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Endomorphisms of Artin groups of type D

FABRICE CASTEL

LUIS PARIS

Abstract In this paper we determine a classification of the endomorphisms of the Artin group of
type Dn for n ≥ 6. In particular we determine its automorphism group and its outer automorphism
group. We also determine a classification of the homomorphisms from the Artin group of type Dn

to the Artin group of type An−1 and a classification of the homomorphisms from the Artin group of
type An−1 to the Artin group of type Dn for n ≥ 6. The results are algebraic in nature but the proofs
are based on topological arguments (curves on surfaces and mapping class groups).
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1 Introduction

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (ms,t)s,t∈S indexed by the elements
of S , with coefficients in N∪{∞}, such that ms,s = 1 for all s ∈ S and ms,t = mt,s ≥ 2 for all s, t ∈ S ,
s 6= t . Such a matrix is usually represented by a labeled graph Γ, called a Coxeter graph, defined as
follows. The set of vertices of Γ is S . Two vertices s, t ∈ S are connected by an edge if ms,t ≥ 3, and
this edge is labeled with ms,t if ms,t ≥ 4.

If a, b are two letters and m is an integer ≥ 2, then we denote by Π(a, b,m) the word aba · · · of length
m. In other words Π(a, b,m) = (ab)

m
2 if m is even and Π(a, b,m) = (ab)

m−1
2 a if m is odd. Let Γ be a

Coxeter graph and let M = (ms,t)s,t∈S be its Coxeter matrix. With Γ we associate a group A[Γ], called
the Artin group of Γ, defined by the following presentation.

A[Γ] = 〈S | Π(s, t,ms,t) = Π(t, s,ms,t) for s, t ∈ S , s 6= t , ms,t 6=∞〉 .

The Coxeter group of Γ, denoted W[Γ], is the quotient of A[Γ] by the relations s2 = 1, s ∈ S .

Despite the popularity of Artin groups little is known on their automorphisms and even less on their
endomorphisms. The most emblematic cases are the braid groups and the right-angled Artin groups.
Recall that the braid group on n + 1 strands is the Artin group A[An] where An is the Coxeter graph
depicted in Figure 1.1, and an Artin group A[Γ] is called a right-angled Artin group if ms,t ∈ {2,∞}
for all s, t ∈ S , s 6= t . The automorphism group of A[An] was determined by Dyer–Grossman [23]
and the set of its endomorphisms by Castel [11] for n ≥ 6 and by Chen–Kordek–Margalit [15] for
n ≥ 5 (see also Bell–Margalit [1]). On the other hand there are many articles studding automorphism
groups of right-angled Artin groups (see Charney–Vogtmann [13, 14], Day [20, 21], Laurence [29]
and Bregman–Charney–Vogtmann [6] for example), but almost nothing (or too much) is known on
endomorphisms of these groups.
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1 2 n-1 n

Figure 1.1: Coxeter graph An

Apart from these two families little is known on automorphisms of Artin groups. The automorphism
groups of two generators Artin groups were determined in Gilbert–Howie–Metaftsis–Raptis [26], the
automorphism groups of the Artin groups of type Bn , Ãn and C̃n were determined in Charney–Crisp
[12], the automorphisms groups of some 2-dimensional Artin groups were determined in Crisp [18],
and the automorphism group of A[D4] was determined in Soroko [36]. On the other hand, as far as
we know the set of endomorphisms of an Artin group is not determined for any Artin group except for
those of type A.

Recall that an Artin group A[Γ] is of spherical type if W[Γ] is finite. The study of spherical-type
Artin groups began in the early 1970s with works by Brieskorn [7, 8], Brieskorn–Saito [9] and Deligne
[22], works that marked in a way the beginning of the theory of Artin groups. This family and that of
right-angled Artin groups are the two most studied and best understood families of Artin groups and,
obviously, any question on Artin groups first arises for Artin groups of spherical type and for right-
angled Artin groups. Here we are interested in Artin groups of spherical type and more particularly in
those of type D.

An Artin group A[Γ] is called irreducible if Γ is connected. If Γ1, . . . ,Γ` are the connected components
of Γ, then A[Γ] = A[Γ1] × · · · × A[Γ`] and W[Γ] = W[Γ1] × · · · × W[Γ`]. In particular A[Γ] is
of spherical type if and only if A[Γi] is of spherical type for all i ∈ {1, . . . , `}. So, to classify Artin
groups of spherical type it suffices to classify those which are irreducible. Finite irreducible Coxeter
groups and hence irreducible Artin groups of spherical type were classified by Coxeter [16, 17]. There
are four infinite families, An (n ≥ 1), Bn (n ≥ 2), Dn (n ≥ 4) and I2(m) (m ≥ 5), and six “sporadic”
groups, E6 , E7 , E8 , F4 , H3 and H4 . As mentioned above, the automorphism group of A[Γ] for Γ of
type An (n ≥ 1), Bn (n ≥ 2) and I2(m) (m ≥ 5) is known. The next step is therefore to understand
the automorphism group of A[Dn] for n ≥ 5 (the case Γ = D4 is known by Soroko [36]). The Coxeter
graph Dn is illustrated in Figure 1.2.

1 2 n-2

n-1

n

Figure 1.2: Coxeter graph Dn

In this paper we determine a complete and precise classification of the endomorphisms of A[Dn]
for n ≥ 6 (see Theorem 2.3). In particular we determine the automorphism group and the outer
automorphism group of A[Dn] for n ≥ 6 (see Corollary 2.6). We also determine a complete and precise
classification of the homomorphisms from A[Dn] to A[An−1] (see Theorem 2.1) and a complete and
precise classification of the homomorphisms from A[An−1] to A[Dn] (see Theorem 2.2). Note that all
these results were announced but not proved in Castel [11]; actually the proofs turn out to be much more
difficult than the first author thought when he announced them. Note also that our techniques cannot be
used to treat the cases n = 4 and n = 5. In particular we do not know how to determine Aut(A[D5]).



Endomorphisms of Artin groups of type D 3

A geometric representation of an Artin group is a homomorphism from the group to a mapping class
group (see Section 3 for more details). In order to achieve our goals we make a study of a particular
geometric representation of A[Dn] previously introduced by Perron–Vannier [35] with one boundary
component replaced by a puncture. This geometric representation will be the key tool for many of our
proofs. Overall, although the results of the paper are algebraic in nature, the proofs are mostly based
on topological arguments (on curves on surfaces and mapping class groups).

The paper is organized as follows. In Section 2 we give the main definitions and precise statements of
the main results. Section 3 is dedicated to the study of some geometric representations of Artin groups
of type A and type D. In Section 4 we determine the homomorphisms from A[Dn] to A[An−1], in
Section 5 we determine the homomorphisms from A[An−1] to A[Dn], and in Section 6 we determine
the endomorphisms of A[Dn].

Acknowledgments The authors would like to thank Bruno A Cisneros de la Cruz and Juan González-
Meneses for helpful comments and conversations. The second author is partially supported by the
French project “AlMaRe” (ANR-19-CE40-0001-01) of the ANR.

2 Definitions and statements

For n ≥ 4 we denote by s1, . . . , sn−1 the standard generators of A[An−1] numbered as in Figure 1.1
and by t1, . . . , tn the standard generators of A[Dn] numbered as in Figure 1.2.

Let Γ be a Coxeter graph. For X ⊂ S we denote by AX = AX[Γ] the subgroup of A = A[Γ] generated
by X , by WX = WX[Γ] the subgroup of W = W[Γ] generated by X , and by ΓX the full subgraph of Γ

spanned by X . We know from van der Lek [30] that AX is the Artin group of ΓX and from Bourbaki
[5] that WX is the Coxeter group of ΓX . A subgroup of the form AX is called a standard parabolic
subgroup of A and a subgroup of the form WX is called a standard parabolic subgroup of W .

For w ∈ W we denote by lg(w) the word length of w with respect to S . A reduced expression for w
is an expression w = s1s2 · · · s` of minimal length, that is, such that ` = lg(w). Let ω : A → W be
the natural epimorphism which sends s to s for all s ∈ S . This epimorphism has a natural set-section
τ : W → A defined as follows. Let w ∈ W and let w = s1s2 · · · s` be a reduced expression for w.
Then τ (w) = s1s2 · · · s` ∈ A. We know from Tits [37] that the definition of τ (w) does not depend on
the choice of its reduced expression.

Assume Γ is of spherical type. Then W has a unique element of maximal length, denoted wS , which
satisfies w2

S = 1 and wSSwS = S . The Garside element of A is defined to be ∆ = ∆[Γ] = τ (wS). We
know that ∆S∆−1 = S and, if Γ is connected, then the center Z(A) of A is an infinite cyclic group
generated by either ∆ or ∆2 (see Brieskorn–Saito [9]). For X ⊂ S we denote by wX the element of
maximal length in WX and by ∆X = ∆X[Γ] = τ (wX) the Garside element of AX .

If Γ = An−1 , then
∆ = (sn−1 · · · s1)(sn−1 · · · s2) · · · (sn−1sn−2)sn−1 ,

∆si∆
−1 = sn−i for all 1 ≤ i ≤ n− 1 and Z(A) is generated by ∆2 . If Γ = Dn , then

∆ = (t1 · · · tn−2tn−1tntn−2 · · · t1)(t2 · · · tn−2tn−1tntn−2 · · · t2) · · · (tn−2tn−1tntn−2)(tn−1tn) .
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If n is even, then ∆ti∆−1 = ti for all 1 ≤ i ≤ n and Z(A) is generated by ∆. If n is odd, then
∆ti∆−1 = ti for all 1 ≤ i ≤ n− 2, ∆tn−1∆−1 = tn , ∆tn∆−1 = tn−1 , and Z(A) is generated by ∆2 .

If G is a group and g ∈ G, then we denote by adg : G → G, h 7→ ghg−1 , the conjugation map by
g. We say that two homomorphisms ϕ1, ϕ2 : G → H are conjugate if there exists h ∈ H such that
ϕ2 = adh ◦ ϕ1 .

A homomorphism ϕ : G → H is called abelian if its image is an abelian subgroup of H . A
homomorphism ϕ : G → H is called cyclic if its image is a cyclic subgroup of H . If G = A[An−1],
then ϕ : A[An−1] → H is abelian if and only if it is cyclic, if and only if there exists h ∈ H such that
ϕ(si) = h for all 1 ≤ i ≤ n− 1. Similarly, if G = A[Dn], then ϕ : A[Dn]→ H is abelian if and only if
it is cyclic, if and only if there exists h ∈ H such that ϕ(ti) = h for all 1 ≤ i ≤ n.

Two automorphisms ζ, χ ∈ Aut(A[Dn]) play a central role in our study. These are defined by

ζ(ti) = ti for 1 ≤ i ≤ n− 2 , ζ(tn−1) = tn , ζ(tn) = tn−1 ,

χ(ti) = t−1
i for 1 ≤ i ≤ n .

Both are of order 2 and commute, hence they generate a subgroup of Aut(A[Dn]) isomorphic to
Z/2Z× Z/2Z. If n is odd, then ζ is the conjugation map by ∆ = ∆[Dn]. On the other hand, if n is
even, then ζ is not an inner automorphism (see Paris [32]). The automorphism χ is never inner.

Two other homomorphisms play an important role in our study. The first, π : A[Dn] → A[An−1], is
defined by

π(ti) = si for 1 ≤ i ≤ n− 2 , π(tn−1) = π(tn) = sn−1 .

The second, ι : A[An−1]→ A[Dn], is defined by

ι(si) = ti for 1 ≤ i ≤ n− 1 .

Observe that π ◦ ι = idA[An−1] , hence π is surjective, ι is injective, and A[Dn] ' Ker(π)oA[An−1]. We
refer to Crisp–Paris [19] for a detailed study on this decomposition of A[Dn] as a semi-direct product.

Let n ≥ 4. For p ∈ Z we define a homomorphism αp : A[Dn]→ A[An−1] by

αp(ti) = si∆
2p for 1 ≤ i ≤ n− 2 , αp(tn−1) = αp(tn) = sn−1∆2p ,

where ∆ = ∆[An−1] is the Garside element of A[An−1]. Note that α0 = π . Set Y = {t1, . . . , tn−1}.
For p, q ∈ Z we define a homomorphism βp,q : A[An−1]→ A[Dn] by

βp,q(si) = ti∆
2p
Y ∆κq for 1 ≤ i ≤ n− 1 ,

where ∆ = ∆[Dn] is the Garside element of A[Dn], ∆Y = ∆Y [Dn], κ = 2 if n is odd, and κ = 1 if n
is even. Note that β0,0 = ι. Note also that, by Paris [32, Theorem 1.1], the centralizer of Y in A[Dn] is
the free abelian group of rank 2 generated by ∆2

Y and ∆κ . For p ∈ Z we define the homomorphism
γp : A[Dn]→ A[Dn] by

γp(ti) = ti∆κp for 1 ≤ i ≤ n ,

where ∆ = ∆[Dn] is the Garside element of A[Dn], κ = 2 if n is odd, and κ = 1 if n is even. Note
that γ0 = id.

The main results of this paper are the following.
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Theorem 2.1 Let n ≥ 6. Let ϕ : A[Dn]→ A[An−1] be a homomorphism. Then up to conjugation we
have one of the following two possibilities.

(1) ϕ is cyclic.

(2) There exist ψ ∈ 〈χ〉 and p ∈ Z such that ϕ = αp ◦ ψ .

Theorem 2.2 Let n ≥ 6. Let ϕ : A[An−1]→ A[Dn] be a homomorphism. Then up to conjugation we
have one of the following two possibilities.

(1) ϕ is cyclic.

(2) There exist ψ ∈ 〈ζ, χ〉 and p, q ∈ Z such that ϕ = ψ ◦ βp,q .

Theorem 2.3 Let n ≥ 6. Let ϕ : A[Dn] → A[Dn] be a homomorphism. Then up to conjugation we
have one of the following three possibilities.

(1) ϕ is cyclic.

(2) There exist ψ ∈ 〈ζ, χ〉 and p, q ∈ Z such that ϕ = ψ ◦ βp,q ◦ π .

(3) There exist ψ ∈ 〈ζ, χ〉 and p ∈ Z such that ϕ = ψ ◦ γp .

From Theorem 2.3 we deduce a classification of the injective endomorphisms and of the automorphisms
of A[Dn] as follows.

Corollary 2.4 Let n ≥ 6. Let ϕ : A[Dn] → A[Dn] be an endomorphism. Then ϕ is injective if and
only if there exist ψ ∈ 〈ζ, χ〉 and p ∈ Z such that ϕ is conjugate to ψ ◦ γp .

Proof Let ϕ : A[Dn] → A[Dn] be an endomorphism. By Theorem 2.3 we have one of the following
three possibilities up to conjugation.

(1) ϕ is cyclic.

(2) There exist ψ ∈ 〈ζ, χ〉 and p, q ∈ Z such that ϕ = ψ ◦ βp,q ◦ π .

(3) There exist ψ ∈ 〈ζ, χ〉 and p ∈ Z such that ϕ = ψ ◦ γp .

If ϕ is cyclic, then ϕ(tn−1) = ϕ(tn), hence ϕ is not injective. If there exist ψ ∈ 〈ζ, χ〉 and p, q ∈ Z
such that ϕ = ψ ◦ βp,q ◦ π , then, again, ϕ(tn−1) = ϕ(tn), hence ϕ is not injective. So, if ϕ is injective,
then there exist ψ ∈ 〈ζ, χ〉 and p ∈ Z such that ϕ is conjugate to ψ ◦ γp .

It remains to show that, if ψ ∈ 〈ζ, χ〉 and p ∈ Z, then ψ ◦ γp is injective. Since the elements of
〈ζ, χ〉 are automorphisms, it suffices to show that γp is injective. We denote by z : A[Dn] → Z the
homomorphism which sends ti to 1 for all 1 ≤ i ≤ n. It is easily seen that γp(u) = u∆κp z(u) for all
u ∈ A[Dn]. Let u ∈ Ker(γp). Then 1 = γp(u) = u∆κp z(u) , hence u = ∆q where q = −κp z(u). We
have z(∆) = n(n− 1), hence z(u) = qn(n− 1), thus

1 = γp(u) = ∆q∆κpqn(n−1) = ∆q(1+κpn(n−1)) .

Since 1 + κpn(n− 1) 6= 0, this equality implies that q = 0, hence u = 1. So, γp is injective.
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Corollary 2.5 Let n ≥ 6. Let ϕ : A[Dn]→ A[Dn] be an endomorphism. Then ϕ is an automorphism
if and only if it is conjugate to an element of 〈ζ, χ〉.

Proof Clearly, if ϕ is conjugate to an element of 〈ζ, χ〉, then ϕ is an automorphism. Conversely,
suppose that ϕ is an automorphism. We know from Corollary 2.4 that there exist ψ ∈ 〈ζ, χ〉 and p ∈ Z
such that ϕ is conjugate to ψ ◦ γp . Thus, up to conjugation and up to composing on the left by ψ−1 ,
we can assume that ϕ = γp . It remains to show that p = 0.

Let again z : A[Dn] → Z be the homomorphism which sends ti to 1 for all 1 ≤ i ≤ n. Recall that
γp(u) = u∆κp z(u) for all u ∈ A[Dn]. For u ∈ A[Dn], we have

(z ◦ γp)(u) = (1 + n(n− 1)κp)z(u) ∈ (1 + n(n− 1)κp)Z .

Since γp is an automorphism, z ◦ γp is surjective, hence Z = Im(z ◦ γp) ⊂ (1 + n(n − 1)κp)Z. It
follows that (1 + n(n− 1)κp) ∈ {±1}, hence p = 0.

By combining Corollary 2.5 with Crisp–Paris [19, Theorem 4.9] we immediately obtain the following.

Corollary 2.6 Let n ≥ 6.

(1) If n is even, then

Aut(A[Dn]) = Inn(A[Dn]) o 〈ζ, χ〉 ' (A[Dn]/Z(A[Dn])) o (Z/2Z× Z/2Z) ,

and Out(A[Dn]) ' Z/2Z× Z/2Z, where Z(A[Dn]) denotes the center of A[Dn].

(2) If n is odd, then

Aut(A[Dn]) = Inn(A[Dn]) o 〈χ〉 ' (A[Dn]/Z(A[Dn])) o (Z/2Z) ,

and Out(A[Dn]) ' Z/2Z.

3 Geometric representations

Let Σ be an oriented compact surface possibly with boundary, and let P be a finite set of punctures
in the interior of Σ. We denote by Homeo+(Σ,P) the group of homeomorphisms of Σ that preserve
the orientation, that are the identity on a neighborhood of the boundary of Σ, and that setwise leave
invariant P . The mapping class group of the pair (Σ,P), denoted M(Σ,P), is the group of isotopy
classes of elements of Homeo+(Σ,P). If P = ∅, then we write M(Σ, ∅) = M(Σ), and if P = {x}
is a singleton, then we write M(Σ,P) = M(Σ, x). We only give definitions and results on mapping
class groups that we need for our proofs and we refer to Farb–Margalit [25] for a complete account on
the subject.

Recall that a geometric representation of an Artin group A is a homomorphism from A to a mapping
class group. Their study is the main ingredient of our proofs. Important tools for constructing and
understanding them are Dehn twists and essential reduction systems. So, we start by recalling their
definitions and their main properties.
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A circle of (Σ,P) is an embedding a : S1 ↪→ Σ \ (∂Σ ∪ P). It is called generic if it does not bound
any disk containing 0 or 1 puncture and if it is not parallel to any boundary component. The isotopy
class of a circle a is denoted by [a]. We denote by C(Σ,P) the set of isotopy classes of generic circles
of (Σ,P). The intersection number of two classes [a], [b] ∈ C(Σ,P) is i([a], [b]) = min{|a′ ∩ b′| |
a′ ∈ [a] and b′ ∈ [b]}. The set C(Σ,P) is endowed with a simplicial complex structure, where a finite
set A is a simplex if i([a], [b]) = 0 for all [a], [b] ∈ A. This complex is called the curve complex of
(Σ,P).

In this paper the Dehn twist along a circle a of (Σ,P) will be denoted by Ta . The following is an
important tool for constructing and understanding geometric representations of Artin groups. Its proof
can be found in Farb–Margalit [25, Section 3.5].

Proposition 3.1 Let Σ be a compact oriented surface and let P be a finite collection of punctures in
the interior of Σ. Let a, b be two generic circles of (Σ,P).

(1) We have TaTb = TbTa if and only if i([a], [b]) = 0.

(2) We have TaTbTa = TbTaTb if and only if i([a], [b]) = 1.

Let f ∈ M(Σ,P). A simplex A of C(Σ,P) is called a reduction system for f if f (A) = A. In that
case any element of A is called a reduction class for f . A reduction class [a] is an essential reduction
class if, for all [b] ∈ C(Σ,P) such that i([a], [b]) 6= 0 and for all m ∈ Z \ {0}, we have f m([b]) 6= [b].
In particular, if [a] is an essential reduction class and [b] is any reduction class, then i([a], [b]) = 0.
We denote by S(f ) the set of reduction classes for f . The following gathers some key results on S(f )
that will be useful later.

Theorem 3.2 (Birman–Lubotzky–McCarthy [3]) Let Σ be a compact oriented surface and let P be
a finite set of punctures in the interior of Σ. Let f ∈M(Σ,P).

(1) If S(f ) 6= ∅, then S(f ) is a reduction system for f . In particular, if S(f ) 6= ∅, then S(f ) is a
simplex of C(Σ,P).

(2) We have S(f n) = S(f ) for all n ∈ Z \ {0}.

(3) We have S(gfg−1) = g(S(f )) for all g ∈M(Σ,P).

The following is well-known and it is a direct consequence of Birman–Lubotzky–McCarthy [3]. It will
be often used in our proofs.

Proposition 3.3 Let Σ be an oriented compact surface of genus ≥ 2 and let P a finite set of punctures
in the interior of Σ. Let f0 ∈ Z(M(Σ,P)) be a central element of M(Σ,P), let A = {[a1], . . . , [ap]}
be a simplex of C(Σ,P), and let k1, . . . , kp be nonzero integers. Let g = Tk1

a1 Tk2
a2 · · · T

kp
ap f0 . Then

S(g) = A.

Let n ≥ 4. If n is even, then Σn denotes the surface of genus n−2
2 with two boundary components,

and if n is odd, then Σn denotes the surface of genus n−1
2 with one boundary component. Consider the

circles a1, . . . , an−1 drawn in Figure 3.1. Then by Proposition 3.1 we have a geometric representation
ρA : A[An−1]→M(Σn) which sends si to Tai for all 1 ≤ i ≤ n− 1. The following is well-known, it
is a direct consequence of Birman–Hilden [4], and its proof is explicitly given in Perron–Vannier [35].
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a2 an-4 an-3 an-2 an-1a1
n even

a1 an-4 an-3 an-2 an-1
n odd

Figure 3.1: Geometric representation of A[An−1]

Theorem 3.4 (Birman–Hilden [4]) Let n ≥ 4. Then ρA : A[An−1]→M(Σn) is injective.

We denote by χ̄ : A[An−1]→ A[An−1] the automorphism defined by

χ̄(si) = s−1
i for 1 ≤ i ≤ n− 1 .

On the other hand, for p ∈ Z we denote by γ̄p : A[An−1]→ A[An−1] the homomorphism defined by

γ̄p(si) = si∆
2p for 1 ≤ i ≤ n− 1 ,

where ∆ is the Garside element of A[An−1]. The following is proved in Castel [10] for n ≥ 6 using
the geometric representation ρA defined above. It is proved in Chen–Kordek–Margalit [15] for n ≥ 5
with a different method.

Theorem 3.5 (Castel [10], Chen–Kordek–Margalit [15]) Let n ≥ 5. Let ϕ : A[An−1]→ A[An−1] be
a homomorphism. Then up to conjugation we have one of the following two possibilities.

(1) ϕ is cyclic.

(2) There exist ψ ∈ 〈χ̄〉 and p ∈ Z such that ϕ = ψ ◦ γ̄p .

Let n ≥ 6. Pick a puncture x in the interior of Σn and consider the circles d1, . . . , dn drawn in Figure
3.2. Then by Proposition 3.1 we have a geometric representation ρD : A[Dn]→M(Σn, x) which sends
ti to Tdi for all 1 ≤ i ≤ n. On the other hand, the embedding of Homeo+(Σn, x) into Homeo+(Σn)
induces a surjective homomorphism θ :M(Σn, x) →M(Σn) whose kernel is naturally isomorphic to
π1(Σn, x) (see Birman [2]). It is easily seen that

θ(Tdi) = Tai for 1 ≤ i ≤ n− 2 , θ(Tdn−1) = θ(Tdn) = Tan−1 ,

hence we have the following commutative diagram:

(3–1) 1 // Ker(π) //

��

A[Dn] π //

ρD

��

A[An−1] //

ρA

��

1

1 // Ker(θ) //M(Σn, x) θ //M(Σn) // 1

We denote by ρ̄ : Ker(π)→ Ker(θ) the restriction of ρD to Ker(π).
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d2 dn-4 dn-3

dn-2

d1 x

dn

dn-1

n even

d1 dn-4 dn-3

dn-2

dn-1
x

dn

n odd

Figure 3.2: Geometric representation of A[Dn]

The proof of the following can be found in Perron–Vannier [35, Theorem 1] with few modifications.
As this result is central in our paper, for sake of completeness we give a proof. Note that our proof is a
little shorter than that of Perron–Vannier [35] because it uses results from Crisp–Paris [19] which were
not known and it does not need to deal with some Dehn twist along a boundary component, but our
arguments are essentially the same.

Theorem 3.6 (Perron–Vannier [35]) Let n ≥ 4.

(1) The homomorphism ρ̄ : Ker(π)→ Ker(θ) is an isomorphism.

(2) The geometric representation ρD : A[Dn]→M(Σn, x) is injective.

Proof Part (2) is a consequence of Part (1) because of the following. Suppose ρ̄ is an isomorphism.
Then, since ρA is injective, ρD is injective by the five lemma applied to the diagram of Equation (3–1).

Now, we prove Part (1). We know from Crisp–Paris [19, Proposition 2.3] that Ker(π) is a free group of
rank n− 1. We also know from Birman [2] that Ker(θ) = π1(Σn, x), which is also a free group of rank
n− 1. Recall that a group G is Hopfian if every surjective endomorphism G→ G is an isomorphism.
It is well-known that free groups of finite rank are Hopfian (see de la Harpe [27, Chapter III, Section
19]), hence in order to show that ρ̄ is an isomorphism it suffices to show that ρ̄ is surjective.

Set fn−1 = T−1
dn−1

Tdn . Note that t−1
n−1tn ∈ Ker(π) and fn−1 = ρ̄(t−1

n−1tn). In particular fn−1 ∈ Im(ρ̄) ⊂
Ker(θ) = π1(Σn, x). This element, seen as an element of π1(Σn, x), is represented by the loop drawn
in Figure 3.3. For 2 ≤ i ≤ n− 1 we define fn−i ∈ π1(Σn, x) ⊂M(Σn, x) by induction on i by setting
fn−i = Tdn−i fn−i+1T−1

dn−i
f−1
n−i+1 . The element fn−i , viewed as an element of π1(Σn, x), is represented

by the loop drawn in the left-hand side of Figure 3.4 if i = 2j is even, and by the loop drawn in
the right-hand side of Figure 3.4 if i = 2j + 1 is odd, where we compose paths from right to left.
Observe that f1, . . . , fn−1 generate π1(Σn, x). So, in order to show that ρ̄ is surjective, it suffices to
show that fn−i ∈ Im(ρ̄) for all i ∈ {1, . . . , n − 1}. We argue by induction on i. We already know
that fn−1 = ρ̄(t−1

n−1tn) ∈ Im(ρ̄). Suppose i ≥ 2 and fn−i+1 ∈ Im(ρ̄). Let u ∈ Ker(π) such that
fn−i+1 = ρ̄(u). Since Ker(π) is a normal subgroup of A[Dn], we have tn−iut−1

n−i ∈ Ker(π), hence
tn−iut−1

n−iu
−1 ∈ Ker(π), and therefore

fn−i = Tdn−i fn−i+1T−1
dn−i

f−1
n−i+1 = ρ̄(tn−iut−1

n−iu
−1) ∈ Im(ρ̄) .
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dn-1

dn

x fn-1
fn-1

Figure 3.3: The loop fn−1 ∈ π1(Σn, x)

fn-2j
1j 1j

fn-2j-1

Figure 3.4: The loop fn−i ∈ π1(Σn, x)

Our last preliminary on geometric representations is a particular case of Theorems 0.2.1 and 0.2.2 of
Castel [11], and it is where we need the hypothesis n ≥ 6.

Theorem 3.7 (Castel [11]) Let n ≥ 6. Let ϕ : A[An−1]→M(Σn, x) be a non-cyclic homomorphism.
Then there exist generic circles c1, . . . , cn−1 in Σn \ {x}, ε ∈ {±1} and g ∈M(Σn, x) such that

(a) |ci ∩ cj| = 1 if |i− j| = 1 and |ci ∩ cj| = 0 if |i− j| ≥ 2, for all 1 ≤ i, j ≤ n− 1,

(b) g commutes with Tci for all 1 ≤ i ≤ n− 1,

(c) ϕ(si) = Tεci
g for all 1 ≤ i ≤ n− 1.

4 Homomorphisms from A[Dn] to A[An−1]

Proof of Theorem 2.1 Let n ≥ 6. Let ϕ : A[Dn] → A[An−1] be a homomorphism. By Theorem 3.5
we know that one of the following two possibilities holds.

• ϕ ◦ ι is cyclic.

• There exist ψ ∈ 〈χ̄〉 and p ∈ Z such that ϕ ◦ ι is conjugate to ψ ◦ γ̄p .

Suppose ϕ ◦ ι is cyclic. Then there exists u ∈ A[An−1] such that (ϕ ◦ ι)(si) = ϕ(ti) = u for all
1 ≤ i ≤ n− 1. Moreover,

ϕ(tn) = ϕ(tn−2tn)ϕ(tn−2)ϕ(t−1
n t−1

n−2) = ϕ(tn−2tn)ϕ(t1)ϕ(t−1
n t−1

n−2) = ϕ(t1) = u ,

hence ϕ is cyclic.

So, up to conjugating and replacing ϕ by ϕ ◦ χ if necessary, we can assume that there exists p ∈ Z
such that ϕ ◦ ι = γ̄p . This means that ϕ(ti) = (ϕ ◦ ι)(si) = si∆

2p for all 1 ≤ i ≤ n − 1, where ∆ is
the Garside element of A[An−1]. Now we turn to show that ϕ = αp .

Set Y = {s1, . . . , sn−3}. By Paris [31, Theorem 5.1] the centralizer of 〈s1, . . . , sn−3, sn−1〉 in A[An−1]
is generated by ∆2 , ∆2

Y and sn−1 , where ∆Y = ∆Y [An−1]. These three elements pairwise commute
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and generate a copy of Z3 . Set u = ϕ(tn). Since u commutes with ϕ(ti) = si∆
2p for all i ∈

{1, . . . , n−3, n−1} and ∆2 in central in A[An−1], u belongs to the centralizer of 〈s1, . . . , sn−3, sn−1〉,
hence there exist k1, k2, k3 ∈ Z such that u = sk1

n−1∆2k2
Y ∆2k3 .

It is well-known that A[An−1] is naturally isomorphic to the mapping class group M(D,P), where D
denotes the disk and P = {x1, . . . , xn} is a set of n punctures in the interior of D. In this identification
s2

n−1 corresponds to the Dehn twist along the circle c1 depicted in Figure 4.1, ∆2
Y corresponds to the

Dehn twist along the circle c2 depicted in the same figure, and ∆2 corresponds to the Dehn twist along
a circle parallel to ∂D. By Proposition 3.3 we have S(u2) ⊆ {c1, c2}, where c1 ∈ S(u2) if and only if
k1 6= 0 and c2 ∈ S(u2) if and only if k2 6= 0. We know that ϕ(t2

1) = s2
1∆4p , hence S(ϕ(t2

1)) is formed
by a single circle containing two marked points in its interior. Since t2

1 and t2
n are conjugate, ϕ(t2

1) and
ϕ(t2

n) = u2 are conjugate, hence, by Theorem 3.2, S(u2) is also formed by a single circle containing
two marked points in its interior. It follows that S(u2) = {c1}, hence k1 6= 0 and k2 = 0. It remains
to show that k1 = 1 and k3 = p.

1 n-2 n-1 n

C2

C1

Figure 4.1: Circles in the punctured disk

From the equality tn−2tntn−2 = tntn−2tn it follows that sn−2sk1
n−1sn−2∆4p+2k3 = sk1

n−1sn−2sk1
n−1∆2p+4k3 ,

hence (sn−2sk1
n−1sn−2)(sk1

n−1sn−2sk1
n−1)−1 = ∆2k3−2p . We know from Paris [33, Corollary 2.6] that

A{sn−2,sn−1}[An−1] ∩ 〈∆〉 = {1}, hence (sn−2sk1
n−1sn−2)(sk1

n−1sn−2sk1
n−1)−1 = ∆2k3−2p = 1. Let z :

A[An−1]→ Z be the homomorphism which sends si to 1 for all 1 ≤ i ≤ n− 1. We have

0 = z(1) = z((sn−2sk1
n−1sn−2)(sk1

n−1sn−2sk1
n−1)−1) = 1− k1 ,

hence k1 = 1. Moreover, ∆2k3−2p = 1 and ∆ is of infinite order, thus k3 = p.

5 Homomorphisms from A[An−1] to A[Dn]

Lemmas 5.1 to 5.7 are preliminaries to the proof of Theorem 2.2.

Lemma 5.1 Let n ≥ 6. Let ϕ : A[An−1]→ A[Dn] be a homomorphism. If π◦ϕ : A[An−1]→ A[An−1]
is cyclic, then ϕ is cyclic.

Proof Assume π ◦ ϕ is cyclic. Then there exists u ∈ A[An−1] such that (π ◦ ϕ)(si) = u for all
1 ≤ i ≤ n − 1. For 3 ≤ i ≤ n − 1 we set vi = ϕ(sis−1

1 ). We have π(vi) = uu−1 = 1, hence
vi ∈ Ker(π). We have

(s3s−1
1 )(s4s−1

1 )(s3s−1
1 ) = s3s4s3s−3

1 = s4s3s4s−3
1 = (s4s−1

1 )(s3s−1
1 )(s4s−1

1 ) ,
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hence v3v4v3 = v4v3v4 . Since Ker(π) is a free group (see Crisp–Paris [19, Proposition 2.3]) and two
elements in a free group either freely generate a free group or commute, the existence of such equality
implies that v3v4 = v4v3 . It follows that v3v4v3 = v3v2

4 , hence v3 = v4 , and therefore

ϕ(s3)ϕ(s1)−1 = v3 = v4 = ϕ(s4)ϕ(s1)−1 .

So, ϕ(s3) = ϕ(s4). We conclude by Castel [11, Lemma 3.1.1] that ϕ is cyclic.

Let n ≥ 6. If n is odd, then Σn has one boundary component that we denote by ∂ , and we denote by
T∂ the Dehn twist along ∂ . If n is even, then Σn has two boundary components that we denote by ∂1

and ∂2 , and we denote by T∂1 and T∂2 the Dehn twists along ∂1 and ∂2 , respectively. It is known that
the center of M(Σn), denoted Z(M(Σn)), is the cyclic group generated by T∂ if n is odd, and it is a
free abelian group of rank two generated by T∂1 and T∂2 if n is even (see Paris–Rolfsen [34, Theorem
5.6] for example).

Lemma 5.2 Let n ≥ 6. Let f ∈ M(Σn) such that fT2
ai

= T2
ai

f for all 1 ≤ i ≤ n − 1. Then
f 2 ∈ Z(M(Σn)).

Proof Assume n is odd. The case where n is even can be proved in the same way. Let f ∈ M(Σn)
such that fT2

ai
= T2

ai
f for all 1 ≤ i ≤ n − 1. Since fT2

ai
f−1 = T2

ai
we have f ([ai]) = [ai] (see Farb–

Margalit [25, Section 3.3]). The mapping class f may reverse the orientation of each ai up to isotopy,
but f 2 preserves the orientation of all ai up to isotopy, hence f 2 can be represented by an element of
Homeo+(Σn) which is the identity on a (closed) regular neighborhood Σ′ of

⋃n−1
i=1 ai . We observe that

Σ′ is a surface of genus n−1
2 with one boundary component, ∂′ , and that ∂ ∪ ∂′ bounds a cylinder

C . This implies that f 2 ∈ M(C) ⊂ M(Σn). Since M(C) = 〈T∂〉 = Z(M(Σn)), we conclude that
f 2 ∈ Z(M(Σn)).

Lemma 5.3 Let n ≥ 6. We set m = n − 1 if n is odd and m = n − 2 if n is even. Let 1 ≤ k ≤ m.
Let c be a generic circle of Σn \ {x} such that c ∩ di = ∅ for 1 ≤ i ≤ k − 2, |c ∩ dk−1| = 1 if k ≥ 2,
c ∩ dk = ∅, and c is isotopic to dk in Σn . Then there exists g ∈ Ker(θ) such that g([di]) = [di] for all
1 ≤ i ≤ k − 1 and g([c]) = [dk].

Proof We identify D3 with A3 in this proof to treat the cases k = 2 and k = 1. We first assume that k
is even. If c is isotopic in Σn \ {x} to dk , then it suffices to take g = id. So, we can assume that c and
dk are not isotopic in Σn \{x}. Since c and dk are isotopic in Σn , by Epstein [24] there exists a cylinder
C in Σn whose boundary components are dk and c. Since c and dk are not isotopic in Σn \ {x}, this
cylinder must contain the puncture x . Let Σ′ be a regular neighborhood of

(⋃k−1
i=1 di

)
∪C . Then Σ′ is

a surface of genus k
2 with one boundary component where the circles d1, . . . , dk−1, dk, c are arranged

as shown in Figure 5.1. By Proposition 3.1 there are homomorphisms ψ1 : A[Dk+1]→M(Σn, x) and
ψ2 : A[Ak]→M(Σn, x) defined by

ψ1(ti) = Tdi for 1 ≤ i ≤ k , ψ1(tk+1) = Tc ,

ψ2(si) = Tdi for 1 ≤ i ≤ k − 1 , ψ2(sk) = Tc .

We denote by ∆D,k the Garside element of A[Dk+1] and by ∆A,k the Garside element of A[Ak], and
we set g = ψ1(∆D,k)ψ2(∆−2

A,k). We have ∆D,kti∆−1
D,k = ti for all 1 ≤ i ≤ k − 1, ∆D,ktk+1∆−1

D,k = tk
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and ∆2
A,ksi∆

−2
A,k = si for all 1 ≤ i ≤ k , hence gTdig

−1 = Tg(di) = Tdi for all 1 ≤ i ≤ k − 1 and
gTcg−1 = Tg(c) = Tdk . It follows that g([di]) = [di] for all 1 ≤ i ≤ k − 1 and g([c]) = [dk] (see
Farb–Margalit [25, Fact 3.6]). Moreover,

∆D,k = (t1 · · · tk−1tktk+1tk−1 · · · t1) · · · (tk−1tktk+1tk−1)(tktk+1) ,

∆2
A,k = (s1 · · · sk−1s2

ksk−1 · · · s1) · · · (sk−1s2
ksk−1)s2

k ,

hence θ(g) = 1, that is, g ∈ Ker(θ).

d1

dk-1

dk
x

c

Figure 5.1: Regular neighborhood of
(⋃k−1

i=1 di
)
∪ C , case where k is even

Now, assume k is odd. If c is isotopic in Σn \ {x} to dk , then we can take g = id. So, we can assume
that c and dk are not isotopic in Σn \ {x}. Since c and dk are isotopic in Σn , there exists a cylinder
C in Σn whose boundary components are dk and c. Since c and dk are not isotopic in Σn \ {x}, this
cylinder must contain the puncture x . Let Σ′ be a closed regular neighborhood of

(⋃k−1
i=1 di

)
∪ C .

Then Σ′ is a surface of genus k−1
2 with two boundary components and the circles d1, . . . , dk−1, dk, c

are arranged as shown in Figure 5.2. Since k ≤ m and k is odd, k−1
2 is strictly less than the genus of

Σn , hence we can choose a sub-surface Σ′′ of Σn of genus k+1
2 , with one boundary component, and

containing Σ′ . We can also choose a generic circle e in Σ′′ \ {x} such that |e∩ d1| = 1, |e∩ c| = 1 if
k = 1, e ∩ di = ∅ for all 2 ≤ i ≤ k and e ∩ c = ∅ if k ≥ 2 (see Figure 5.2). By Proposition 3.1 there
are homomorphisms ψ1 : A[Dk+2]→M(Σn, x) and ψ2 : A[Ak+1]→M(Σn, x) defined by

ψ1(t1) = Te , ψ1(ti) = Tdi−1 for 2 ≤ i ≤ k + 1 , ψ1(tk+2) = Tc ,

ψ2(s1) = Te , ψ2(si) = Tdi−1 for 2 ≤ i ≤ k , ψ2(sk+1) = Tc .

We denote by ∆D,k+1 the Garside element of A[Dk+2] and by ∆A,k+1 the Garside element of A[Ak+1],
and we set g = ψ1(∆D,k+1)ψ2(∆−2

A,k+1). Then, as in the case where k is even, we have g([di]) = [di]
for all 1 ≤ i ≤ k − 1, g([c]) = [dk], and g ∈ Ker(θ).

d1

dk-1

dk
x

c

d2e

Figure 5.2: Regular neighborhood of
(⋃k−1

i=1 di
)
∪ C , case where k is odd

Lemma 5.4 Let n ≥ 6. Set m = n− 1 if n is odd and m = n− 2 if n is even. Let 1 ≤ k ≤ m. Let c
be a generic circle of Σn \ {x} such that c ∩ di = ∅ for 1 ≤ i ≤ k − 2, |c ∩ dk−1| = 1 if k ≥ 2, and c
is isotopic to dk in Σn . Then there exists g ∈ Ker(θ) such that g([di]) = [di] for all 1 ≤ i ≤ k− 1 and
g([c]) = [dk].
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Proof We argue by induction on i([c], [dk]). The case i([c], [dk]) = 0 is proved in Lemma 5.3, hence
we can assume that i([c], [dk]) ≥ 1 and that the induction hypothesis holds. Note that now c and dk

cannot be isotopic in Σn \ {x} since i([c], [dk]) 6= 0. We can assume without loss of generality that
i([c], [dk]) = |c∩ dk|. Since c and dk are isotopic in Σn , there exists a bigon D in Σn cobounded by an
arc of dk and an arc of c as shown in Figure 5.3. We can choose this bigon to be minimal in the sense
that its interior intersects neither c nor dk . The bigon D cannot intersect di for 1 ≤ i ≤ k− 2 and one
can easily modify c so that D does not intersect dk−1 either. Since c and dk are not isotopic in Σn\{x},
D necessarily contains the puncture x in its interior. We choose a circle c′ parallel to c except in the
bigon D where it follows the arc of dk which borders D as illustrated in Figure 5.3. By construction
c′ ∩ di = ∅ for 1 ≤ i ≤ k − 2, |c′ ∩ dk−1| = 1 if k ≥ 2, and c′ is isotopic to dk in Σn . Moreover
i([c′], [dk]) ≤ |c′ ∩ dk| < |c ∩ dk| = i([c], [dk]). By the induction hypothesis there exists g1 ∈ Ker(θ)
such that g1([di]) = [di] for all 1 ≤ i ≤ k − 1 and g1([c′]) = [dk]. We choose G1 ∈ Homeo+(Σn, x)
which represents g1 such that G1(di) = di for all 1 ≤ i ≤ k − 1 and G1(c′) = dk . We set c′′ = G1(c).
Then c′′ ∩ di = ∅ for 1 ≤ i ≤ k − 2, |c′′ ∩ dk−1| = 1 if k ≥ 2, c′′ ∩ dk = ∅, and c′′ is isotopic to
dk in Σn . By Lemma 5.3 there exists g2 ∈ Ker(θ) such that g2([di]) = [di] for all 1 ≤ i ≤ k − 1 and
g2([c′′]) = [dk]. We set g = g2 ◦ g1 . Then g ∈ Ker(θ), g([di]) = [di] for all 1 ≤ i ≤ k − 1 and
g([c]) = [dk].

dk

x c

c'

Figure 5.3: Bigon cobounded by c and dk

Lemma 5.5 Let n be an even number, n ≥ 6. Let c be a generic circle of Σn \{x} such that c∩di = ∅
for all 1 ≤ i ≤ n − 3, |c ∩ dn−2| = 1, c ∩ dn−1 = ∅, and c is isotopic to dn−1 in Σn . Then we have
one of the following two possibilities.

(1) c is isotopic to dn−1 in Σn \ {x}.

(2) There exists g ∈ Ker(θ) such that g([di]) = [di] for all 1 ≤ i ≤ n− 1 and g([c]) = [dn].

Proof The surface Σn is a surface of genus n−2
2 with two boundary components ∂1 and ∂2 . We

assume that the circles d1, . . . , dn−1, dn are arranged as in Figure 5.4. Let Ω be the surface obtained
by cutting Σn along

⋃n−1
i=1 di . Then Ω has two connected components Ω1 and Ω2 . Each of these

components is a cylinder that we represent by a square with a hole in the middle as shown in Figure
5.5. Two opposite sides of each square represent arcs of dn−2 , one side represents an arc of dn−1 , and
the last side represents a union of arcs of d1, . . . , dn−3 . The boundary of the hole represents ∂1 for Ω1

and ∂2 for Ω2 . The puncture x sits inside Ω2 . The trace of the circle c in Ω is a simple arc `, either in
Ω1 or in Ω2 .

Suppose ` is in Ω1 . Let q be the intersection point of c with dn−2 . Then q is represented in Ω1 by two
points q1 and q2 on two opposite sides of Ω1 as shown in Figure 5.5, and ` is a simple arc connecting
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∂1

∂2

d1
d2

dn-2

dn-1

dn

x

Figure 5.4: Circles d1, . . . , dn

q1 q2
∂1

d1 to dn-3

dn-1

dn-2 dn-2
l1

l2

q3 q4
∂2

d1 to dn-3

dn-1

dn-2 dn-2
l3

l4

x

C

Ω1 Ω2

Figure 5.5: The surface Ω

q1 with q2 . Up to isotopy pointwise fixing the boundary of Ω1 , there exist exactly two simple arcs in
Ω1 connecting q1 to q2 that are represented by the arcs `1 and `2 depicted in Figure 5.5. The arc `
cannot be isotopic to `1 , otherwise c would not be isotopic to dn−1 in Σn . So, ` is isotopic to `2 in Ω1

which implies that c is isotopic to dn−1 in Σn \ {x}.

Now suppose ` is in Ω2 . Let q be the intersection point of c with dn−2 . Then q is represented in Ω2

by two points q3 and q4 on two opposite sides of Ω2 as shown in Figure 5.5, and ` is a simple arc
connecting q3 with q4 . Up to isotopy (in Ω2 and not in Ω2 \ {x}) pointwise fixing the boundary of Ω2 ,
there exist exactly two simple arcs in Ω2 connecting q3 to q4 that are represented by the arcs `3 and `4

depicted in Figure 5.5. The arc ` cannot be isotopic to `3 in Ω2 , otherwise c would not be isotopic to
dn−1 in Σn . So, ` is isotopic to `4 in Ω2 . Let {Ft : Ω2 → Ω2}t∈[0,1] be an isotopy such that F0 = id,
F1(`) = `4 and Ft is the identity on the boundary of Ω2 for all t ∈ [0, 1]. The arc `4 divides Ω2 into
two parts, the lower one which does not contain the hole bordered by ∂2 and the puncture x , and the
upper one which contains the hole bordered by ∂2 and the puncture x , as shown in Figure 5.5.

Suppose F1(x) is in the upper part. Let C be the domain of Ω2 bounded by `4 , two arcs of dn−2 and
an arc of dn−1 as shown in Figure 5.5. Let C′ = F−1

1 (C). Then C′ is a domain of Ω2 bounded by `,
two arcs of dn−2 and an arc of dn−1 and C′ does not contain the puncture x . The existence of such a
domain implies that c is isotopic to dn−1 in Σn \ {x}.

Now, suppose F1(x) is in the lower part. We can assume without loss of generality that the trace of dn

on Ω2 is the simple arc `5 drawn in Figure 5.6. We can choose an isotopy {F′t : Ω2 → Ω2}t∈[0,1] such
that F′0 = id, F′1(`4) = `5 , F′t is the identity on the boundary of Ω2 for all t ∈ [0, 1], and F′1(F1(x)) = x .
Let F̃ : Σn → Σn be the homeomorphism which is F′1 ◦ F1 on Ω2 and is the identity outside Ω2 , and
let g ∈ M(Σn, x) be the mapping class represented by F̃ . Then g ∈ Ker(θ), g([di]) = [di] for all
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1 ≤ i ≤ n− 1, and g([c]) = [dn].

q3 q4
∂2

d1 to dn-3

dn-1

dn-2 dn-2

l5

x

Figure 5.6: The arc `5

Lemma 5.6 Let n be an even number, n ≥ 6. Let c be a generic circle of Σn \{x} such that c∩di = ∅
for all 1 ≤ i ≤ n − 3, |c ∩ dn−2| = 1, and c is isotopic to dn−1 in Σn . Then there exists g ∈ Ker(θ)
such that g([di]) = [di] for all 1 ≤ i ≤ n− 2, and either g([c]) = [dn−1] or g([c]) = [dn].

Proof We can assume that |c∩dn−1| = i([c], [dn−1]) and |c∩dn| = i([c], [dn]). We argue by induction
on |c ∩ dn−1| + |c ∩ dn| = i([c], [dn−1]) + i([c], [dn]). The case |c ∩ dn−1| = 0 follows directly from
Lemma 5.5, and the case |c ∩ dn| = 0 is proved in the same way by replacing dn−1 with dn . So we
can assume that i([c], [dn−1]) = |c ∩ dn−1| ≥ 1, i([c], [dn]) = |c ∩ dn| ≥ 1, and that the induction
hypothesis holds. Note that now c and dn−1 cannot be isotopic in Σn \ {x}. Since c and dn−1 are
isotopic in Σn , there exists a bigon D in Σn cobounded by an arc of dn−1 and an arc of c (see Figure
5.7). Since c and dn−1 are not isotopic in Σn \ {x}, this bigon necessarily contains the puncture x .
We can choose D to be minimal in the sense that its interior does not intersect c and dn−1 . Moreover,
up to exchanging the roles of dn−1 and dn if necessary, we can also suppose that dn does not intersect
the interior of D. Clearly, D does not intersect di for any 1 ≤ i ≤ n − 3 and, up to replacing
c with an isotopic circle, we can assume that D does not intersect dn−2 either. Let c′ be a circle
parallel to c except in the bigon D where it follows the arc of dn−1 which borders D as illustrated
in Figure 5.7. We have c′ ∩ di = ∅ for all 1 ≤ i ≤ n − 3, |c′ ∩ dn−2| = 1 and c′ is isotopic to
dn−1 in Σn . We also have i([c′], [dn−1]) < i([c], [dn−1]) and i([c′], [dn]) ≤ i([c], [dn]), hence by the
induction hypothesis there exists g1 ∈ Ker(θ) such that g1([di]) = [di] for all 1 ≤ i ≤ n− 2, and either
g1([c′]) = [dn−1] or g1([c′]) = [dn]. Without loss of generality we can assume that g1([c′]) = [dn−1].
We choose G1 ∈ Homeo+(Σn, x) which represents g1 such that G1(di) = di for all 1 ≤ i ≤ n − 2
and G1(c′) = dn−1 . We set c′′ = G1(c). Then c′′ ∩ di = ∅ for all 1 ≤ i ≤ n − 3, |c′′ ∩ dn−2| = 1,
c′′ ∩ dn−1 = ∅, and c′′ is isotopic to dn−1 in Σn . By Lemma 5.5 there exists g2 ∈ Ker(θ) such
that g2([di]) = [di] for all 1 ≤ i ≤ n − 2, and either g2([c′′]) = [dn−1] or g2([c′′]) = [dn]. We set
g = g2 ◦ g1 . Then g ∈ Ker(θ), g([di]) = [di] for all 1 ≤ i ≤ n − 2, and either g([c]) = [dn−1] or
g([c]) = [dn].

Lemma 5.7 Let n ≥ 6. Let c1, . . . , cn−1 be generic circles in Σn \ {x} such that

(a) |ci ∩ cj| = 1 if |i− j| = 1 and |ci ∩ cj| = 0 if |i− j| ≥ 2, for all 1 ≤ i, j ≤ n− 1,

(b) ci is isotopic to di in Σn for all 1 ≤ i ≤ n− 1.
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dn-1

x c

c'

Figure 5.7: Bigon cobounded by c and dn−1

Then:

(1) If n is odd, then there exists g ∈ Ker(θ) such that g([ci]) = [di] for all 1 ≤ i ≤ n− 1.

(2) If n is even, then there exists g ∈ Ker(θ) such that g([ci]) = [di] for all 1 ≤ i ≤ n − 2, and
either g([cn−1]) = [dn−1] or g([cn−1]) = [dn].

Proof We prove Part (2). Part (1) can be proved in the same way. For 1 ≤ k ≤ n − 2 we construct
by induction on k an element gk ∈ Ker(θ) such that gk([ci]) = [di] for all 1 ≤ i ≤ k . Assume k = 1.
Then, by Lemma 5.4 applied to k = 1, there exists g1 ∈ Ker(θ) such that g1([c1]) = [d1]. Suppose
2 ≤ k ≤ n − 1 and gk−1 is constructed. We choose Gk−1 ∈ Homeo+(Σn, x) which represents gk−1

and such that Gk−1(ci) = di for all 1 ≤ i ≤ k − 1, and we set c′k = Gk−1(ck). Note that, since
gk−1 ∈ Ker(θ), the circle c′k is isotopic to ck in Σn . Then, by Lemma 5.4, there exists hk ∈ Ker(θ)
such that hk([di]) = [di] for all 1 ≤ i ≤ k − 1 and hk([c′k]) = [dk]. We set gk = hk ◦ gk−1 . Then
gk([ci]) = [di] for all 1 ≤ i ≤ k . Note that when n is odd we can extend the induction to k = n − 1
and conclude the proof here by setting g = gn−1 . The case where n is even requires an extra argument.

We choose Gn−2 ∈ Homeo+(Σn, x) which represents gn−2 and such that Gn−2(ci) = di for all
1 ≤ i ≤ n − 2, and we set c′n−1 = Gn−2(cn−1). Again, since gn−2 ∈ Ker(θ), the circle c′n−1 is
isotopic to cn−1 in Σn . By Lemma 5.6 there exists hn−1 ∈ Ker(θ) such that hn−1([di]) = [di] for all
1 ≤ i ≤ n − 2, and either hn−1([c′n−1]) = [dn−1] or hn−1([c′n−1]) = [dn]. We set g = hn−1 ◦ gn−2 .
Then g([ci]) = [di] for all 1 ≤ i ≤ n− 2, and either g([cn−1]) = [dn−1] or g([cn−1]) = [dn].

Proof of Theorem 2.2 Let ϕ : A[An−1] → A[Dn] be a homomorphism. We know by Theorem 3.5
that we have one of the following possibilities.

• π ◦ ϕ is cyclic.

• There exist ψ ∈ 〈χ̄〉 and p ∈ Z such that π ◦ ϕ is conjugate to ψ ◦ γ̄p .

By Lemma 5.1, if π ◦ ϕ is cyclic, then ϕ is cyclic. So, we can assume that there exists ψ ∈ 〈χ̄〉 and
p ∈ Z such that π ◦ ϕ is conjugate to ψ ◦ γ̄p . Up to conjugating and composing ϕ on the left by χ if
necessary, we can assume that π ◦ ϕ = γ̄p , that is, (π ◦ ϕ)(si) = si∆

2p
A , where ∆A denotes the Garside

element of A[An−1].

Set U = ρA(∆2
A). If n is odd, then U2 = T∂ , where ∂ is the boundary component of Σn , and if n is

even, then U = T∂1T∂2 , where ∂1 and ∂2 are the two boundary components of Σn (see Labruère–Paris
[28, Proposition 2.12]). In particular U2 ∈ Z(M(Σn)) in both cases.

By Theorem 3.7 we know that there exist generic circles c1, . . . , cn−1 in Σn \ {x}, ε ∈ {±1} and
f0 ∈M(Σn, x) such that
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(a) |ci ∩ cj| = 1 if |i− j| = 1 and |ci ∩ cj| = 0 if |i− j| ≥ 2, for all 1 ≤ i, j ≤ n− 1,

(b) f0 commutes with Tci for all 1 ≤ i ≤ n− 1,

(c) (ρD ◦ ϕ)(si) = Tεci
f0 for all 1 ≤ i ≤ n− 1.

For 1 ≤ i ≤ n − 1 we denote by bi the circle in Σn obtained by composing ci : S1 → Σn \ {x} with
the embedding Σn \ {x} ↪→ Σn . In addition we set g0 = θ(f0). Then (θ ◦ ρD ◦ ϕ)(si) = Tεbi

g0 for
all 1 ≤ i ≤ n − 1. Note that, since θ ◦ ρD = ρA ◦ π , we also have (θ ◦ ρD ◦ ϕ)(si) = TaiU

p for all
1 ≤ i ≤ n− 1.

Claim 1. We have ε = 1, g0 = Up and bi is isotopic to ai in Σn for all 1 ≤ i ≤ n− 1.

Proof of Claim 1. Since g2
0 commutes with T2ε

bi
g2

0 = T2
ai

U2p and U2 ∈ Z(M(Σn)), g2
0 commutes with

T2
ai

for all 1 ≤ i ≤ n − 1. By lemma 5.2 it follows that g4
0 ∈ Z(M(Σn)). By Proposition 3.3 we

deduce that S(T4
ai

U4p) = S(T4ε
bi

g4
0) = {[ai]} = {[bi]}, hence [ai] = [bi] for all 1 ≤ i ≤ n − 1. Then

T4−4ε
ai

= U−4pg4
0 , hence, by Proposition 3.3, 4 − 4ε = 0, and therefore ε = 1. Finally, from the

equality TaiU
p = Taig0 it follows that g0 = Up . This finishes the proof of Claim 1.

From Claim 1 it follows that ci is isotopic to di in Σn hence, by Lemma 5.7, there exists g ∈ Ker(θ) such
that g([ci]) = [di] for all 1 ≤ i ≤ n− 2, g([cn−1]) = [dn−1] if n is odd, and either g([cn−1]) = [dn−1]
or g([cn−1]) = [dn] if n is even. These equalities imply that gTcig

−1 = Tdi for 1 ≤ i ≤ n − 2,
gTcn−1g−1 = Tdn−1 if n is odd, and either gTcn−1g−1 = Tdn−1 or gTcn−1g−1 = Tdn if n is even. By
Theorem 3.6 (1) there exists v ∈ Ker(π) such that ρD(v) = g. So, up to composing ϕ on the left by
adv first, and composing on the left by ζ if necessary after, we can assume that (ρD ◦ϕ)(si) = Tdi f0 for
all 1 ≤ i ≤ n− 1, where f0 commutes with Tdi for all 1 ≤ i ≤ n− 1. Since Td1 = ρD(t1) ∈ Im(ρD),
we have f0 ∈ Im(ρD), hence there exists u0 ∈ A[Dn] such that ρD(u0) = f0 . Since ρD is injective (see
Theorem 3.6), we deduce that ϕ(si) = tiu0 for all 1 ≤ i ≤ n − 1 and u0 commutes with ti for all
1 ≤ i ≤ n − 1. We set Y = {t1, . . . , tn−1}, ∆Y = ∆Y [Dn], ∆D = ∆[Dn], κ = 2 if n is odd, and
κ = 1 if n is even. By Paris [32, Theorem 1.1] the centralizer of Y in A[Dn] is generated by ∆2

Y and
∆κ

D , hence there exists q, r ∈ Z such that u0 = ∆2q
Y ∆κr

D . We conclude that ϕ = βq,r .

6 Endomorphisms of A[Dn]

The following is a preliminary to the proof of Theorem 2.3.

Lemma 6.1 Let n be an odd number, n ≥ 7. Let c be a generic circle of Σn \{x} such that c∩di = ∅
for 1 ≤ i ≤ n− 3, |c ∩ dn−2| = 1, c ∩ dn−1 = ∅, and c is isotopic to dn−1 in Σn . Then we have one
of the following three possibilities.

(1) c is isotopic to dn−1 in Σn \ {x}.

(2) There exists g ∈ Ker(θ) such that g([di]) = [di] for all 1 ≤ i ≤ n− 1 and g([c]) = [dn].

(3) There exists g ∈ Ker(θ) such that g([di]) = [di] for all 1 ≤ i ≤ n − 2, g([dn−1]) = [dn] and
g([c]) = [dn−1].
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Proof The surface Σn is a surface of genus n−1
2 with one boundary component, ∂ . We assume that

the circles d1, . . . , dn−1, dn are arranged as shown in Figure 6.1. The circles dn−3 and dn−1 divide dn−2

into two arcs, e1 and e2 , where the arc e1 intersects dn and the arc e2 does not intersect dn (see Figure
6.1). Let Ω be the surface obtained by cutting Σn along

⋃n−1
i=1 di . Then Ω is a cylinder represented by

an octagon with a hole in the middle (see Figure 6.2). Two opposite sides of this octagon represent arcs
of dn−1 and two opposite sides represent arcs of d1, . . . , dn−3 , as shown in the figure. Two other sides
represent arcs of e1 and the last two sides represent arcs of e2 , arranged as shown in Figure 6.2. The
boundary of the hole represents ∂ .

∂

d1 dn-3
dn-4 dn-1e2

e1 dn

x

Figure 6.1: The circles d1, . . . , dn
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d n

-3

dn-1

∂

Figure 6.2: The surface Ω

The circle c intersects dn−2 in a point q, and q is either on the arc e1 or on the arc e2 . Suppose first
that q is on the arc e1 . Then q is represented on Ω by two points q1 and q2 lying on two different
sides of Ω that represent e1 , and the trace of c in Ω is a simple arc ` connecting q1 to q2 . Up to
isotopy (in Ω and not in Ω \ {x}) pointwise fixing the bounfary of Ω, there are exactly two simple arcs
in Ω connecting q1 to q2 represented by the arcs `1 and `2 depicted in Figure 6.2. The arc ` cannot
be isotopic to `2 , otherwise c would not be isotopic to dn−1 in Σn . So, ` is isotopic to `1 in Ω. Let
{Ft : Ω→ Ω}t∈[0,1] be an isotopy such that F0 = id, F1(`) = `1 and Ft is the identity on the boundary
of Ω for all t ∈ [0, 1]. The arc `1 divides Ω into two parts, the lower one which does not contain the
hole bounded by ∂ and the puncture x , and the upper one which contains the hole bounded by ∂ and
the puncture x , as shown in Figure 6.2.

Suppose F1(x) is in the upper part. Let C be the domain of Ω bounded by `1 , two arcs of e1 and an
arc of dn−1 as shown in Figure 6.2. Let C′ = F−1

1 (C). Then C′ is a domain of Ω bounded by `, two
arcs of e1 and an arc of dn−1 which does not contain the puncture x . The existence of such a domain
implies that c is isotopic to dn−1 in Σn \ {x}.

Suppose F1(x) is in the lower part. We can suppose that the trace of dn on Ω is the arc `3 depicted
in Figure 6.2. We can choose an isotopy {F′t : Ω → Ω}t∈[0,1] such that F′0 = id, F′1(`1) = `3 , F′t
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is the indentity on the boundary of Ω for all t ∈ [0, 1], and F′1(F1(x)) = x . Let F̃ : Σn → Σn be
the homeomorphism which is F′1 ◦ F1 on Ω and is the identity outside Ω, and let g ∈ M(Σn, x) be
the mapping class represented by F̃ . Then g ∈ Ker(θ), g([di]) = [di] for all 1 ≤ i ≤ n − 1, and
g([c]) = [dn].

Suppose now that q is on the arc e2 . Then q is represented on Ω by two points q3 and q4 lying on
two different sides of Ω which represent e2 , and the trace of c in Ω is a simple arc ` connecting q3 to
q4 . Up to isotopy (in Ω and not in Ω \ {x}) pointwise fixing the boundary of Ω, there are exactly two
simple arcs in Ω connecting q3 to q4 represented by the arcs `4 and `5 depicted in Figure 6.2. The arc
` cannot be isotopic to `5 , otherwise c would not be isotopic to dn−1 in Σn . So, ` is isotopic to `4 in
Ω. Let {Ft : Ω → Ω}t∈[0,1] be an isotopy such that F0 = id, F1(`) = `4 and Ft is the identity on the
boundary of Ω for all t ∈ [0, 1]. The arc `4 divides Ω into two parts, the upper one which does not
contain the hole bounded by ∂ and the puncture x , and the lower one which contains the hole bounded
by ∂ and the puncture x , as shown in Figure 6.2.

Suppose F1(x) is in the lower part. Let D be the domain of Ω bounded by `4 , two arcs of e2 and an
arc of dn−1 as shown in Figure 6.2. Let D′ = F−1

1 (D). Then D′ is a domain of Ω bounded by `, two
arcs of e2 and an arc of dn−1 which does not contain the puncture x . The existence of such a domain
implies that c is isotopic to dn−1 in Σn \ {x}.

Suppose F1(x) is in the upper part. Let c′ be the circle drawn in Figure 6.3. We can assume that the
trace of c′ on Ω is the arc `6 drawn in Figure 6.2. We can choose an isotopy {F′t : Ω→ Ω}t∈[0,1] such
that F′0 = id, F′1(`4) = `6 , F′t is the identity on the boundary of Ω for all t ∈ [0, 1], and F′1(F1(x)) = x .
Let F̃ : Σn → Σn be the homeomorphism which is F′1 ◦ F1 on Ω and is the identity outside Ω, and
let g1 ∈ M(Σn, x) be the mapping class represented by F̃ . Then g1 ∈ Ker(θ), g1([di]) = [di] for all
1 ≤ i ≤ n− 1, and g1([c]) = [c′].

c'

μ

Figure 6.3: The circle c′ and the loop µ

Let g2 ∈ π1(Σn, x) = Ker(θ) be the element represented by the loop µ drawn in Figure 6.3. We have
g2([di]) = [di] for all 1 ≤ i ≤ n− 2, g2([dn−1]) = [dn] and g2([c′]) = [dn−1]. Set g = g2 ◦ g1 . Then
g ∈ Ker(θ), g([di]) = [di] for all 1 ≤ i ≤ n− 2, g([dn−1]) = [dn] and g([c]) = [dn−1].

Proof of Theorem 2.3 Let n ≥ 6. Let ϕ : A[Dn] → A[Dn] be an endomorphism. We know from
Theorem 2.2 that we have one of the following two possibilities up to conjugation.

(1) ϕ ◦ ι is cyclic.

(2) There exist ψ ∈ 〈ζ, χ〉 and p, q ∈ Z such that ϕ ◦ ι = ψ ◦ βp,q .
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Suppose ϕ ◦ ι is cyclic. Then there exists u ∈ A[Dn] such that ϕ(ti) = (ϕ ◦ ι)(si) = u for all
1 ≤ i ≤ n− 1. We also have

ϕ(tn) = ϕ(tn−2tntn−2t−1
n t−1

n−2) = ϕ(tn−2tn)ϕ(tn−2)ϕ(t−1
n t−1

n−2) =

ϕ(tn−2tn)ϕ(t1)ϕ(t−1
n t−1

n−2) = ϕ(t1) = u ,

hence ϕ is cyclic.

So, we can assume that there exist ψ ∈ 〈ζ, χ〉 and p, q ∈ Z such that ϕ ◦ ι is conjugate to ψ ◦ βp,q .
We set Y = {t1, . . . , tn−2, tn−1}, ∆Y = ∆Y [Dn], ∆D = ∆[Dn], κ = 2 if n is odd, and κ = 1 if n is
even. Up to conjugating and composing ϕ on the left by ζ if necessary, we can assume that there exist
ε ∈ {±1} and p, q ∈ Z such that ϕ(ti) = (ϕ ◦ ι)(si) = tεi ∆2p

Y ∆κq
D for all 1 ≤ i ≤ n− 1. The remainder

of the proof is divided into four cases depending on whether p is zero or not and whether n is even or
odd.

Case 1: n is even and p 6= 0. Then Σn is a surface of genus n−2
2 with two boundary components, ∂1 and

∂2 , and κ = 1. We have ρD(ti) = Tdi for 1 ≤ i ≤ n− 1 and, by Labruère–Paris [28, Proposition 2.12],
ρD(∆2

Y ) = TeT∂1 and ρD(∆D) = T∂1T∂2 , where e is the circle drawn in Figure 6.4. Set fi = (ρD ◦ϕ)(ti)
for all 1 ≤ i ≤ n. Then, by the above,

fi = Tεdi
Tp

e Tp+q
∂1

Tq
∂2

for all 1 ≤ i ≤ n− 1 .

In particular, S(fi) = {[di], [e]} for all 1 ≤ i ≤ n − 1. Since tn is conjugate in A[Dn] to t1 , fn is
conjugate to f1 in M(Σn, x), hence fn is of the form fn = Tεd′T

p
e′T

p+q
∂1

Tq
∂2

, where d′ is a non-separating
circle and e′ is a circle that separates Σn into two components, one being a cylinder containing x
and the other being a surface of genus n−2

2 with two boundary components, ∂1 and e′ , which does
not contain x . Moreover, by Theorem 2.1, (π ◦ ϕ)(tn−1) = (π ◦ ϕ)(tn), hence θ(fn−1) = θ(fn). This
implies that d′ is isotopic to dn−1 in Σn . We have f1fn = fnf1 , hence, by Proposition 3.3 (3) we have
fn(S(f1)) = S(f1), thus [e] is a reduction class for fn , and therefore i([e], [e′]) = 0, because [e′] is an
essential reduction class for fn . This combined with the fact that e′ and ∂1 cobound a subsurface of
genus n−2

2 with two boundary components which does not contain x implies that [e] = [e′]. So, we
can assume that e = e′ . Then the fact that d′ does not intersect e′ = e and d′ is isotopic to dn−1 in Σn

implies that d′ is isotopic to dn−1 in Σn \ {x}, hence we can also assume that d′ = dn−1 . In conclusion
we have (ρD ◦ ϕ)(tn−1) = (ρD ◦ ϕ)(tn) = Tεdn−1

Tp
e Tp+q

∂1
Tq
∂2

, hence ϕ(tn−1) = ϕ(tn) = tεn−1∆2p
Y ∆q

D . We
conclude that ϕ = βp,q ◦ π if ε = 1 and ϕ = χ ◦ β−p,−q ◦ π if ε = −1.

∂1

∂2
e

x

d1
d2

dn-2

dn-1

Figure 6.4: Circles in Σn , case where n is even and p 6= 0

Case 2: n is odd and p 6= 0. Then Σn is a surface of genus n−1
2 with one boundary component, ∂ ,

and κ = 2. We have ρD(ti) = Tdi for 1 ≤ i ≤ n − 1 and, by Labruère–Paris [28, Proposition 2.12],
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ρD(∆4
Y ) = Te and ρD(∆2

D) = T∂ , where e is the circle drawn in Figure 6.5. Set fi = (ρD ◦ϕ)(ti) for all
1 ≤ i ≤ n. Then, by the above,

f 2
i = T2ε

di
Tp

e T2q
∂ for all 1 ≤ i ≤ n− 1 .

In particular, S(fi) = S(f 2
i ) = {[di], [e]} for all 1 ≤ i ≤ n − 1. The element tn is conjugate to t1

in A[Dn], hence ϕ(tn) is conjugate to ϕ(t1) in A[Dn], and therefore there exists v ∈ A[Dn] such that
ϕ(tn) = vϕ(t1) v−1 = (vt1v−1)(v∆2p

Y v−1)∆2q . The element ρD(vt1v−1) is conjugate to ρD(t1) = Td1 ,
hence ρD(vt1v−1) = Td′ , where d′ is a non-separating circle. The element ρD(v∆4

Yv−1) is conjugate to
ρD(∆4

Y ) = Te , hence ρD(v∆4
Yv−1) = Te′ , where e′ is a circle that separates Σn into two components, one

being a cylinder containing x and the other being a surface of genus n−1
2 with one boundary component,

e′ , which does not contain x . We also have f 2
n = T2

d′T
p
e′T

2q
∂ and S(fn) = S(f 2

n ) = {[d′], [e′]}. By
Theorem 2.1 (π ◦ϕ)(tn−1) = (π ◦ϕ)(tn), hence θ(f 2

n−1) = θ(f 2
n ). This implies that d′ is isotopic to dn−1

in Σn . Since f1fn = fnf1 , by Proposition 3.3 (3) we have f 2
n (S(f1)) = S(f1), hence [e] is a reduction class

for f 2
n , and therefore i([e], [e′]) = 0, because [e′] is an essential reduction class for f 2

n . This combined
with the fact that e′ bounds a subsurface of genus n−1

2 with one boundary component which does not
contain x implies that [e] = [e′]. So, we can assume that e = e′ . In particular, since ρD is injective,
we have v∆4

Yv−1 = ∆4
Y . Since d′ does not intersect e′ = e and d′ is isotopic to dn−1 in Σn , d′ is

isotopic to dn−1 in Σn \ {x}, hence we can also assume that d′ = dn−1 . Since ρD is injective, this last
equality implies that vt1v−1 = tn−1 . At this level of the proof we have that ϕ(tn) = tεn−1(v∆2p

Y v−1)∆2q
D

and (v∆2p
Y v−1)2 = v∆4p

Y v−1 = ∆4p
Y . It remains to show that v∆2p

Y v−1 = ∆2p
Y .

x
e

d1

dn-2

dn-1

∂

Figure 6.5: Circles in Σn , case where n is odd and p 6= 0

By Theorem 2.2 there exists ψ ∈ 〈ζ, χ〉 and r, s ∈ Z such that ϕ ◦ ζ ◦ ι is conjugate to ψ ◦ βr,s .
The automorphism ζ is inner since n is odd, hence we can assume that ψ ∈ 〈χ〉. So, there exist
w ∈ A[Dn], µ ∈ {±1} and r, s ∈ Z such that ϕ(ti) = wtµi ∆2r

Y ∆2s
D w−1 for all 1 ≤ i ≤ n − 2 and

ϕ(tn) = wtµn−1∆2r
Y ∆2s

D w−1 . Set g = ρD(w). We have (ρD ◦ ϕ)(t2
i ) = T2

di
Tp

e T2q
∂ = gT2

di
Tr

eT2s
∂ g−1 for all

1 ≤ i ≤ n−2 and (ρD◦ϕ)(t2
n) = T2

dn−1
Tp

e T2q
∂ = gT2

dn−1
Tr

eT2s
∂ g−1 . So, g−1(S(T2

di
Tp

e T2q
∂ )) = S(T2

di
Tr

eT2s
∂ ),

hence g−1({[di], [e]}) ⊂ {[di], [e]} for all 1 ≤ i ≤ n − 1. This implies g−1([di]) = [di], hence g
commutes with Tdi , and therefore w commutes with ti for all 1 ≤ i ≤ n − 1. Since ∆Y is in the
subgroup of A[Dn] generated by Y = {t1, . . . , tn−1} and ∆2

D is central, it follows that ϕ(ti) = tµi ∆2r
Y ∆2s

D
for all 1 ≤ i ≤ n − 2 and ϕ(tn) = tµn−1∆2r

Y ∆2s
D . From the equality ϕ(t1) = tε1∆2p

Y ∆2q
D = tµ1 ∆2r

Y ∆2s
D it

easily follows that µ = ε, r = p and s = q, hence ϕ(tn) = tεn−1∆2p
Y ∆2q

D . We conclude that ϕ = βp,q ◦π
if ε = 1 and ϕ = χ ◦ β−p,−q ◦ π if ε = −1.

Case 3: n is even and p = 0. Then, again, Σn is a surface of genus n−2
2 with two boundary components,

∂1 and ∂2 , and κ = 1. We have ρD(ti) = Tdi for 1 ≤ i ≤ n−1 and, by Labruère–Paris [28, Proposition
2.12], ρD(∆D) = T∂1T∂2 . Set fi = (ρD ◦ ϕ)(ti) for all 1 ≤ i ≤ n. Then, by the above,

fi = Tεdi
Tq
∂1

Tq
∂2

for all 1 ≤ i ≤ n− 1 .
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In particular, S(fi) = {[di]} for all 1 ≤ i ≤ n − 1. Since tn is conjugate in A[Dn] to t1 , fn is of the
form fn = Tεd′T

q
∂1

Tq
∂2

where d′ is a non-separating circle.

For 1 ≤ i ≤ n − 3 we have titn = tnti , hence TdiTd′ = Td′Tdi , and therefore, by Proposition 3.1,
i([di], [d′]) = 0. Similarly, we have i([dn−1], [d′]) = 0. Since tn−2tntn−2 = tntn−2tn , we have
Tdn−2Td′Tdn−2 = Td′Tdn−2Td′ , hence, by Proposition 3.1, i([dn−2], [d′]) = 1. So we can assume that
di ∩ d′ = ∅ for 1 ≤ i ≤ n − 3, dn−1 ∩ d′ = ∅ and |dn−2 ∩ d′| = 1. Moreover, by Theorem 2.1,
(π ◦ ϕ)(tn−1) = (π ◦ ϕ)(tn), hence θ(fn−1) = θ(fn), and therefore d′ is isotopic to dn−1 in Σn . By
lemma 5.5 it follows that we have one of the following two possibilities.

(1) d′ is isotopic to dn−1 in Σn \ {x}.

(2) There exists g ∈ Ker(θ) such that g([di]) = [di] for all 1 ≤ i ≤ n− 1 and g([d′]) = [dn].

Suppose d′ is isotopic to dn−1 in Σn \ {x}. Then (ρD ◦ ϕ)(tn) = Tεdn−1
Tq
∂1

Tq
∂2

, hence, since ρD is
injective, ϕ(tn) = tεn−1∆q

D . We conclude that ϕ = β0,q ◦ π if ε = 1 and ϕ = χ ◦ β0,−q ◦ π if ε = −1.

Suppose there exists g ∈ Ker(θ) such that g([di]) = [di] for all 1 ≤ i ≤ n− 1 and g([d′]) = [dn]. We
have

(ρD ◦ ϕ)(ti) = Tεdi
Tq
∂1

Tq
∂2

= g−1Tεdi
Tq
∂1

Tq
∂2

g

for all 1 ≤ i ≤ n− 1 and

(ρD ◦ ϕ)(tn) = Tεd′T
q
∂1

Tq
∂2

= g−1Tεdn
Tq
∂1

Tq
∂2

g .

By Theorem 3.6 there exists v ∈ Ker(π) ⊂ A[Dn] such that ρD(v) = g. Since, ρD is injective it follows
that

ϕ(ti) = v−1tεi ∆q
Dv for all 1 ≤ i ≤ n .

We conclude that ϕ = adv−1 ◦ γq if ε = 1 and ϕ = adv−1 ◦ χ ◦ γ−q if ε = −1.

Case 4: n is odd and p = 0. Then, again, Σn is a surface of genus n−1
2 with one boundary component,

∂ , and κ = 2. We have ρD(ti) = Tdi for 1 ≤ i ≤ n− 1 and, by Labruère–Paris [28, Proposition 2.12],
ρD(∆2

D) = T∂ . Set fi = (ρD ◦ ϕ)(ti) for all 1 ≤ i ≤ n. Then, by the above,

fi = Tεdi
Tq
∂ for all 1 ≤ i ≤ n− 1 .

In particular, S(fi) = {[di]} for all 1 ≤ i ≤ n− 1. Since tn is conjugate in A[Dn] to t1 , fn is conjugate
to f1 in M(Σn, x), hence fn is of the form fn = Tεd′T

q
∂ where d′ is a non-separating circle.

For 1 ≤ i ≤ n − 3 we have titn = tnti , hence TdiTd′ = Td′Tdi , and therefore, by Proposition 3.1,
i([di], [d′]) = 0. Similarly, we have i([dn−1], [d′]) = 0. Since tn−2tntn−2 = tntn−2tn , we have
Tdn−2Td′Tdn−2 = Td′Tdn−2Td′ , hence, by Proposition 3.1, i([dn−2], [d′]) = 1. So, we can assume that
di ∩ d′ = ∅ for 1 ≤ i ≤ n − 3, dn−1 ∩ d′ = ∅ and |dn−2 ∩ d′| = 1. Moreover, by Theorem 2.1,
(π ◦ ϕ)(tn−1) = (π ◦ ϕ)(tn), hence θ(fn−1) = θ(fn), and therefore d′ is isotopic to dn−1 in Σn . By
lemma 6.1 it follows that we have one of the following three possibilities.

(1) d′ is isotopic to dn−1 in Σn \ {x}.

(2) There exists g ∈ Ker(θ) such that g([di]) = [di] for all 1 ≤ i ≤ n− 1 and g([d′]) = [dn].

(3) There exists g ∈ Ker(θ) such that g([di]) = [di] for all 1 ≤ i ≤ n − 2, g([dn−1]) = [dn] and
g([d′]) = [dn−1].
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If d′ is isotopic to dn−1 in Σn \ {x}, then we prove as in the case where n is even that ϕ = β0,q ◦ π if
ε = 1 and ϕ = χ◦β0,−q ◦π if ε = −1. Similarly, if there exists g ∈ Ker(θ) such that g([di]) = [di] for
all 1 ≤ i ≤ n− 1 and g([d′]) = [dn], then we prove as in the case where n is even that ϕ = adv−1 ◦ γq

if ε = 1 and ϕ = adv−1 ◦ χ ◦ γ−q if ε = −1, where v is an element of Ker(π) ⊂ A[Dn].

Suppose there exists g ∈ Ker(θ) such that g([di]) = [di] for all 1 ≤ i ≤ n − 2, g([dn−1]) = [dn] and
g([d′]) = [dn−1]. We have

(ρD ◦ ϕ)(ti) = Tεdi
Tq
∂ = g−1Tεdi

Tq
∂g for 1 ≤ i ≤ n− 2 ,

(ρD ◦ ϕ)(tn−1) = Tεdn−1
Tq
∂ = g−1Tεdn

Tq
∂g ,

(ρD ◦ ϕ)(tn) = Tεd′T
q
∂ = g−1Tεdn−1

Tq
∂g .

By Theorem 3.6 there exists v ∈ Ker(π) ⊂ A[Dn] such that ρD(v) = g. Since ρD is injective it follows
that

ϕ(ti) = v−1tεi ∆2q
D v for 1 ≤ i ≤ n− 2 ,

ϕ(tn−1) = v−1tεn∆2q
D v , ϕ(tn) = v−1tεn−1∆2q

D v .

We conclude that ϕ = adv−1 ◦ ζ ◦ γq if ε = 1 and ϕ = adv−1 ◦ ζ ◦ χ ◦ γ−q if ε = −1.
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