonal neigh-
borhood.

iv. In Theorem 3.16, on page 40, where we introduce the local and global effective polyhedral zeta
function.

v. In Theorem 4.1, on page 48, where we give a new proof of the computation of the box–counting
dimension (or, equivalently, of the Minkowski dimension) of the Weierstrass Curve ΓW , by simply
using the covers of ΓW by polyhedral neighborhoods.

2 Geometry of the Weierstrass Curve

We begin by reviewing the main geometric properties of the Weierstrass Curve (and of the associ-
ated IFD), which will be key to our work in the rest of this paper.

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame.
The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical axes will be
respectively referred to as (x′x) and (y′y).

Notation 1 (Set of all Natural Numbers, and Intervals).

As in Bourbaki [Bou04] (Appendix E. 143), we denote by N = {0, 1, 2, . . .} the set of all natural
numbers, and set N⋆ = N \ {0}.

Given a, b with −∞ ⩽ a ⩽ b ⩽∞, ]a, b[ = (a, b) denotes an open interval, while, for example,
]a, b] = (a, b] denotes a half-open, half-closed interval.

Notation 2 (Wave Inequality Symbol).

Given two positive numbers a and b, we will use the notation a ≲ b when there exists a strictly
positive constant C such that a ⩽ C b.

Notation 3 (Weierstrass Parameters).
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In the sequel, λ and Nb are two real numbers such that

0 < λ < 1 , Nb ∈ N⋆ and λNb > 1 ⋅ (♣) (R 1)

Note that this implies that Nb > 1; i.e., Nb ⩾ 2, if Nb ∈ N⋆, as will be the case in this paper.

As explained in [Dav19], we deliberately made the choice to introduce the notation Nb which
replaces the initial number b, in so far as, in Hardy’s paper [Har16] (in contrast to Weierstrass’
original article [Wei75]), b is any positive real number satisfying λ b > 1, whereas we deal here with
the specific case of a natural integer, which accounts for the natural notation Nb.

Definition 2.1 (Weierstrass Function, Weierstrass Curve).

We consider the Weierstrass function W (also called, in short, the W-function) defined, for any
real number x, by

W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x) ⋅ (R 2)

We call the associated graph the Weierstrass Curve, and denote it by ΓW .

Due to the one–periodicity of the Weierstrass function (since Nb ∈ N⋆), from now on, and without
loss of generality, we restrict our study to the interval [0, 1[= [0, 1). Note that W is continuous, and
hence, bounded on all of R. In particular, ΓW is a (nonempty) compact subset of R2

.

Property 2.1 (Scaling Properties of the Weierstrass Function, and Consequences [DL22c]).

Since, for any real number x, W(x) =
∞

∑
n=0

λ
n

cos (2πNn
b x), one also has

W(Nb x) =
∞

∑
n=0

λ
n

cos (2πN
n+1
b x) = 1

λ

∞

∑
n=1

λ
n

cos (2πNn
b x) =

1

λ
(W(x) − cos (2π x)) ,

which yields, for any strictly positive integer m and any j in {0, . . . ,#Vm},

W ( j

(Nb − 1)Nm
b

) = λW ( j

(Nb − 1)Nm−1
b

) + cos ( 2π j

(Nb − 1)Nm
b

) .

By induction, one then obtains that

W ( j

(Nb − 1)Nm
b

) = λmW ( j

(Nb − 1)) +
m−1

∑
k=0

λ
k

cos( 2πN
k
b j

(Nb − 1)Nm
b

) .

Definition 2.2 (Weierstrass Complexified Function).

We introduce the Weierstrass Complexified function Wcomp, defined, for any real number x, by
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Wcomp(x) =
∞

∑
n=0

λ
n
e

2 i π N
n
b x .

Clearly, Wcomp is also a continuous and 1-periodic function on R.

Notation 4 (Logarithm).

Given y > 0, ln y denotes the natural logarithm of y, while, given a > 0, a ≠ 1, lna y =
ln y

ln a
denotes

the logarithm of y in base a; so that, in particular, ln = lne.

Notation 5 (Minkowski Dimension and Hölder Exponent).

For the parameters λ and Nb satisfying condition (♣) (see Notation 3, on page 3), we denote by

DW = 2 +
lnλ

lnNb
= 2 − lnNb

1

λ
∈ ]1, 2[

the box–counting dimension (or Minkowski dimension) of the Weierstrass Curve ΓW , which happens
to be equal to its Hausdorff dimension [KMPY84], [BBR14], [She18], [Kel17]. We point out that the
results in our previous paper [DL22c], combined with those obtained in the present paper in Section 4
below, will also provide a direct geometric proof of the fact that DW , the Minkowski dimension (or
box–counting dimension) of ΓW , exists and takes the above values, as well as of the fact that W is
Hölder continuous with optimal Hölder exponent

2 −DW = −
lnλ

lnNb
= lnNb

1

λ
.

Convention (The Weierstrass Curve as a Cyclic Curve).

In the sequel, we identify the points (0,W(0)) and (1,W(1)) = (1,W(0)). This is justified by the
fact that the Weierstrass function W is 1–periodic, since Nb is an integer.

Remark 2.1. The above convention makes sense, because, in addition to the periodicity property of
the W-function, the points (0,W(0)) and (1,W(1)) have the same vertical coordinate.

Property 2.2 (Symmetry with Respect to the Vertical Line x =
1

2
).

Since, for any x ∈ [0, 1],

W(1 − x) =
∞

∑
n=0

λ
n

cos (2πNn
b − 2πN

n
b x) =W(x) ,

the Weierstrass Curve is symmetric with respect to the vertical straight line x =
1

2
.

5



Proposition 2.3 (Nonlinear and Noncontractive Iterated Function System (IFS)).

Following our previous work [Dav18], we approximate the restriction ΓW to [0, 1[×R, of the
Weierstrass Curve, by a sequence of finite graphs, built via an iterative process. For this purpose, we
use the nonlinear iterated function system (IFS) consisting of a finite family of C

∞
bijective maps

from R2
to R2

and denoted by
TW = {T0, . . . , TNb−1} ,

where, for any integer i belonging to {0, . . . , Nb − 1} and any point (x, y) of R2
,

Ti(x, y) = (x + i
Nb

, λ y + cos (2π (x + i
Nb

))) .

Note that unlike in the classical situation, these maps are not contractions. Nevertheless, ΓW can
be recovered from this IFS in the usual way, as we next explain.

Property 2.4 (Attractor of the IFS [Dav18], [Dav19]).

The Weierstrass Curve ΓW is the attractor of the IFS TW , and hence, is the unique nonempty

compact subset K of R2
satisfying K =

Nb−1

⋃
i=0

Ti(K); in particular, we have that ΓW =

Nb−1

⋃
i=0

Ti(ΓW).

Notation 6 (Fixed Points).

For any integer i belonging to {0, . . . , Nb − 1}, we denote by

Pi = (xi, yi) = ( i

Nb − 1
,

1

1 − λ
cos ( 2π i

Nb − 1
))

the unique fixed point of the map Ti; see [Dav19].

Definition 2.3 (Sets of Vertices, Prefractals).

We denote by V0 the ordered set (according to increasing abscissae) of the points

{P0, . . . , PNb−1} .
The set of points V0 – where, for any integer i in {0, . . . , Nb − 2}, the point Pi is linked to the

point Pi+1 – constitutes an oriented finite graph, ordered according to increasing abscissae, which we
will denote by ΓW0

. Then, V0 is called the set of vertices of the graph ΓW0
.

For any nonnegative integer m, i.e., for m ∈ N, we set Vm =

Nb−1

⋃
i=0

Ti (Vm−1).

The set of points Vm, where two consecutive points are linked, is an oriented finite graph, ordered
according to increasing abscissae, called the m

th
order W-prefractal. Then, Vm is called the set of

vertices of the prefractal ΓWm
; see Figure 2, on page 10.
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Property 2.5 (Density of the Set V
⋆
= ⋃
n∈N

Vn in the Weierstrass Curve [DL22c]).

The set V
⋆
= ⋃
n∈N

Vn is dense in the Weierstrass Curve ΓW .

Definition 2.4 (Adjacent Vertices, Edge Relation).

For any m ∈ N, the prefractal graph ΓWm
is equipped with an edge relation ∼

m
, as follows: two

vertices X and Y of ΓWm
(i.e., two points belonging to Vm) will be said to be adjacent (i.e., neighboring

or junction points) if and only if the line segment [X,Y ] is an edge of ΓWm
; we then write X ∼

m
Y .

Note that this edge relation depends on m, which means that points adjacent in Vm might not remain
adjacent in Vm+1.

We refer to part iv. of Property 2.6, along with Figure 1, for the definition of the polygons Pm,k
and Qm,k associated with the Weierstrass Curve.

Property 2.6. [Dav18] For any m ∈ N, the following statements hold :

i. Vm ⊂ Vm+1 .

ii. #Vm = (Nb − 1) Nm
b + 1, where #Vm denotes the number of elements in the finite set Vm.

iii. The prefractal graph ΓWm
has exactly (Nb − 1) Nm

b edges.

iv. The consecutive vertices of the prefractal graph ΓWm
are the vertices of N

m
b simple nonregular

polygons Pm,k with Nb sides. For any strictly positive integer m, the junction point between two
consecutive polygons Pm,k and Pm,k+1 is the point

( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 1 .

Hence, the total number of junction points is N
m
b − 1. For instance, in the case Nb = 3, the

polygons are all triangles; see Figure 1, on page 9.

We call extreme vertices of the polygon Pm,k the junction points

Vinitial (Pm,k) = ( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 0 ⩽ k ⩽ N
m
b − 1 ,

and

Vend (Pm,k) = ((Nb − 1) (k + 1)
(Nb − 1)Nm

b

,W ( (Nb − 1) (k + 1)
(Nb − 1)Nm

b

)) , 0 ⩽ k ⩽ N
m
b − 2 .

In the sequel, we will denote by P0 the initial polygon, whose vertices are the fixed points of
the maps Ti, 0 ⩽ i ⩽ Nb − 1, introduced in Notation 6, on page 6 and Definition 2.3, on page 6,
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i.e., {P0, . . . , PNb−1}; see, again, Figure 1, on page 9.

In the same way, the consecutive vertices of the prefractal graph ΓWm
, distinct from the fixed

points P0 and PNb−1 (see Notation 6, on page 6), are also the vertices of N
m
b − 1 simple

nonregular polygons Qm,j, for 1 ⩽ j ⩽ N
m
b − 2, again with Nb sides. For any integer j such

that 1 ⩽ j ⩽ N
m
b − 2, one obtains each polygon Qm,j by connecting the point number j (i.e., with

the notation of Property 2.6, on page 10, the vertex Mj,m) to the point number j + 1 (i.e., the
vertex Mj+1,m) if j ≡ imod Nb, for 1 ⩽ i ⩽ Nb − 1, and the point number j to the point num-
ber j −Nb + 1 if j ≡ 0 mod Nb.

As previously, we call extreme vertices of the polygon Qm,k the junction points

Vinitial (Qm,k) = ( (Nb − 1) k
(Nb − 1)Nm

b

,W ( (Nb − 1) k
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 1 ,

and

Vend (Qm,k) = ((Nb − 1) (k + 1)
(Nb − 1)Nm

b

,W ( (Nb − 1) (k + 1)
(Nb − 1)Nm

b

)) , 1 ⩽ k ⩽ N
m
b − 2 .

Definition 2.5 (Polygonal Sets).

For any m ∈ N, we introduce the following polygonal sets

Pm = {Pm,k , 0 ⩽ k ⩽ N
m
b − 1} and Qm = {Qm,k , 0 ⩽ k ⩽ N

m
b − 2} .
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P0 P2

P1

polygon P1,0

polygon P1,1

polygon P1,2

polygon Q1,2polygon Q1,1

Initial polygon 

1
x

-1

1

y

Figure 1: The initial polygon P0, and the respective polygons P0,1, P1,1, P1,2, Q1,1, Q1,2,

in the case when λ =
1

2
and Nb = 3. (See also Figure 2, on page 10.)

Notation 7. For any m ∈ N, we denote by:

ii. X ∈ Pm (resp., X ∈ Qm) a vertex of a polygon Pm,k, with 0 ⩽ k ⩽ N
m
b − 1 (resp., a vertex of

a polygon Qm,k, with 1 ⩽ k ⩽ N
m
b − 2).

ii. Pm⋃Qm the reunion of the polygonal sets Pm and Qm, which consists in the set of all the
vertices of the polygons Pm,k, with 0 ⩽ k ⩽ N

m
b − 1, along with the vertices of the polygons Qm,k,

with 1 ⩽ k ⩽ N
m
b − 2. In particular, X ∈ Pm⋃Qm simply denotes a vertex in Pm or Qm.

iii. Pm⋂Qm the intersection of the polygonal sets Pm and Qm, which consists in the set of all the
vertices of both a polygon Pm,k, with 0 ⩽ k ⩽ N

m
b − 1, and a polygon Qm,k′ , with 1 ⩽

′
k ⩽ N

m
b − 2.
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1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

Figure 2: The prefractal graphs ΓW0
, ΓW1

, ΓW2
, ΓW3

, ΓW4
, ΓW5

, in the case when λ =
1

2
and Nb = 3. For example, ΓW1

is on the right side of the top row, while ΓW4
is on the

left side of the bottom row.

Definition 2.6 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles).

Given a strictly positive integer m, we denote by (Mj,m)0⩽j⩽(Nb−1)Nm
b

the set of vertices of the

prefractal graph ΓWm
. One thus has, for any integer j in {0, . . . , (Nb − 1)Nm

b }:

Mj,m = ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) .

We also introduce, for any integer j in {0, . . . , (Nb − 1)Nm
b − 1}:

i. the elementary horizontal lengths:
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Lm =
j

(Nb − 1)Nm
b

; (R 3)

ii. the elementary lengths:

`j,j+1,m = d (Mj,m,Mj+1,m) =
√
L2
m + h

2
j,j+1,m ,

where hj,j+1,m is defined in iii. just below.

iii. the elementary heights:

hj,j+1,m =

»»»»»»»»
W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

)
»»»»»»»»

;

iv. the minimal height:

h
inf
m = inf

0⩽j⩽(Nb−1)Nm
b −1

hj,j+1,m , (R 4)

along with the the maximal height:

hm = sup
0⩽j⩽(Nb−1)Nm

b −1

hj,j+1,m , (R 5)

v. the geometric angles:

θj−1,j,m = ̂((y′y), (Mj−1,mMj,m)) , θj,j+1,m = ̂((y′y), (Mj,mMj+1,m)) ,

which yield the value of the geometric angle between consecutive edges,
namely, [Mj−1,mMj,m,Mj,mMj+1,m]:

θj−1,j,m + θj,j+1,m = arctan
Lm

∣hj−1,j,m∣
+ arctan

Lm

∣hj,j+1,m∣
.

Property 2.7. For the geometric angle θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b , m ∈ N, we have the following

relation:

tan θj−1,j,m =
hj−1,j,m

Lm
.

Property 2.8 (A Consequence of the Symmetry with Respect to the Vertical Line x =
1

2
).

For any strictly positive integer m and any j in {0, . . . ,#Vm}, we have that

W ( j

(Nb − 1)Nm
b

) =W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

) ,

which means that the points
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((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

,W ((Nb − 1)Nm
b − j

(Nb − 1)Nm
b

)) and ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

are symmetric with respect to the vertical line x =
1

2
; see Figure 3, on page 12.

Definition 2.7 (Left–Side and Right–Side Vertices).

Given natural integers m, k such that 0 ⩽ k ⩽ N
m
b − 1, and a polygon Pm,k, we define:

i. The set of its left–side vertices as the set of the first [Nb − 1

2
] vertices, where [y] denotes the

integer part of the real number y.

ii. The set of its right–side vertices as the set of the last [Nb − 1

2
] vertices.

When the integer Nb is odd, we define the bottom vertex as the (Nb − 1

2
)
th

one; see Figure 4, on

page 13.

M j-1,m

M j-1+p,m

M(Nb-1)Nb
m
- j+1,m

M(Nb-1)Nb
m
- j+1-p,m

x =
1

2

1
x

-1

1

y

Figure 3: Symmetric points with respect to the vertical line x =
1

2
.
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Left - side vertices Right - side vertices

Bottom vertex

x

y

Left - side vertices

Right - side vertices

Bottom vertex

1
x

-1

1

y

Figure 4: The Left and Right–Side Vertices.

Property 2.9 ([DL22c]).

For any integer j in {0, . . . , Nb − 1}:

W ( j

Nb − 1
) =

∞

∑
n=0

λ
n

cos (2πN
n
b

j

(Nb − 1)) =
∞

∑
n=0

λ
n

cos ( 2π j

Nb − 1
) = 1

1 − λ
cos ( 2π j

Nb − 1
) .

Property 2.10 ([DL22c]).

For 0 ⩽ j ⩽
(Nb − 1)

2
(resp., for

(Nb − 1)
2

⩽ j ⩽ Nb − 1), we have that

W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩽ 0 (resp., W ( j + 1

Nb − 1
) −W ( j

Nb − 1
) ⩾ 0) .

Notation 8 (Signum Function).

The signum function of a real number x is defined by

sgn (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1, if x < 0,
0, if x = 0,
+1, if x > 0 .

Property 2.11 ([DL22c]).

Given any strictly positive integer m, we have the following properties:

i. For any j in {0, . . . ,#Vm}, the point

( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

))

13



is the image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i)) = (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

,W (j − i (Nb − 1)Nm−1
b

(Nb − 1)Nm−1
b

))

under the map Ti, where i ∈ {0, . . . , Nb − 1} is arbitrary.

Consequently, for 0 ⩽ j ⩽ Nb − 1, the j
th

vertex of the polygon Pm,k, 0 ⩽ k ⩽ N
m
b − 1, i.e.,

the point

((Nb − 1) k + j
(Nb − 1)Nm

b

,W ((Nb − 1) k + j
(Nb − 1)Nm

b

)) ,

is the image of the point

⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

,W
⎛
⎜
⎝
(Nb − 1) (k − i (Nb − 1)Nm−1

b ) + j
(Nb − 1)Nm−1

b

⎞
⎟
⎠
⎞
⎟
⎠

under the map Ti, where i ∈ {0, . . . , Nb − 1} is again arbitrary. It is also the j
th

vertex of
the polygon Pm−1,k−i (Nb−1)Nm−1

b
. Therefore, there is an exact correspondance between vertices

of the polygons at consecutive steps m − 1, m.

ii. Given j in {0, . . . , Nb − 2} and k in {0, . . . , N
m
b − 1}, we have that

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm
b

) −W (k (Nb − 1) + j
(Nb − 1)Nm

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) .

Proof.

i. Given m ∈ N⋆, let us consider i ∈ {0, . . . , Nb − 1}. The image of the point

( j

(Nb − 1)Nm−1
b

− i,W ( j

(Nb − 1)Nm−1
b

− i))

under the map Ti is obtained by applying the analytic expression given in Property 2.3, on page 6,
to the coordinates of this point, which, thanks to Property 2.1, on page 4 above, yields the expected
result, namely,

14



⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

j

(Nb − 1)Nm
b

, λ W ( j

(Nb − 1)Nm−1
b

− i)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W ( j

(Nb − 1)Nm−1
b

)

(by 1–periodicity)

+ cos
2π j

(Nb − 1)Nm
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ( j

(Nb − 1)Nm
b

,W ( j

(Nb − 1)Nm
b

)) .

ii. See [DL22c].

Property 2.12 (Lower Bound and Upper Bound for the Elementary Heights [DL22c]).

For any strictly positive integer m and any j in {0, . . . , (Nb − 1)Nm
b }, we have the following esti-

mates, where Lm is the elementary horizontal length introduced in part i. of Definition 2.6, on page 10:

Cinf L
2−DW
m ⩽ ∣W ((j + 1)Lm) −W (j Lm)∣

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
hj,j+1,m

⩽ Csup L
2−DW
m , m ∈ N, 0 ⩽ j ⩽ (Nb − 1)Nm

b , (✠)

where the finite and positive constants Cinf and Csup are given by

Cinf = (Nb − 1)2−DW min
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) .

One should note, in addition, that these constants Cinf and Csup depend on the initial polygon P0.

As a consequence, we also have that

Cinf L
2−DW
m ⩽ h

inf
m ⩽ Csup L

2−DW
m and Cinf L

2−DW
m ⩽ hm ⩽ Csup L

2−DW
m ,

where h
inf
m and hm respectively denote the minimal and maximal heights introduced in part iv. of Def-

inition 2.6, on page 10.
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Theorem 2.13 (Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Func-
tion [DL22c]).

For any natural integer m (i.e., for any m ∈ N), let us consider a pair of real numbers (x, x′)
such that

x =
(Nb − 1) k + j
(Nb − 1)Nm

b

= ((Nb − 1) k + j) Lm , x
′
=

(Nb − 1) k + j + `
(Nb − 1)Nm

b

= ((Nb − 1) k + j + `) Lm ,

where 0 ⩽ k ⩽ Nb − 1
m − 1. We then have the following (discrete, local) reverse-Hölder inequality,

with sharp Hölder exponent −
lnλ

lnNb
= 2 −DW :

Cinf ∣x′ − x∣2−DW
⩽

»»»»»W(x′) −W(x)»»»»» ,

where (x,W(x)) and (x′,W(x′)) are adjacent vertices of the same m
th

prefractal approximation, ΓWm
,

with m ∈ N arbitrary. Here, Cinf is given as in Property 2.12, on page 15 just above.

Corollary 2.14 (Optimal Hölder Exponent for the Weierstrass Function (see [DL22c])).

The local reverse Hölder property of Theorem 2.13, on page 16 just above – in conjunction with
the Hölder condition satisfied by the Weierstrass function (see also [Zyg02], Chapter II, Theorem 4.9,

page 47) – shows that the Codimension 2 −DW = −
lnλ

lnNb
∈ ]0, 1[ is the best (i.e., optimal) Hölder

exponent for the Weierstrass function (as was originally shown, by a completely different method,
by G. H. Hardy in [Har16]).

Note that, as a consequence, since the Hölder exponent is strictly smaller than one, it follows that
the Weierstrass function W is nowhere differentiable.

Corollary 2.15 (of Property 2.12 (see [DL22c])).

Thanks to Property 2.12, on page 15, one may now write, for any strictly positive integer m and
any integer j in {0, . . . , (Nb − 1)Nm

b − 1}, and with Cinf and Csupf defined as in Property 2.12, on
page 15:

i. for the elementary heights:

hj−1,j,m = L
2−DW
m O (1) ; (R 6)

ii. for the elementary quotients:

hj−1,j,m

Lm
= L

1−DW
m O (1) , (R 7)

and where

0 < Cinf ⩽ O (1) ⩽ Csup <∞ .
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Corollary 2.16 (Nonincreasing Sequence of Geometric Angles (Coming from Property 2.11;
see [DL22c])).

For the geometric angles θj−1,j,m, 0 ⩽ j ⩽ (Nb − 1)Nm
b , m ∈ N, introduced in part v. of Defini-

tion 2.6, on page 10, we have the following result:

tan θj−1,j,m =
Lm

hj−1,j,m
(Nb − 1) > tan θj−1,j,m+1 ,

which yields

θj−1,j,m > θj−1,j,m+1 and θj−1,j,m+1 ≲ L
DW−1
m .

Corollary 2.17 (Local Extrema (Coming from Property 2.11, on page 13; see [DL22c]) ).

i. The set of local maxima of the Weierstrass function on the interval [0, 1] is given by

{((Nb − 1) k
Nm
b

,W ((Nb − 1) k
Nm
b

)) ∶ 0 ⩽ k ⩽ N
m
b − 1, m ∈ N} ,

and corresponds to the extreme vertices of the polygons Pm,k and Qm,k (see Property 2.6, on
page 7) at a given step m (i.e., they are the vertices connecting consecutive polygons; see part iv.
of Property 2.6, on page 7).

ii. For odd values of Nb, the set of local minima of the Weierstrass function on the interval [0, 1]
is given by

{(
(Nb − 1) k + Nb−1

2

(Nb − 1)Nm
b

,W (
(Nb − 1) k + Nb−1

2

(Nb − 1)Nm
b

)) ∶ 0 ⩽ k ⩽ N
m
b − 1, m ∈ N} ,

and corresponds to the bottom vertices of the polygons Pm,k and Qm,k at a given step m; see also
part iv. of Property 2.6, on page 7.

Property 2.18 (Existence of Reentrant Angles [DL22c]).

i. The initial polygon P0, admits reentrant interior angles, at a vertex Pj, with 0 < j ⩽ Nb − 1,
in the sense that, with the right-hand rule, according to which angles are measured in a counter-

clockwise direction ̂((PjPj+1) , (PjPj−1)) > π, in the case when

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1

(see Figure 5, on page 18), which does not occur for values of Nb < 7.

The number of reentrant angles is then equal to 2 [Nb − 3

4
].
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ii. At a given step m ∈ N⋆, with the above convention, a polygon Pm,k admits reentrant interior
angles in the sole cases when Nb ⩾ 7, at vertices Mk+j, 1 ⩽ k ⩽ N

m
b , 0 < j ⩽ Nb − 1, as well as

in the case when

0 < j ⩽
Nb − 3

4
or

3Nb − 1

4
⩽ j < Nb − 1 .

The number of reentrant angles is then equal to 2N
m
b [Nb − 3

4
].

Remark 2.2. Note that due to the respective definitions of the polygons Pm,k and Qm,k, the existence
of reentrant interior angles for Pm,k at a vertex Mk+j , 1 ⩽ k ⩽ N

m
b , 0 < j ⩽ Nb − 1, also results in

the existence of reentrant interior angles for Qm,k at the vertices Mk+j−1, 1 ⩽ k ⩽ N
m
b , 1 < j ⩽ Nb − 1

and Mk+j+1, 1 ⩽ k ⩽ N
m
b , 0 < j ⩽ Nb − 2.

P j-1

P j

P j+1

interior

reentrant

angle

1
x

-1

1

y

Figure 5: An interior reentrant angle. Here, Nb = 7 and λ =
1

2
.
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3 Polyhedral Measure, Polyhedral Neighborhoods

Our results on fractal cohomology obtained in [DL22d] (see also [DL22a]) have highlighted the role
played by specific threshold values for a sequence of geometric invariants at any step m ∈ N of the
prefractal graph approximation; namely, the sequence of the m

th
cohomology infinitesimals introduced

in Definition 3.1, on page 19 just below, which also plays a major part in studying the polyhedral
neighborhoods associated with the sequence of prefractal approximations of the Weierstrass Curve
(or, equivalently, of the Weierstrass IFD).

Definition 3.1 (m
th

Cohomology Infinitesimal [DL22c], [DL22d]).

From now on, given any m ∈ N, we will call m
th

cohomology infinitesimal the number ε
m
m > 0

which, modulo a multiplicative constant equal to
1

Nb − 1
, i.e., ε

m
m =

1

Nb − 1

1

Nm
b

(recall that Nb > 1),

stands as the elementary horizontal length introduced in part i. of Definition 2.6, on page 10, i.e.,

1

Nm
b

.

Observe that, clearly, εm itself – and not just ε
m
m – depends on m; hence, we should really

write ε
m
m = (εm)m, for all m ∈ N.

In addition, since Nb > 1, ε
m
m satisfies the following asymptotic behavior,

ε
m
m → 0 , as m→∞,

which, naturally, results in the fact that the larger m, the smaller ε
m
m. It is for this reason that we

call ε
m
m – or rather, the infinitesimal sequence (εmm)∞m=0 of positive numbers tending to zero as m→∞,

with ε
m
m = (εm)m, for each m ∈ N – an infinitesimal. Note that this m

th
cohomology infinitesimal is

the one naturally associated to the scaling relation of Property 2.1, on page 4.

In the sequel, it is also useful to keep in mind that the sequence of positive numbers (εm)∞m=0 itself
satisfies

εm ∼
1

Nb
, as m→∞ ;

i.e., εm →
1

Nb
, as m→∞. In particular, εm /→ 0, as m→∞, but, instead, εm tends to a strictly

positive and finite limit.

Remark 3.1 (Addressing Numerical Estimates).

From a practical point of view, an important question is the value of the ratio

Cohomology infinitesimal

Maximal height
=
ε
m
m

hm
;

see relation (R5), on page 11.

Thanks to the estimates given in relation (R7), on page 16, we have that
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ε
m
m

hm
= L

1−DW
m O (1) = εm (1−DW)

m O (1) ,

with
0 < Cinf ⩽ O (1) ⩽ Csup .

Given q ∈ N⋆, we then have

1

10q
Cinf ⩽

ε
m
m

hm
⩽

1

10q
Csup

when

Cinf
10q

⩽ e
(1−DW) lnLm

⩽
Csup
10q

,

or, equivalently, when

−
1

lnNb
ln((Nb − 1) (

Csup
10q

)
1

1−DW ) ⩽ m ⩽ −
1

lnNb
ln((Nb − 1) (

Cinf
10q

)
1

1−DW ) .

Numerical values for Nb = 3 and λ =
1

2
yield:

i. For q = 1: 2 ⩽ m ⩽ 3.

ii. For q = 2: 7 ⩽ m ⩽ 9.

iii. For q = 3: 13 ⩽ m ⩽ 15.

Hence, when m increases, the ratio
ε
m
m

hm
decreases, and tends to 0. This numerical – but very

practical and explicit argument – also accounts for our forthcoming use of neighborhoods, of width
equal to the cohomology infinitesimal.

We refer to part iv. of Property 2.6, on page 7 above, along with Figure 1, on page 9 for the defi-
nition of the polygons Pm,j (resp., Qm,j) associated with the Weierstrass Curve in the next definition,
as well as throughout the rest of this section. See also Definition 2.5, on page 8 where the polygonal
families are introduced.

Definition 3.2 (Power of a Vertex of the Prefractal Graph ΓWm
, m ∈ N⋆, with Respect to

the Polygonal Families Pm and Qm).

Given a strictly positive integer m, a vertex X of the prefractal graph ΓWm
will be said:

i. of power one relative to the polygonal family Pm if X belongs to (to be understood in the sense
that X is a vertex of) one and only one Nb–gon Pm,j , 0 ⩽ j ⩽ N

m
b − 1;

ii. of power
1

2
relative to the polygonal family Pm if X is a common vertex to two consecutive Nb–

gons Pm,j and Pm,j+1, 0 ⩽ j ⩽ N
m
b − 2;

iii. of power zero relative to the polygonal family Pm if X does not belong to (to be understood in
the sense that X is not a vertex of) any Nb–gon Pm,j ,
0 ⩽ j ⩽ N

m
b − 1.
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Similarly, given m ∈ N, a vertex X of the prefractal graph ΓWm
is said:

i. of power one relative to the polygonal family Qm if X belongs to (as above, to be understood in
the sense that X is a vertex of) one and only one Nb–gon Qm,j , 0 ⩽ j ⩽ N

m
b − 2;

ii. of power
1

2
relative to the polygonal family Qm if X is a common vertex to two consecutive Nb–

gons Qm,j and Qm,j+1, 0 ⩽ j ⩽ N
m
b − 3;

iii. of power zero relative to the polygonal family Qm if X does not belong to (as previously, to be
understood in the sense that X is not a vertex of) any Nb–gon Qm,j ,
0 ⩽ j ⩽ N

m
b − 2.

Notation 9. In the sequel, given a strictly positive integer m, the power of a vertex X of the prefractal
graph ΓWm

relative to the polygonal families Pm and Qm will be respectively denoted by

p(X,Pm) and p(X,Qm) .

Notation 10 (Lebesgue Measure on R2
).

In the sequel, we denote by µL the Lebesgue measure on R2
.

Notation 11. For any m ∈ N, and any vertex X of Vm, we set:

µ
L (X,Pm,Qm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Nb
p (X,Pm) ∑

0⩽j⩽Nm
b −1,X vertex of Pm,j

µL (Pm,j) , if X ∉ Qm ,

1

Nb
p (X,Qm) ∑

1⩽j⩽Nm
b −2,X vertex of Pm,j

µL (Qm,j) , if X ∉ Pm ,

1

2Nb

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p (X,Pm) ∑

0⩽j⩽Nm
b −1,X vertex of Pm,j

µL (Pm,j) + p (X,Qm) ∑
1⩽j⩽Nm

b −2,X vertex of Pm,j

µL (Qm,j)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

if X ∈ Pm ∩Qm .

Property 3.1. For any m ∈ N, and any pair (X,Y ) of adjacent vertices of Vm belonging to the
same polygon Pm,j, with 0 ⩽ j ⩽ N

m
b − 1 (resp., Qm,j, with 0 ⩽ j ⩽ N

m
b − 2), we have that

deucl(X,Y ) =
√
h2
jm + L

2
m > ∣hjm∣ ,

which, due to the inequality given in Property 2.12, page 15, ensures that

1

deucl(X,Y ) <
1

∣hjm∣ ≲ L
DW−2
m ≲ N

(2−DW)m
b .

At the same time, we also have that

deucl(X,Y ) ≲ hm ≲ L
2−DW
m ≲ N

(DW−2)m
b .
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Proof. This follows at once from Property 2.12, on page 15.

Corollary 3.2. For any m ∈ N, any natural integer j of {0, . . . , N
m
b − 1}, and any pair of points (X,Y )

of Pm,j or of Qm,j, we have that

1

deucl(X,Y ) ≲ L
DW−2
m ≲ N

(2−DW)m
b

and
deucl(X,Y ) ≲ hm ≲ L

2−DW
m ≲ N

(DW−2)m
b .

Property 3.3. For any m ∈ N, and any vertex X of Vm:

µ
L (X,Pm,Qm) ≲ hm Lm ≲ L

3−DW
m ≲ N

(DW−3)m
b

and

µ
L (X,Pm,Qm) ≲ hm Lm ≲ L

3−DW
m ≲ N

(DW−3)m
b .

Proof. This also directly follows from Property 2.12, page 15.

Definition 3.3 (Trace of a Polygon on the Weierstrass Curve).

Givenm ∈ N, and 0 ⩽ j ⩽ N
m
b − 1 (resp., 0 ⩽ j ⩽ N

m
b − 2), of extreme vertices Vinitial (Pm,j) ∈ Vm

and Vend (Pm,j) ∈ Vm (resp., Vinitial (Qm,j) ∈ Vm and Vend (Qm,j) ∈ Vm; see Definition 2.6, on page 7),
we define the trace of the polygon Pm,j (resp., Qm,j) on the Weierstrass Curve as the set trγW (Pm,j)
(resp., trγW (Qm,j)) of points {Vinitial (Pm,j) ,M⋆,Vend (Pm,j)} (resp., {Vinitial (Qm,j) ,M⋆,Vend (Qm,j)}),
where we denote by M⋆ any point of the Weierstrass Curve strictly located between Vinitial (Pm,j)
and Vend (Pm,j) (resp., Vinitial (Qm,j) and Vend (Qm,j)).

Definition 3.4 (Sequence of Domains Delimited by the Weierstrass IFD – Polyhedral
Neighborhood of the Weierstrass Curve).

We introduce the sequence of domains delimited by the Weierstrass IFD, or polygonal neigh-
borhood of the Weierstrass Curve as the sequence (D (ΓWm

))m∈N of open, connected polygonal
sets (Pm ∪Qm)m∈N, where, for each m ∈ N, Pm and Qm respectively denote the polygonal sets
introduced in Definition 2.5, on page 8.

Given ∈ N, we call D (ΓWm
) the m

th
polyhedral neighborhood (of the Weierstrass Curve ΓW).
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Property 3.4 (Domain Delimited by the Weierstrass IFD).

We call domain, delimited by the Weierstrass IFD, the set, which is equal to the following limit,

D (ΓW) = lim
m→∞

D (ΓWm
) ,

where the convergence is interpreted in the sense of the Hausdorff metric on R2
; see [DL22b]. In fact,

we have that

D (ΓW) = ΓW .

Notation 12 (Minimal and Maximal Values of the Weierstrass Function W on [0, 1]).

We set

mW = min
t∈ [0,1]

W(t) = − 1

1 − λ
, MW = max

t∈ [0,1]
W(t) = 1

1 − λ
.

Notation 13. Henceforth, for a given m ∈ N, the notation ∑
X ∈Pm⋃Qm

means that the associated

finite sum runs through all of the vertices of the polygons belonging to the sets Pm and Qm introduced
in Definition 2.5, on page 8; see also Notation 7, on page 9 following that definition.

Property 3.5. Given a continuous function u on [0, 1] × [mW ,MW], we have that, for any
m ∈ N, and any vertex X of Vm:

»»»»»µ
L (X,Pm,Qm) u (X)»»»»» ⩽ µ

L (X,Pm,Qm) ( max
[0,1]×[mW ,MW]

∣u∣) ≲ N−(3−DW)m
b .

Consequently, with the notation of Definition 3.1, on page 19, we have that

ε
m (DW−2) »»»»»µ

L (X,Pm,Qm) u (X)»»»»» ≲ ε
−m
m .

Since the sequence
⎛
⎜
⎝

∑
X ∈Pm⋃Qm

ε
−m⎞

⎟
⎠
m∈N

is a positive and increasing sequence (the number of

vertices involved increases as m increases), this ensures the existence of the finite limit

lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) u (X) ,

where we have used Notation 13, on page 23.
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Property 3.6 (Polyhedral Measure on the Weierstrass IFD [DL22b]).

We introduce the polyhedral measure on the Weierstrass IFD, denoted by µ, such that for any
continuous function u on the Weierstrass Curve, with the use of Notation 11, on page 21 and 13, on
page 23,

∫
ΓW

u dµ = lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) u (X) , (⋆)

which, thanks to Property 3.4, on page 23, can also be understood in the following way,

∫
ΓW

u dµ = ∫
D(ΓW)

u dµ .

Remark 3.2. In a sense, our polyhedral measure can be seen as a measure which is an extension of
the Riemann integral, where the step functions are replaced by upper and lower affine functions which
approximate the Weierstrass Curve.

Theorem 3.7 ([DL22b]).

The polyhedral measure µ is well defined, positive, as well as a bounded, nonzero, Borel measure
on D (ΓW). The associated total mass is given by

µ (D (ΓW)) = lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) , (⋆⋆)

and satisfies the following estimate:

µ (D (ΓW)) ⩽ 2

Nb
(Nb − 1)2

Csup . (⋆ ⋆ ⋆)

Furthermore, the support of µ coincides with the entire curve:

suppµ = D (ΓW) = ΓW .

In addition, µ is the weak limit as m→∞ of the following discrete measures (or Dirac Combs),
given, for each m ∈ N, by

µm = ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (X,Pm,Qm) δX ,

where ε
m
m denotes the cohomology infinitesimal introduced in Definition 3.1, on page 19, δX is the

Dirac measure concentrated at X, and we have used Notation 11, on page 21 for µ
L (X,Pm,Qm),

along with Notation 13, on page 23.

Property 3.8 (The Quasi Self–Similar Sequence of Discrete Polyhedral Measures).

The sequence of discrete polyhedral measures (µm)m∈N introduced in Theorem 3.7, on page 24 just
above, satisfies the following recurrence relation, for all m ∈ N⋆,

µm = N
DW−2
b ∑

Tj ∈TW

µm+1 ◦ T
−1
j , (♠)
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where for TW = {T0, . . . , TNb−1} is the nonlinear iterated function system (IFS) introduced in Propo-
sition 2.3, on page 6.

Note that relation (♠) can be viewed as a generalization of classical self–similar measures, as
considered in [Hut81], page 714.

Proof. First, we can note that, for m ∈ N⋆,

ε
m+1
m+1 =

1

Nb
ε
m
m ,

which ensures that

ε
(m+1) (DW−2)
m+1 =

1

N
DW−2
b

ε
m (DW−2)
m = N

2−DW
b ε

m (DW−2)
m .

We then simply use the result of Property 2.11, on page 13, according to which, for 0 ⩽ j ⩽ Nb − 1,
the j

th
vertex of the polygon Pm+1,k, 0 ⩽ k ⩽ N

m
b − 1, is the image of the the j

th
vertex of the

polygon Pm,k−i (Nb−1)Nm
b

under the bijective map Tj , where 0 ⩽ j ⩽ Nb − 1 is arbitrary. Therefore,
there is an exact correspondance between polygons at consecutive steps m, m + 1: indeed, polygons
at the (m + 1)th step of the prefractal approximation process are obtained by applying each (bijective)

map Tj , for 0 ⩽ j ⩽ Nb − 1, to the polygons at the m
th

step of the prefractal approximation process:

Nb−1

⋃
j=0

{T−1
j (X) , X ∈ Vm+1} = Vm ,

which can equivalently be written as

Nb−1

⋃
j=0

{T−1
j (X) , X ∈ Pm+1⋃Qm+1} = {X ∈ Pm⋃Qm} .

We can then deduce that

∑
X ∈Pm⋃Qm

µ
L (X,Pm,Qm+) δX = ∑

Tj ∈TW

∑
X ∈Pm+1⋃Qm+1

µ
L (X,T−1

j (Pm+1) , T−1
j (Qm+1)) δX ,

which yields the desired result.

Theorem 3.9 (The Quasi Self–Similar Polyhedral Measure).

The polyhedral measure µ satisfies the following quasi self–similarity relation,

µ = N
DW−2
b ∑

Tj ∈TW

µ ◦ T
−1
j , (♠♠)

where TW = {T0, . . . , TNb−1} is the nonlinear iterated function system (IFS) introduced in Proposi-
tion 2.3, on page 6.
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Proof. As in the proof of Property 3.8, on page 24, we use the fact that, for all m ∈ N⋆,

Nb−1

⋃
j=0

{T−1
j (X) , X ∈ Pm⋃Qm} = {X ∈ Pm−1⋃Qm−1} .

We then have that, for any continuous function u on the Weierstrass Curve,

∑
Tj ∈TW

∫
ΓW

u d (µ ◦ T−1
j ) = ∑

Tj ∈TW

lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm⋃Qm

µ
L (T−1

j (X),Pm,Qm) u (T−1
j (X))

= lim
m→∞

ε
m (DW−2)
m ∑

X ∈Pm−1⋃Qm−1

µ
L (X,Pm−1,Qm−1) u (X)

= lim
m→∞

N
DW−2
b ε

(m−1) (DW−2)
m−1 ∑

X ∈Pm−1⋃Qm−1

µ
L (X,Pm−1,Qm−1) u (X)

= N
2−DW
b lim

m→∞
ε
(m−1) (DW−2)
m−1 ∑

X ∈Pm−1⋃Qm−1

µ
L (X,Pm−1,Qm−1) u (X)

= N
2−DW
b ∫

ΓW

u dµ ,

from which we deduce, as desired, that

µ = N
DW−2
b ∑

Tj ∈TW

µ ◦ T
−1
j .

Corollary 3.10. The polyhedral measure is the unique fixed point, with respect to the Kantorovich
distance, of the map Φ which, to any probability measure ν associates

Φ(ν) = NDW−2
b ∑

Tj ∈TW

ν ◦ T
−1
j .

Definition 3.5 ((m,εmm)–Neighborhood [DL22c]).

Given m ∈ N sufficiently large (so that ε
m
m be a sufficiently small positive number), we define

the (m, εmm)–neighborhood of the m
th

prefractal approximation ΓWm
as follows:

D (ΓWm
, ε
m
m) = {M = (x, y) ∈ R2

, d (M,ΓWm
) ⩽ εmm} .

Property 3.11 (The Nested Neighborhoods).

i. Given m ∈ N sufficiently large, there exists m1 ∈ N such that, for all k ⩾ m1, the polygonal neigh-
borhood D (ΓWm

) introduced in Definition 3.4, on page 23 contains, but for a finite number of wedges,
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the (m + k, εm+km+k)–neighborhood; see Figures 6–9, on pages 29–30.

ii. Given m ∈ N sufficiently large, there exists m2 ∈ N such that, for all k ⩾ m2, the (m, εmm)–
neighborhood contains the polygonal neighborhood D (ΓWm+k

) introduced in Definition 3.4, on page 23;
see Figure 10, on page 31 and Figure 11, on page 32.

iii. Given m ∈ N sufficiently large, there exists m3 ∈ N such that, for all k ⩾ m3, the polygonal
neighborhood D (ΓWm

) introduced in Definition 3.4, on page 23 contains the polygonal neighbor-
hood D (ΓWm+k

).

Proof.

i. At a given step m ⩾ 0, between two adjacent vertices Mi,m and Mi+1,m of Vm, there are Nb − 1

consecutive vertices of Vm+1 \ Vm, (Mj+1,m+1, . . . ,Mj+Nb−2,m+1) ∈ V
Nb−1
m+1 such that

Mi,m =Mj,m+1 and Mi+1,m =Mj+Nb,m+1 .

Thanks to Property 2.11, on page 13, we obtain an exact correspondance between vertices of the
polygons at the step m + 1, and at the initial step m = 0. Since reentrant angles occur when Nb ⩾ 7 (see
Property 2.18, on page 17), we can restrict ourselves to the cases Nb ⩽ 6 (in the case of reentrant angles,

the following arguments can be suitably adjusted). We then simply have to consider the [Nb − 2

2
]

vertices Mj+k,m+1, with 1 ⩽ k ⩽ [Nb − 2

2
] (the same arguments holds for the vertices Mj+Nb−k,m+1).

Also, again thanks to Property 2.11, on page 13, given j in {0, . . . , Nb − 2} and k in {0, . . . , N
m+1
b − 1},

we have that

sgn (W (k (Nb − 1) + j + 1

(Nb − 1)Nm+1
b

) −W ( k (Nb − 1) + j
(Nb − 1)Nm+1

b

)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) ,

i.e., equivalently,

sgn (W ((k (Nb − 1) + j + 1)Lm+1) −W ((k (Nb − 1) + j)Lm+1)) = sgn (W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)) .

Due to the symmetry of the initial polygon P0 (or, equivalently, of the initial prefractal graph ΓW0
)

with respect to the vertical line x =
1

2
(see Property 2.2, on page 5), this means that we can restrict

ourselves to the case when

W (j Lm+1) ⩾W ((j + 1)Lm+1) ⩾ . . . ⩾W ((j + [Nb − 2

2
]) Lm+1)

and

W (j Lm+1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

⩾W ((j +Nb) Lm+1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W ((i + 1)Lm)

.
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Thanks to Property 2.12, on page 15, we deduce, by the triangle inequality, for 1 ⩽ k ⩽ [Nb − 2

2
],

that

»»»»»»»»»»»»»»»

W ((j + k)Lm+1) −W (j Lm+1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

»»»»»»»»»»»»»»»

⩽ [Nb − 2

2
] Csup L2−DW

m+1 .

Since

Lm+1 =
Lm
Nb

,

we then obtain that

»»»»»»»»»»»»»»»

W ((j + k)Lm+1) −W (j Lm+1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

»»»»»»»»»»»»»»»

⩽ [Nb − 2

2
] NDW−2

b Csup L
2−DW
m .

Recall now (see Property 2.12, on page 15) that

Cinf = (Nb − 1)2−DW min
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»

and

Csup = (Nb − 1)2−DW ( max
0⩽j⩽Nb−1

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
+

2π

(Nb − 1) (λNb − 1)) .

Here, we have that

W ( j

Nb − 1
) = 1

1 − λ
cos

2π j

Nb − 1
.

This ensures that

»»»»»»»»
W ( j + 1

Nb − 1
) −W ( j

Nb − 1
)
»»»»»»»»
⩽

2π

Nb − 1

1

1 − λ
.

We can check numerically that

[Nb − 2

2
] NDW−2

b Csup ⩽ Cinf ,

from which we immediately deduce that for, 1 ⩽ k ⩽ [Nb − 2

2
],

»»»»»»»»»»»»»»»

W ((j + k)Lm+1) −W (j Lm+1)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W (i Lm)

»»»»»»»»»»»»»»»

⩽ ∣W ((i + 1)Lm) −W (i Lm)∣ .

For 1 ⩽ k ⩽ [Nb − 2

2
], the verticesMj+k,m+1 are then strictly between the verticesMi,m andMi+1,m.

As is explained previously, we can show, in a similar way, that for 1 ⩽ k ⩽ [Nb − 2

2
], the verticesMj+Nb−k,m+1

are also strictly between the vertices Mi,m and Mi+1,m.
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By induction, we then obtain that, given four consecutive adjacent vertices Mi,m, Mi+1,m, Mi+3,m

and Mi+4,m of Vm, with 1 ⩽ i ⩽ #Vm − 5 and k ∈ N, the vertices of Vm+k \ Vm located between Mi,m

and Mi+4,m can be all contained in the simple and convex polygon Mi,mMi+1,mMi+3,mMi+4,m, which
coincides with the union of two consecutive polygons Pm,j and Qm,j . Thus, there exists m0 ∈ N such

that, for all k ⩾ m0, the (m + k, εm+km+k)-neighborhood

D (ΓWm+k
, ε
m+k
m+k) = {M = (x, y) ∈ R2

, d (M,ΓWm+k
) ⩽ εm+km+k} ,

from which we remove the wedges associated to the vertices Mi,m, Mi+1,m, Mi+3,m and Mi+4,m

(see [DL22c]), can be fully contained in the polygon Mi,mMi+1,mMi+3,mMi+4,m. Hence, there ex-
ists m1 ∈ N such that, for all k ⩾ m1, the (m, εmm)-neighborhood but for a finite number of wedges,

the (m + k, εm+k)-neighborhood D (ΓWm+k
, ε
m+k
m+k), can be fully contained in the polygonal domain D (ΓWm

).

ii. This latter result has been obtained in [DL22b]. It comes from the fact that, in the sense of the
Hausdorff metric on R2

,

lim
m→∞

D (ΓWm
) = ΓW .

iii. This is an immediate consequence of i. and ii.

Figure 6: The polygonal neigborhood D (ΓW2
), in the case when λ =

1

2
and Nb = 3.

Figure 7: The exterior boundary of the polygonal neigborhood D (ΓW2
) (in red), and the

tubular neighborhood D (ΓW7
, ε

7
7), in the case when λ =

1

2
and Nb = 3.
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Figure 8: The polygonal neigborhood D (ΓW3
), in the case when λ =

1

2
and Nb = 3.

Figure 9: The exterior boundary of the polygonal neigborhood D (ΓW3
) (in red), and the

tubular neighborhood D (ΓW7
, ε

7
7), in the case when λ =

1

2
and Nb = 3.
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Figure 10: The polygonal neigborhood D (ΓW5
), in the case when λ =

1

2
and Nb = 3.

Corollary 3.12 ((of Property 3.11, given on page 26)).

We immediately deduce from Property 3.11 that there exists m0 ∈ N such that, for all k ⩾ m0,
the polyhedral neighborhood D (ΓWm

) introduced in Definition 3.4, on page 23 contains the vertices of
the prefractal approximation ΓWm+k

to the the Weierstrass Curve; i.e., the set of vertices Vm+k. In
particular, the density property 2.5, on page 7, also ensures that the Weierstrass Curve is contained
in ΓWm

:

∀m ⩾ m0 ∶ ΓW ⊂ D (ΓWm
) .
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Figure 11: The tubular neighborhood D (ΓW3
, ε

3
3) and the polygonal neigborhood D (ΓW5

),
in the case when λ =

1

2
and Nb = 3. The size of the vertex points of D (ΓW5

) has intentionally

been magnified, in order to obtain an illustrative and understandable figure.

Property 3.13 (Exact Expression of the Volume of the m
th

–Polyhedral Neighborhood

(or m
th

Natural Polyhedral Volume)).

In the case when Nb = 3, given m ∈ N⋆, the volume (or two–dimensional Lebesgue measure) Vm(εmm)
of the m

th
–polygonal neighborhood D (ΓWm

), or m
th

natural polyhedral volume, is given by

Vm(εmm) = µL (D (ΓWm
)) = ε

m
m

2
(W(0) +W (2 εmm) − 2W (εmm))

=
ε
m
mW(0)

2
+

(Nb − 1)2−DW ε
m
m

2
ε
m (2−DW)
m (W ( 2

(Nb − 1)) − 2W ( 1

(Nb − 1)))

+
(Nb − 1)2−DW ε

m
m

2

m−1

∑
k=0

N
(m−k) (2−DW)
b ε

mk (2−DW)
m Re (e

4 iπN
k
b ε
m
m

(Nb−1) − 2 e
2 iπN

k
b ε
m
m

(Nb−1) ) ,

(R 8)

where ε
m
m is the m

th
cohomology infinitesimal introduced in Definition 3.1, on page 19.

If we introduce, for any integer k in {0, . . . ,m − 1}, the coefficients ck,1 ∈ C, ck,2 ∈ C, along with
the integers `k,1 ∈ Z and `k,2 ∈ Z such that

cm,k,1 ε
im `k,1 p
m = cm,k,1 e

im `k,1 p ln ε
m
m
= N

(m−k) (2−DW)
b e

2 iπN
k
b ε
m
m

(Nb−1)
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and

cm,k,2 ε
im `k,2 p
m = cm,k,2 e

im `k,2 p ln ε
m
m
= N

(m−k) (2−DW)
b e

2 iπN
k
b ε
m
m

(Nb−1) ,

we can also obtain the following expression for Vm(εmm):

Vm(εmm) =
ε
m
mW(0)

2
+

(Nb − 1)2−DW ε
m
m

2
ε
m (2−DW)
m (W ( 2

(Nb − 1)) − 2W ( 1

(Nb − 1)))

+
(Nb − 1)2−DW ε

m
m

2

m−1

∑
k=0

ε
mk (2−DW)
m Re (cm,k,2 ε

im `k,2 p
m − 2 cm,k,1 ε

im `k,1 p
m ) .

Moreover, the sequence of natural polyhedral volumes (Vm(εmm))mN⋆ satisfies the following recur-
rence relation, for all m ∈ N⋆,

Vm+1(εm+1
m+1) =

λ

Nb
Vm(Nb ε

m+1
m+1)+

1

Nb

Nb ε
m+1
m+1

2
(1 − λ)+Nb ε

m+1
m+1

2
(cos (4πNb ε

m+1
m+1) − 2 cos (2πNb ε

m+1
m+1)) .

Note that the remaining cases, i.e., when Nb ⩾ 4, can be obtained in a similar manner. For the
sake of concision, we do not include the associated (and heavy) computations associated with these
cases.
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Figure 12: The orthogonal projections Hj,m of the vertices Mj,m, for 0 ⩽ j ⩽ #Vm, onto
the horizontal line y =mW .
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Proof. First, note that since Nb = 3, the polygons involved are triangles.

Given m ∈ N⋆, and 0 ⩽ j ⩽ #Vm, we introduce the (vertical) orthogonal projection Hj,m of the
vertex Mj,m onto the horizontal line y = mW ; see Figure 12, on page 34.

We note that, for 1 ⩽ j ⩽ #Vm − 2, the two–dimensional Lebesgue measure (i.e., area) of the
polygon (triangle) Qm,j , with bottom vertices Mj,m and Mj+2,m, is obtained by adding the area of
the trapezoid Hj,mMj,mMj+1,mHj+1,m to the area of the trapezoid Hj+1,mMj+1,mMj+2,mHj+2,m, and
then, by substracting to this result the area of the trapezoid Hj,mMj,mMj+2,mHj+2,m; i.e.,

µL (Qm,j) =
ε
m
m

2
(W ( j

(Nb − 1)Nm
b

) +W ( j + 1

(Nb − 1)Nm
b

) +W ( j + 1

(Nb − 1)Nm
b

) +W ( j + 2

(Nb − 1)Nm
b

))

−
2 ε

m
m

2
(W ( j

(Nb − 1)Nm
b

) − 2W ( j + 2

(Nb − 1)Nm
b

))

=
ε
m
m

2
(2W ( j + 1

(Nb − 1)Nm
b

) −W ( j

(Nb − 1)Nm
b

) −W ( j + 2

(Nb − 1)Nm
b

)) .

Similarly, for 1 ⩽ j ⩽ #Vm − 1, the area of the polygon (triangle) Pm,j , with top vertices Mj−1,m

and Mj+1,m is obtained by substracting to the area of the trapezoid Hj−1,mMj−1,mMj+1,mHj+1,m the
area of the trapezoid Hj−1,mMj−1,mMj,mHj,m and the area of the trapezoid Hj,mMj,mMj+1,mHj+1,m;
i.e.,

µL (Pm,j) =
2 ε

m
m

2
(W ( j − 1

(Nb − 1)Nm
b

) +W ( j + 1

(Nb − 1)Nm
b

))

−
ε
m
m

2
(W ( j − 1

(Nb − 1)Nm
b

) +W ( j

(Nb − 1)Nm
b

) +W ( j

(Nb − 1)Nm
b

) +W ( j + 1

(Nb − 1)Nm
b

))

=
ε
m
m

2
(W ( j − 1

(Nb − 1)Nm
b

) +W ( j + 1

(Nb − 1)Nm
b

) − 2W ( j

(Nb − 1)Nm
b

)) .
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We then have that

Vm(εmm) =

#Vm−3

∑
j=1

(µL (Pm,j) + µL (Qm,j)) + µL (Pm,Nm
b
)

=

(Nb−1)Nm
b −2

∑
j=1

(µL (Pm,j) + µL (Qm,j)) + µL (Pm,(Nb−1)Nm
b
)

=

(Nb−1)Nm
b −2

∑
j=1

ε
m
m

2
(3W ( j + 1

(Nb − 1)Nm
b

) − 3W ( j

(Nb − 1)Nm
b

))

+
(Nb−1)Nm

b −2

∑
j=1

ε
m
m

2
(−W ( j + 2

(Nb − 1)Nm
b

) +W ( j − 1

(Nb − 1)Nm
b

)) + µL (Pm,(Nb−1)Nm
b
)

=
ε
m
m

2
(3W ((Nb − 1)Nm

b − 1

(Nb − 1)Nm
b

) − 3W ( 1

(Nb − 1)Nm
b

))

+
ε
m
m

2
(−W (1) −W ((Nb − 1)Nm

b − 1

(Nb − 1)Nm
b

) −W ((Nb − 1)Nm
b − 2

(Nb − 1)Nm
b

))

+
ε
m
m

2
(W ( 1

(Nb − 1)Nm
b

) +W ( 2

(Nb − 1)Nm
b

) +W(0))

+ ε
m
m (W ((Nb − 1)Nm

b − 1

(Nb − 1)Nm
b

) −W ( 1

(Nb − 1)Nm
b

))

+
ε
m
m

2
(−W ((Nb − 1)Nm

b − 2

(Nb − 1)Nm
b

) +W ( 2

(Nb − 1)Nm
b

)) + µL (Pm,(Nb−1)Nm
b −1) .

Note that, thanks to the symmetry with respect to the vertical line x =
1

2
(see Property 2.2, on

page 5, along with Property 2.8, on page 11), we have that

W ((Nb − 1)Nm
b − 1

(Nb − 1)Nm
b

) =W ( 1

(Nb − 1)Nm
b

) and W ((Nb − 1)Nm
b − 2

(Nb − 1)Nm
b

) =W ( 2

(Nb − 1)Nm
b

) .
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We then simply obtain that

Vm(εmm) = µL (Pm,(Nb−1)Nm
b −1)

=
ε
m
m

2
(W ((Nb − 1)Nm

b − 2

(Nb − 1)Nm
b

) +W (1) − 2W ((Nb − 1)Nm
b − 1

(Nb − 1)Nm
b

))

=
ε
m
m

2

⎛
⎜⎜⎜⎜⎜
⎝
W ( 2

(Nb − 1)Nm
b

) +W (1)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
W(0)

−2W ( 1

(Nb − 1)Nm
b

)
⎞
⎟⎟⎟⎟⎟
⎠

(by symmetry)

=
ε
m
m

2
(W(0) +W ( 2

(Nb − 1)Nm
b

) − 2W ( 1

(Nb − 1)Nm
b

))

=
ε
m
m

2
(W(0) +W (2 εmm) − 2W (εmm)) .

We then have that

Vm(εmm) =
ε
m
mW(0)

2
+

(Nb − 1)2−DW ε
m
m

2
ε
m (2−DW) (W ( 2

(Nb − 1)) − 2W ( 1

(Nb − 1)))

+
(Nb − 1)2−DW ε

m
m

2

m−1

∑
k=0

ε
k (2−DW)
k (cos( 2πN

k
b

(Nb − 1)Nm
b

) − 2 cos( 4πN
k
b

(Nb − 1)Nm
b

))

=
ε
m
mW(0)

2
+

(Nb − 1)2−DW ε
m
m

2
ε
m (2−DW)
m (W ( 2

(Nb − 1)) − 2W ( 1

(Nb − 1)))

+
(Nb − 1)2−DW ε

m
m

2

m−1

∑
k=0

ε
k (2−DW)
k Re (e

4 iπ ε
m−k
m−k

(Nb−1) − 2 e
2 iπ ε

m−k
m−k

(Nb−1) ) .

Since, for 0 ⩽ k ⩽ m1,

ε
k
k = N

m−k
b ε

m
m and ε

m−k
m−k = N

k
b ε

m
m ,

we deduce that

Vm(εmm) =
ε
m
mW(0)

2
+

(Nb − 1)2−DW ε
m
m

2
ε
m (2−DW)
m (W ( 2

(Nb − 1)) − 2W ( 1

(Nb − 1)))

+
(Nb − 1)2−DW ε

m
m

2

m−1

∑
k=0

N
(m−k) (2−DW)
b ε

mk (2−DW)
m Re (e

4 iπN
k
b ε
m
m

(Nb−1) − 2 e
2 iπN

k
b ε
m
m

(Nb−1) ) .

Let us recall that

ε
m
m =

1

Nb − 1

1

Nm
b

and p =
2π

lnNb
.
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We then have that

p ln ε
m
m = ( 2π

lnNb
) (− ln(Nb − 1) −m lnNb) = −2π ln(Nb − 1) − 2πm

and

e
im `k,1 p ln ε

m
m
= e

−2 imπ ln(Nb−1)
.

We then introduce, for any integer k in {0, . . . ,m − 1}, the (bounded away from 0 and ∞)) coeffi-
cients cm,k,1 ∈ C, cm,k,2 ∈ C, along with the integers `k,1 ∈ Z and `k,2 ∈ Z such that

cm,k,1 ε
km (2−DW)+im `k,1 p
m = cm,k,1 ε

km (2−DW)
m e

im `k,1 p ln ε
m
m
= ε

k (2−DW)
k e

4 iπN
k
b ε
m
m

(Nb−1)

and

cm,k,2 ε
km (2−DW)+im `k,2 p
m = cm,k,2 ε

km (2−DW)
m e

im `k,1 p ln ε
m
m
= ε

k (2−DW)
k e

2 iπN
k
b ε
m
m

(Nb−1) .

This enables us to write

Vm(εmm) =
ε
m
mW(0)

2
+

(Nb − 1)2−DW ε
m
m

2
ε
m (2−DW)
m (W ( 2

(Nb − 1)) − 2W ( 1

(Nb − 1)))

+
(Nb − 1)2−DW ε

m
m

2

m−1

∑
k=0

ε
mk (2−DW)
m Re (cm,k,2 ε

im `k,2 p
m − 2 cm,k,1 ε

im `k,1 p
m ) ,

as claimed.

Definition 3.6 (m
th

Tubular Volume [DL22c]).

Given m ∈ N sufficiently large (so that ε
m
m be a sufficiently small positive number), we call m

th

tubular volume the two–dimensional Lebesgue measure Vtubem (εmm) of the (m, εmm)–neighborhood D (ΓWm
, ε
m
m)

of the m
th

prefractal approximation ΓWm
introduced in Definition 3.5, on page 26.

As was already encountered in [DL22c], in our present context, when it comes to obtaining the
associated fractal zeta function, we cannot, as in the case of an arbitrary bounded subset of R2

(see [LRŽ17], Definition 2.2.8, page 118), directly use an integral formula of the form

ζ̃m(s) = ∫
ε
m
m

0
t
s−3 Vm(t) dt = ∫

ε
m
m

0
t
s−2 Vm(t) dt

t
, (R 9)

since the volume formulas can only be expressed in an explicit way at a cohomology infinitesimal.

However, and as was already done in [DL22c], in the case of ordinary tubular neighborhoods, if,
instead of considering the volume function at a given step m0, we consider the more general volume
functions for all integers m ⩾ m0, we can bypass this difficulty by means of Riemann sums, as explained
in Lemma 3.14, on page 39 just below.
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Lemma 3.14 (Natural Polyhedral Volume Extension Formula).

Given m ⩾ 1 sufficiently large, and an arbitrary nonnegative integer km ⩾ m, let us consider the
following nonuniform partition Pm,k of the interval [0, εmm],

[0, εmm] = [0, εmkm
mkm

]⋃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m+km+p=m+km

⋃
m+km+p=mkm−2

[εm+km+p+1
m+km+p+1, ε

m+km+p
m+km+p

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃ [εm+kmm+km

, ε
m
m] ,

where the second union is taken over all p ∈ N satisfying the indicated relations and equalities.

Note that the mesh of the partition (i.e., the length of the largest subinterval) is

ε
m
m − ε

m+km
m+km

, with lim
k→∞

(εmm − ε
m+km
m+km

) = 0 .

We set

σ0,mkm = ε
mkm
mkm

, σm,m+km = ε
m
m − ε

m+km
m+km

, (R 10)

and, for all p ∈ {0, . . . ,m k −m − km − 2},

σp = ε
m+km+p
m+km+p

− ε
m+km+p+1
m+km+p+1 . (R 11)

We can then introduce the Riemann sum

Riemann (k,m,V) = σ0 (εmkm
mm )

s−3
Vmkm (εmkm

mk ) + σm+km (εmm)s−3 Vmkm (εmm)

+ ∑
0⩽p⩽mk−m−k−2

σp (εm+k+pm+km+p
)
s−3

Vm+km+p+1 (εm+km+pm+km+p
) .

(R 12)

We then have that

lim
km→∞

Riemann (km,m,V) = ∫
ε
m
m

0
t
s−2 Ṽm(t) dt

t
, (R 13)

where, for all sufficiently large n ∈ N⋆, Ṽn is the continuous function defined for all t ∈ [0, εnn] by
substituting t for ε

n
n in the expression for Vn (εnn).

As is explained in [DL22c], one can think of Ṽn = Ṽn,(t) as being the effective polyhedral volume

of the n
th

prefractal approximation to the Weierstrass Curve.

Notation 14 (Natural Polyhedral Volume Extension – Natural Volume Extension).

For the sake of simplicity, given m ∈ N, we will from now on call the m
th

natural polyhedral volume
extension, the volume extension function Ṽm associated with the m

th
natural polyhedral volume Vm

introduced in Property 3.13, on page 32. Alternatively, Ṽm will be called the m
th

effective polyhedral
volume.

In the same way, as is done in [DL22c], and given m ∈ N, we call the m
th

natural volume exten-

sion, the volume extension function Ṽtubem associated with the the m
th

tubular volume Vtubem . Alterna-
tively, Ṽtubem will be called the m

th
effective tubular volume.
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Property 3.15 (Complex Dimensions Series Expansion of the Weierstrass Complexified
Function Wcomp [DL22d]).

We then have, for any strictly positive integer m and any j in {0,⋯,#Vm}, the following exact
expansion, indexed by the Complex Codimensions k (DW − 2) + i k `k p, with 0 ⩽ k ⩽ m,

Wcomp (j εmm) = (Nb − 1)2−DW ε
m (2−DW)
m Wcomp (

j

Nb − 1
) + (Nb − 1)2−DW

m−1

∑
k=0

ck,m ε
k (2−DW)
k ε

i k `k p
k ,

(R 14)

where, for 0 ⩽ k ⩽ m, ε
k
k is the k

th
cohomollogy infinitesimal, introduced in Definition 3.1, on page 19

and where, for any integer k in {0,⋯,m − 1}, ck ∈ C and `k ∈ Z are such that

(Nb − 1)2−DW e
i 2π
Nb−1

j ε
m−k
m

= ck,m ε
i k `k p
k , (⋄)

with p =
2π

lnNb
denoting the oscillatory period of the Weierstrass Curve, as introduced in [DL22c].

Since relation (R14) is valid for any m ∈ N⋆, we note that the associated Complex Dimensions
(i.e., in fact, the Complex Dimensions associated with the Weierstrass function) are DW − k (2 −DW) + i `k p,
where k ∈ N is arbitrary.

Theorem 3.16 (Local and Global Effective Polyhedral Zeta Functions).

In the case when Nb = 3, given m ∈ N, we introduce the m
th

–local effective polyhedral zeta func-
tion ζ̃

e
m, such that,

ζ̃
e
m(s) = ∫

ε
m
m

0
t
s−3 Ṽm(t) dt (for Re (s) > DW)

= W(0)∫
ε
m
m

0

t
s−2

2
dt + ∫

ε
m
m

0
t
s−2 (W (2 t) − 2W (t)) dt (for all s ∈ C)

=
ε
m (s−1)
m W(0)

2 (s − 1) + ∫
ε
m
m

0
t
s−2 (W (2 t) − 2W (t)) dt (for all s ∈ C) ,

For all s ∈ C, we can also write explicitly ζ̃
e
m(s) in the following form:

ζ̃
e
m(s) =

ε
m (s−1)
m

2 (s − 1) W(0) + (Nb − 1)2−DW (W ( 1

(Nb − 1)) − 2W ( 1

(Nb − 1)))
ε
m (s+1−DW )
m

s + 1 −DW

+(Nb − 1)2−DW
m−1

∑
k=0

Re (ck,2
ε
m (s−1+k (2−DW )+i `k,2 p
m

s − 1 + k (2 −DW) + i `k,2 p
− 2 ck,1

ε
m (s−1+k (2−DW )+i `k,1 p)
m

s − 1 + k (2 −DW) + i `k,1 p)
) ,

where, for any integer k in {0, . . . ,m − 1}, the coefficients ck,1 ∈ C, ck,2 ∈ C, along with the in-
tegers `k,1 ∈ Z and `k,2 ∈ Z, have been introduced in relation (R3.13), on page 32, and in rela-
tion (R3.13), on page 33.
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The associated sequence (ζ̃em)
m∈N

satisfies the following recurrence relation, for all values of the
positive integer m sufficiently large, for all s ∈ C,

ζ̃
e
m+1(s) = N

3−s
b ζ̃

e
m(s) + 1

2
(1 − λ) N3−s

b
ε
m (s−1)
m

s − 1
+N

3−s
b ∫

ε
m
m

0
t
s−2 1

2Nb
Re (ei 4π t − 2 e

i 2π t) dt . (Em)
(R 15)

This ensures the existence of the limit fractal zeta function ζ̃
e
W , i.e., the fractal zeta function

associated with the Weierstrass Curve ΓW (or, rather, with the Weierstrass IFD), or global effective
polyhedral zeta function, given by

ζ̃
e
W = lim

m→∞
ζ̃
e
m ,

where the convergence is locally uniform on C, along with the existence of an integer m0 ∈ N such
that the poles of ζ̃

e
W are the same as the poles of the m

th
0 fractal effective polyhedral zeta function ζ̃

e
m0

.

More precisely, we have the following explicit formula, for the limit effective fractal zeta function ζ̃
e
W ,

whih is valid for all s ∈ C:

ζ̃
e
W(s) =

∞

∑
m=m0

ε
m (s−1)
m

2 (s − 1) W(0) + (Nb − 1)2−DW (W ( 1

(Nb − 1)) − 2W ( 1

(Nb − 1)))
∞

∑
m=m0

ε
m (s+1−DW )
m

s + 1 −DW

+(Nb − 1)2−DW
∞

∑
m=m0

m−1

∑
k=0

Re (ck,2
ε
m (s−1+k (2−DW )+i `k,2 p
m

s − 1 + k (2 −DW) + i `k,2 p
− 2 ck,1

ε
m (s−1+k (2−DW )+i `k,1 p
m

s − 1 + k (2 −DW) + i `k,1 p
) .

(R 16)

As was mentioned in the introduction, we note that our result is stronger than the one previously
obtained in [DL22c], where the values of the possible Complex Dimensions of the Weierstrass IFD
included −2. As we can see in relation (R16) just above, the poles of the limit effective fractal zeta
function ζ̃

e
W are exactly the same as the Complex Dimensions of the Weierstrass function itself; see

Property 3.15, on page 40.

As was explained previously in Property 3.13, on page 32, the remaining cases, i.e., when Nb ⩾ 4,
can be obtained in a similar manner, with entirely analogous conclusions. For the sake of concision,
we do not include the associated (and heavy) computations associated with these cases.

Proof.

i. We first prove the recurrence relation.

We restrict ourselves to sufficienly large values of m ∈ N, i.e., m ⩾ m0, for some suitable inte-
ger m0 ∈ N.

We then have that, for Re (s) > DW ,

ζ̃
e
m+1(s) = ∫

ε
m+1
m+1

0
t
s−3 Vm+1(t) dt .
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Let us now note that

Vm (εmm) =
ε
m
m

2
(W(0) +W (2 εmm) − 2W (εmm))

and

Vm+1 (εm+1
m+1) =

ε
m+1
m+1

2
(W(0) +W (2 ε

m+1
m+1) − 2W (εm+1

m+1)) .

Since

ε
m+1
m+1 =

1

Nb
ε
m
m

and thanks to the scaling relation given in Property 2.1, on page 4; namely,

W (εm+1
m+1) =W ( 1

Nb
ε
m
m) = λW (εmm) + cos (2π εmm)

and

W (2 ε
m+1
m+1) =W ( 2

Nb
ε
m
m) = λW (2 εmm) + cos (4π εmm) ,

we can deduce that

Vm+1(εm+1
m+1) =

1

Nb

ε
m
m

2
(W(0) + λ (W (2 εmm) − 2W (εmm)) + cos (4π εmm) − cos (2π εmm))

=
λ

Nb
Vm(εmm) + 1

Nb

ε
m
m

2
(1 − λ) + ε

m
m

2
(cos (4π εmm) − 2 cos (2π εmm))

=
λ

Nb
Vm(Nb ε

m+1
m+1) +

1

Nb

Nb ε
m+1
m+1

2
(1 − λ) + Nb ε

m+1
m+1

2
(cos (4πNb ε

m+1
m+1) − 2 cos (2πNb ε

m+1
m+1)) .

We then obtain that

ζ̃
e
m+1(s) = ∫

ε
m+1
m+1

0
t
s−3 Ṽm+1(t) dt

= ∫
1
Nb

ε
m
m

0
t
s−3 ( λ

Nb
Ṽm(Nb t) +

1

Nb

Nb t

2
(1 − λ) + Nb t

2
(cos (4πNb t) − 2 cos (2πNb t))) dt

= ∫
ε
m
m

0
N

3−s
b t

s−3 (Ṽm(t) + t

2
(1 − λ) + t

2Nb
(cos (4π t) − 2 cos (2π t))) dt

= N
3−s
b ζ̃m(s) +N3−s

b ∫
ε
m
m

0
t
s−2 (1

2
(1 − λ) + 1

2Nb
(cos (4π t) − cos (2π t))) dt

= N
3−s
b ζ̃

e
m(s) +N3−s

b ∫
ε
m
m

0
t
s−2 (1

2
(1 − λ) + 1

2Nb
Re (ei 4π t − 2 e

i 2π t)) dt

= N
3−s
b ζ̃

e
m(s) + 1

2
(1 − λ) N3−s

b
ε
m (s−1)
m

s − 1
+N

3−s
b ∫

ε
m
m

0
t
s−2 1

2Nb
Re (ei 4π t − 2 e

i 2π t) dt ,
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where the first equality is only valid for Re (s) > DW , while the other equalities are valid for all s in C.

ii. We now assume that the recurrence relation (Em) (see relation (R15), on page 41) holds for
all m ⩾ m0. In particular, we have that, for all m ⩾ m0 and for all s in C,

ζ̃
e
m(s) =

m

∑
n=m0

ε
n (s−1)
n

2 (s − 1) W(0) + (Nb − 1)2−DW (W ( 1

(Nb − 1)) − 2W ( 1

(Nb − 1)))
∞

∑
n=m0

ε
n (s+1−DW)
n

s + 1 −DW

+(Nb − 1)2−DW
m

∑
n=m0

n−1

∑
k=0

Re
⎛
⎜
⎝
ck,2

ε
n (s−1+k (2−DW)+i `k,2 p
n

s − 1 + k (2 −DW) + i `k,2 p
− 2 ck,1

ε
n (s−1+k (2−DW)+i `k,1 p
n

s − 1 + k (2 −DW) + i `k,1 p

⎞
⎟
⎠
.

(R 17)

This implies, in particular, that the poles of the m
th

effective fractal zeta function ζ̃
e
m are a subset

of the set of Complex Dimensions of the Weierstrass function itself; see Property 3.15, on page 40.

a. We denote by P (ζ̃em) ⊂ C the set of poles of the zeta function ζ̃
e
m, and by P (ζ̃em0

) ⊂ C the set of

poles of the zeta function ζ̃m0
.

We note that

P (ζ̃em0
) ⊂ {s ∈ C , Re(s) < 2} ⊂ {s ∈ C , Re(s) < 3} .

We set

U+ = (C \ P (ζ̃m0
)) ∩ {s ∈ C , Re(s) < 1} .

(resp., U− = (C \ P (ζ̃m0
)) ∩ {s ∈ C , 1 < Re(s) < 3})

Then, the series

∑
m⩾m0

(N3−s
b ζ̃

e
m(s) + 1

2
(1 − λ) N3−s

b
ε
m (s−1)
m

s − 1
+N

3−s
b ∫

ε
m
m

0
t
s−2 1

2Nb
Re (ei 4π t − 2 e

i 2π t) dt)

is (locally) normally convergent, and, hence, uniformly convergent on U+ (resp., on U−). This ensures
the existence of the limit effective fractal zeta function, i.e., the fractal zeta function associated with
the Weierstrass Curve ΓW (or with the Weierstrass IFD), given by

ζ̃
e
W = lim

m→∞
ζ̃
e
m = ∑

m⩾m0

N
3−s
b ζ̃m(s)+1

2
(1 − λ) N3−s

b
ε
m (s−1)
m

s − 1
+N

3−s
b ∫

ε
m
m

0
t
s−2 1

2Nb
Re (ei 4π t − 2 e

i 2π t) dt .

Here, and in the remainder of this proof, a (complex–valued) meromorphic function f is viewed
as a continuous function with values in P

1(C), equipped with the chordal metric, and such that, for
any pole ω of f , f(ω) takes the value ∞ (for instance, as in [LvF13], Section 3. 4 and Appendix C).

More precisely, if P
1(C) = C ∪∞ denotes the Riemann sphere (or complex projective line), we

can show that, for the chordal metric, defined, for all (z1, z2) ∈ (P1(C))2
by

∥z1, z2∥ =
∣z1 − z2∣√

1 + ∣z2
1∣

√
1 + ∣z2

2∣
, if z1 ≠∞ and z2 ≠∞
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and

∥z1,∞∥ = 1√
1 + ∣z2

1∣
, if z1 ≠∞ ,

we have, thanks to the uniform convergence of the series,

lim
m→∞

ÂÂÂÂÂζ̃
e
m, ζ̃

e
W
ÂÂÂÂÂ = 0 .

Indeed, for any η > 0, we can choose m0 ∈ N⋆ such that, for all s ∈ P
1(C), we have that

»»»»»ζ̃
e
m(s) − ζ̃eW(s)»»»»» ⩽ η ,

and, hence, for all s ∈ P
1(C),

ÂÂÂÂÂζ̃m(s), ζ̃W(s)ÂÂÂÂÂ ⩽
»»»»»ζ̃m(s) − ζ̃W(s)»»»»» ⩽ η .

The sum of this series, i.e., the (uniform) limit fractal zeta function ζ̃W , is holomorphic on U+

(resp., on U−). We can then deduce that, for all m ⩾ m0, the zeta function ζ̃
e
m is meromorphic

on C \ {s ∈ C , Re(s) = 1}, and that its poles in C \ {s ∈ C , Re(s) = 1} are exactly the same as
the poles of ζ̃

e
m0

. Moreover, the results obtained in [DL22a] for the sequence of tube zeta functions
associated with the Weierstrass IFD, which admit a meromorphic continuation to all of C, obviously
hold for the sequence of polyhedral tube zeta functions: hence, ζ̃

e
m is meromorphic on C, and its poles

belong to P (ζ̃m0
). Consequently, for all m ⩾ m0, the poles of ζ̃m are simple, and are the same as the

poles of ζ̃m0
:

P (ζ̃em) = P (ζ̃em0
) .

b. Let ω be a pole of ζ̃
e
m0

. Note that, thanks to the results in part a., the poles of ζ̃
e
m0

are a subset of
the set of Complex Dimensions of the Weierstrass function itself; see Property 3.15, on page 40. More
precisely, this means that ω is of the following form,

DW − k (2 −DW) + i `k p , with `k ∈ Z and where k ∈ N is arbitrary.

Then, for all m ⩾ m0, ω is also a pole of ζ̃
e
m (by the exact m

th
natural polyhedral volume formula

and its consequences, in particular, relation (R17), on page 43 above); i.e., for all m ⩾ m0:

ζ̃
e
m(ω) = ζ̃em0

(ω) =∞ .

Hence, since

lim
m→∞

ζ̃
e
m(ω) = ζ̃eW(ω) ,

it implies that

ζ̃
e
W(ω) =∞ .

Therefore, ω is also a pole of ζ̃
e
W .

c. Now, if P (ζ̃eW) ⊂ C denotes the set of poles of the limit fractal zeta function ζ̃
e
W , we similarly have

that

lim
m→∞

P (ζ̃em) = P (ζ̃em0
) ⊂ P (ζ̃eW) .
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d. Conversely, if ω is a pole of ζ̃
e
W (i.e., ζ̃

e
W(ω) =∞) and since, for all m ⩾ m0, ζ̃

e
m(ω) = ζ̃em0

(ω), as
well as

lim
m→∞

ζ̃
e
m(ω) = ζ̃eW(ω) ,

we must have that, for all m ⩾ m0,

ζ̃
e
m(ω) = ζ̃em0

(ω) = ζ̃eW(ω) =∞ .

Hence, ω is also a pole of ζ̃
e
m0

(i.e. also, for all m ⩾ m0, a pole of ζ̃
e
m).

e. Since, for all m ⩾ m0, the poles of ζ̃
e
m are known to be simple (see a. above), we also have to show

that the poles of ζ̃
e
W are all simple.

For all integers q ⩾ 1, we have that

resq (ζ̃em, ω) = lim
s→ω

(s − ω)q ζ̃em(ω)

and

resq (ζ̃eW , ω) = lim
s→ω

(s − ω)q ζ̃eW(ω)
= lim

s→ω
(s − ω)q lim

m→∞
ζ̃
e
m(s)

= lim
s→ω

lim
m→∞

(s − ω)q ζ̃em(s)
= lim

m→∞
lim
s→ω

(s − ω)q ζ̃em(s)
= lim

m→∞
resq (ζ̃em, ω) ,

where the interchange of limits is justified because of the local uniform convergence on C – and hence,
also, on a compact neighborhood of ω.

Since, for all integers q > 1, because we know from the results in [DL22c] that, still for m ⩾ m0,
the poles of ζ̃

e
m are simple,

resq (ζ̃em, ω) = 0 ;

it then follows that, for any fixed integer q > 1,

resq (ζ̃eW , ω) = lim
m→∞

resq (ζ̃em, ω) = 0 .

Hence, since ω is also a pole of ζ̃
e
W by the previous argument, we deduce that ω must be a simple

pole of ζ̃
e
W .

Therefore, the set of poles of ζ̃
e
m0

(or, equivalently, of ζ̃
e
m, for all m ⩾ m0) coincides with the set of

poles of ζ̃
e
W .

Consequently, as desired, the poles of the limit effective fractal zeta function ζ̃
e
W are simple, and

are the same as the poles of ζ̃
e
m0

.
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f . We have that

ζ̃
e
m(s) = ∫

ε
m
m

0

t
s−3 Ṽm(t) dt

= ∫
ε
m
m

0

t
s−2

2
W(0) dt

+(Nb − 1)2−DW (W ( 1

(Nb − 1)) − 2W ( 1

(Nb − 1))) ∫
ε
m
m

0

t
s−3+(2−DW )

dt

+(Nb − 1)2−DW
m−1

∑
k=0

∫
ε
m
m

0

t
s−2+k (2−DW ) Re (ck,2 ti `k,2 p

− 2 ck,1 t
i `k,1 p) dt

=
ε
m (s−1)
m

2 (s − 1) W(0) + (Nb − 1)2−DW (W ( 1

(Nb − 1)) − 2W ( 1

(Nb − 1)))
ε
m (s−DW )
m

s −DW

+(Nb − 1)2−DW
m−1

∑
k=0

Re (ck,2
ε
m (s−1+k (2−DW )+i `k,2 p
m

s − 1 + k (2 −DW) + i `k,2 p
− 2 ck,1

ε
m (s−2+k (2−DW )+i `k,1 p
m

s − 1 + k (2 −DW) + i `k,1 p
) ,

where the first equality is only valid for Re (s) > DW , while the other ones are valid for all s in C.

We then deduce the following explicit formula, for the limit fractal effective zeta function ζ̃
e
W , for

all s in C,

ζ̃
e
W(s) =

∞

∑
m=m0

ε
m (s−1)
m

2 (s − 1) W(0) + (Nb − 1)2−DW (W ( 1

(Nb − 1)) − 2W ( 1

(Nb − 1)))
∞

∑
m=m0

ε
m (s+1−DW )
m

s + 1 −DW

+(Nb − 1)2−DW
∞

∑
m=m0

m−1

∑
k=0

Re (ck,2
ε
m (s−1+k (2−DW )+i `k,2 p
m

s − 1 + k (2 −DW) + i `k,2 p
− 2 ck,1

ε
m (s−1+k (2−DW )+i `k,1 p
m

s − 1 + k (2 −DW) + i `k,1 p
) ,

as desired.

Property 3.17 (From the m
th

Local Effective Polyhedral Zeta Function, to the m
th

Local
Effective Tube Zeta Function).

Given m ∈ N, the Lebesgue measure Vtubem (εmm) of the tubular neighborhood D (ΓWm
, ε
m
m) can be

connected to the Lebesgue measure Vm (εmm) of the m
th

polyhedral neighborhood D (ΓWm
) introduced

in Definition 3.4, on page 23, by means of the following relation:

Vm (εmm) = Vtubem (εmm) +Rm ,

where

Vtubem (εmm) = µL (D (ΓWm
)) ,

and where the sequence of error zeta functions (Rm)m⩾m0
(locally) uniformly converges to 0.

This ensures, for the associated zeta function

s↦ ∫
ε
m
m

0
t
s−3 Rm(t) dt ,
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that (locally, uniformly on C)

lim
m→∞

∫
ε
m
m

0
t
s−3 Rm(t) dt = 0 .

Proof. This directly comes from Property 3.4, on pag 23, in conjunction with Property 3.11, on
page 26. Given η > 0, there exist then m0 ∈ N such that, for all m ⩾ m0,

»»»»»Vm (εmm) − Vtubem (εmm)»»»»» ⩽ η .
We then proceed as in the proof of Theorem 3.16, on page 40. Since, for admissible values of s ∈ C,

∫
ε
m
m

0
t
s−3 Rm(t) dt = ∫

ε
m
m

0
t
s−3 (Ṽm(t) − Ṽtubem (t)) dt ,

we obtain the expected (locally) uniform convergence.

Theorem 3.18 (Complex Dimensions of the Weierstrass Curve).

The possible Complex Dimensions of The Weierstrass Curve (or of the Weirerstrass IFD) are all
simple, and given as follows:

DW − k (2 −DW) + i `p , with k ∈ N , ` ∈ Z .

Proof.

We simply apply Property 3.16, on page 40, ensures the existence of an integer m0 ∈ N such that
the poles of the limit fractal effective zeta function ζ̃

e
W , i.e., the fractal zeta function associated with

the Weierstrass Curve ΓW , are the same as the poles of the fractal zeta function ζ̃
e
m0

.

Corollary 3.19. The possible Complex Dimensions of The Weierstrass Curve (or of the Weierstrass
IFD) are the same as those obtained in [DL22c] and are given by Theorem 3.18, on page 47. Fur-
thermore, if they are actual poles, they are simple poles. More precisely, those possible Complex
Dimensions are DW − k (2 −DW) + i `k p, with `k ∈ Z and where k ∈ N is arbitrary.

Moreover, they coincide with the actual poles of the tube fractal zeta function ζ̃
e,tube
m , for all m ⩾ m0.

In particular, we then deduce that the following possible Complex Dimensions previously obtained
in [DL22c], i.e., 1 − 2 k + i `p, with k ∈ N and ` ∈ Z, along with 0 and 1, are not actual Complex
Dimensions.

Furthermore, the Complex Dimensions associated with DW are actual Complex Dimensions of ΓW .

For the exceptional cases, we refer to [DL22c].
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4 Revisiting the Computation of the Minkowski Dimension

When it comes to computing the box–counting – or Minkowski dimension – of a fractal, one usu-
ally proceeds by using a (classical) cover of the fractal under study, constituted of balls; namely, in
dimension 2, disks or squares; see Definition 4.1, on page 48 below.

However, when a nonaffine, complicated fractal curve, as the Weierstrass Curve is involved, such
methods are not optimal. In fact, covering such a curve with disks or squares is not natural. We
hereafter propose to consider, instead, the polyhedral neighborhood introduced in Definition 3.4, on
page 23.

Definition 4.1 (Box–Counting Dimension).

As can be found, for instance, in [Fal86], we recall that the box–counting dimension (or box dimen-
sion, in short), of ΓW , is given by

DW = − lim
δ→0+

lnNδ (ΓW)
ln δ

, (⋄)

where Nδ (ΓW) stands for any of the following quantities:

i. the smallest number of sets (here, subsets of R2
) of diameter at most δ that cover ΓW on [0, 1[ ;

ii. the smallest number of closed balls (disks, here) of radius δ that cover ΓW on [0, 1[ ;

iii. the smallest number of cubes (squares, here) of side δ that cover ΓW on [0, 1[;

iv. the number of δ–mesh cubes (squares, here) that intersect ΓW on [0, 1[;

v. the largest number of disjoint balls (disks, here) of radius δ with centers in ΓW on [0, 1[.

Furthermore, for the Weierstrass Curve ΓW , as, more generally, for any bounded subset of Eu-
clidean space – the box–counting dimension coincides with the Minkowski dimension.

Theorem 4.1. The box–counting dimension – or, equivalently, the Minkowski dimension – of the

Weierstrass Curve ΓW exists and is equal to DW = 2 +
lnλ

lnNb
.

Proof. We simply apply the result given in Corollary 3.12, on page 31. We then have the existence of
an integer m0 ∈ N such that

∀m ⩾ m0 ∶ ΓW ⊂ D (ΓWm
) .

In other words, for all integers m ⩾ m0, the polyhedral neighborhood D (ΓWm
) covers the Weier-

strass Curve ΓW .

Note that we thus dispose, with the sequence of polyhedral domains (D (ΓWm
))m⩾m0

, of a nonusual

(but admissible, in the sense of Definition 4.1, on page 48 above) sequence of covers. However, (D (ΓWm
))m⩾m0

is the most natural and optimal sequence of covers of the Weierstrass Curve ΓW , insofar that for
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all m ⩾ m0, each domain D (ΓWm
) contains the Weierstrass Curve ΓW , while, at the same time, the

sequence (D (ΓWm
))m⩾m0

converges to ΓW . This, in particular, means that when m→∞, the two–

dimensional Lebesgue measure (i.e., area) of each polygon belonging to D (ΓWm
) tends to 0.

Next, observe that, thanks to Remark 3.1, on page 19, we have that:

hm ≫ ε
m
m .

For allm ∈ N⋆, each polygon belonging to D (ΓWm
) has a vertical height at most equal to (Nb − 1)hm

(this directly comes from the definition of hm; see relation (5), on page 11, and an horizontal width
at most equal to (Nb − 1) εmm. Note now that, thanks to Remark 3.1, on page 19, we have that:

hm ≫ ε
m
m .

Hence, it is the cohomology infinitesimal ε
m
m which plays the role of the elementary diameter δ in

Definition 4.1, on page 48. Moreover, the area of each polygon belonging to D (ΓWm
) also corresponds

to the two–dimensional Lebesgue measure of the reunion of
(Nb − 1)hm

εmm
elementary and smaller poly-

gons, each of diameter ε
m
m, where the diameter of a polygon is to be understood in the sense of the

largest distance between any pair of vertices of the considered polygon.

Since D (ΓWm
) is itself constituted of the reunion of (2Nm

b − 1) = 2 ε
−m
m

Nb − 1
− 1 polygons, we then

obtain the box–counting dimension as

− lim
m→∞

ln(( 2 ε
−m
m

Nb − 1
− 1) (Nb − 1)hm

εmm
)

ln εmm
= − lim

m→∞

ln (ε−2m
m hm)
ln εmm

.

Thanks to the estimate given in Property 2.12, on page 15, we have that

Cinf (εmm)2−DW
⩽ hm ⩽ Csup (εmm)2−DW ,

which ensures that

Cinf (εmm)−DW
⩽ ε

−2m
m hm ⩽ Csup (εmm)−DW ,

and, consequently,

lnCinf −DW ln (εmm) ⩽ ln (ε−2m
m hm) ⩽ lnCsup −DW ln (εmm) .

Since lim
m→∞

ε
m
m = 0, we obviously have that

lim
m→∞

lnCinf

ln (εmm) = lim
m→∞

lnCsup

ln (εmm) = 0 ,

from which we immediately deduce that the value of the box–counting dimension of the Weierstrass
Curve is exactly

− lim
m→∞

ln (ε−2m
m hm)
ln εmm

= DW .

This concludes the proof of the existence of the box–counting (i.e., the Minkowski) dimension and

of the fact that it is given by DW = 2 +
lnλ

lnNb
.
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