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This research paper utilizes a technique called contour integral method to obtain and assess the infinite series of the Euler polynomial using the Hurwitz Zeta function. The paper provides equations for various types of infinite series of the Euler polynomial using the Riemann Zeta function and important mathematical constants, such as Catalan's constant.

Introduction

Infinite sums of higher transcendental functions refer to the summation of series involving functions that are considered to be more complex and transcendental in nature. These functions typically cannot be expressed in terms of elementary functions like polynomials, exponential functions, logarithmic functions, and trigonometric functions. Examples of higher transcendental functions include the Riemann Zeta function, Hurwitz-zeta function, Bessel functions, hypergeometric functions, and elliptic functions, among others. These functions often arise in various areas of mathematics, physics, and engineering, and their infinite sums play a significant role in understanding and solving mathematical problems. Analyzing and evaluating infinite sums of higher transcendental functions can be a challenging task due to their intricate properties and behaviour. Mathematicians and researchers employ a variety of techniques, such as contour integration, series transformations, special identities, and numerical methods, to study and compute these infinite sums. Investigating the convergence, divergence, and analytical properties of infinite sums involving higher transcendental functions contribute to advancing our understanding of these complex functions and their applications in diverse fields. Current literature on topics related to generating functions and Euler's polynomial are in [START_REF] Alkan | Generating function for q-Eulerian polynomials and their decomposition and applications[END_REF][START_REF] Sun | Explicit Congruences for Euler Polynomials[END_REF][START_REF] Bernshtein | On some properties of cyclically monotonic functions[END_REF][START_REF] Euler | Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques[END_REF]. Euler polynomials also appear in statistical physics as well as in semi-classical approximations to quantum probability distributions Ballentine and McRae [START_REF] Ballentine | Moment equations for probability distributions in classical and quantum mechanics[END_REF] and evaluations of these polynomials at rational arguments was published by Cvijović etal. [START_REF] Cvijović | New Formulae for the Bernoulli and Euler Polynomials at Rational Arguments[END_REF]. Fourier series expansions for Euler's polynomial is listed in section (24.8) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF].

We proceed by using the contour integral method [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF] applied to equation (6.3.4.3) in [START_REF] Prudnikov | Integrals and Series: More Special Functions[END_REF] to yield the contour integral representation given by:

(1.1) 1 2πi C ∞ p=0 (-1) p a w E 2p+1 (x)w 2p-k (2p + 1)! dw = 1 2πi C a w w -k-1 sec w 2 sin w x - 1 2 dw
where a, x, k ∈ C, Re(w(1/2 -x)) > 0. Using equation (1.1) the main Theorem to be derived and evaluated is given by

(1.2) ∞ p=0 (-1) p i πa 2p (1 -k) 2p E 1+2p (x) Γ(2 + 2p) = - aπ k 2 aπ k ζ -k, 1 2 (1 + aπ -x) -ζ -k, 1 2 (2 + aπ -x) -ζ -k, 1 2 (aπ + x) + ζ -k, 1 2 (1 + aπ + x)
where the variables k, a, x are general complex numbers and the Pochhammer symbol (-k) p is given in equation (5.2.5) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF]. The derivations follow the method used by us in [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF]. This method involves using a form of the generalized Cauchy's integral formula given by (1.3)

y k Γ(k + 1) = 1 2πi C
e wy w k+1 dw, where y, w ∈ C and C is in general an open contour in the complex plane where the bilinear concomitant [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF] has the same value at the end points of the contour. This method involves using a form of equation (1.3) then multiplies both sides by a function, then takes the definite integral of both sides. This yields a definite integral in terms of a contour integral. Then we multiply both sides of equation (1.3) by another function and take the infinite sum of both sides such that the contour integral of both equations are the same.

Left-hand side contour integral

We use the method in [START_REF] Reynolds | A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples[END_REF]. The cut and contour are in the first quadrant of the complex w-plane with Re(w) > 0. The cut approaches the origin from the interior of the first quadrant and goes to infinity vertically and the contour goes round the origin with zero radius and is on opposite sides of the cut. Using a generalization of Cauchy's integral formula (1.3) we first replace y → log(a), k → k -2p -1 then multiply both sides by

(-1) p E2p+1(x) (2p+1)!
and take the infinite sum over p ∈ [0, ∞) to get

(2.1) ∞ p=0 (-1) p E 2p+1 (x) log k-2p-1 (a) (2p + 1)! (k -2p -1)! = 1 2πi C ∞ p=0 (-1) p a w E 2p+1 (x)w 2p-k (2p + 1)! dw
where Re(w) > 0. We apply Fubini's theorem for multiple integrals and sums, see page 178 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summand is of bounded measure over the space C × [0, ∞).

2.1. The Hurwitz-Lerch zeta Function. The Hurwitz-Lerch zeta function (25.14) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF] has a series representation given by

(2.2) Φ(z, s, v) = ∞ n=0 (v + n) -s z n
where |z|< 1, v ̸ = 0, -1, .. and is continued analytically by its integral representation given by

(2.3) Φ(z, s, v) = 1 Γ(s) ∞ 0 t s-1 e -vt 1 -ze -t dt = 1 Γ(s) ∞ 0 t s-1 e -(v-1)t e t -z dt
where Re(v) > 0, and either |z|≤

1, z ̸ = 1, Re(s) > 0, or z = 1, Re(s) > 1. Where ζ(s, a) = Φ(1, s, a) for Re(s) > 1, a ̸ = 0, -1, -2, .
.., from equation (25.14.3) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF].

The Hurwitz zeta Function

The Hurwitz zeta function (25.11)(i) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF] is defined by the infinite sum e -imx (log(a)

-ix + y) k -e 2imx (log(a) + ix + y) k Γ(k + 1) = - 1 2πi C 2ia w w -k-1 e wy sin(x(m + w))dw
Next replace y by ib(2y + 1) and multiply both sides by (-1) y e ibm(2y+1) then take the infinite sum over y ∈ [0, ∞) and simplify in terms of the Hurwitz-Lerch zeta function to get

(4.2) 2 k (ib) k e im(b-x) Γ(k + 1) Φ -e 2ibm , -k, b -x -i log(a) 2b -e 2imx Φ -e 2ibm , -k, b + x -i log(a) 2b = - ∞ y=0 1 2πi C 2i(-1) y a w w -k-1 e ib(2y+1)(m+w) sin(x(m + w))dw = - 1 2πi C ∞ y=0
2i(-1) y a w w -k-1 e ib(2y+1)(m+w) sin(x(m + w))dw

= - 1 2πi C ia w w -k-1 sec(b(m + w)) sin(x(m + w))dw
from equations (1.232.2) and (1.411.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where Im(w) > 0 in order for the sum to converge. We apply Fubini's theorem for integrals and sums, see page 178 in [START_REF] Gelca | Putnam and Beyond[END_REF] as the summand is of bounded measure over the space C × [0, ∞). 2 , m = 0, x = x -1 2 and simplify in terms of the Hurwitz zeta function to get

(4.3) i k+1 Γ(k + 1) 2 k ζ -k, 1 2 (-x -i log(a) + 1) -2 k ζ -k, 1 2 (-x -i log(a) + 2) -2 k ζ -k, 1 2 (x -i log(a)) +2 k ζ -k, 1 2 (x -i log(a) + 1) = 1 2πi C a w w -k-1 sec w 2 sin w x - 1 2 dw

The infinite sum of the Euler polynomial in terms of Hurwitz zeta function

In this section we will derive the finite sum of the Euler polynomial in terms of the Hurwitz zeta function.

Theorem 5.1. For all k, a, m ∈ C then, (5.2)

(5.1) ∞ p=0 (-1) p i πa 2p (1 -k) 2p E 1+2p (x) Γ(2 + 2p) = - aπ k 2 aπ k ζ -k, 1 2 (1 + aπ -x) -ζ -k, 1 2 (2 + aπ -x) -ζ -k, 1 2 (aπ + x) + ζ -k, 1 2 (1 + aπ + x)
∞ p=0 (-1) 3p π -2p-1 (ia) -2p E 2p+1 (x) a(2p + 1) = log Γ 1 2 (πa -x + 1) Γ 1 2 (πa + x + 1) Γ 1 2 (πa -x + 2) Γ 1 2 (πa + x)
Proof. Use equation (5.1) and apply l'Hopital's rule to the right-hand side as k]to0 and simplify using equation (25.11.18) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF]. Similar form is given in equation (5.17.5) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF]. □ Example 5.3. Infinite product of the exponential of Euler's polynomial in terms of quotient gamma functions.

(5.3)

∞ p=0 exp (-1) p i aπ 2p E 2p+1 (x) (aπ)(2p + 1) = Γ 1 2 (1 + aπ -x) Γ 1 2 (1 + aπ + x) Γ 1 2 (2 + aπ -x) Γ 1 2 (aπ + x)
Proof. Use equation (5.2) and take the exponential function of both sides and simplify. The right-hand side can be also be represented using the Knar's formula in [START_REF] Knar | Die harmonischen reihen[END_REF]. □ Example 5.4. Asymptotic approximation where Re(x) < 0 < Re(a). Similar forms and evaluations are given in the works of section (5.6) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF], Erdéyli et al. [START_REF] Erdélyi | The asymptotic expansion of a ratio of gamma functions[END_REF], Laforgia et al. [START_REF] Laforgia | On the asymptotic expansion of a ratio of gamma functions[END_REF], Namias, [START_REF] Namias | A Simple Derivation of Stirling's Asymptotic Series[END_REF] and Chen at al. [START_REF] Chen | Asymptotic expansions for the ratio of gamma functions[END_REF].

(5.4)

∞ p=0 exp (-1) p i aπ 2p E 1+2p (2x) aπ(1 + 2p) < x 1 2 -x √ -x
Proof. Use equation (5.3) and apply equation ( 4) in [START_REF] Wendel | Note on the Gamma function[END_REF] and simplify. □ Example 5.5. A limiting case involving an infinite sum in terms of the digamma function.

(5.5)

∞ p=0 (-1) p i aπ 2p E 1+2p (x)(2) 2p Γ(2 + 2p) = - 1 2 a 2 π 2 ψ (0) 1 2 (1 + aπ -x) -ψ (0) 1 2 (2 + aπ -x) -ψ (0) 1 2 (aπ + x) + ψ (0) 1 2 (1 + aπ + x)
Proof. Use equation (5.1) and take the limit of both sides as k → -1 and simplify using (25.11.12) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF]. □ Example 5.6. A limiting case of an infinite sum in terms of the Stieltjes constant Γ n .

(5.6)

∞ p=0 (-1) p i aπ 2p E 1+2p (x)(2) 2p (-1 + γ + ψ (0) (2 + 2p)) Γ(2 + 2p) = - 1 2 a 2 π 2 -ψ (0) 1 2 (1 + aπ -x) -log(2)ψ (0) 1 2 (1 + aπ -x) -log 1 a ψ (0) 1 2 (1 + aπ -x) + log(π)ψ (0) 1 2 (1 + aπ -x) +ψ (0) 1 2 (2 + aπ -x) + log(2)ψ (0) 1 2 (2 + aπ -x) + log 1 a ψ (0) 1 2 (2 + aπ -x) -log(π)ψ (0) 1 2 (2 + aπ -x) + ψ (0) 1 2 (aπ + x) + log(2)ψ (0) 1 2 (aπ + x) + log 1 a ψ (0) 1 2 (aπ + x) -log(π)ψ (0) 1 2 (aπ + x) -ψ (0) 1 2 (1 + aπ + x) -log(2)ψ (0) 1 2 (1 + aπ + x) -log 1 a ψ (0) 1 2 (1 + aπ + x) + log(π)ψ (0) 1 2 (1 + aπ + x) + γ 1 1 2 (1 + aπ -x) -γ 1 1 2 (2 + aπ -x) -γ 1 1 2 (aπ + x) + γ 1 1 2 (1 + aπ + x)
Proof. Use equation (5.1) and take the first partial derivative with respect to k and take the limit as k → -1 and simplify using using equations (25.6.12) and (25.11.12) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF]. □ Example 5.7. Infinite sum identity in terms of the Euler polynomial.

(5.7)

∞ p=0 (-1) p i aπ 2p (E 1+2p (-x) + E 1+2p (1 + x))(1 -k) 2p Γ(2 + 2p) = 0 
Proof. Use equation (5.1) and form a second and third equation by replacing x → -x and x → x+1 respectively. Next add these two new equations and simplify. Similar form is given in equation (20.5.4) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. □ Example 5.8. Infinite sum in terms of Catalan's constant.

(5.8)

∞ p=0 (1 + p)E 1+2p 9 2 2 4p ≈ 8 16C -ζ 2, 17 4 + ζ 2, 19 4 
Proof. Use equation (5.1) and set k = -2, a = 4 π , x = 9 2 and simplify using equation (2.2.1.2.7) in [START_REF] Lewin | Polylogarithms and Associated Functions[END_REF]. □ Example 5.9. A special case of the infinite sum of a generating function.

(5.9)

∞ p=0 E 2p+1 -1 2 (1 -k) 2p Γ(2p + 2) = - 2 -k 3 k -1 k
Proof. Use equation (5.1) and set x = -a/2, a = 1/π and simplify. □

Conclusion

This paper uses a contour integral approach to deriving and evaluating the infinite sum involving the Euler polynomial. We use special functions, mathematical constants, and contour integration to derive the desired result. In section [START_REF] Ballentine | Moment equations for probability distributions in classical and quantum mechanics[END_REF], we obtain a closed form solution for the infinite sum of Euler's polynomial by employing the Hurwitz zeta function. Additionally, we present intriguing derivations involving the infinite product of the exponential function, which, to the best of our knowledge, have not been explored in existing literature. Moreover, we establish the relationship between the ratio of the Gamma function and the infinite product

  (3.1) ζ(s, a) = ∞ n=0 1 (n + a) s , where ζ(s, a) has a meromorphic continuation in the s-plane, its only singularity in C being a simple pole at s = 1 with residue 1. As a function of a, with s(̸ = 1) fixed, ζ(s, a) is analytic in the half-plane Re(a) > 0. The Hurwitz zeta function is continued analytically with a definite integral representation (25.11.25) in [71 e -ax 1 -e -x dx, where Re(s) > 1, Re(a) > 0. 4. Contour integral representations for the Hurwitz-zeta function 4.1. Derivation of the generalized contour integral. We use the method in [8]. Using equation (1.3) we first form a new equation by replacing y by log(a) + ix+y and multiplying both sides by e imx . Next form a second equation by replacing x by -x and subtract the second equation and the first to get (4.1)

4. 2 .

 2 Derivation of the right-hand side contour integral. Here we use equation (4.2) and set b = 1

Proof.

  Applying equation (1.1), the right-hand side of relation (2.1) is equal to the right-hand side of equation (4.2); hence, the left-hand sides of the same are identical too. Simplifying with the Gamma function and Pochhammer symbol yields the desired conclusion. □ Example 5.2. Infinite sum in terms of the logarithm of quotient gamma functions.

of the exponential function. To validate our findings, we perform numerical verification using Mathematica by Wolfram for a range of parameter values, including real, imaginary, and complex values, within the integrals.