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Introduction

The wave equation governs several wave propagation phenomena and is therefore one of the most important equations in mechanics. Performing a FFT in the time variable t brings back its solution to that of the Helmholtz equation for a …nite set of frequencies (see, e.g., [START_REF] Frelet | Finite element approximation of helmholtz problems with application to seismic wave propagation[END_REF] and the references therein). However, despite the large number of methods developed in this respect (see, e.g. [START_REF] Melenk | Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation[END_REF][START_REF] Hiptmair | A Survey of Tre¤tz Methods for the Helmholtz Equation[END_REF] and the references therein), an e¢ cient numerical solution of the Helmholtz equation remains a challenging problem. This is due to the oscillatory nature of the solution and especially to the so-called "pollution e¤ ect", itself due to the dispersion induced by the approximation process (e.g., [START_REF] Babuška | A generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution[END_REF]), which damages the numerical procedure over long distances of propagation in terms of the wavelength (see, e.g., [START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number -part i: the h-version of the FEM[END_REF]).

Many methods are used to reduce dispersion. Finite Element Methods (FEMs), with su¢ ciently high degree polynomials [START_REF] Ihlenburg | Finite element analysis of acoustic scattering[END_REF][START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number -part ii: the h-p version of the FEM[END_REF], and IPDG methods, which use a parameter-dependent weak formulation of the FEM matching conditions at the interfaces of the mesh elements [START_REF] Arnold | An interior penalty …nite element method with discontinuous elements[END_REF], are perhaps the most multi-purpose of these.

It has recently been established on the ground of a strong theoretical analysis [START_REF] Melenk | Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation[END_REF][START_REF] Chaumont-Frelet | Wavenumber explicit convergence analysis for …nite element discretizations of general wave propagation problems[END_REF] that high-degree FEMs substantially reduce the "pollution e¤ ect". However, this e¢ ciency has some counterparts. High-degree polynomial FEMs do not behave well in the presence of singularities of the solution. Furthermore, in the case of structured meshes, they can hardly be written in terms of a numerical scheme realizing a matrix-vector product without matrix storage, a property that greatly helps in solving the huge linear systems resulting from the discretization.

IPDG methods also o¤er the possibility to reduce the "numerical pollution" thanks to an adequate choice of the parameters involved in their de…nition. By adding a supplementary penalty term to the standard IPDG method, Feng and Wu [START_REF] Feng | Discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF] have shown, through several numerical tests, that it is possible to …nd a value for the parameter related to this additional term, leading to a considerable reduction in the "pollution error ", using only a linear-a¢ ne approximation by element. This result was obtained by considering a structured mesh composed of equal equilateral triangles and a …xed frequency. In this article, we show how this result can be not only recovered but also improved using a special dispersion analysis. In addition, this analysis is used to deal with general structured triangular meshes. This approach is actually an extension of the dispersion analysis in [START_REF] Ainsworth | Dispersive and dissipative properties of discontinuous Galerkin …nite element methods for the secondorder wave equation[END_REF] developed in this reference for meshes and approximation functions that are both tensorial. It cannot be used as is in the context of meshes in triangles as this is considered here. Nevertheless, the construction guideline here is also to reduce the dispersion analysis to a 1D analysis.

In section 2, we recall Feng and Wu's IPDG method, highlighting in what respect it is an extension of the standard IPDG method. Section 3 is dedicated to the derivation of the above mentioned dispersion analysis. To give some insight on the basic principle of the dispersion analysis, we begin by considering a one-dimensional problem related to a pure propagation and show how its discretization by a centered …nite di¤erence scheme can be solved exactly. Such an approach was already considered in [START_REF] Babuška | A generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution[END_REF]Pb (2.4)], but from a completely di¤erent point of view. This enables us to introduce in a quite natural way, the approach used to measure the dispersion related to the IPDG method. We then show how this dispersion analysis can be used to recover the parameter determined by Feng and Wu [START_REF] Feng | Discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF]. Section 4 is dedicated to a numerical assessment of the procedure from several numerical experiments. In particular, we will show that the parameter determined for structured meshes composed of equal equilateral triangles also works for unstructured meshes as long as they are "smoothed " enough to be as "uniformly regular " as possible. A …nal section 5 is dedicated to some concluding remarks.

Feng and Wu' s IPDG method

For simplicity, we limit ourselves to the following simple boundary-value problem posed in terms of the Helmholtz equation

u + 2 u = 0 in ; @ n u i Y u = g on @ ; (1) 
where is a polygonal domain of the plane, @ its boundary, n the unit normal to @ directed outwards (see Fig. 1), > 0 the wavenumber, Y a piecewise constant function, Y 0 and Y 6 = 0, and g a given function in L 2 (@ ). We then consider a triangular mesh T h of satisfying the usual matching conditions of the FEM. Let v be a function such that its restriction v T to each triangle T 2 T h is polynomial in the two variables x and y, the latter being the usual Cartesian coordinates of the plane. Assuming that u has the required regularity, we can write

Z ( u 2 u)vdxdy = X T 2T h Z T (ru rv 2 uv)dxdy Z @T ru n T v T d`= 0
where @T is the boundary of T , n T is the unit normal to @T directed outwards T , and `is the curvilinear abscissa growing in the trigonometric direction. Using the boundary condition on @ , we can rewrite the above equation as follows

X T 2T h Z T (ru rv 2 uv)dxdy X e2E h Z e ru [[v]] e d` i X e2E h @ Z e Y uvd`= X e2E h @ Z e
gvdẁ here E h is the set of edges e of the mesh, shared by two triangles of T h , generically denoted T and L, E h @ those contained in @ , and

[[v]] e = v T n T + v L n L
the jump of v through edge e. Since, u is also aimed to be approximated by discontinuous piecewise polynomial functions, the above equation can be also put in a more adapted form

X T 2T h Z T (ru rv 2 uv)dxdy X e2E h Z e f frug g e [[v]] e d` i X e2E h @ Z e Y uvd`= X e2E h @ Z e gvdẁ ith f frug g e = 1 2 (ru T + ru L )
where as for v, u T is the restriction of u to T: Observing that [[u]] e = 0 for e 2 E h , we can moreover equivalently write this equation in a symmetric form

X T 2T h Z T (ru rv 2 uv)dxdy X e2E h Z e f frug g e [[v]] e + [[u]] e f frvg g e d` i X e2E h @ Z e Y uvd`= X e2E h @ Z e gvdÀ
s is, this method is not stable. Penalty terms must be added in this respect. The standard IPDG is obtained by adding

c(u; v) = h X e2E h Z e [[u]] e [[v]] e d`;
where is a complex parameter characterizing the method and h = max

T 2T h h T ; h T = diam T:
The IPDG method constructed by Feng and Wu is obtained by further adding the term

d(u; v) = h X e2E h Z e [[ru]] e [[rv]] e dẁ ith [[ru]] e = ru T n T + rv T n:
Finally, with

a(u; v) = P T 2T h Z T ru rvdxdy P e2E h Z e f frug g e [[v]] e + [[u]] e f frvg g e d( u; v) = Z @ uvdxdy; (u; v) @ = Z @ uvd`;
the discretization procedure is completed by choosing u piecewise polynomial, similarly to v, i.e., in the …nite-dimensional space

V (m) T h = n v 2 L 2 ( ); u T = uj T 2 P m ; 8T 2 T h o thus to arrive to ( u 2 V (m) T h ; 8v 2 V (m) T h ; a(u; v) 2 (u; v) i (Y u; v) @ + c(u; v) d(u; v) = (g; v) @ : (2) 
The term d(u; v) is not really a penalty term. It may be seen as a treatment of the matching of the normal derivative at the interfaces similar to how Nitsche's method (see, e.g., [START_REF] Juntunen | Nitsche's method for general boundary conditions[END_REF]) deals with the Dirichlet boundary condition.

Under fairly general conditions on the parameters and , Feng and Wu have proved that System (2) is stable with error estimates in the H 1norm including a "pollution" term in O( 1=3 ( 3 h 2 )) for m = 1 in [START_REF] Feng | Discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF] and O(( 3 h 2 =m 2 ) for m > 1 in [START_REF] Feng | hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF]. As said above, here we are interested by retrieving, through an analytical procedure, the value of , numerically determined in [START_REF] Feng | Discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF] using the procedure already described, and also by extending the determination to other structured meshes.

Dispersion analysis

The results presented in this section are at the core of the present study. The dispersion analysis is based on the consideration of a structured mesh consisting of triangles all equal to one of them. Such a mesh is then considered as an in…nite lattice of the plane. Each plane wave propagating in a direction orthogonal to a direction of periodicity of the lattice give rise to Floquet's modes that are constant along this direction of periodicity. Inserted in above Fend and Wu's IPDG formulation, these Floquet modes can then be viewed as solution to a one-dimensional nonlinear eigenvalue problem. By approximating this nonlinear eigenvalue problem by polynomials constant along the direction where the Floquet modes are also constant, we can obtain the dispersion properties of the numerical scheme, at least relative to the chosen plane wave propagation direction. We call this procedure "the reduction to the 1D-case". We then thoroughly study the properties of the solution of this 1D problem. As a motivation of this approach, we begin by considering a 1D boundary-value problem and show how its approximation by a centered di¤erence method can be solved exactly.

Motivation

Consider the following 1D version of Problem (1)

u 00 (x) + 2 u(x) = 0; 0 < x < 1; (u 0 + i u)(0) = 2i ; u 0 i u (1) = 0:
This is a pure propagation problem whose solution is the plane wave u(x) = e i x . Since the general solution of the interior equation is in the form u(x) = T e i x + Re i x , another formulation of this fact is to say that the transmission coe¢ cient of the plane wave e i x at fx = 0g is T = 1 and that this wave is not re ‡ected at fx = 1g, i.e., its re ‡ection coe¢ cient is R = 0.

To discretize this problem, we introduce a grid step h = 1=N and the uniform grid on (0; 1): x n = nh, n = 0; : : : ; N . We then look for an approximate solution u h n ' u(x n ) de…ned at the grid nodes by using a centered di¤erence approximation of the derivatives

u h n+1 1 2 (1 2 h 2 2 )u h n + u h n 1 = 0; n = 0; : : : ; N; u h 1 u h 1 2i hu h 0 = 4i h; u h N +1 u h N 1
2i hu h N = 0: Note that in order to de…ne the centered di¤erence derivative at the nodes x 0 and x N , we have used the usual technique of adding the ghost nodes x 1 and x N +1 . It is well-known that this discretization is nothing else than an approximation of the above two-points boundary-value problem by a FEM of degree 1 with mass lumping.

The …rst important remark is that the general equation at the nodes is a di¤erence equation whose general solution can be obtained by solving the related characteristic equation

2 h 2(1 2 h 2 2 ) h + 1 = 0:
This is a quadratic whose solutions are complex conjugate and of modulus 1

h = 1 2 h 2 2 + i h r 1 2 h 2 4 and h .
It is more meaningful to express h and h in terms of their respective modulus and argument, principal argument for h , in the following form

h = e i h h
so that h will appear as a numeric wavenumber and n h and n h as numeric plane waves propagating respectively in the direction of the x-axis and in the opposite one. As a result, the general solution of the di¤erence equation can be written as follows

u h n = T h e i h xn + R h e i h xn ; n = 1; : : : ; N + 1:
The coe¢ cients T h and R h can then be obtained from the equations at the boundary nodes x 0 and x N . The calculations are simple but tedious. What is important here is that they provide approximations of respectively T = 1 and R = 0 satisfying the following error bounds

jT h T j = O( 2 h 2 ), jR h Rj = O( 2 h 2 ):
In this way, we directly get the following …rst bound on the approximation of u by u h n at the nodes

x n u(x n ) u h n jT h T j + jR h Rj + e i xn e i h xn jT h T j + jR h Rj + j h j :
Straightforward calculations and estimates then yield the following error bounds called preasymptotic error bounds in [START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number -part i: the h-version of the FEM[END_REF] u

(x n ) u h n . 2 h 2 + 3 h 2
where the term 3 h 2 comes from the "dispersion error " j h j. Clearly, it is this term that induces the "pollution e¤ ect"for large , preventing the global error from having the same order of convergence as the approximation error. Symbol . indicates an estimate with a constant independent of and of h.

It would be interesting to isolate the term e i xn e i h xn corresponding to the dispersion error without having to deal with the full boundary-value problem. This can be done through the following approach. Consider that the grid is in…nite, x n = nh for n = : : : ; 1; 0; 1; : : : Clearly, the grid can be viewed as a grating with unit cell (0; h) and the plane wave u(x) = e i x as a solution of the Helmholtz equation having the Floquet property

u(x n + h) = u(x n ); = e i h :
If we look for a solution of the above interior nodes equation with a similar Floquet property u h n+1 = h u h n we come to the above characteristic equation. In this way, we can directly access the dispersion error without having to take care of the boundary conditions. This is the approach we use below for more di¢ cult propagation problems. We select a plane wave, that is representative of the propagation, and try to approximate it by a using the equations of the discrete problem by a solution satisfying a Floquet property relatively to an unknown Floquet parameter h .

Reduction to the 1D-case

As said above, we limit ourselves to structured meshes whose elements are triangles, all equal to one of them, of the type depicted in Fig. 2. Of course, these kinds of meshes are far from covering all the structured meshes that may be used in practice (see, e.g., [START_REF] Deraemaeker | Dispersion and pollution of the fem solution for the helmholtz equation in one, two and three dimensions[END_REF]), but they are representative of the structured meshes most commonly used in practical calculations. A part of the corresponding in…nite grating is also represented in this …gure as well as a related unit cell. Figure 2: An example of the considered structured meshes and its unit cell drawn in red.

There are clearly three ways of describing the lattice's periodicity properties, each associated with a vertex of a triangle of the mesh. The geometrical characteristics and the notation, related to one of these vertices, are de…ned in Fig. 3.2 in particular the two directions of periodicity of the grating, constituted by respectively the s-axis and the t-axis. In addition to this notation, we denote by i and i the two unit vectors related to the s-axis and the t-axis respectively.

The unit cell and its geometrical characteristics. Let ? i ; ? i be the dual basis of f i ; i g:

? i i = 1, ? i i = 0, ? i i = 0, ? i i = 1.
The (s; t) coordinate system and the (x; y) Cartesian system of the plane are related each to the other as follows (x; y) = (x i ; y i )+s i +t i ; s = ? i (x x i ; y y i ); t = ? i (x x i ; y y i ):

Let u 0 e i d (x;y) a plane wave of complex amplitude u 0 2 C, propagating in the direction of the unit vector d. In the (s; t) coordinate system, it reads u 0 e i d (x;y) = f u 0 e i i ds e i i dt , f u 0 = u 0 e i (x i ;y i ) d . Assuming that i d = 0, i.e., the plane wave is propagating in the direction of ? i , we get that its expression in the s and t variables is given by

u(s; t) = f u 0 e i 0 s ; 0 = i d = sin ' i :
In what follows, to lighten the notation, we do not distinguish between a function expressed either in the x; y variables or in the s; t ones. This function is constant in t and constitutes a Floquet's mode since its values in the cell

C p;q = (s; t) 2 R 2 ; 0 < s ph i < h i ; 0 < t qd < h i+2 ;
with (p; q) 2 Z 2 , are linked to those in the unit cell C 0;0 by the quasi-periodic condition u(s + pc; t + qd) = p u(s; t); = e i 0 h i :

We plug u in (2) for v, a smooth function of s only, not depending on t, and equal to 0 outside the unit cell C 0;0 . We use of the continuity conditions of u at the cell diagonals and at the interfaces ft = qh i+2 g but not at those fs = ph i g. By elementary calculations, we then get

Z C 0;0 (ru rv 2 uv)dxdy = h i+2 sin ' i Z h i 0 (u 0 v 0 2 0 uv)ds Z fs=s 0 g f frug g fs=s 0 g [[v]] fs=s 0 g d`= h i+2 sin ' i u 0 s 0 [v] s 0 ; s 0 = 0; h i ;
where u 0 is the derivative of a function depending on the real variable s and the mean and the jump are in the usual sense of functions of a real variable

fwg s 0 = 1 2 w(s + 0 ) + w(s 0 ); [w] s 0 = w(s + 0 ) w(s 0 ):
In the same way, we have Z

fs=s 0 g [[u]] fs=s 0 g [[v]] fs=s 0 g d`= h i+2 [u] s 0 [v] s 0 Z fs=s 0 g [[ru]] fs=s 0 g [[rv]] fs=s 0 g d`= h i+2 sin 2 ' i u 0 s 0 v 0 s 0 :
Simplifying by h i+2 = sin ' i , we thus come to

Z h i 0 (u 0 v 0 2 0 uv)ds + X s 0 =0;h i u 0 s 0 [v] s 0 + [u] s 0 v 0 s 0 + 0 h i [u] s 0 [v] s 0 0 h i u 0 s 0 v 0 s 0 = 0; with 0 = h i sin ' i h ; 0 = h h i sin ' i : (3) 
We recall that h = max i h i is the mesh size. We then use the quasi-periodic properties of u to get that u(s) = f u 0 e i 0 s ; = e i 0 h i is solution to the one-dimensional nonlinear eigenvalue problem

8 > > > > < > > > > : u 2 H 2 (0; h i ) ; u 6 = 0; 2 C; 8v 2 H 2 (0; h i ) , given as above, Z h i 0 (u 0 v 0 2 0 uv)ds + 1 2 (u 0 0 + 1 u 0 h i )(v 0 v h i ) + 1 2 (u 0 1 u h i )(v 0 + v h i ) + 0 h i (u 0 1 u h i )(v 0 v h i ) 0 h i (u 0 0 1 u 0 h i )(v 0 0 v 0 h i ) = 0;
and thus complete the reduction. The lowerscripts 0 and h i respectively refer to the respective values of u or v at s = 0 and s = h i :

3.3 Polynomial approximation of the 1D nonlinear eigenvalue problem 3.3.1 The polynomial approximation and some of its general features.

After reducing the above nonlinear eigenvalue problem to the case where the length h i intervenes only through the dimensionless parameter 0 h i , we study the approximation of this problem by a polynomial method of degree m 1. Such a study was already carried out in [START_REF] Ainsworth | Dispersive and dissipative properties of discontinuous Galerkin …nite element methods for the secondorder wave equation[END_REF] in the case 0 = 0, i.e. for the standard IPDG method.

The change of variable s = h i brings back the problem to the interval (0; 1)

8 > > > > < > > > > : u 2 H 2 (0; 1) ; u 6 = 0; 2 C; 8v 2 H 2 (0; 1) ; Z 1 0 (u 0 v 0 ( 0 h i ) 2 uv)d + 1 2 (u 0 0 + 1 u 0 1 )(v 0 v 1 ) + 1 2 (u 0 1 u 1 )(v 0 0 + v 0 1 ) + 0 (u 0 1 u 1 )(v 0 v 1 ) 0 (u 0 0 1 u 0 1 )(v 0 0 v 0 1 ) = 0: (4) 
The following proposition is important in the e¤ective solution of (4).

Proposition 1. For 0 h i = 0, ( 0 = 1; u 0 = 1) is a solution to Problem (4).

Proof. The proof is obtained by a simple check.

The equation can be also written in the form Let us assume now that u and v are polynomials of degree m

Z 1 0 (u 0 v 0 ( 0 h i ) 2 uv)d + v 0 v 1 v 0 0 v 0 1 1 D > + C + D 2 
u( ) = > a; v( ) = > b; > = 1 m ; a > = a 0 a m b > = b 0 b m
we come to the following nonlinear matricial eigenvalue problem: …nd 2 C and a 2 C m+1 of Hermitian norm 1 satisfying

K 2 0 h 2 i M + U > 1 D > + C + D U a = 0 (5) 
with

K = Z 1 0 (@ ) (@ ) > d ; M = Z 1 0 > d ; U = 2 6 6 4 
1 0 0 0 1 1 1 1 0 1 0 0 0 1 2 m 3 7 7 5
Curiously enough, this nonlinear eigenvalue problem can be reduced to the solution of a quadratic equation in = ( + 1 )=2. Such a property was evidenced for = 0 in [START_REF] Ainsworth | Dispersive and dissipative properties of discontinuous Galerkin …nite element methods for the secondorder wave equation[END_REF] but apparently without being established by a proof. We begin with the case m 3, the remaining ones m = 1; 2 will be directly treated later.

Theorem 1. For m 3 and a su¢ ciently small meshsize h, the characteristic equation of the nonlinear eigenvalue problem ( 5) is quadratic in = ( + 1 )=2.

Proof. The proof is subdivided in three steps.

Step 1: reduction of the determinant. This reduction is irrelevant for m 2.

We thus assume in this step that m 3. 

j (0) = b j (1) = b 0 j (0) = b 0 j (1) = 0; 1 j m 3 b m 2 (0) = 1; b 0 m 2 (0) = b m 2 (1) = b 0 m 2 (1) = 0; b 0 m 1 (0) = 1; b m 1 (0) = b m 1 (1) = b 0 m 1 (1) = 0; b m (1) = 1; b m (0) = b 0 m (0) = b 0 m (1) = 0; b 0 m+1 (1) = 1; b m+1 (0) = b 0 m+1 (0) = b m+1 (1) = 0:
and let P the (m + 1) (m + 1)-matrix that j-th column is composed of the coe¢ cients of b j . Noting C = 1 D > + C + D to shorten the notation, we have

(det P ) 2 det(K 2 0 h 2 i M +U > C U ) = det(P > (K 2 0 h 2 i M )P +(U P ) > C U P ):
Using a partitioning I = f1; : : : ; m 3g, J = fm 2; : : : ; m + 1g, we can write

P > (K 2 0 h 2 i M )P = A II A IJ A > IJ A JJ ; (U P ) > C U P = 0 0 0 C :
By Poincaré's inequality, we easily get that the block A II is a symmetric positive de…nite matrix for h su¢ ciently small. A block Gaussian elimination yields

P > (K 2 0 h 2 i M )P + (U P ) > C U P = I m 3 0 A > IJ A 1 II I 4 A II A IJ 0 A JJ + C ; hence det(P > (K 2 0 h 2 i M )P + (U P ) > C U P ) = det A II det(A JJ + C ):
Thus, the characteristic equation of the nonlinear eigenvalue problem can be written as

det(B + 1 D > + D) = 0; where B = A JJ A > IJ A 1 II A IJ + C is a 4 4 symmetric matrix.
Step 2: parity properties of the characteristic equation. Setting = ( 1 )=2, the characteristic equation reads

det(B + E + F ) = 0 with E = D + D > = E > , F = D D > = F > .
First note that q( ; ) = det(B + E + F ) is a polynomial in the two variables and of total degree 4. Since B and E are symmetric and F is anti-symmetric, we have

q( ; ) = det(B + E F ) = det(B > + E > + F > ) = det(B + E + F ) = q( ; ):
The characteristic equation is hence an even function of .

Step 3: expression of the characteristic function as a polynomial of degree 2. Expressing E and F in terms of D, we get

q( ; ) = det(B + ( + )D + ( )D > )
which can be put in a more explicit form as Using the fact that the determinant is a multilinear function of its columns, we get that q( ; ) is in the form

q( ; ) = det 2 
q( ; ) = (4) ( + ) 2 ( ) 2 + (3) 1 ( + ) 2 ( ) + (3) 2 ( + ) ( ) 2 + (2) 1 ( + ) 2 + (2) 2 ( + ) ( ) + (2) 3 ( ) 2 + 
(1)

1 ( + ) + (1) 2 ( 
) + (0) :

Since + = and = 1 , we immediately get that q( ; ) = (4) +

(3)

1 ( + ) + (3) 

( ) +

(2)

1 ( + ) 2 + (2)
2 +

(2)

3 ( ) 2 +

(1)

1 ( + ) + (1) 
2 ( ) + (0) :

Noting that 2 = 2 1 and that q( ; ) is an even function in , we readily complete the proof.

General approach to the polynomial approximation analysis.

A general approach to the polynomial approximation analysis can be derived from the above proposition and theorem. At …rst, note that, from its very construction, ( = e i 0 h i ; u = e i 0 h i ) and ( = e i 0 h i ; u = e ik 0 h i ) are solutions to the variational nonlinear eigenvalue problem (4). If the polynomial approximation is convergent, the solution to the characteristic equation, such that 0 = lim h!0 = 1, must correspond to the approximation of respectively = e i 0 h i and 1= = e i 0 h i . If the coe¢ cients 0 and 0 are chosen so that lim h!0 je q( ; )j =0 j > 1;

where e q( ; ) is the monic form of q( ; ) as polynomial of the variable , there is one solution h i other than e i 0;h i h i that is such that jlim h!0 h i j > 1:The stability of the IPDG method then discards such a solution, which cannot enter in the approximation process of the real solution. This therefore provides a criterion for choosing the coe¢ cients 0 and 0 that avoids any solution that would be spurious to the true solutions e +i 0;h i s and e i 0;h i s . Now, assume for simplicity that 0 and 0 are real. Since the characteristic equation in is a quartic, the two solutions corresponding to lim h!0 = 1 must be complex conjugates of modulus 1. As a result, h i can be written as

h i = e i 0;h h i so that = cos( 0;h i h i ):
Comparing the power series expansion of

= 1 + 1 ( 0 h i ) 2 + 2 ( 0 h i ) 2 + : : : with that of cos( 0 h i ) = 1 1 2 h 2 i 2 0 + 1 24 h 4 i 4
0 + : : :

will give the order of the approximation of the real wavenumber 0 with the numerical one 0;h i . Note that the approximation of 0 by 0;h i is 0 h 2 i less than that of cos 0 h by cos 0;h i h i . Such method is used in [START_REF] Ainsworth | Dispersive and dissipative properties of discontinuous Galerkin …nite element methods for the secondorder wave equation[END_REF] with less details for the usual IPDG method, i.e. for 0 = 0.

Polynomial approximation of degree 1.

In this study, we mainly focus on the case m = 1. Noting for the moment = 2 0 h 2 i , we then have

K M + U > C U = 2 0 ( 1 
)
1 2 0 ( 1) + ( 0 1) 1 2 
( 0 1) 0 ( 1)

1 3 + 2 0 ( 1) + 0 U T = 1 1 0 0 0 1 1 1 : The relation 2 = 2 1 yields det K 2 0 h 2 M + U > C U = q 0 ( ) + q 1 ( ) + 2 q 2 ( ) = 0 with q 0 ( ) = ( 1) ((1 4 0 0 ) + (4 0 0 2 0 + 1)) q 1 ( ) = 1 2 0 1 3 0 + 2 0 2 3 0 q 2 ( ) = 1 12 :
1. For the usual IPDG method with a polynomial approximation of degree 1, the dispersion error is in O( 3 0 h 2 ). As reported in many sources (cf., e.g., [START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number -part i: the h-version of the FEM[END_REF]), this is also the order of the dispersion error of a FEM of degree 1. Hence, in this respect, at least for a polynomial approximation of degree 1, there is no gain to use an IPDG method instead of the usual FEM. This claim will be also supported by the numerical tests given below.

2. Choosing 0 = 1=12 improves of the dispersion error by a factor 2 0 h 2 i . We shall see later that this in particular explains the improvement observed in the numerical tests carried out by Feng and Wu [START_REF] Feng | Discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF] for meshes composed of equal equilateral triangles.

Polynomial approximation of degree 2.

The calculations for the approximation of degree 1 were done by hand and checked by the computer algebra system Maxima Copyright (C) 2022 Wx-Maxima Team. Those for the degree 2 have been obtained by using this computer algebra system only. We report below the main results

0 = 1 and 0;s = 4(2 0 3) 0 0 + 2 1 4 0 0 cos 0;hu h i cos 0 h i = 1 6! 1 0 + 4 2( 0 1) 6 0 h 6 i + O 8 0 h 8 i :
Consequently, if we avoid the above exceptional values of 0 and 0 , the dispersion error is of order 5 0 h 4 i , the same order as the method of degree 1 but now for almost any choice for 0 and 0 . The parameter 0 no longer seems to play a role in improving the dispersion. The above formula suggests that the dispersion error will be in 7 0 h 6 i for 0 = 6. But choosing such a low value for 0 generally results in an unstable IPDG method. Surprisingly, choosing 0 = 6 and 0 = 1=12 gives 0;s = 1, the value of 0;s that exactly brings a spurious solution into play.

Dispersion reduction in Feng and Wu' s IPDG method

In view of expression (3) of in terms of 0 , the closest polynomial approximation of the propagation of a plane wave propagating in the orthogonal direction to the side i + 2, is obtained for

= 1 12 
h i sin ' i h : (6) 
We successively consider three of the most representative meshes of this kind.

1. Meshes in equal equilateral triangles. As said above, Feng and Wu considered an hexagonal domain meshed in equal equilateral triangles [START_REF] Feng | Discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF]. They then carried out runs on the grid f0:01(p + iq); 50 p; q 50g of 10,000 values for and found that = 0:07 + 0:01i, = 0:07 + 0:01i in the notation of this paper, is the parameter which minimizes the H 1 -norm of the error. As the numerical tests below will con…rm, the imaginary part of only reinforces the stability of the discrete problem. The reduction of the dispersion is due to the real part of this parameter. In fact, by taking imaginary parts for and with a suitable sign, we ensure that the discrete problem is solvable without any condition on the mesh size. Thus, we keep FW = 0:07 as Feng and Wu's optimal value of . Observe that in this case the value of does not depend on the chosen vertex. Applying formula [START_REF] Ihlenburg | Finite element analysis of acoustic scattering[END_REF] for

' i = =3 and hence h i = h, we …nd = sin( =3) 12 = p 3 24
= 0:072168:::

a value that di¤ers from FW by around 3 %.

2.

Usual structured triangular meshes of polygonal domains with sides parallel to the coordinates axes. These kinds of meshes are depicted in Fig. 3. If we choose the vertex i such that the s-axis corresponds to the longest side of the triangle, the value for is then given by = sin ' i 12 = h x 12h where h x is the mesh step along the x-axis. h y h :

The two other choices respectively give s-axis t-axis h x h y h

Unfortunately, we have not …nd a way to select the best value for or to adequately combine these values. From the numerical tests carried out below, we will only be able to give "a rule of thumb" for this choice.

3. Meshes structured with respect to a corner. These meshes are of the type of those used below in the numerical experiments. We restrict ourselves here to the case of isosceles triangles whose greatest angle is that formed by two sides of equal size. In particular, this implies that h is the length of the opposite side of this angle. The length of each of the equal sides is denoted by `. The other notations are shown in Fig. 4. The …rst vertex gives The second vertex gives the same value for than the …rst, while the third yields

= sin 12 h = 1 12 sin 2 sin('=2) = 1 12 
1 2 tan('=2) :
As mentioned above, we will try to derive an "rule of thumb"from the numerical experiments below.

Numerical experiments

After stating the boundary-value problems considered for the numerical tests, and explaining the reasons of their choice, we carry out several tests highlighting the role played by parameter according to the conclusions of the analytical study above.

The considered boundary-value problems

We consider two kinds of boundary-value problems, all of them within the general framework of Problem [START_REF] Frelet | Finite element approximation of helmholtz problems with application to seismic wave propagation[END_REF]. The …rst of these is such that its solution is the corner wave u(x; y) = J = 0 ( r) cos( = 0 )

where 0 is the angle corresponding to the bottom-left corner of the domain, J = 0 is the Bessel function of order = 0 , and (r; ) the polar coordinates of the plane. A view of the domain, as well as a structured typical mesh of it, and the considered boundary conditions and data, are shown in Fig. 5.

n u = 0 n u = 0 n u = g E n u -i u = g N Figure 5
: Typical domain and its structured mesh. The functions g E and g N are chosen appropriately so that the corner wave [START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number -part ii: the h-p version of the FEM[END_REF] is the solution of the considered boundary-value problem.

There are many reasons for choosing this problem:

1. It corresponds to a pure propagation problem; i.e., there are no distributed interior sources. In this way, we aim to highlight the error due to dispersion corresponding to discretization.

2. Boundary conditions on the "south" and "west" sides of the domain are zero, mimicking a kind of "scattering problem" naturally posed in a domain whose size is large relative to the wavelength.

3. There is no privileged direction of propagation, thus avoiding any artefact with the directions of periodicity chosen for the determination of parameter .

The above problem is used to test the numerical method for problems involving waves propagating in all directions. However, the cost in memory and CPU time quickly becomes prohibitive when the domain size exceeds a few tens of wavelengths. The problem of propagation in a waveguide, The S-IPDG method is clearly not valid for such kinds of problems. As expected, this is due to the large amount of dispersion error consisting of phase lead, as with the usual FEM [START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number -part i: the h-version of the FEM[END_REF]. The relative error of the FW-IPDG appears to be almost one order worse than that of the I-IPDG. This seems to be due to a slight damping introduced by the imaginary part of . A test with = 0:07 gave an error of 0:85 %, roughly the double of the error obtained with the analytical value of .

Structured meshes of a square

Let us go back to the same boundary value problem, this time using a square with sides of length 10. The square is meshed into equal right isosceles triangles. Unlike the case of an equilateral triangle, the above analytical approach gives two values this time for :

= sin( =4)=12 = 1=12 p 2 by using the vertex relative to the right-angle, or = 1=(12 2 tan =4) = 1=24 when using the third vertex. We give to this last case a meaningful form by saying that corresponds to a plane wave constant along the longest side of the triangle. We respectively denote the two related methods by I1-IPDG and I2-IPDG. We also test the method with = sin( =3)=12 corresponding to equilateral triangles and call it I3-IPDG. The results are now reported in Tab. 2 and Fig. 8 I1-IPDG I2-IPDG I3-IPDG 3.0 % 17.7 % 46.7 % Even acceptable compared to the results for = 1=24 and = sin( =3)=12, the error for beta = sin( =4)=12 is 10 times greater than the one obtained above when dealing with a structured mesh in equilateral triangles. Apparently, a formula balancing the role of the three vertices is missing. Unfortunately, despite several attempts, we were unable to …nd such a formula. What we can draw from these tests is that the less worse choice is = sin( =4)=12. This has led us to formulate the following "rule of thumb": must be chosen so as not to correspond to a constant plane wave along the longest side of the triangle representative of the structured mesh. However, as we shall see below, the situation is not hopeless.

Unstructured meshes

Su¢ ciently "smoothed " unstructured meshes consist mainly of equal equilateral triangles, as shown in Fig. 9.

Let us return to the square domain example above, but this time using this type of mesh and = sin( =3)=12. The error is now 0.86 %, just the double of that found for the diamond-shaped domain meshed with equal equilateral triangles. The plot of the exact and the computed solutions on the side fy = 0g (Fig. 10) shows that the two curves are indistinguishable. Figure 9: A small example of a "smoothed" unstructured mesh.

U-IPDG S-IPDG FEM

0.41 % 8.9 % 77 % Table 3: Errors for IPDG on unstructured mesh with = sin( =3)=12 (U-IPDG), IPDG on structured mesh with = sin( =4)=12 (S-IPDG) and FEM

Long-range dispersion

To further test the dispersive properties of the current version of Feng and Wu's IPDG method, we now turn to the second boundary-value problem. The two IPDG methods we consider are those corresponding respectively to a mesh in rectangular isosceles triangles with = sin( =4)=12 (S-IPDG) and to an unstructured mesh with = sin( =3)=12 (U-IPDG).

We …rst compare the exact solution with those provided by the FEM on the structured mesh and the two IPDG methods for a waveguide of length 50. The results are reported in Tab. 3 and Fig. 11.

At …rst, we can note the excellent agreement of the solution obtained by the U-IPDG method with the exact solution. The S-IPDG method delivers fair results even if the overall error seems too pessimistic. The error is accentuated by the fact that it occurs on the phase. It is worth noting that the error corresponds to a phase lag, contrary to the usual phase lead of continuous Galerkin methods [START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number -part i: the h-version of the FEM[END_REF], which in this speci…c case makes the result irrelevant.

We then tested the U-IPDG method for several lengths of the waveguide. The results presented in Tab. 4 show that the method virtually eliminates dispersion error, and thus the "pollution e¤ect" over a distance of up to 500 Length (in wavelengths) 5 100 200 300 400 500 Error (in %) 0.41 0.39 0.38 0.39 0.43 0.48 Table 4: Errors for IPDG on unstructured meshes for various lengths of the waveguide.

wavelengths. Variations in error are less than 0.1% and appear to be weakly induced by dispersion as this can be observed for the errors corresponding to 5, 100, 200, 300, and 400 wavelengths.

Conclusion

We have developed a simple analytical procedure to de…ne the correct value of a parameter involved in Feng and Wu's IPDG method [START_REF] Feng | Discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF] (parameter in the present study). This parameter has a major impact on the reduction of dispersion. These authors have designed this parameter through several numerical runs done for structured meshes, composed of equal equilateral triangles, at a …xed frequency. We have shown how the analytical procedure improves the initial value given by Feng and Wu, but more importantly how it can completely eliminate dispersion error on "smoothed " unstructured meshes over propagation distances of up to 500 wavelengths. Unfortunately, this procedure yields a unique value of for equilateral triangles only. It gives two and three values of for isosceles triangles and general triangles respectively. Although it results in a more e¢ cient numerical method in the latter cases than the usual IPDG or FEM methods, it requires further research to be as e¤ective as the method for the meshes composed of equilateral triangles or for "smoothed " unstructured meshes.
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 1 Figure 1: Domain related to the boundary-value problem.
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 1 b 2 ,. . . ,b m+1 of polynomials of degree m such that b

Figure 3 :

 3 Figure 3: Structured mesh in right-angle triangles.
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 4 Figure 4: The notation for meshes in isoceles triangles
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 7 Figure 7: Plot of the various solutions on the side fy = 0g in the proximity of the end-points.
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 8 Figure 8: Plot of the various solutions on the side fy = 0g in the proximity of the end-points.

Figure 10 :

 10 Figure 10: Exact and computed solution for the square domain on a smoothed mesh.

Figure 11 :

 11 Figure 11: Real part of the solutions along bottom side of the waveguide.

Table 1 :

 1 Errors obtained for the various IPDG methods

		I-IPDG FW-IPDG S-IPDG
		0.4 %		2.7 %	21 %
	0.5	Diamond-shaped Domain -10	x 10
						Exact Exact
	0.4					I-IIPDG I-IIPDG FW-IPDG FW-IPDG S-IPDG S-IPDG
	0.3					
	0.2					
	0.1					
	0					
	-0.1					
	-0.2					
	0	0.02	0.04	0.06	0.08	0.96 0.97 0.98 0.99

Table 2

 2 

	: Errors obtained for	= sin( =4)=12 (I1-IPDG),	= 1=24 (I2-
	IPDG), and = sin( =3)=12 (I3-IPDG)					
	0.5			SQUARE Dom ain -10		x 10			
									Exact Exact	
	0.4								I1-IPDG I1-IPDG	
									I2-IPDG I2-IPDG	
	0.3								I3-IPDG I3-IPDG	
	0.2									
	0.1									
	0									
	-0.1									
	-0.2									
	-0.3									
	-0.4									
	0	0.01	0.02	0.03	0.04	0.96	0.97	0.98	0.99	1

Of course, as established in general, 0 = 1 is a solution in of the characteristic equation for h ! 0, the second one being 0;s = 1 + 4 0 0 2 0 1 + 4 0 0 = 1 2 0 ( 1 + 4 0 ) 1 4 0 0 for 0 0 6 = 1 4 :

Hence, if, for example, 0 and 0 are such

the solution corresponding to 0;s is of modulus > 1 for h su¢ ciently small and hence appears to be a "spurious solution". Subscript s stands for "spurious". One can already observe that the method will prevent the "spurious solution"from polluting the real one if 0 is taken "small enough"and on the contrary 0 "large enough". Now, to get the asymptotic expansion in of the root corresponding to 0 = 1 up to order 2 , we have just to set the following equation

We thus have established the following important theorem bringing up in particular an important advantage of Feng and Wu's IPDG as compared to the usual IPDG corresponding to 0 = 0. Theorem 2. If 0 6 = 1 and 1 4 0 0 6 = 0, then the dispersion error of Feng and Wu's IPDG method, quanti…ed by the error j 0;h 0 j on the wavenumber 0 , is such that

Proof. The proof is obtained by elementary estimates based on trigonometric formulas from the above expansion of cos 0;h i h i .

Remark 1. The above theorem raises two remarks: de…ned schematically in Fig. 6, is used to test the dispersion properties of the method over several hundred wavelengths.

Figure 6: Schematic representation of the computational domain and its mesh for the waveguide problem. The section of the waveguide is 1 wavelength and its length is L wavelengths; L depends on the particular test being considered.

The problem data are the following: = (0; L) (0; 1), = 2 , Y = 0 on the sides fy = 0g and fy = 1g, and Y = p 3=2 on the two other sides fx = 0g and fx = Lg, and …nally g = 0 except on the inlet of the waveguide fx = 0g where g(0; y) = 2i ( p 3=2) cos( y), 0 < y < 1. The solution of this problem is the guided wave u(x; y) = e i ( p 3=2)x cos( y), which can be seen as the superposition of the following two plane waves

All the numerical tests are carried out using a meshsize h = 1=24, degree 1 IPDG or FEM methods. All lengths are given in wavelength units.

Any error is expressed in % as follows 100 ku c Iuk 1; ;

where u c is the computed solution, Iu is the interpolate on the mesh vertices of the exact solution u and kwk 1; ; = krwk 2 0; + 2 kwk 2 0; 1=2 :

Structured meshes in equal equilateral triangles

We start with the kind of meshes considered by Feng and Wu [START_REF] Feng | Discontinuous Galerkin methods for the Helmholtz equation with large wave number[END_REF]. We then proceed with the …rst of the two above boundary-value problems taking 0 = =3. The diamond-shaped domain can hence by meshed in equal equilateral triangles. Each side of is of length 10.

The results are quasi identical for the standard IPDG (S-IPDG), i.e., for = 0, and for the FEM. Therefore, below we shall only mention those obtained for the S-IPDG. The IPDG with = sin( =3)=12, the analytical value for is called the improved IPDG (I-IPDG). The IPDG with the parameter = 0:07 + i0:01, numerically determined by Feng and Wu is referred to as Feng and Wu IPDG (FW-IPDG). The results are reported in Table 1 and in Fig. 7.