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Abstract

Though having no formal mathematical definition other than corresponding to a functional mapping a set of values

into a respective scalar having the same physical unit, the concept of means play a fundamental role in science and

technology for its ability to summarize data as well as an indication of a respective central tendency. In addition, the

arithmetic mean, including its weighted version, coincide with the physical concept of center of mass. After revising

the concepts of center of mass, fiuctionals, and statistical expectance, the present work aims at presenting some of the

main types of means — namely the arithmetic, weighted, truncated, geometric, harmonic, Lehmer, contraharmonic

and root mean square, as well as some of their main respective characteristics. The possibility to combine more than

one type of mean as a means to characterize datasets is also briefly outlines and illustrated.

1 Introduction

We live in a world that increasingly relies on generat-

ing, analyzing and modeling data (e.g. [1]). In particu-

lar, given that collected data sets can have large sizes, it

becomes interesting to conceive means for summarizing

these sets in terms of a substantially smaller number of

respective numeric properties.

Arguably, the mean of a set of numeric values (e.g. [2,

3, 4, 5, 6, 7, 8]) corresponds to the most natural and

frequently adopted quantity employed to summarize the

set from which it is calculated, as illustrated in Figure 1.

Such special importance and popularity of the mean can

be traced back to antiquity, to the point that the arith-

metic, geometric and harmonic means are often referred to

as Pythagorean means, as they were studied as early as by

the Pythagoreans under a mainly geometric point of view.

The understanding of the mean as a characterization of

the centrality of data emanates particularly from this type

of geometric approaches, and especially from the directly

related concept of center of mass (e.g. [9, 10, 11, 12]).

The importance of the concept of mean is also reflected

in its several types which have been developed along mil-

lennia, which includes but are not limited to arithmetic,

geometric, harmonic, and root mean square. Many rele-

vant issues are therefore implied by the existence of sev-

eral types of means, including in which sense they differ

one another, which are their properties, and when it would

Figure 1: The arithmetic mean as a means to summarize a set of

discrete integer values. Observe that the mean constitutes a func-

tional, mapping a set of numbers into a single scalar value having

the same physical unit.

be interesting to apply each of them.

One of the main objectives of the present work is to

address some of the main types of means from the above

perspectives. However, given the special role of the mean

as a means for data characterization and summarization,

we also pay special attention to how the considered types

can be applied, and eventually combined, for that finality.

We start by discussing the meaning of the concept of

mean and by presenting some of the main types of data

that are typically available, and which can be respectively

characterized in terms of means. Then, we provide a brief

introduction to the concept of center of mass in terms of

Newtonian mechanics, and then from the perspective of

probability and statistics. The several considered types of

mean — including arithmetic, weighted, truncated, geo-
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metric, harmonic, Lehmer, contraharmonic, as well as the

root mean square — are introduced, discussed and illus-

trated. The possibility to combine more than one type of

means as a means of characterizing and representing data

is then briefly discussed.

2 What is the Meaning of Mean?

Before proceeding further with our discussion about the

mean, it is of particular interest to contemplate its mean-

ing and possible definition. It may come as a surprise

that, unlikely other mathematical concepts including dis-

tances (which need to satisfy some requisites), there is

no formal definition of what a mean actually is, except

that it necessarily corresponds to a functional, namely a

mapping from the data into a single scalar (typically real)

value having the same physical unit. For instance, a mean

of distance values represented in meters will yield a scalar

also in meters.

Informally speaking, the mean has been frequently

associated to the ideas of centrality and summariza-

tion/expectance.

The connotation of centrality can be readily appre-

ciated by considering its intrinsic relationship with the

physical concept of centroid, or center of mass, of a given

object, which can be discrete (a finite set of point masses)

or continuous (an infinite set of connected point masses).

As a matter of fact, the means of the coordinates of a

set of points, each with the same mass, along each of the

involved axes corresponds formally to the center of the

mass of that object.

As discussed further in Section 4, the center of mass of

a 3D (or 2D) object represents the point at which the re-

spective object will undergo only linear acceleration, and

no angular acceleration, while affected by a force passing

through it. Alternatively, an object can be placed into

unstable equilibrium when placed onto a wedge directed

at its center of mass.

The mean therefore conveys the idea of corresponding

to the ‘most central point’ of an object, taken from the

specific physical-geometric perspective and, as such, it has

some special properties as above indicated.

The connotation of the mean as summarization and ex-

pectance is typically related, as it will be further discussed

in Section 5, to the areas of data analysis, statistics and

probability. From this perspective, the mean of a data set

would provide an effective summarized description of the

respective data elements which would be, however, incom-

plete in the sense that several other properties of the data

could not be taken into account by a single scalar mea-

surement. For instance, a lot of apples can be effectively

summarized in terms of the respective average weight, or

of some other respective property of particular interest

(e.g. diameter or Brix sweetness).

At the same time, the arithmetic mean can also be

probabilistic understood as being related to the ex-

pectance of the random variable from which the data ele-

ments were sampled. Observe, however, that expectance

and the arithmetic mean, however, are not identical con-

cepts. More strictly speaking, the arithmetic mean of a

set of available samples provides an estimation of the ex-

pectance based of the respective continuous random vari-

able.

So, we can summarize the above considerations as:

A mean of a set of numeric observations is

henceforth understood as corresponding to a

functional mapping that set into a scalar hav-

ing the same physical unit, while summarizing

the data and/or providing some information

about its centrality.

Though often used indistinctly, the mean is also not

the same as average, in the sense that the latter typically

associated to the arithmetic mean, while the concept of

mean is broader and encompasses several other types.

3 Types of Data

Given that we are particularly interested in using means

for characterizing and representing data, it is interesting

to consider some respective possible types. To being with,

we observe that by data we will be referring to collections

of respective data elements. In the case of numeric data,

the values of the observed data elements is often called

scores or raw scores.

Basically, we shall understand the two following overall

types of data: (i) unstructured and (ii) structured. Un-

structured datasets will henceforth be taken to correspond

to the traditional concept of sets, being therefore charac-

terized by the fact that the order of the data elements does

not matter. On their hand, structured data involve not

only the data elements themselves, but also their mutual

relationships (including order), as is the case of discrete

data structures including vectors, matrices, lists, trees,

graphs, as well as continuous structures such as functions

as well as scalar and vector fields.

Regarding the number of elements in a data, we can

have finite data or infinite data, both of which will be

considered in the present work. Continuous data are nec-

essarily infinite, but discrete data sets can also be infinite.

Another possible division of types of data is as cate-

goric and numeric. The former case includes data ele-

ments corresponding to generic symbols, including labels,
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words, tags, etc. As implied in their own name, numeric

data elements are numbers of several types, including nat-

ural, integer, rational, irrational, real, complex, etc. In

the present work we will focus on numeric data, though

categories can also be translated into numeric values by

imposing some respective mapping.

In principle, the mean can be estimated from any data

involving numeric entries. However, as the mean does not

consider any of the relationships (including eventual or-

der) between the data elements, any additional relational

information originally available in the original data will

not be taken into account. In such cases, it often be-

comes interesting to complement the mean in terms of

additional functionals capable of yielding more compre-

hensive summarizations of the original relational data.

4 The Center of Mass

In Newtonian physics (e.g. [9, 10, 11, 12]), the concept of

center of mass is intrinsically related to the idea of angular

acceleration and torque. In the case of a point particle

with mass m and a reference point P , as illustrated in

Figure 2, the respective torque τ⃗ can be expressed as:

τ⃗ = F⃗ × r⃗ (1)

where × is the cross product between two vectors. It

follows that:

|τ⃗ | =
∣∣∣F⃗ ∣∣∣ |r⃗| sin(α) = ∣∣∣F⃗ ∣∣∣ d (2)

where the distance d is often called the lever arm, and

α is the smaller angle between the vectors F⃗ and r⃗.

Figure 2: A point particle with mass m is under action of a force

F as shown in the diagram. The torque of the force respectively to

a reference point P , defining the relative position vector r to the

particle, corresponds to the quantity τ⃗ = F⃗ × r⃗. It follows from

properties of the the cross product that the the magnitude of τ can

be calculated as the product between the magnitude of the force F⃗

and the lever arm d = |r⃗| sin(α).

Let us consider the physical arrangement of N point

particles, all with the same mass m, mechanically vincu-

lated linear along the x−axis, as illustrated in Figure 3.

Figure 3: A set of N linearly vinculated point particles with the

same mass m, represented respectively to the x−axis. The sought

center of mass of this object is represented as x̄. A total of m

particles are at the left-hand side of x̄, leaving N−m particles at the

right-hand side. Gravitation g is assumed to take place downwards.

Given that gravitation g is assumed to take place down-

wards, the same force F⃗ = mg will be induced at each

of the identical point particles. It can be shown that no

angular acceleration will be implied when the object is

pivoted at position x̄ provided the following requirement

is satisfied:

τclockwise = τcounterclk (3)

This condition leads to the following expression in the

case of the situation depicted in Figure 3.

− F (x1 − x̄)− . . .− F (xm − x̄)+

+ F (xm+1 − x̄) + . . .+ F (xN − x̄) = 0 =⇒

=⇒
m∑
i=1

(xi − x̄) +

N∑
i=m+1

(xi − x̄) = 0 =⇒

=⇒
N∑
i=1

(xi − x̄) = 0 =⇒ x̄ =
1

N

N∑
i=1

xi (4)

As could be expected, the imposed torque symmetry led

to the identification of the equilibrium position x̄ as cor-

responding to the arithmetic mean of the position of the

point particles, therefore confirming the direct relation-

ship between this type of mean and the physical concept

of center of mass.

The extension of the above formulation to an object

formed by a set of vinculated point particles with possibly

distinct masses mi, i = 1, 2,

ldots,N , is relatively immediate by considering that the

force F⃗i induced at each particle i can be readily expressed

das:

F⃗i = mi g⃗ (5)
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Thus, it follows that:

−m1 g (x1 − x̄)− . . .−mm g (xm − x̄)+

+mm+1 g (xm+1 − x̄) + . . .+mN g (xN − x̄) = 0 =⇒

=⇒ g

(
m∑
i=1

mi (xi − x̄) +

N∑
i=m+1

mi (xi − x̄)

)
= 0 =⇒

=⇒
N∑
i=1

mi (xi − x̄) = 0 =⇒
N∑
i=1

mi xi −
N∑
i=1

mi x̄ = 0 =⇒

=⇒ x̄ =
1∑N

i=1 mi

N∑
i=1

mi xi (6)

which corresponds to the weighted arithmetic mean of

the values corresponding to the point mass positions xi,

weighted by the respective mass mi.

The role of the center of mass in classical (Newtonian)

mechanics is so special that, in addition to its direct rela-

tionship to the concepts of arithmetic and weighted arith-

metic means, it also allows the summarization of some of

the dynamic properties of a non-infinitesimal object while

concentrating all its mass concentrated at the respective

centroid (e.g. [10, 11, 12]).

5 Functionals, Statistics and

Probability

Given some numeric data (discrete or continuous), such

as a set S of numbers, it is possible to assign a respective

scalar value to that set, which will henceforth be con-

sidered to be real. The mapping that implements this

association is often called a functional.

A generic functional F can be mathematically ex-

pressed as:

F : f(x) −→ F (f(x)) ∈ R (7)

As already observed, the means of a set S of values are

functionals on S. However, not every functional is a mean,

including the mode, median, extremes and the range of

S, to name but a few cases among infinite possibilities.

When considered from the perspective of statistics and

probability (e.g. [2, 13, 3, 4, 5, 6, 7, 8]), the concept of

mean relates directly to the expectance of a random vari-

able X, which constitutes a functional that can be ex-

pressed in discrete form as:

E[X] =

N∑
i=1

xi pi(x) (8)

where xi are N the possible values of the discrete ran-

dom variable X and pi corresponds to the respective rel-

ative frequencies.

In case the discrete random variable is represented in

terms of a set of N samples S = {s1, s2, . . . , sN}, with
si ∈ {x1, x2, . . . , xN}, the respective arithmetic average

can be alternatively estimated in terms of the respective

average:

E[X] =
1

N

N∑
i=1

si (9)

A discussion of the relationship between Equations 8

and 9 can be found in [2].

In the case of a continuous random variable X, the

expectance becomes:

E[X] =

ˆ ∞

−∞
x p(x) dx (10)

where p(x) is the probability density function of X.

It is also possible to define the average of a generic

function f(x), or signal (e.g. [14, 15, 6, 7, 8, 16]), within

an interval [a, b] as follows:

f̄(x) =
1

b− a

ˆ b

a

f(x) dx (11)

The concept of expectance can be readily generalized to

the quantities known as moments, which are functionals

defined as:

Mk[X] = E[Xk] =

ˆ ∞

−∞
xk p(x) dx (12)

where k is often taken as corresponding to a positive

integer value.

Of particular interest are the central moments, which

take into account a translation by the respective expected

value E[X], being defined as:

Mk[X] = E
[
(X − E[X])]

k
]
=

=

ˆ ∞

−∞
(x− µx)

k
p(x) dx (13)

The important quantity know as variance of a random

variable X is a particular case of a central moment, ob-

tained for k = 2:

σ2
X = M2[X] =

ˆ ∞

−∞
(x− µx)

2
p(x) dx (14)

The standard deviation of X can then be defined as:

σX = +
√

σ2
X (15)

6 Arithmetic Mean

The arithmetic mean of a set of sampled values si, i =

1, 2, . . . , N , can be defined as follows:

µ =
1

N

N∑
i=1

si (16)
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which, as seen in Section 5, corresponds to the ex-

pectance of the random variable as sampled by the dis-

crete set of values xi. In addition, as discussed in Sec-

tion 4, the arithmetic mean of the coordinates of a set

of points with the same mass yields the respective center

of mass. As a consequence, the relative position of the

arithmetic mean among a set of points becomes invariant

to respective translations.

This quantity is also often referred to as the average of

the values. Observe that while the average is a particular

type of mean, there are several other means that are not

averages.

As a simple example, the arithmetic mean of the set of

values S = {1, 2, 3, 4, 5} is:

µ =
1 + 2 + 3 + 4 + 5 + 6 + 7

5
= 4

Figure 4 illustrates the arithmetic mean, as well as its

comparison with other means considered in the present

work, regarding the above data set (a) as well as its trans-

lated version (b), inclusion of an outlier point (c), as well

as a logarithmically skewed version (d). Interestingly, the

arithmetic mean resulted always in the middle of the other

means in all these considered cases.

The arithmetic mean is always the largest among the

three Pythagorean means. In addition, it is translational

invariant to the values of the random variable and partic-

ularly sensitive to the presence of outliers.

7 Weighted Arithmetic Mean

The weighed arithmetic mean can be understood as an

immediate generalization of the arithmetic mean taking

place when weights are assigned to the respective random

variables, as we have already discussed in Section 4 from

the Newtonian mechanics point of view.

In the case of a set of observed values xi, i = 1, 2, . . . , N

of a discrete random variable X, each with associated

weight wi, the weighted arithmetic mean can be expressed

as:

ω =
1∑N

i=1 wi

N∑
i=1

xi wi (17)

In the case of a continuous random variable X in an

interval [a, b] with weights w(x), we have:

ω =
1´ b

a
wi dx

ˆ b

a

xw(x) dx (18)

As a simple example of the calculation of the weighted

arithmetic mean, we shall consider the following set de-

scribing the observed values xi of a discrete random vari-

able X and their respective weights wi in terms of respec-

tive tuples [xi, wi]:

S = {[x1 = 1, w1 = 4]; [x2 = 3, w2 = 2]; [x3 = 5, w3 = 4]}

The respective weighted arithmetic mean can be ob-

tained from Equation 17 as:

ω =
1

10
[(1)(4) + (3)(2) + (5)(4)] = 3

The weighted arithmetic mean shares several of its

properties with the arithmetic mean from which it derives,

including translational invariance and particular suscep-

tibility to outliers.

8 Outliers and the Truncated

Mean

Real-world data often incorporate outliers (e.g. [17, 18,

19, 20]), namely outcomes that are far too far and/or

unlikely (i.e. have low probability), when compared with

the other values in the same set of data.

Though there is not definitive manner of defining out-

liers, they can often be identified in terms of outcomes of a

discrete random variable having probability smaller than

a given threshold T . In the case of continuous variables,

the probability can be estimated around a neighborhood

of the respective values being considered as outcome.

The truncated mean typically corresponds to estimating

any type of mean after a set of outliers has been discarded.

The main motivation for this approach stems from the

fact that it reduces the sensitivity of the means to the

presence of outliers.

Figure 5 illustrates the sensitivity of the weighted arith-

metic mean to outliers, and the effectivity of the respec-

tive truncated approach in reducing the susceptibility to

outliers.

9 Geometric Mean

Given a set of positive positive values xi, i = 1, 2, . . . , N ,

the respective geometric mean can be expressed as:

g = N

√√√√ N∏
i=1

xi = N
√
x1 x2 . . . xN (19)

An interesting insight about particularly interesting ap-

plications of the geometrical mean can be obtained by tak-

ing the logarithm of both sides of the above expression,

assuming xi > 0, yielding:

log g =
1

N

N∑
i=1

log xi (20)
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Figure 4: Illustration of the arithmetic, geometric, harmonic, and contraharmonic means, as well as the root mean square, obtained for the

set of values S = {1, 2, 3, 4, 5} (a), as well as for its translation by 2 (b), incorporation of the outlier 15 (c), and after being logarithmically

skewed (d). Observe the effect of the translation in approximating the means, as well as the relatively large influence on them by the other

considered modifications.

Figure 5: Illustration of the high sensitivity of the arithmetic mean

respectively to outliers respectively to a discrete probability distri-

bution of a discrete random variable X including two outlier values,

namely 1 and 2. The number of observations of each value of X are

shown as H. The average shown in blue is obtained in case all values

are taken into account T = 1. By setting T = 4, the value X = 1 is

discarded, resulting in a new respective truncated arithmetic mean

show in green. The two outliers can be avoided by setting T = 7,

which results in the truncated arithmetic mean shown in salmon.

Observe that the three obtained means are greatly influenced by the

presence of the outliers.

which corresponds precisely with the arithmetic mean

of the set of values log xi. In other words, taking the

geometric mean of the set xi is the same as the logarithm

of the arithmetic mean of the set log xi.

As a simple example of geometric mean calculation,

consider the set of observations:

S = {1, 2, 3, 4, 5, 6, 7}

We then have that:

g =
7
√
7! ≈ 2.5598

A typical application of the geometric means is for sum-

marizing the modification rate along M subsequent peri-

ods of time. For instance, let us say that the rate of

increase of the height of a tree was observed to be as fol-

lows:

x1 = 0.05(5%) along the first year;

x2 = 0.01(1%) along the second year;

x3 = 0.07(7%) along the third year.
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A summarization of the overall growth rate may con-

sider the respective geometric mean:

g = 3
√
(0.05) (0.01) (0.07) ≈ 0.032711

The summarization of the above growth rates in terms

of the arithmetic mean would otherwise lead to:

µ ≈ 0.043333

The geometric mean, which is always the smallest

among the three Pythagorean means, is often applied in

economics.

10 Harmonic Mean

The harmonic mean of a set of N positive values xi can

be written as:

h =
N∑N
i=1

1
xi

=
N

1
x1

+ 1
x2

+ . . .+ 1
xN

(21)

An interesting manner to better understand the har-

monic mean is by rewriting the above expression as:

1

h
=

1

N

N∑
i=1

1

xi
(22)

As a simple example of geometric mean calculation,

consider the set of observations:

S = {1, 2, 3, 4, 5, 6, 7}

The respective harmonic mean can be obtained as:

h =
7

1
1 + 1

2 + . . .+ 1
7

≈ 2.69973

The harmonic mean, which is always the largest among

the three Pythagorean means, is often applied in eco-

nomics.

11 Lehmer and Contraharmonic

Means

The Lehmer mean can be expressed as:

c =
1
N

∑N
i=1 x

k
i

1
N

∑N
i=1 x

k−1
i

(23)

One of its particular cases (for k = 2) is the contrahar-

monic mean:

c =
1
N

∑N
i=1 x

2
i

1
N

∑N
i=1 xi

=
1
N

(
x2
1 + x2

2 + . . .+ x2
N

)
1
N (x1 + x2 + . . .+ xN )

(24)

As a simple example of geometric mean calculation,

consider the set of observations:

S = {1, 2, 3, 4, 5, 6, 7}

Leading to the following contraharmonic mean:

c =
1
7 (1 + 2 + . . .+ 7)

1
7 (1

2 + 22 + . . .+ 72)
= 5

The Lehmer and contraharmonic means are often con-

sidered in mathematics, especially in the areas of statistics

and probability (e.g. [21, 22, 23]).

12 Root Mean Square – RMS

The root mean square of a set of N values xi can be ex-

pressed as:

RMS =

√√√√ 1

N

N∑
i=1

x2
i =

√
1

N
(x2

1 + x2
2 + . . .+ x2

N ) (25)

In the case of a function f(x) considered along an in-

terval [a, b], we have:

RMS =

√
1

b− a

ˆ b

a

f2(x) dx (26)

One particularly interesting application of the RMS is

for characterizing data sets and functions that have zero

arithmetic average, of which the sinusoidal functions pro-

vide a prototypic example. By taking the observed values

(scores) to the second power, the respective sum becomes

necessarily positive, and therefore distinct from zero.

In the case of the sine and cosine, larger amplitudes will

imply in larger RMS values. In particular, we have that

the RMS along full periods of any of these two functions

is equal to the amplitude multiplied by 1√
2
, as illustrated

in Figure 6.

In electricity, the RMS value of an oscillating current

or voltage wave corresponds to the value of a constant

current or voltage that would dissipate the same thermal

energy on a same electrical resistance R (e.g. [24, 25, 9,

26]).

As a simple example of geometric mean calculation,

consider the set of observations:

S = {1, 2, 3, 4, 5, 6, 7}

The respective root mean square therefore is:

RMS =

√
1

7
(12 + 22 + 32 + . . .+ 72) ≈ 4.47214

7



Figure 6: A full period of the sine function with amplitude 1 and

its respective RMS value of 1√
2
(in salmon).

13 Combining Means for Data

Characterization

The fact that the types of means considered in this work

are typically distinct one another suggests that they are

providing mutually complementary information about the

original data set, which can then be combined in order to

obtain a set of features providing a more comprehensive

description of the original data.

In this section we provide a brief illustration of this

possibility, respective to three sets of 30 data elements

sampled from the following probability density functions:

(a) uniform in the interval [10, 20];

(b) normal with average 15 and variande 1;

(c) normal with average 16 and variance 2.

The above averages have been chosen large enough to

avoid negative scores, which cannot be used in the geo-

metric mean.

Figure 7(a) illustrates the respectively obtained scatter-

plot considering the respective arithmetic and geometric

means of each of the 90 considered datasets. As could

be expected, given the similar centers of mass and disper-

sions, the obtained clusters resulted particularly close one

another.

By applying principal component analysis (PCA,

e.g. [27, 28]) on the arithmetic, geometric, harmonic and

contraharmonic means, as well as the root mean square

characterization of the considered data elements, we ob-

tain the projection shown in Figure 7(b), which presents

a moderately wider separation between the groups.

The fact most of the variation of the original data have

been accounted for by the two first principal components

indicate that, at least for the specific set of data con-

sidered in this example, the respective means are highly

(a)

.

(b)

Figure 7: (a) Scatterplot between the arithmetic and geomet-

ric means obtained for the 3 considered datasets; and (b) two-

dimensional projection, through principal component analysis

(PCA), of the feature vectors incorporating the arithmetic, geomet-

ric, harmonic and contraharmonic means, as well as the root mean

square obtained for the same datasets. The two axes correspond to

the two principal components, whose percentage explanation of the

variation of the original data is also respectively shown.

mutually correlated.

It should be observed that distinct tendencies can be

possibly obtained for other types of data.

14 Concluding Remarks

Though not formally defined, the concept of mean plays a

central role in virtually every area of science and technol-

ogy. In addition to corresponding to a functional taking

a set of values (or scores) into a respective scalar value,

the several possible types of means also convey the idea

of centrality, be it from the physical or statistical points

of view, being also understood as implementing a summa-

8



rization of the values of the elements in the original data

sets.

The present work aimed at presenting, illustrating and

discussing several types of means in a hopefully accessi-

ble, though relatively abbreviated manner. The discussed

types of means were: arithmetic, weighted, truncated,

geometric, harmonic, Lehmer, contraharmonic and root

mean square approaches.

After discussing possible interpretations of the meaning

of the mean, as well as characterizing some of the main

types of data typically available, the concept of mean was

approached from the perspectives of Newtonian physics

(center of mass) as well as functionals, probability and

statistics (expectance).

In addition to providing respective presentation and il-

lustration, the effects of data translation as well as the

presence of outliers and skewness have also been briefly

discussed subsequently. The possibility to combine sev-

eral types of means while characterizing data has also

been illustrated in terms of a simple specific example.
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[12] J. V. José and E. Saletan. Classical Dynamics:

A Contemporary Approach. Cambridge University

Press, 1998.

[13] L. da F. Costa. Randomness: A challenging

central concept. https://www.researchgate.

net/publication/371169292_Randomness_A_

Challenging_Central_Concept, 2023.

[14] E. O. Brigham. Fast Fourier Transform and its Ap-

plications. Pearson, 1988.

[15] L. da F. Costa. Convolution! Researchgate, 2019.

https://www.researchgate.net/publication/

336601899_Convolution_CDT-14. [Online; accessed

09-March-2020.].
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