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Abstract

We propose a static checker, based on the Laplace transform, for check-
ing reference tracking system designs against their performance and safety
requirements. It aims to filter out designs that have obvious requirement
violations. This is to prevent users from performing more expensive eval-
uation tasks (e.g., simulation, model checking, or theorem proving) until
those violations are reviewed or fixed. In the process, our checker depends
on domain knowledge of the Laplace transform to represent each design
into a mathematical model, namely the transfer function. Then, it derives
time-domain metrics and interprets them as first-order formulas over real
numbers. By doing so, we can formulate a proof obligation for checking
requirement violations of a design in the Z3 SMT solver. We evaluated our
approach on 10 designs from the literature and textbooks to demonstrate
its practical usage and identify its limitations.

1 Introduction

Hybrid systems become prevalent in the next generation of safety-critical ap-
plications such as adaptive cruise control and medical devices embedded into
human bodies. Among them, reference tracking systems are hybrid systems
that regulate the system state around a given reference, which are our focus in

∗This work is supported by the grant ANR-17-CE25-0005 (The DISCONT Project
http://discont.loria.fr) from the Agence Nationale de la Recherche (ANR). We thank
reviewers for their comments and their ideas for improving the document. We have made
the paper publicly available on July 5, 2023and are happy with any feedback or question or
comment.
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this work. They generally do not contain discrete jumps and usually are parts
of a complex hybrid system design.

It is important to ensure reference tracking systems behave as expected
before in production or design complex hybrid systems that depend on them.
This is usually done by: 1) specifying expected system behaviors via system
requirements such as performance or safety requirements. 2) evaluating the
designs to ensure they meet the specified requirements via simulation [2, 8, 11],
model checking [14], or theorem proving approaches [21].

While existing evaluation approaches have shown to be helpful, we argue that
it is beneficial to have a static checker, which quickly and statically analyzes
for obvious requirement violations without much effort. Intuitively, this would
prevent users from performing more expensive evaluation tasks until reported
violations are reviewed or fixed. Moreover, users would gain more confidence
to develop or evaluate hybrid systems based on the checked reference tracking
systems.

Generally, control engineers apply the Laplace transform to design robust
systems or tune their performance. In this work, we exploit the Laplace trans-
form to develop a static checker for reference tracking systems. It aims to check
violations of: 1) performance requirements (specifying the ability to follow ref-
erence signals in terms of time-domain metrics such as overshoot, peak time),
and 2) safety requirements (specifying whether initial safe states would reach
unsafe states). To do so, it:

• depends on domain knowledge of the Laplace transform to represent each
design into a mathematical model, namely the transfer function.

• estimates time-domain metrics (e.g., overshoot, peak time) and interprets
the definitions and properties of time-domain metrics using first-order for-
mulas over real numbers.

• formulates proof obligations (POs) and sends them to an SMT solver to
check performance or safety requirement violations.

We have implemented our static checker as a Python program, which dis-
charges POs using the Z3 SMT solver [7]. We evaluate it against 10 examples
from the literature and textbooks. The results show that our checker can: 1) be
applied to designs that are parameterized by either numerical or symbolic values.
2) identify the requirement violations in a given design. 3) automatically provide
static checking results and counterexamples for the user to reproduce require-
ment violations in the design. Due to non-linear non-polynomial real arithmetic
involved in the time-domain metrics estimation, we abstract the estimation for-
mulas with their boundary conditions for conclusive checking results. Then, we
implement an automated calibration of counterexamples to compensate for the
loss of precision induced by this abstraction. The artifacts in this work can be
found at our online repository: http://github.com/veriatl/checkhybrid/.
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2 Motivation

To motivate our approach, let us study a car position tracking system1. The
goal is to design a controller that adjusts the acceleration to drive the car to
the desired reference position.

In [13], a typical workflow for such design starts by deriving its requirements
(e.g., stability, performance, or safety requirements). For example, assuming
p represents the time-series of the car position, we might want our design to
satisfy the following safety requirement: ∀t · p(t) < r (i.e., the car position p
never exceeds the reference position r).

Then, a design is built to satisfy the requirements. For example, a design for
the car position tracking system is shown by Fig. 1 as a block diagram. Each
block in the diagram represents a component, which could contain dynamics to
give its input/output relationship. Then, we can show how signals flow between
components by connecting these blocks using arrows.

As we can see from Fig. 1, the designed system is modeled as a closed-loop
system. At each cycle, the component C produces an acceleration a to the
component V. Then, component V produces velocity v under the differential
equation v̇ = a. Next, the produced velocity goes to the component P to
produce current car position p as the system output, under the differential
equation ṗ = v. The system output is measured, and then compared with the
system input, i.e., the desired position reference r, to produce an error term e.
The error is then fed back to the controller C to compute the acceleration to
drive the car for the next cycle, which closes the loop.

One of the main goals for control engineers is to intelligently design the
control law for C to progressively minimize e by computing a set of acceleration
values, such that the system output will converge to the desired reference. PID
is the most common control law used in practice, and used in our example. It
corrects the next input based on proportional (Kp), integral (Ki), and derivative
(Kd) gains w.r.t. the error.

−+
r

C V P
e a v p

p

Figure 1: Block diagram of the car position tracking example
Next, the performance of the design needs to be evaluated, e.g., by simula-

tion, model checking, or theorem proving.
Finally, if the evaluation is undesirable, the designer needs to redesign the

hybrid system and then re-evaluate the design. Otherwise, we can build a
prototype for trial.

In this work, we propose a static checker based on the Laplace transform. It
aims to detect performance or safety requirement violations just after a design

1The example is borrowed and adapted from [22].
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is finished or partially finished. This prevents users from performing expensive
design evaluation tasks until those violations are reviewed or fixed.

For example, let us consider the design of Fig. 1 against the safety require-
ment ∀t · p(t) < r. The relationship between the input reference r and the

output car position p can be transformed into a transfer function
Kds+Kp

s2+Kds+Kp

by the Laplace transform. We assume that this transfer function is partially
defined, i.e., it is parameterized by the symbolic values Kp, Ki and Kd with
constraints Kp ≤ 2, Ki = 0, Kd > 0 and 5Kd < Kp; and is approximated

by
Kp

s2+Kds+Kp
using the technique discussed in Section 4.5. Static checking

the approximated transfer function returns sat to indicate requirement vio-
lation. Our checker also returns a counterexample where the system, under
Kp = 0.25,Kd = 0.03, and excited by a step input r = 1, produces an output
trajectory p whose max value is about 1.67 (that is outside the safety range since
not(p(25.33) = 1.67 < 1 = r)) at time t = 25.33. The users can use provided
counterexample to confirm that the approximation preserves the significant dy-
namics of the original transfer function, and to reproduce the requirement vio-
lations in the original design by plotting or simulation.

3 Background

3.1 Laplace transform

The Laplace transform (L) of a time-domain function f(t) is defined by L{f(t)} =∫∞
0
f(t)e−st dt, which results a function in the s-domain (where s is in the com-

plex plane). A function f(t) can be Laplace transformed if it is of exponential
order. Exponential order means that there exists a real number σ such that
limt→∞ |f(t)e−σt| = 0. The decaying exponential term e−σt in the integrand
ensures convergence. This means that even if f(t) does not vanish as t goes to
infinity, the integrand will still vanish since the value of σ ensure the exponential
term grows at a faster rate than f .

Properties and rules of the Laplace transform can be derived from its defi-
nition (Table 2 in Appendix A gives a set of them that are used in this work).
When designing hybrid systems, it is often helpful to obtain a transfer func-
tion by rearranging the Laplace transform result into a ratio of output to input.
For example, the V component in the car position tracking example corresponds

to a transfer function V (s)
A(s) = 1

s (see Appendix A for its derivation). The convo-

lution rule of the Laplace transform is especially useful which allows composing

transfer functions algebraically. For example, as V (s)
A(s) = 1

s , and P (s)
V (s) = 1

s , we can

compose them algebraically using the convolution rule to obtain a new trans-

fer function P (s)
A(s) = 1

s2 , which directly shows how the acceleration affects the
position.
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3.2 Inverse Laplace transform

The inverse Laplace transform (L−1) of a function F (s) is defined by L−1{F (s)} =
1

2πj

∫ σ+j∞
σ−j∞ F (s)e+st dt, which results a time-domain function f(t). By the

Lerch’s theorem [6], if a function F (s) has the inverse Laplace transform f(t),
then f(t) is uniquely determined.

A standard problem in control is to understand the behaviors of the system
output in the time-domain, which can be solved through the inverse Laplace
transform: let Y (s) = H(s)U(s), where U(s) and Y (s) represents the system
input and output respectively in the s-domain, and H(s) is the transfer function
to be designed that connects the two. By design H(s) and fixing U(s), we can
compute Y (s) by convolution. Then, by inverse Laplace transforming Y (s), we
can study its corresponding function y(t) to understand the behaviors of the
system output in the time-domain.

As Y (s) might be complex that is difficult to be directly inverse Laplace
transformed, engineers usually break up Y (s) by partial fraction expansion: any

Y (s) can be represented by a rational function in the form of b1s
m+b2s

m−1+...+bm+1

sn+a1sn−1+...+an
.

We consider proper functions in this work where m ≤ n and further work
should be carried out for other functions. By factoring the polynomials, this
same function can be also expressed in terms of the product of factors as

Y (s) = K
Πmi=1(s−zi)
Πni=1(s−pi) [13]. Where s = zi, s is referred to as a zero of the

function; and where s = pi, s is referred to as a pole of the function. By
partial fraction expansion, we can rearrange Y (s) =

∑n
i=1

Ci
s−pi , where Ci are

coefficients that can be determined by the cover-up method [13]. Thus, by in-
verse Laplace transforming Y (s), we have y(t) =

∑n
i=1 Cie

pit as its time-domain
correspondence.

Notice that complex poles always come in pairs in the form of p = α + βj

and p∗ = α− βj such as Y (s) = ...+ C1

s−p +
C∗1
s−p∗ . In this case, inverse Laplace

transforming Y (s) results2: y(t) = ...+ 2|C1|eαtcos[βt+ arg(C1)].

3.3 Stability and final value theorem

A function Y (s) that represents the system output is stable if all its poles have
negative real parts in the complex plane, and is unstable otherwise.

As we see from Section 3.2, the real part of each pole would dictate whether
its corresponding exponential term in y(t) is decaying or growing. Thus, if all
poles have the negative real part, y(t) will have a steady state (where the system
state is unchanging in time).

Another especially useful property of the Laplace transform known as the
final value theorem allows us to compute the constant steady state value of
y(t) given its Laplace transform Y (s). The final value theorem states that if
all poles of sY (s) are in the left half of the complex plane, then limt→∞ f(t) =
lims→0 sY (s). Notice that the final value theorem only applies to stable systems
(as its restrictions on the positions of the poles in the complex plane), since the

2arg(C1) denotes the argument of C1.
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states of unstable systems cannot converge to a steady state and would not have
a final value.

3.4 Order of the transfer functions

Given a transfer function H(s) in the form of b1s
m+b2s

m−1+...+bm+1

sn+a1sn−1+...+an
, the highest

exponent n is called the order of H(s). In this work, we mainly consider the

standard 2nd-order transfer functions, where H(s) =
ω2
n

s2+2ζωns+ω2
n

, ζ is called

the damping ratio and ωn is called the un-damped natural frequency.
The reason we consider the transfer functions in the standard 2nd-order form
is that ζ and ωn tell a lot about the performance and characteristics of H(s).
In the next section, we discuss how to exploit ζ and ωn for estimating the
time-domain metrics. Moreover, we will discuss how to manage more complex
transfer functions in Section 4.5.

4 Time-domain metrics estimation

In this work, we are interested in 5 types of time-domain metrics: overshoot,
peak time, rise time, settling time and DC gain. The definitions, properties,
and estimations of these time-domain metrics give us a way to formulate proof
obligations to static check reference tracking system designs against performance
or safety requirements.

To simplify our discussion, let:

• H(s) (H for short) be a standard 2nd-order transfer function (
ω2
n

s2+2ζωns+ω2
n

)

for the designed system, where ζ denotes its damping ratio, and ωn is its
un-damped natural frequency, and

• U(s) (U) be the system input. We will fix the input signal to be a step
input for 2 reasons: 1) the considered time-domain metrics have a clear
definition for step inputs. 2) to demonstrate how to derive the estimations
for the considered time-domain metrics. In addition, we symbolically spec-
ify that the amplitude of the step input is A (i.e., U = A

s ), and

• Y (s) (Y ) be the system output, where Y = HU , and

• Y and H be stable, as the considered time-domain metrics only make
sense for stable systems, and

• y(t) (y) be the inverse Laplace transform of Y in the time-domain, and of
type R+ → R.

4.1 DC gain

Definition and property. The DC gain is the ratio of the system’s steady
state to the system input.
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We use a predicate input(y,A) to denote that the system step input has an
amplitude of A. We use a predicate dc(y,Mdc) to denote that the DC gain of y
is Mdc, and a predicate steady(y, Vdc) to denote that the steady state value of
y is Vdc.

Then, we define our first domain-specific property Pdc for the DC gain:

Pdc(y) =̂ ∀A,Mdc · input(y,A) ∧ dc(y,Mdc)→ steady(y,MdcA)

which allows the derivation of steady state value from the (given) input and the
(estimated) DC gain.
Estimation. The DC gain is estimated by applying the final value theorem:

Edc(y,A) =̂ dc(y,
lims→0 sY (s)

A
) = dc(y, lim

s→0
H(s))

4.2 Overshoot and peak time

Definitions and properties. Overshoot is the maximal amount that y exceeds
its steady state v divided by v. Peak time is the first time that takes the system
output y to reach the overshoot point.

We use a predicate overshoot(y,Mp) to denote that y has the overshoot Mp,
and use a predicate peak(y, tp) to denote that the peak time of y is tp.

Then, we define a domain-specific property PMp:

PMp(y) =̂ ∀Mp, tp, v · overshoot(y,Mp) ∧ peak(y, tp) ∧ steady(y, v)→

Mp =
y(tp)− v

v

which is the definition of the overshoot. It also allows the derivation of overshoot
point value from the (estimated) overshoot and the steady state value.

The domain-specific property P 1
tp states that the overshoot point is the max-

imum value of y:

P 1
tp(y) =̂ ∀tp · (peak(y, tp)→ max(y, tp))

where it uses an auxiliary predicate max(y, tx) that defines as follows:

max(y, tx) =̂ (∀t · y(t) ≤ y(tx))

The domain-specific property P 2
tp states that the peak time is counted by

the first time that y reaches its overshoot point:

P 2
tp(y) =̂ ∀tp · (peak(y, tp)→ first(y, tp))

where it uses an auxiliary predicate first(y, tx) that defines as follows:

first(y, tx) =̂ (∀t · y(t) = y(tx)→ t ≥ tx)

P 2
tp implies that the occurrence for the overshoot point of y before the peak time

is unique.
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Estimations. The damping ratio ζ of H plays an important role in estimating
overshoot and peak time of Y . It can vary from un-damped (ζ = 0), under-
damped (ζ < 1) through critically-damped (ζ = 1) to over-damped (ζ > 1).

For H that is un- or under-damped (0 ≤ ζ < 1), the discriminant of the
quadratic equation s2 + 2ζωns+ ω2

n will be less than 0, Thus, H will have two
complex poles, which results sinusoidal behavior in its time-domain function
(Section 3.2). It is this sinusoidal behavior being propagated from H to Y , and
results in the overshoot of y.

Specifically, y found from the inverse Laplace transform of Y is:

y = A−Ae−σt
√

1 +
σ2

ω2
d

(
cos(ωdt) +

σ

ωd
sin(ωdt)

)
where ωd = ωn

√
1− ζ2 and σ = ζωn.

When, y reaches its maximum value, its derivative will be zero:

ẏ = e−σt
(σ2

ω2
d

sin(ωdt) + ωdsin(ωdt)
)

= 0

This occurs when sin(ωdt) = 0. Thus, the peak time, i.e., the first time to reach
the overshoot point, needs to satisfy ωdtp = π. Consequently, we can estimate
peak time by [13]:

Etp(y, ζ, ωn) =̂ 0 ≤ ζ < 1→ peak(y,
π

ωd
)

Using the estimated value of peak time tp into the time-domain function y,
one can derive the estimation for the overshoot [13]:

E1
Mp(y, ζ) =̂ 0 ≤ ζ < 1→ overshoot(y, e

−πζ√
1−ζ2 )

When ζ is given numerically, E1
Mp can be computed easily. However, when

it is represented from symbolic values, solving E1
Mp in the SMT solver involves

non-linear non-polynomial real arithmetic, which often results in inconclusive
results. Therefore, we replace E1

Mp with the following abstract estimation when
ζ is symbolically represented:

E3
Mp(y, ζ, c) =̂ 0 ≤ ζ < 1→ overshoot(y, c) ∧ 0 < c ≤ 1

For H that is critically- or over-damped, the discriminant of the quadratic
equation s2 + 2ζωns+ ω2

n will be greater or equals to 0. Thus, H only has real
poles, which does not result in sinusoidal behavior and overshoot:

E2
Mp(y, ζ) =̂ ζ ≥ 1→ overshoot(y, 0)
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4.3 Rise time

Definition and property. Rise time is the time that takes the system y from
the set point a to reach a new set point b for the first time.

We use a predicate rise(y, a, b, tr) to denote that y has the rise time tr which
takes from the set point a to b for the first time. Then, we have the following
property:

Ptr(y) =̂ ∀tr, a, b · rise(y, a, b, tr)→
(∃ta · y(ta) = a ∧ first(y, ta) ∧ y(ta + tr) = b ∧ first(y, ta + tr))

That is the predicate rise(y, a, b, tr) implies that there exists ta such that y take
ta to first reach the set point a, and after tr it first reaches the set point b.
Estimation. Although it is difficult to obtain exact analytic expressions for
the rise time, a linear approximation have been used to estimate rise time for
un-damped or under-damped systems [9]:

Etr(y, ζ, ωn) =̂ ∀r · input(y, r) ∧ 0 ≤ ζ < 1→ rise(y, 0.1r, 0.9r,
2.16ζ + 0.60

ωn
)

Notice that the expression 2.16ζ+0.60
ωn

is used to exclusively estimate the rise
time that takes from the set point of 10% of the input to reach 90% of the input.
In addition, this estimation is a close approximation only for 0.3 ≤ ζ ≤ 0.8 [9].

4.4 Settling time

Definition and property. The settling time is the time taken y to reach and
remain within a certain tolerance δ of its steady state value.

We use a predicate settle(y, δ, ts) to denote that y takes the settling time of
ts to reach and remain within δ of its steady state value. Then, we have the
following property:

Pts(y) =̂ ∀δ, ts, v · steady(y, v) ∧ settle(y, δ, ts)→ (∀t · t ≥ ts → |y(t)− v| ≤ δv)

Estimation. To determine the time ts for which the system output y remains
within δ of the steady state value, the following approximation can be used [13]:
e−ζωnts < δ. Therefore, we have the following estimation for ts:

Ets(y, δ) =̂ settle(y, δ,− ln(δ)

ζωn
)

4.5 The simplification of higher-order transfer functions

Here, we introduce 2 simple techniques that can reduce the order of a given
transfer function, while trying to maintain its significant dynamics in the time-
domain. Recall from Section 3.2, any proper functions can be expressed as
F (s) =

∑n
i=1

Ci
s−pi by partial fraction expansion, whose corresponding time-

domain function is f(t) =
∑n
i=1 Cie

pit.
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For a stable function F (s), the real part for each of its poles pi controls how
fast the term epit in f(t) reaches to its steady state. In other words, if the real
part of pi is far away from 0, epit will reach its steady state very quickly, and
would not contribute to f(t) very much over time, and vice versa. This intuition
leads to the first approximation technique: to keep only dominant poles of
a given transfer function whose real parts are close to 0.

Similarly, each coefficient Ci in F (s) controls the weight of epit in f(t). In
other words, if Ci is small, epit will not contribute to f(t) very much over time,
and vice versa. This intuition leads to the second approximation technique: to
keep only significantly weighted poles of a given transfer function.

In summary, it is beneficial to study higher-order transfer functions by using
lower-order approximated ones. However, we need approximations that can
preserve the main characteristics of the original transfer function to make the
study more meaningful. When we use techniques discussed above to obtain
these approximations, it would depend on the user to decide a threshold for pi
or Ci to drop insignificant dynamics. In general, if the approximation precision
is in doubt, the user could plot or simulate the approximated and the original
transfer function to determine whether it is acceptable.

In addition to the simple approximation techniques, there are other ap-
proaches, e.g., a more sophisticated technique attempts to match the frequency
response of the reduced-order transfer function with the original transfer func-
tion frequency response as closely as possible. Due to space, we refer [9] for
more details of this approach.

5 Evaluations

5.1 Implementation

We have implemented our static checker as a Python program. Its inputs are:
1) the damping ratio ζ, and un-damped natural frequency ωn for the 2nd-order
transfer function of a given design. If the design is not in standard 2nd-order
form, users need to approximate it using techniques discussed in Section 4.5.
2) additional user-specified constraints (if there are any). 3) desired safety or
performance requirements.

Then, our static checker uses the inputs to formulate a PO according to the
schema of C ∧ E ∧ P → S:

• C represents additional user-specified constraints, e.g., types/values of
system states and design parameters.

• E and P represent estimations and properties of time-domain metrics
for the given system respectively. Notice that when ζ and ωn are given
by numerical constants, our checker performs numerical static checking
by using these constants to compute time-domain metrics. When ζ and
ωn are given symbolically, our checker represents time-domain metrics
estimations as symbolic formulas to perform symbolic static checking.

10



• S specifies desired safety or performance requirements.

Finally, we check the validity of the PO (i.e., ¬ PO) using the Z3 SMT solver
(version 4.8.12). The checker returns sat and a counterexample when require-
ment violations are detected, or unsat if our checker does not find requirement
violations, or unknown if the checker cannot solve.

On conclusive checking result (sat or unsat), the user should first determine
whether the approximation preserves the significant dynamics of the original
design (e.g., assisted by the counterexample found by our static checker to
plot the approximated and original transfer functions against the input). If
not, the static checking result is less meaningful, and the user could try to
re-approximate. Otherwise, the user can review/fix the design based on the
static checking result and then decide whether to perform more expensive design
evaluation tasks next. Our implementation is publicly available at: http://

github.com/veriatl/checkhybrid/.

5.2 Research questions and evaluation setup

We formulate 2 research questions to evaluate the correctness and efficiency of
our static checker:

1. Can our checker identify the requirement violations in a given design? If
not, what are the causes?

2. Can our checker effectively provide useful information for the user to re-
produce the bugs in the design?

To answer our research questions, we evaluate our checker against 10 refer-
ence tracking systems from the literature and textbooks [22, 9]. The evaluation
is performed on an Intel i7-10510u machine with 16 GB of memory running
the Linux operating system. We refer to our online repository for the complete
artifacts used in our evaluation.

5.3 Evaluation results

Our evaluation result is summarized in Table 1. Each system is identified by a
unique ID, followed by its original transfer function and the approximated one
(not shown when the original transfer function is already in the standard 2nd-
order form). Then, we list the type of the requirement specified on the design
(SF and PF for safety and performance requirement respectively), and the type
of static checking method (N and S for numerical and symbolic static checking
respectively). The last column lists the actual checking result from the SMT
solver for the approximated design, and the expected one on the original design
(in brackets, omitted when it is the same as the actual one).

We report that our checker return results in around 1s for all the evaluated
cases. It thus allows users to have immediate feedback on the design. Among the
5 cases of numerical static checking, all of them automatically return conclusive

11



Table 1: Evaluation results for static checking of hybrid system designs
ID. Org. Approx. Req. Method Actual(Expect)

ex.nmp −0.5s+1

s2+3s+1
1

s2+3s+1
SF N unsat(sat)

ex.dp0503 K
s2+qs+K

- PF S sat

ex.dp0504 10K
(s+3)(s+7)(s+70)+10K

K/7
21+K/7

21+K/7
(s+3)(s+7)+K/7

PF N sat

ex.dp0506
K1

s2+(K1K2+1)s+K1
- PF N unsat

ex.plane
114Kp

s3+11.4s+14s+114Kp

11.29Kp

s2+
√

1.92−2.91Kps+11.29Kp
PF S sat

ex.car

Kds+Kp

s2+Kds+Kp

Kp

s2+Kds+Kp

SF N sat

ex.car2 SF N unsat

ex.car3 SF S sat

ex.ap0506 KKm
s2+(KmKb+0.01)s+KKm

- PF S sat

ex.ap0509
Kps+Ki

s4+40s3+375s2+Kps+Ki

ω2
n

(s2+
√

2ωns+ω2
n)

PF S sat

results, and 4 of them return the correct result by manual inspection. In these
cases, if a counterexample is returned, it will contain estimated time-domain
metrics on the approximated design, which is shown to be a representative
indicator for requirement violation of the original design (we refer to Appendix
B.1 for an example). This level of efficiency is mainly because when ζ and ωn are
given by numerical values, our checker uses these values to compute time-domain
metrics to constants, and propagate them via predicates as given in Sections 4.1-
4.4. This avoids nonlinear real arithmetic SMT solving. We also simplify our
encoding by reducing uninterpreted functions and eliminating quantifiers to help
SMT solver return conclusive results. The case ex.nmp returns an incorrect
result due to an unsound approximation. By examining, the original design has
a positive zero in the nominator (a.k.a., non-minimum phase zero). It delays
the system, by first going in the opposite direction of the desired reference.
However, our approximation incorrectly drops this behavior when using the
transfer function reduction techniques in Section 4.5, which prevents our checker
to detect the requirement violation.

We have 5 cases that perform symbolic static checking. They all automat-
ically return conclusive and correct checking results. We also confirm that the
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generated counterexample helps us to simulate the original transfer function to
reproduce the requirement violations. The efficiency of symbolic static checking
is because we replace complex analytical estimations with simple abstract ones
(we refer to Appendix B.2 for an example). However, as the abstract estimations
lose the exact formula to calculate time-domain metrics, our symbolic checking
is currently accompanied by an automated calibrating process, i.e., using the
counterexample generated by the symbolic checking to perform another round
of numeric checking to produce a more accurate counterexample.

5.4 Discussion

In summary, our experiment shows that our checker can identify the require-
ment violations in a given hybrid systems design provided that the approxima-
tion preserves the significant dynamics of the original design (research question
1). It can also automatically provide static checking result and counterexam-
ple for the user to reproduce bugs in the design (research question 2). Due to
non-linear non-polynomial real arithmetic involved in the time-domain metrics
estimation, we abstract estimation formulas with boundary conditions to return
conclusive checking result. Then, we implement an automated calibration pro-
cess to compensate for the loss of precision in the counterexample induced by
this abstraction. Our experiment also shows us more insight about limitations
and improvement opportunities about our approach, which we will discuss next.
Usability. As described in Section 5.1, the overhead to apply our approach
resides in transforming a design into a 2nd-order transfer function. We use
existing APIs in Python/Matlab: a) to prepare the transfer function from a
given design (e.g., feedback, series for transfer function construction). b) to
approximate a transfer function (e.g., residue for identifying candidate terms
to remove). c) to ensure an approximation preserves the significant dynamics
of the original design (e.g., plot for graphical comparison). We find that this
overhead is relatively low compared to other evaluation tasks (e.g., iterative
test selection for simulation [2, 8, 11], or refining unknown parameters to reduce
the search space for model checking [14, 20, 17], or synthesizing and deductive
proving Lyapunov function for theorem proving [1, 26, 22]). Therefore, we are
convinced that performing a lightweight static checking would prevent users
from performing more expensive evaluation tasks until reported violations are
reviewed or fixed. Moreover, users would gain more confidence to develop hy-
brid systems based on the checked systems. To make our checker easier to use,
we plan to automate the transfer function approximation for the user and pro-
pose convenient ways to introduce auxiliary predicates that quantify truncated
transfer functions in the static checking process.
Soundness and completeness. There are potentially 3 types of approxima-
tion errors in the described estimation methods: 1) When approximate higher-
order transfer function into a lower-order one, we try to truncate insignificant
dynamics. 2) When we estimate time-domain metrics, we use the formula given
in [13, 9]. 3) When we encode and compute time-domain metrics, we approxi-
mate transcendental numbers (e.g., e or π) in the formula by numerical roundup.
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While these approximation errors introduce unsoundness and incompleteness in
our approach, the goal for the proposed static checker is to quickly and stati-
cally analyze for obvious requirement violations without much effort. This is to
prevent users from performing more expensive evaluation tasks until reported
violations are reviewed or fixed. To improve the soundness and completeness of
our analysis, we plan to improve the approximation precision, e.g., by finding
more accurate analytical estimation methods for time-domain metrics.
Applicability. The demonstrated approach is designed for linear reference
tracking systems. In this context, it is reasonable to: 1) represent the input as
a step input (which characterizes a sudden change of reference), 2) represent
the controlled system as a 2nd-order transfer function (which characterizes a
low-pass filter-like behavior), 3) consider controlled stable systems (the system
itself does not need to be stable, but should be stable after control). 4) assume
system dynamics under zero initial conditions (since it simplifies the analysis).
We are interested in how to apply our approach in more contexts, e.g., tracking
of a sinusoidal input. In addition, reference tracking systems are the simplest
hybrid systems that do not exhibit any discrete jumps. However, their behav-
iors are crucial to reason the correctness of high-level complex hybrid systems
that orchestra them. We plan to integrate our approach with other evaluation
approaches (e.g. [5, 14, 21]) to reason the safety of more complex hybrid systems.

6 Two Static Checking Examples

B.1. Numerical static checking (ex.car)

Consider the design in Fig. 1, the system output is the car position, given
by Y (s), where Y (s) = H(s)U(s). H(s) is the designed closed-loop transfer
function, and U(s) is a step input for specifying the desired reference position
r = 1. Let y(t) represent the corresponding time-domain function of Y (s). We
want to know that under a PD control law of Kp = 2,Kd = 0.14, whether the
safety property: ∀t · y(t) < r would hold for this design.

Under zero initial conditions, we calculate the transfer function H(s) for the
closed-loop system by applying the Laplace transform:

H(s) =
Kds+Kp

s2 +Kds+Kp
=
Kd

Kp

Kps

s2 +Kds+Kp
+

Kp

s2 +Kds+Kp

In this case, H(s) can be divided into two sub transfer functions by partial
fraction expansion, with weight Kd

Kp
and 1 respectively. As suggested by the

chosen constant values in the PD control law, Kd
Kp

is less than one tenth of 1.

Thus, we decide to approximate H(s) by Ĥ(s):

Ĥ(s) =
Kp

s2 +Kds+Kp
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where ζ̂ = Kd
2
√
Kp

= 0.05, and ω̂n =
√
Kp = 1.413. Thus, we have Ŷ (s) =

Ĥ(s)U(s) to be an approximation of Y (s).
Next, we apply our estimations for time-domain metrics on Ŷ (s). Combined

with domain-specific properties of time-domain metrics shown in Section 4, we
generate a PO shown in Fig. 2 (to save space, only formulas that are related to
the concerned safety property are shown). We have:

C =̂ (ŷ : R+ → R) ∧ (r : R+) ∧ r = 1 ∧ input(ŷ, r) ∧

ζ̂ = 0.05 ∧ ω̂n = 1.41 ∧ ...
E =̂ dc(ŷ, 1) ∧ overshoot(ŷ, 0.86) ∧ peak(ŷ, 2.22) ∧ ...
P =̂ Pdc ∧ PMp ∧ P 1

tp ∧ ...
S =̂ ∀t · ŷ(t) < r

PO =̂ ¬(C ∧ E ∧ P → S)

Figure 2: Proof obligation generation for hybrid system design of Fig. 1

• C encodes the system context. Here, ŷ is the corresponding time-domain
function of Ŷ (s). We also have a step input r = 1, and numerical constants

for ζ̂ and ω̂n, and etc..

• E encodes the estimated time-domain metrics for ŷ, where its DC gain is
1 (by Edc), and overshoot by 0.86 (by E1

Mp), and time to the first peak is
approximately 2.22 seconds (by Etp), and etc..

• P encodes the properties of time-domain metrics. To verify the considered
safety property, Pdc derives the steady state value of ŷ. PMp relates over-
shoot with peak time to derive the overshoot point value ŷ(tp) = 1.86r.
P 1
tp is used to derive max(ŷ, tp).

• S is the desired safety property, i.e., the car position never exceeds the
reference position r.

• Finally, a PO is formulated and checked by the SMT solver.

Upon receiving the checker result, we first plot H(s) and Ĥ(s) against a step
input (Fig. 3). The plotting result confirms that the approximation preserves
the significant dynamics of the original system. Thus, we should further exam-
ine the static checking result. Then, our checker returns sat which suggests
a requirement violation. The produced counterexample shows that the time-
domain function ŷ has a maximum of 1.86 at t = 2.22 that violates the safety
requirement. Guided by this information, we then confirm on the plot that this
is also a safety requirement violation in the original design.

3Numbers are rounded to two decimal places for simplification
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Figure 3: Simulation result for the approximated and original design of car
position tracking system, under the reference step input r = 1, and the controller
law of Kp = 2, Ki = 0 and Kd = 0.14

B.2. Symbolic static checking (ex.plane)

The example is adapted from [9], which controls the bank angle of an airplane
by using the aileron actuator. Bank angle is the angle between the wings and
the horizon.

An aileron forms part of the trailing edge of each wing of a fixed-wing aircraft.
By actuating the aileron up or down, we can control the bank angle of the
aircraft. The goal of the design is to develop a proportional controller that
gradually actuates the aileron to maintain the bank angle at a desired constant
φd. We define a requirement for the design such that the bank angle does not
overshoot. The original design is given by a closed-loop transfer function:

H(s) =
114Kp

s3 + 11.4s2 + 14s+ 114Kp

Using an approximation technique that preserves similar frequency responses [9],
we obtain a standard 2nd-order closed-loop transfer function:

Ĥ(s) =
11.29Kp

s2 +
√

1.92− 2.91Kps+ 11.29Kp

Therefore, exciting the system with a step input U(s), we have Ŷ (s) = Ĥ(s)U(s)
that represents the output of the approximated system.

The closed-loop transfer function Ĥ(s) is parameterized by a symbolic pro-
portional gain Kp. Due to stability, we might have a restriction on Kp such
that it needs to be strictly between 0 and 0.65. A typical question we might
want to ask our static checker is that, under such restriction, is our desired
requirement held? For that, a PO is formulated as shown in Fig. 4. The result
of PO in the SMT solver is sat. By examining the calibrated counterexam-
ple, there is a Kp = 0.14, which is within the acceptable range for stability.
We use this value to plot the approximated and the original transfer functions
against the step input. The result shows that it is a close approximation of the
original one (Fig. 5). Then, we check the counterexample and find that ŷ has
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C =̂ 0 < Kp < 0.65 ∧ ζ̂ =

√
0.043

Kp
− 0.065 ∧ ω̂n =

√
11.29Kp ∧ ...

E =̂ E1
Mp ∧ E2

Mp ∧ ...
P =̂ ...

S =̂ overshoot(ŷ, 0)

PO =̂ ¬(C ∧ E ∧ P → S)

Figure 4: Proof obligation generation for hybrid system design of bank angle
control system

overshoot = 0.16 that violates the requirement S. We then confirm on the plot
that this is also a requirement violation in the original design.

Figure 5: Simulation result for the approximated and original design of the bank
angle control system, under the reference step input r = 1, and the controller
law of Kp = 0.14

7 Related Works

Researchers have developed various techniques to evaluate hybrid system designs
against their requirements.
Simulation. There are several commonly encountered engineering tools to sim-
ulate hybrid system designs, such as MATLAB (Simulink, Stateflow) and Mathematica.
In general, it is not always possible to simulate all possible cases. Thus, one of
the main challenges for researchers is to search representative inputs for sim-
ulation. Mature input searching tools around MATLAB exist [2, 8]. They
use robustness as an optimization function to find inputs that steer the sys-
tem towards violation of a given temporal logic requirement. However, their
performance varies with the structure of the problem at hand and the chosen
optimization algorithm. Ernst et al. develop an algorithm based on a proba-
bilistically directed search that adapts to the difficulty of a problem at hand [11].
Model checking. Many tools are developed for bounded model checking.
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Among these, HyTech is a model checker for linear hybrid system designs that
focuses on exact computations of reachable states [16]. Such exact computation
is possible for simple continuous dynamics by applying linear algebra, but easily
becomes undecidable when dynamics switching is involved in the system model-
ing. SpaceEx takes another approach for linear systems by over-approximating
the set of reachable states on a bounded time-interval, which could scale to high-
dimensional systems [18]. Flow∗ is a tool that approximates nonlinear system
dynamics using Taylor models and template polyhedra [4]. dReach is another
bounded model checker designed to handle general hybrid systems with nonlin-
ear differential equations and complex discrete mode-changes [17]. It is based
on a δ-complete decision procedure for SMT formulas: δ-completeness allows a
formula to be labeled satisfiable under user-specified numerical errors that can
be tolerated in the analysis.
Theorem proving. KeYmaera X is a theorem prover for hybrid system designs
based on differential logic (dL) [21, 15]. Special rules are designed to ease the
complexity of deduction reasoning. In [22], Quesel et al. demonstrate how KeY-
maera X and dL are used to verify a similar problem as given in Section 2. A
global Lyapunov function is needed to construct an invariant to abstract system
behaviors for safety verification. Hybrid Hoare logic (HHL) has been proposed
by Liu et al. for a Hoare-style duration calculus based on hybrid communicat-
ing sequential processes [19]. Banach et al. propose a Hybrid Event-B language
that applies software refinement methodology for developing hybrid systems and
reasoning their safety [3]. The language introduces many user-friendly syntactic
and semantic elements. Dupont et al. concretize the Hybrid Event-B language
into the Event-B language [10]. In addition, they demonstrate how to encap-
sulate domain-specific knowledge of hybrid systems. Cheng and Méry try to
improve the work of Dupont et al. by relaxing the constraints of Hybrid Event-
B language to enable machine-checkable proofs and implementation-oriented
refinement [5].

Our work is inspired by ESC/Java [12]. It is an extended static checker of
Java. By introducing unsoundness and incompleteness at an appropriate level,
it can achieve a better position in the coverage-to-effort design space. Similar
to ESC/Java, although our analysis result is unsound and incomplete, it stati-
cally detects performance and safety requirement violations for linear reference
tracking systems without much effort. It also prevents users from performing
more expensive evaluation tasks until reported violations are reviewed or fixed.
Moreover, users would gain more confidence to develop or evaluate hybrid sys-
tems based on the checked reference tracking systems. Thus, integrating our
analysis in the traditional evaluation process of hybrid systems can be beneficial
and complementary to existing techniques on simulation, model checking, and
theorem proving.

The Laplace transform and its inversion provide a unique way to determine
the time-domain function for the system state. It also has an algebraic nature
to quantify complex designs as a whole, which provides an alternative view to
cycle-based analysis such as in [21, 19, 3, 10, 5]. Moreover, it is an effective tool
for robustness analysis. Thus, we are convinced that integrating more and more

18



domain knowledge associated with the Laplace transform will be quite useful
for evaluating hybrid system designs. In addition to what we present in this
work, Wang and Chen encode the Laplace transform and its properties in the
Coq interactive theorem prover to verify the transformation correctness [28]. A
similar effort has been found in Isabelle by Rashid and Hasan [25]. In previous
versions, we have missed a few formalizations of the Laplace transform done in
HOL Light theorem prover published in [27, 23, 24] and those works provide
a general framework using theorem prover for analysing properties of Laplace
Transform. These formalizations provide a rigorous basis for more analysis
based on the Laplace transform.

8 Conclusion

In summary, we propose a static checker for checking reference tracking system
designs against their performance and safety requirements. It aims to filter
out designs that have obvious requirement violations. This is to prevent users
from performing expensive design evaluation tasks until those violations are
reviewed or fixed. In the process, our checker depends on domain knowledge of
the Laplace transform to represent each design into a transfer function. Then, it
estimates time-domain metrics and interprets the definitions and properties of
time-domain metrics using first-order formulas over real numbers. This allows
it to formulate a PO for checking requirement violations in the Z3 SMT solver.
Our checker can be applied to designs that are parameterized by either numerical
or symbolic values. Our future work will focus on: 1) integrating with other
evaluation approaches (e.g., [5, 18, 21]) to reason the safety of more complex
hybrid systems. 2) reducing approximation errors in the static checking process.
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A Laplace transform rules

Table 2: The Laplace transform properties and rules used in this work

id f(t) F(s) Comment

R1 αf1(t) + βf2(t) αF1(s) + βF2(s) Superposition

R2 f(αt) αF (s) Scaling

R3 fm(t) smF (s)− sm−1f(0)− sm−2ḟ(0) . . .− fm−1(0) differentiation

R4

∫ t

0

f(x) dx
1

s
F (s) integration

R5 f1(t) ∗ f2(t) F1(s)F2(s) convolution

R6 1(t)
1

s
step

R7 e−at
1

s+ a
exponent

R8 e−atsinbt
b

(s+ a)2 + b2

The Laplace transform properties and rules used in this work is shown in
Table 2. To demonstrate its usage, considering the dynamics of the V compo-
nent in the car position tracking example in Fig. 1. Its input is the acceleration
a produced by the controller, and its output is the car velocity v. If we assume
zero initial conditions of the system, the transfer function of V that defines its
input/output relationship is:

L{v̇ = a} ⇔ L{v̇} = L{a} (Superposition)

⇔ sV (s) + v(0) = A(s) (differentiation)

⇔ sV (s) = A(s) (assumption)

⇔ V (s)

A(s)
=

1

s
(arrange)
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