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The influence of stable and unstable stratification on the amplification of coherent structures in
turbulent channel flows is investigated by computing the linear response to stochastic forcing near
the turbulent mean flow. The velocity and thermal responses to momentum and thermal forcing
are considered separately. It is found that, consistently with results of previous direct numerical
simulations, the influence of the mean flow stratification on stochastic forcing amplifications is non-
negligible only for streamwise-elongated large-scale structures. Unstable stratification is found to
enhance the peak variance of the response, except for the velocity response to thermal forcing, and
to increase the spanwise wavelength of the most amplified structures. Stable stratification induces
opposite effects. The different spanwise wavelengths maximizing the different types of variance
amplifications, all converge to approximately six channels half-widths when approaching the linear
instability threshold where large-scale coherent rolls become linearly unstable. We show that in
the presence of even moderately unstable stratification, the profiles of turbulent buoyancy and
momentum fluxes and of rms vertical velocity of all types of most amplified stochastic responses are
nearly indistinguishable from those of the critical mode becoming unstable at the critical Richardson
number. For all considered stratification levels, the two most energetic POD modes are found to
contribute to more than 90% of the variance of the response, except for the thermal response
to thermal forcing. We conclude that the same mechanism underlies the onset of the instability
of coherent large-scale rolls at the critical Richardson number and the amplification of coherent
large-scale structures at subcritical Richardson numbers. The process leading to the onset of the
instability of large-scale rolls is therefore gradual and the increasing response variance associated
to increasingly unstable mean flow stratification as well as the increase of the optimal spanwise
wavelength of the most amplified mechanically forced streaks, can be both interpreted as precursors
of the linear instability of large-scale rolls.

I. INTRODUCTION

We are interested in the influence of mean flow stratification on the amplification of coherent structures in wall-
bounded shear flows. While a clear theoretical understanding has been reached in the case of laminar flows by means
of stability analyses predicting optimal non-modal amplifications and the onset of linear modal instabilities, such is
not the case for turbulent flows where a clear theoretical understanding of the genesis and the main characteristics of
large-scale coherent motions is still lacking. Such an understanding would be beneficial to many applications, ranging
from the design of heat-exchangers to weather forecasting and climate sensitivity analyses where better models of
large-scale coherent structures are sought. In this study we choose to focus on the sole interactions of buoyancy
and shear by considering the Poiseuille-Rayleigh-Bénard flow, thus removing additional effects such as e.g. ground
roughness, Coriolis acceleration, three-dimensionality of the mean velocity profiles which would be encountered in
geophysical applications. In this configuration, the viscous, thermally-conducting fluid is confined in a plane channel
between two horizontal isothermal walls enforcing either a destabilizing stratification (when the ground is hotter than
the top wall) or a stabilizing one (in the opposite case) and is driven by a (streamwise) pressure gradient.

The modal stability of laminar steady solutions of the Poiseuille-Rayleigh-Bénard flow is well understood. In the
absence of stratification the laminar Poiseuille solution is known to become linearly unstable to Tollmien-Schlichting
waves when the Reynolds number exceeds the critical value Rec = 5772 [1, 2]. This critical Reynolds number does
not change when destabilizing stratifications are enforced [3]. Excessive destabilizing stratifications, however, induce
the linear instability of Rayleigh-Bénard convection rolls with spanwise wavelength λ ≈ 4h (where h is the channel
half-width) when the Rayleigh number exceeds the critical value Rac = 1708 [2, 4]. The value of the critical Rayleigh
number, initially determined in the absence of mean flow (no pressure gradient, Re = 0), remains unchanged for
non-zero Reynolds numbers [3] with rolls aligning with the streamwise direction of the Poiseuille flow.

The determination of the critical Reynolds and Rayleigh numbers and the associated neutral modes, however, is
not sufficient to fully characterize the dynamics of the considered Poiseuille-Rayleigh-Bénard flow which can become
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turbulent even for Reynolds numbers significantly lower than the critical Rec [5]. This subcritical transition has been
related to the potential of linearly stable laminar base flows to sustain very large amplifications of small perturbations
exploiting the highly non-normal nature of the linearized Navier-Stokes operator. This potential has been investigated
by computing the largest energy amplifications of initial conditions and forcing and the corresponding optimal inputs
and outputs. In plane channels, the most amplified perturbations are streamwise streaks, i.e. streamwise-elongated
spanwise-periodic low- and high-speed regions, which are optimally induced by streamwise vortices with most amplified
spanwise wavelengths λy ≈ 3h [6–10]. Stabilizing stratifications are found to reduce the optimal energy amplifications
[11] while destabilizing stratifications do increase them [12]. In the latter case, streamwise-uniform perturbations
remain the most amplified ones with the most amplified spanwise wavelength gradually drifting from λ ≈ 3h in the
unstratified case to λ ≈ 4h when approaching the critical Rayleigh number while the amplification of small wavelengths
is left substantially unaffected by stratification [12].

When the Reynolds number and/or the Rayleigh number are sufficiently large, the channel flow is turbulent and
is characterized by persistent large-scale coherent structures such as large-scale streaks [13–15] and convection rolls
[16, 17] containing a substantial fraction of the turbulent kinetic energy. The resemblance of these coherent structures
to their laminar counterparts has motivated linear stability analyses of turbulent mean flows. In a first approach, the
‘quasi-laminar’ one, nonlinear fluctuations are considered as a forcing to the Navier-Stokes operator linearized near
the turbulent mean flow whose selective amplification of turbulent fluctuations is then analyzed [8, 18–20]. In the
present study we follow a different approach based on the triple decomposition of the flow fields into temporal mean,
coherent part of the fluctuations and residual random fluctuations [21]. In this approach, which has been adopted in a
large number of previous linear analyses of turbulent mean flows [22–31], the amplification of coherent fluctuations is
studied based on linear operators which embed the effects of the turbulent stresses induced by the random part of the
fluctuations. In this context, the turbulent mean flow in plane channels is found to be linearly stable in the absence of
stratification [21, 32] and becomes linearly unstable for sufficiently large destabilizing stratifications, where a critical
mode consisting of coherent streamwise-uniform large-scale rolls of spanwise wavelength λy ≈ 6h becomes unstable at
the critical friction Richardson number Riτ,c = −0.86 [33]. In the linearly stable regime, however, the turbulent mean
flow is still able to sustain non-normal energy amplifications despite the additional damping associated to turbulent
diffusion. Most previous research has considered unstratified channels where streamwise streaks are found to be the
most amplified structures emerging in response to an initial condition or to harmonic or stochastic forcing [23, 26, 28].
In the unstratified case, optimally-amplified logarithmic layer streaks are found to be almost-self-similar geometrically
and their amplification scales with the spanwise wavenumber ky as k−γ

y with γ = 2 when considering the optimal
response to harmonic forcing, γ = 1 for the variance of the response to stochastic forcing, and γ = 0 when considering
optimal temporal amplifications of initial conditions [28, 29, 34]. The amplifications of buffer-layer and large-scale
streaks, however, depart from the logarithmic-layer algebraic scaling with peak amplifications respectively found near
λ+ ≈ 90 (scaling in wall units) and λ ≈ 3.5− 5h (scaling in the outer length scale h) [28], consistently with the size
of the most energetic turbulent structures.

The influence of stratification on the non-normal amplification of coherent structures in turbulent flows has been
addressed only recently. Ahmed et al. [35] have investigated the low-rank properties of the resolvent operator in
Reτ = 180 stably stratified turbulent channels by means of the quasi-laminar formulation. Zasko et al. [36] explored
higher Reτ = O(1000) Reynolds numbers in the turbulent Couette flow by including eddy viscosity and thermal
diffusivity in the linear operator and finding an increase of optimal temporal energy amplifications for stabilizing
stratifications. Madhusudanan et al. [37] and Cossu [33] have considered the effect of destabilizing temperature
gradients including eddy viscosity and thermal diffusivity in the linear operator, the former computing the response
to impulsive forcing, the latter the critical Rayleigh and Richardson numbers for the onset of the linear instability of
large-scale convection rolls.

The effect of an unstable stratification on non-normal energy amplifications, however, has not been investigated
yet in turbulent channels nor in other turbulent canonical flows thus leaving unanswered a number of significant
questions: Do energy amplifications increase with destabilizing stratification? If yes, to what extent? Which coherent
perturbations are the most influenced by stratification? What are the main features of the most amplified coherent
perturbations? Are optimally amplified coherent structures a precursor of the critical mode that is destabilized for
sufficiently large unstable stratification or do they have distinct characteristics?

The goal of this study is to answer the questions raised above by computing the coherent response to stochastic
forcing in stratified turbulent channels and evaluating the mean amplification of the forcing. The effect of stable
stratification will also be investigated because only the Couette flow was previously considered [36] with a non-quasi-
laminar approach. To gain a clear view of the underlying amplification mechanisms, the amplifications of velocity
and temperature coherent fluctuations will be computed separately in response to momentum and heating stochastic
forcing, departing from the customary use of a compound norm [12, 35, 36]. The paper is organized as follows: The
mathematical formulation of the problem is introduced in §II, the results are presented in §III and discussed in §IV
where some conclusions are drawn. Additional details are provided in the appendix.
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II. BACKGROUND

II.1. Flow configuration and linear model for coherent structures

We consider the pressure-driven flow in a plane channel delimited by two horizontal walls located at z = ±1
orthogonal to the gravitational field −g ez, where we denote by x, y and z the streamwise, spanwise and vertical
coordinates made dimensionless with respect to the channel half-width h and by ez the vertical unit vector. The
fluid, whose thermal expansion coefficient is β, is viscous and thermally conducting with kinematic viscosity ν and
thermal diffusivity α. For the considered turbulent flows it is customary to express the distance from the walls also in
wall units as z+ = (h− |z|)uτ/ν, where uτ =

√
|τw|/ρ is the characteristic velocity associated to the wall shear stress

τw. A constant temperature difference ∆Θ = Θ(z = 1) − Θ(z = −1) is maintained between the two walls, which
are assumed to be isothermal, resulting in a vertical heat flux Q. Note that, following the usual convention, positive
(negative) values of ∆Θ and Q correspond to stabilizing (destabilizing) mean temperature gradients.

We use a linear Newtonian eddy closure to model small-amplitude coherent velocity u = (u, v, w), pressure p and
temperature θ fluctuations to the time-averaged mean flow U = U(z)ex, P (z) and Θ(z). This model has been used
in a number of previous studies [21, 26–29, 38–41] and has been extended to include buoyancy effects under the
Boussinesq approximation [33, 36, 37]:

∂tu = −∇u ·U−∇U · u+Riτ θ ez −∇p+∇ ·
[
νT

(
∇u+∇uT

)]
+ fu, (1)

∂tθ = −∇θ ·U−∇Θ · u+∇ · (αT∇θ) + fθ, (2)

where fu and fθ are the momentum and thermal forcing terms and the equations are made dimensionless in terms of
the channel half-width h, the temperature difference ∆Θ and the friction velocity uτ . The system depends explicitly
on the friction Richardson number Riτ = hβg∆Θ/uτ

2 (positive in the stably stratified case and negative in the
unstably stratified case) and on the friction Reynolds number Reτ = huτ/ν and the Prandtl number Pr = ν/α via
the effective kinematic viscosity νT , the effective thermal diffusivity αT and the associated mean flow profiles. For
the sake of comparison with previous investigations, results will be discussed also in terms of the Rayleigh number
Ra = (2h)3gβ∆Θ/(αν) and of the bulk Reynolds number Reb = 2hUb/ν based on the mean bulk velocity Ub.
Fourier transforms in the horizontal coordinates and standard manipulations are used to reduce the system given

by equations (1-2) to the following system for the wall-normal velocity wall-normal vorticity and the temperature

Fourier modes ŵ(z, t), ζ̂(z, t), θ̂(z, t) of streamwise and spanwise wavenumbers kx and ky forming the state vector q̂:

∂tq̂ = Aq̂+Bf̂ ; A =

 ∆−1LOS 0 Riτ k
2∆−1

−i kyU
′ LSQ 0

−Θ′ 0 Lθ

 , B =

 −ikx∆
−1D −k2∆−1 −iky∆

−1D 0
iky 0 −ikx 0
0 0 0 1

 , (3)

where q̂ =
{
ŵ, ζ̂, θ̂

}T

, f̂ =
{
f̂u, f̂v, f̂w, f̂θ

}T

and the generalized Orr-Sommerfeld, Squire and Lθ linear operators,

including the effects of eddy viscosity and eddy thermal diffusivity, are defined as:

LOS = −ikx(U∆− U ′′) + νT∆
2 + 2ν′T∆D + ν′′T (D2 + k2), (4)

LSQ = −ikxU + νT∆+ ν′TD, (5)

Lθ = −ikxU + αT∆+ α′
TD (6)

with D and ′ denoting d/dz, k2 = k2x+k2y and ∆ = D2−k2. No-slip and isothermal boundary conditions, are enforced

on both walls: ŵ(±1) = 0, Dŵ(±1) = 0, ζ̂(±1) = 0, θ̂(±1) = 0. The mean flow velocity U(z) and temperature Θ(z)
profiles, a sample of which is shown in Fig. 1, and the associated νT (z) and αT profiles appearing in equations (3),
(4) and (6) are based on the extended Cess’s model described in Appendix A, which has been widely used in linear
analyses of unstratified channels [23, 26, 28, 32, 40, 42, 43] and has recently been extended to the stratified case [33].

II.2. Response to stochastic forcing

Coherent perturbations to the turbulent mean flow are linearly stable as long as the friction Richardson does not
exceed the critical value Riτ,c = −0.86 found in Ref. [33] by means of the modal stability analysis of the linear
operator A. In the linearly stable regime it is of interest to quantify the linear system response to stochastic forcing
representing the effect of neglected nonlinear terms. We therefore follow previous investigations [8, 27, 28, 44–46] in

considering a zero-mean (⟨f̂⟩ = 0) stochastic forcing with ⟨f̂(t)f̂H(t′)⟩ = Pδ(t − t′) where ⟨·⟩ denotes the ensemble
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FIG. 1. Vertical profiles of the temporally-averaged mean streamwise velocity U (expressed in wall units, panel a) and mean
temperature Θ (normalized with respect to ∆Θ, panel b) for selected friction Reynolds numbers Reτ .

average and the usual choice P = I is made. This forcing induces a stochastic response with covariance ⟨q̂q̂H⟩ = X
which, as t → ∞, tends to the solution of the algebraic Lyapunov equation [8]:

AX+XA† +BPB† = 0, (7)

where the superscript † denotes adjoint operators. Because of their different physical significance, it is important

to distinguish the momentum forcing f̂u = {f̂u, f̂v, f̂w, }T from the thermal forcing f̂θ. To this end, we separately

compute the solution XM of the Lyapunov equation when only the mechanical forcing is active (i.e. f̂θ = 0), having
forcing covariance PM , and the solution XT of the Lyapunov equation where only the thermal forcing is active (i.e.

f̂u = 0) with forcing covariance PT , where PM +PT = I and

PM =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ; PT =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (8)

As the velocity and temperature can be retrieved from the state vector as û = Cuq̂ and θ̂ = Cθq̂, the velocity and

temperature covariance are given by ⟨ûûH⟩ = CuXC†
u, ⟨θ̂θ̂H⟩ = CθXC†

θ, where X is either XM or XT and

Cu =
1

k2

 iαD −iβ 0
k2 0 0
iβD iα 0

 ; Cθ =
[
0 0 1

]
. (9)

The following four ratios will be used to quantify the respective amplification of the variance of momentum and
thermal forcing into velocity and temperature coherent perturbations variance:

VMu =
Tr⟨ûûH⟩
Tr⟨f̂uf̂Hu ⟩

, VMθ = U2
e

Tr⟨θ̂θ̂H⟩
Tr⟨f̂uf̂Hu ⟩

(10)

VTu =
1

U2
e

Tr⟨ûûH⟩
Tr⟨f̂θf̂H

θ ⟩
, VTθ =

Tr⟨θ̂θ̂H⟩
Tr⟨f̂θf̂H

θ ⟩
. (11)

where, e.g. Tr⟨ûûH⟩ =
∫ 1

−1
(⟨û∗û⟩+ ⟨v̂∗v̂⟩+ ⟨ŵ∗ŵ⟩) dz is the velocity variance. Note that in (10) and (11) the

velocity and momentum forcing variances are normalized with respect to the square of the centreline mean velocity
Ue corresponding to the maximum velocity variation ∆U of the mean flow to make them comparable to temperature
and heating variances which are normalized by ∆Θ.

To quantify the level of coherence in the response to stochastic forcing and to identify the most relevant coherent

structures we also compute the eigenvalues and eigenfunctions of ⟨ûûH⟩ and ⟨θ̂θ̂H⟩. Covariance operators being
Hermitian, their eigenvalues σj are real and correspond to a set of mutually orthogonal eigenfunctions often referred
to as proper orthogonal decomposition (POD) modes, ‘empirical orthogonal functions’ or Karhunen-Loève modes. As
the sum of the σj eigenvalues is equal to the total variance of the response V =

∑
j σj , the ratio σj/

∑
j σj represents
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FIG. 2. Premultiplied variance amplification ratios VMu (panels a and e), VMθ (panels b and f), VTu (panels c and g) and VTθ

(panels d and h) reported as a function of the spanwise wavelength λy = 2π/ky for Reτ = 1000 and selected values of Riτ .
The amplifications of streamwise-uniform perturbations (with kx = 0) are reported in the top row (panels a-d) and those of
perturbations with λx = 2λy in the bottom row (panels e-h).

the contribution of the j-th mode to the response variance; the corresponding eigenfunction provides the associated
coherent structure emerging in the response.

Standard methods are used to numerically compute variance amplifications. The system reported in Eq. (3)) and
the Cu, Cθ operators are discretized in the vertical direction by means of a Chebyshev-collocation method using the
discretized differentiation operators of Ref. [47] which embed the appropriate boundary conditions. The stochastic
response is obtained by solving Eq. (7) with the lyap function in matlab. The codes have been derived from those
used and validated in Refs. [27, 28, 33]. The results in the present study are obtained by using a number of collocation
points ranging from 129 to 513 depending on the Reynolds number, as in Refs. [26, 28, 33].

III. RESULTS

III.1. Effects of stratification on stochastic forcing amplifications at Reτ = 1000

In this section we investigate the influence of stratification on variance amplifications for the (fixed) friction Reynolds
number Reτ = 1000. Responses to stochastic forcing are computed for Richardson numbers ranging from Riτ = 0.8
(in the stably stratified regime) to Riτ = −0.8 (in the unstably stratified regime). The Prandtl number is set to
Pr = 1 for all the results presented in this paper. The variance amplification ratios, premultiplied by the spanwise
wavenumber ky, are reported in Fig. 2 as a function of the spanwise wavelength λy = 2π/ky for selected values of Riτ .
Two types of perturbations are considered: streamwise-uniform (kx = 0) perturbations (top row of Fig. 2), which
are the most amplified ones, and perturbations with λx = 2λy (bottom row of Fig. 2) corresponding to wavelengths
typical of the self-sustained process [34, 48, 49]. Additional results pertaining to intermediate values of the streamwise
wavelength are reported in Appendix B.

The premultiplied amplifications kyVMu display the double-peaked structure which has already been thoroughly
investigated in unstratified channels [28]. The primary peak scales in outer units and corresponds to large-scale streaks
with spanwise wavelengths ranging from ≈ 3 to ≈ 6 channel half-widths, depending on Riτ . The secondary (lower)
peak scales in wall units and corresponds to spanwise wavelengths λ+

y ≈ 80−90 (λy = λ+
y /Reτ ≈ 0.085 in outer units)

typical of buffer-layer streaks [50]. In between these two peaks is a quasi-plateau corresponding to logarithmic-layer
quasi-self-similar structures [23, 24, 26, 28] scaling with the distance from the wall whose (non-premultiplied) variance
amplification scales as k−1

y [28]. We find that the mean flow stratification has non-negligible effects only on the primary
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FIG. 3. Dependence on the Richardson number Riτ of the most amplified spanwise wavelengths λmax of streamwise-uniform
modes (kx = 0) corresponding to the large-scale peaks (panel a) and of the corresponding premultiplied peak amplifications
VMu, VMθ, VTu, VTθ (panel b) reported in the top row (panels a to d) of Fig. 2.

(large-scale) peak of kyVMu and only when λx ≫ λy (see Appendix B). Indeed Fig. 2a shows that for streamwise-
uniform perturbations an increasingly destabilizing (stabilizing) stratification, corresponding to increasingly negative
(positive) values of Riτ , induces an increasing (decreasing) height of the primary peak of kyVMu but has no influence
on log-layer or buffer-layer structures which have smaller spanwise wavelengths. For perturbations with λx = 2λy

stratification has no significant effect on VMu even for large-scale structures (see Fig. 2e). Similar results are found
for the premultiplied temperature variance kyVMθ produced by momentum forcing, (see Fig. 2b,e).

The shapes of the amplification curves associated to thermal forcing differ from those associated to momentum
forcing. The premultiplied amplification curves kyVTθ, indeed, do not generally display a double-peaked shape and
large-scale (large λy) structures are generally weakly amplified. For streamwise-uniform perturbations, however,
unstable stratification induces the emergence of a large-scale peak while stable stratification has the opposite effect
(see Fig. 2d) and no significant effect is found for perturbations with λx = 2λy (see Fig. 2g) Amplifications kyVTu are
small with a single peak corresponding to large-scale structures (see Fig. 2c,g) and tend to zero Riτ → 0, as expected.
In Fig. 3, the most amplified spanwise wavelengths λmax and the corresponding peak of the premultiplied variance

amplifications are reported as a function of Riτ . The figure shows that the spanwise wavelength maximizing kyVMu

increases from λy ≈ 3 (three channel half-widths) for the stably stratified case with Riτ = 0.8, to λy ≈ 3.5 in the
unstratified case (already examined in Ref. [28]) to then rapidly increase in the unstably stratified case up to λy ≈ 6 for
Riτ = −0.8, near the onset of the modal instability at Riτ,c = −0.86 (see Fig. 3a). Spanwise wavelengths maximizing
VMθ are larger, ranging from λy ≈ 5 for Riτ = 0.8 to λy ≈ 6 for Riτ = −0.8. Despite this difference in the most
amplified spanwise wavelengths, the peak variance of both responses to momentum forcing is very similar (see Fig. 3b)
being not very sensitive to Riτ , except near the instability threshold for sufficiently negative Riτ . Thermal forcing is
generally less amplified than momentum forcing, particularly so for VTu (see Fig. 3b). The most amplified wavelengths
of VTu and VMθ are very similar while those pertaining to VTθ are, when the primary peak has emerged, larger than
all other wavelengths (λy ≈ 6.5). The four types of variance amplification all increase when approaching the linear
instability threshold Riτ = −0.86, where they diverge with the most amplified wavelengths of all forced responses
converging to the wavelength of the critical mode.

III.2. Structure of the most amplified stochastic responses

As discussed in §III.1, the spanwise wavelengths maximizing the variance amplifications all converge to the spanwise
wavelength of the critical mode for Richardson numbers approaching the critical value Riτ,c = −0.86. In this limit, it is
expected that the structure of the stochastic responses embed a strong signature of the critical mode. It is, however,
unclear how strong this signature is for intermediate levels of unstable stratification where important differences
appear in the values of the different most amplified spanwise wavelengths (see Fig. 3a) suggesting that significant
differences might exist in the mechanisms underlying the different amplifications. We clarify this issue by examining
the structure of the most amplified stochastic responses.

In Fig. 4 are reported the vertical profiles of root mean square (rms) response components as well of the associated
turbulent heat and momentum fluxes computed from the solutions of the Lyapunov equation, as explained in §II.2,
for streamwise-uniform (kx = 0) structures having optimal spanwise wavelengths (the ones corresponding to the peak
values in panels a-d of Fig. 2) at Reτ = 1000 and Riτ = −0.4. These profiles, that would otherwise have different
amplitudes, are normalized to the same (unitary) maximum amplitude in order to compare their shapes. These
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FIG. 4. Vertical profiles of the: (a) turbulent buoyancy flux ⟨θ̂ŵ⟩, (b) turbulent momentum flux ⟨ûŵ⟩, (c) rms vertical velocity

fluctuations ⟨ŵŵ⟩1/2, (d) rms temperature fluctuations ⟨θ̂θ̂⟩1/2, (e) rms streamwise velocity fluctuations ⟨ûû⟩1/2. The different
profiles have been computed at Reτ = 1000 and Riτ = −0.4 in correspondence to the four different spanwise wavelengths corre-
sponding to the four types of large-scale peaks of the premultiplied variances of streamwise-uniform perturbations documented
in panels a−d of Fig. 2. The profiles of the critical mode (incipient linear instability) computed in Ref. [33] at Reτ = 1000 and
Riτ = −0.86 (dashed black lines) are also reported for comparison. All profiles are normalized to unitary maximum amplitude.
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FIG. 5. Relative contributions of the first (panel a) and of the first two (panel b) POD modes to the peak variance of the
stochastic response versus the friction Richardson number Riτ for Reτ = 1000.

profiles are also compared to those of the critical mode computed at Riτ,c = −0.86 in Ref. [33]. Figs. 4a and b show

that the ⟨θ̂ŵ⟩ and ⟨ûŵ⟩ profiles associated to the different large-scale peak responses are extremely similar and are
also extremely similar to those of the critical mode despite their very different spanwise wavelengths (see Fig. 3a) and
the different Riτ for the critical mode. This similarity reveals that, almost unexpectedly, a common vertical buoyancy
and momentum transport mechanism underlies the onset of the linear instability and the amplification of stochastic
forcing even for relatively weak levels of unstable stratification. This is further confirmed by the strong similarity of
the ⟨ŵŵ⟩1/2 profiles (see Fig. 4c) of the rms vertical velocity which is the key ingredient of the vertical turbulent
transport. Differences, however, appear between the vertical profiles of the rms temperature and streamwise velocity
perturbations. A direct and ‘unfiltered’ signature of the forcing is, indeed, clearly visible on the temperature response
to thermal forcing (see Fig. 4d) that is almost-constant in the bulk of the flow because not immediately filtered by the
non-normal couplings of the system. In the case of the streamwise velocity, differences in the response rms profiles
are confined to the central part of the channel (see Fig. 4e), where the mean shear is small the coupling to the vertical
velocity negligible.

These results suggest that the response to stochastic forcing is composed of (a) an endogenous dominant (most
amplified) highly correlated part with structure similar to that of the critical mode and (b) a more direct response
to the forcing which is much less amplified/filtered and which, similarly to the forcing itself, lacks of cross-correlation
between different response components. To quantify the relative weight of these two different components in the
stochastic response, a POD analysis is performed in correspondence to each of the considered peak responses for
Richardson numbers ranging from Riτ = 0.8 to Riτ = −0.8 (always with Reτ = 1000).
In Fig. 5 the relative contribution to the total variance of the leading (panel a) and of the two leading (panel b)

POD modes are reported as a function of Riτ . The results confirm that the two leading POD modes associated to
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FIG. 7. Reynolds number dependence of the most amplified spanwise wavelengths λmax of streamwise-uniform perturbations
corresponding to the large-scale peak (panel a) and of the most amplified premultiplied variances (panel b) for the four consid-
ered types of variance amplifications VMu, VMθ, VHu, VHθ computed for streamwise-uniform perturbations in the moderately
unstably stratified regime at Riτ = −0.4.

the mechanically-forced velocity large-scale peak contribute for respectively ≈ 60% and ≈ 30% of the VMu variance
in the unstratified case Ref. [28] . We find that the contribution of these two leading POD modes to VMu increases
for increasingly destabilizing stratifications (increasingly negative values of Riτ ), heading towards 100% at Riτ,c. A
similar trend is observed for the contribution of the leading POD mode to the large-scale peak of the VTθ, which is in
the similar situation of having a direct contribution of the forcing to the observed variance, but with a less important
contribution of the second POD mode. On the contrary, for the VTu, VMθ amplifications, where the observed response
is only indirectly forced, the contribution of the first POD mode is always larger than ≈ 95% (≈ 100% for the first
two modes) for all the considered values of Riτ . These trends confirm that a strongly coherent large-scale mode is
responsible of the emergence of the primary peak in the forcing response variances and is responsible of the observed
strong similarity of the cross-correlations.

III.3. Influence of the Reynolds number

All the results discussed so far pertain to the Reynolds number Reτ = 1000, a value typical of current direct
numerical simulations (DNS) capabilities but which is on the lower end of regimes relevant to most industrial and
geophysical applications. To examine the influence of the Reynolds number on the findings discussed above, additional
responses to stochastic forcing have been computed for Reynolds numbers extending from Reτ = 500 to Reτ = 20000
(the highest Reynolds number considered in related previous investigations [23, 26, 28, 33]).

We find that for all considered Reynolds numbers, the most amplified perturbations remain the streamwise-uniform
ones (kx = 0), which also remain the most sensitive to buoyancy effects (not shown). Furthermore, the structure of
the premultiplied variance amplification curves is found to be substantially unaffected by an increase of Reτ . This
can be appreciated from Fig. 6 where the shown amplification curves, computed at Reτ = 10000, remain similar to
those obtained at Reτ = 1000 (see panels a-d of Fig. 2), except for the increase in spatial scale separation between
the primary (large-scale) and secondary (buffer-layer) peaks in the mechanically forced responses (panels a and b of
Fig. 6). The peak of the (premultiplied) variance amplifications and of the associated spanwise wavelengths are
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FIG. 8. Reynolds number dependence of the relative contributions of the first (panel a) and of the first two (panel b) POD
modes to the variance of the stochastic responses computed in correspondence to the large-scale peaks of the premultiplied
variance amplifications in the moderately unstably stratified case Riτ = −0.4.

reported as a function of Reτ in Fig. 7 for the moderately unstably stratified case Riτ = −0.4. This figure shows that
the most amplified wavelengths increase monotonically with Reτ but with only limited variations, of the order of 10%
between Reτ = 1000 and Reτ = 20000. The maximum variance amplifications do also monotonically increase with
Reτ , but only slightly in the considered Reτ range.
Finally, we consider the influence of the Reynolds number on the relative contribution of the leading first and two

POD modes to the total variance for the same moderately unstably stratified case Riτ = −0.4. As shown in Fig. 8,
the contributions of the first and first two POD modes to VMu and VHθ slightly increase with Reτ , while the leading
contributions to VHu and VMθ remain ≈ 100%.

IV. CONCLUSIONS

The main goal of this investigation was to assess the influence of stratification on the non-normal energy amplifica-
tions of coherent perturbations in turbulent channels. The analysis, based on a linearized approach including the effect
of turbulent Reynolds stresses in the linear operator, has been performed by computing the variance of the response
to stochastic forcing. The analysis distinguishes momentum forcing from thermal forcing and velocity fluctuations
from thermal fluctuations in the response, analogously to previous investigations distinguishing different velocity and
forcing components in the unstratified case [46]. Results have been obtained for friction Reynolds numbers ranging
from Reτ = 500 to Reτ = 20000, Pr = 1 and friction Richardson numbers ranging from Riτ = 0.8 (stabilizing strat-
ification) to Riτ = −0.86 (unstable stratification) corresponding to bulk Reynolds numbers and Rayleigh numbers
extending up to Reb ≈ 106 and Ra ≈ 109.
The main findings concerning stochastic forcing amplifications are the following: (a) momentum forcing systemat-

ically leads to larger (by at least one order of magnitude) peak variance amplifications than thermal forcing; (b) the
effect of stratification on the amplifications is non-negligible only for large-scale streamwise-elongated structures; (c)
variance amplifications do increase with increasingly unstable stratification, diverging when approaching the linear
instability threshold Riτ,c = −0.86, and decrease with increasingly stable stratification, except for the variance of ve-
locity fluctuations induced by thermal forcing, which is zero in the unstratified case; (e) peak variance amplifications
do slightly increase with the Reynolds number.

These findings are consistent with direct numerical simulations results [17, 51] showing that stable (unstable)
stratification respectively lead to decreasing (increasing) thermal and velocity fluctuations but mostly at large scale
and in the bulk of the flow while leaving almost unaffected buffer-layer structures, at least when the Richardson
numbers are not too large. Our results are also reminiscent of previous findings, obtained for laminar base flows,
where the influence of stratification on the optimal temporal (spatial) response to initial (boundary) conditions was
found to be limited to streamwise-elongated large-scale structures [11, 12, 52].

Concerning the spatial structure of the most amplified responses to stochastic forcing, the main findings are that:
(a) the most amplified spanwise wavelength in the velocity variance response to momentum forcing VMu, which is
λy ≈ 3.5 in the unstratified case, slightly decreases with stable stratification and increases with unstable stratification
tending to λy ≈ 6 when approaching the linear instability threshold; (b) the most amplified spanwise wavelengths of
the indirectly-forced responses (the velocity response to thermal forcing VTu and the thermal response to momentum
forcing VMθ) do also increase when evolving from stable to unstable stratification, but are always larger than the VMu

most amplified spanwise wavelength; (c) all most amplified spanwise wavelengths converge to λy ≈ 6 when approaching
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the linear instability threshold; (d) in the presence of even moderate (linearly stable) unstable stratification, all
peak responses display almost indistinguishable vertical profiles of rms vertical velocity fluctuations and of heat and
momentum fluxes, all of which almost coincide with those of the critical mode becoming unstable at the critical
Richardson number; (e) the two most energetic POD modes of the peak responses contain more than 90% of the VMu,
VMθ and VHu variance of the response.

These findings reveal that a single robust mechanism underlies the amplification of coherent large-scale structures at
subcritical Richardson numbers and the onset of the instability of coherent large-scale rolls at the critical Richardson
number. The process leading to the onset of the linear instability is gradual and the increasing response variance
associated to increasingly unstable mean flow stratification as well as the increase of the optimal spanwise wavelength
of the most amplified mechanically forced streaks are precursors of the linear instability of large-scale rolls. This
suggests that at the onset of the linear instability the large-scale (subcritical) nonlinear self-sustained structures
implying large-scale coherent streaks and quasi-streamwise vortices [34, 48, 53, 54] have probably morphed into
convection-driven saturated coherent rolls. It is therefore likely that the linear analysis developed in the present
investigation and in [33] can be extended into the supercritical regime by merging now ‘classical’ methods, previously
used to investigate nonlinear laminar convection [55–59], with the more recent techniques used to isolate large-scale
self-sustained processes in turbulent unstratified flows [48, 53, 54, 60]. Such an extension to the nonlinear domain
would probably allow for the elucidation of the nature of the transition from streamwise rolls to open cells and
hopefully provide more insights into the free-convection regime. It would be also be of great interest to apply the
approach taken in this study and in [33] to atmospheric boundary layers by including a number of additional effects
in the analysis such as surface roughness, the three-dimensionality of the mean velocity profile including an inflection
point and the effect of Coriolis acceleration. These extensions are the object of current intensive effort. In this context,
however, it would be desirable to obtain, by DNS or experimentally, additional validations of our theoretical approach
at Reynolds numbers much higher than those currently available.

Appendix A: Turbulent mean flow model

The temporally-averaged mean flow profiles, that are used in this study are based on the model introduced in
Ref. [33] which extends Cess’s 1958 model [61] to the (weakly) stratified regime. Such a model is adapted to the
high Reτ small |Riτ | regime, where the flow is fully turbulent but stratification effects are small enough that the
temperature field behaves as a passive scalar. In this regime the U(z), νT (z), Θ(z) and αT (z) profiles do not depend
on Riτ . We briefly summarize here the main features of the model for Pr = 1.

For the eddy viscosity and the mean velocity profiles, Cess’s expressions, as reported in Ref. [32], are assumed:

νT =
1

2Reτ

{
1 +

[
κReτ (1− z2)

1 + 2z2

3

(
1− e−z+/A

)]2}1/2

+
1

2Reτ
;

dU

dz
= − z

νT
, (A1)

where the mean velocity profile is obtained from integration of dU/dz and the values of the von Kármán constant
κ = 0.426 and A = 25.4 are calibrated on DNS data obtained at Reτ = 2000 in Ref. [62]. Cess’s model has been widely
used in linear analyses of turbulent mean flows (see e.g. Refs. [23, 26, 28, 32, 40, 42, 43], among others) providing
reasonable approximations of the U(z) profiles, a few examples of which are shown in Fig. 1a. Furthermore, in
Ref. [33] is was shown that the friction law Cf (Reb) computed with Cess’s model agrees well with DNS data reported
in Ref. [17] and fits the Prandtl’s law derived therein even at Reynolds numbers much higher than those accessed in
the DNS. The Cess model has been extended to provide a reasonable fit to the mean temperature profile:

αT =
1

2PrReτ

{
1 +

[
κReτ (1− z2)

1 + 2z2

3

1− χz2

1− χ

(
1− e−z+/A

)]2}1/2

+
1

2PrReτ
;

dΘ

dz
= − Q

αT
, (A2)

where the same constants κ, A as in Eq. (A1) are used, χ = 0.25 (see Ref. [33] for more details) and the mean
temperature profile is obtained by the usual vertical integration. In Ref. [33] is was shown that: (a) the model’s mean
temperature profiles, a few examples of which are shown in Fig. 1b, fit reasonably well the DNS data of Ref. [17] and
(b) that the Nu(Reb) curve computed by means of Eq. (A2) fits well DNS data reported in Ref. [17] as well as the
empirical fit Nu = 0.0073Re0.802b reported in the same study, and this even at Reynolds numbers much higher than
those accessed in the DNS.
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FIG. 9. Stratification-induced variations ∆V (Riτ , kx, ky) = V (Riτ , kx, ky) − V (0, kx, ky) of the variance amplification ratios
VMu (panels a and e), VMθ (panels b and f), VTu (panels c and g) and VTθ (panels d and h) for the unstably stratified case
Riτ = −0.4 (top row, panels a to d) and the stably stratified case Riτ = 0.4 (bottom row, panels e to h) for selected ratios
kx/ky of the streamwise to spanwise wavenumber and Reτ = 1000. The variations are reported in premultiplied form ky(∆V )
as a function of the spanwise wavelength λy = 2π/ky

Appendix B: Influence of the streamwise wavenumber

In §III.1, the effect of stratification on variance amplifications was investigated for streamwise-uniform perturbations
(i.e. for kx = 0) and for the case where the streamwise wavelength was twice the spanwise wavelength λx/λy = 2 (i.e.
kx/ky = 1/2). It was shown that stratification effects on the variance amplifications were negligible when kx/ky = 1/2
and the analysis was therefore subsequently focused on the kx = 0 case. In this appendix we report additional results
for values of kx/ky intermediate between 0 an 0.5 to confirm that the maximum sensitivity to stratification effects is
found for streamwise-uniform perturbations (kx = 0) and not, e.g., for (finite) streamwise wavelengths longer that 2λy.
To this end, in Fig. 9 are reported the stratification-induced variations ∆V (Riτ , kx, ky) = V (Riτ , kx, ky)−V (0, kx, ky)
of the variance amplification ratios VMu, VMθ, VTu,VTθ with respect to the neutrally-stratified case. The moderately
unstably-stratified case Riτ = −0.4 and moderately stably-stratified case Riτ = 0.4 and the wavelength ratios λx =
10λy (kx/ky = 0.1), λx = 5λy (kx/ky = 0.2), λx = 3.33λy (kx/ky = 0.3), λx = 2.5λy (kx/ky = 0.4) are considered.

From Fig. 9 it is seen that the maximum deviations from the neutrally-stratified case are effectively obtained for
streamwise-uniform perturbations and that these deviations monotonically decrease with decreasing values of λx/λy

(i.e. with increasing values of kx/ky). For all considered cases these deviations are significant only for large-scale
structures with λy = O(1− 10).
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[13] J. Jiménez, The largest scales of turbulent wall flows, Annual Research Briefs (Center for Turbulence Research, Stanford
University, 1998).
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