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Abstract1

This paper presents a systematic and critical literature review on dependent failure behavior modeling in2

risk and reliability. A literature search is conducted systematically based on pre-defined protocols. The resulting3

papers are first analyzed through a meta-data and bibliometric analysis, in which the trend of publication growth,4

important publication sources and authors, collaboration among the authors are identified. The evolution of5

research topics in three time periods (prior to mid-1990s, mid-1990s - 2010 and 2010 - present) is also discussed6

through a semantic clustering: Early research (prior to mid-1990s) mainly came from nuclear risk assessment7

or statistical modeling. Due to the limitation of computational power, the models in this period are limited to8

small-scale and simplified systems. More computationally-demanding models, e.g., copula, frailty, dynamic fault9

trees and Bayesian network, emerged since mid-1990s. Another important research topic that appeared since mid-10

1990s is maintenance optimization considering dependencies. More recent research trends (since 2010) include11

the dependent failure models considering degradation processes and random shocks, and large-scale, complex12

engineering systems like critical infrastructure and cyber-physical systems.13

Then, the most important papers from the literature search are chosen for a content analysis and critical14

review. The main results of the critical literature review include: First, we summarize the dependent failure15

behavior in different system hierarchies, i.e., failure mechanism level, component level, system level and systems-16

of-systems level. In each level, the main dependent failure behavior from literature is discussed with examples.17

Second, we develop a classification framework for the dependent failure behavior models. Depending on whether18

the dependency mechanism is explicitly considered, we broadly classified the existing models into statistical19

dependency models and mechanistic dependency models. Statistical dependency models do not explicitly consider20

the dependency mechanisms but model them in terms of statistical association among the variables, and can be21

further divided into lifetime distribution models, system state models and degradation process models. Mechanistic22

dependency models consider the dependency mechanisms explicitly, and can be further divided into failure23

interaction models and failure propagation models. The most frequently-used models in each category are critically24

reviewed, based on which we identify five challenging problems the current dependency models face, give our25

perspectives on their possible solutions, and discuss future research opportunities.26

Index Terms27

Dependent failure behavior, risk, reliability.28
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1

Dependent failure behavior modeling for risk1

and reliability: A systematic and critical2

literature review3

I. INTRODUCTION4

On the evening of 31 May 2009, flight AF447 took off as usual in the beautiful sunset of Rio de Janeiro,5

Brazil, intended to provide its 216 passengers with a nice and comfortable journey to a city of love and romance,6

Paris – But the love and romance never arrive. Shortly after taking off, the plane crashed into the Atlantic ocean,7

killing all the 228 people (including 12 crew members) onboard [1]. The tragedy shocked the entire world, as8

modern aircrafts like AF447, and modern complex engineering systems in general, have been designed with a9

large number of redundant safety systems connected in a “defensive-in-depth” manner. Such accidents could10

occur only if all these safety systems fail, which, according to classical reliability theory, is highly unlikely,11

given the assumption that the failures of the safety systems are independent from one another.12

What went wrong, then? The AF447 accident was initiated by a wrong air speed measurement. To have13

such a failure event, all the three pitot tubes in the air speed measurement system have to fail simultaneously,14

which is considered highly unlikely if the three pitot tubes are independent. In the AF447 accident, however,15

the three pitot tubes do fail at the same time, since the plane flew into a thunderstorm and the low temperature16

froze the three pitot tubes simultaneously [1]. In other words, the failures of the three pitot tubes are dependent17

due to a shared common event. Similar dependent failure behavior appears frequently in practice. For example,18

various experiment observations discover that the presence of erosion accelerates the degradation process due to19

corrosion [2]. Simultaneous failure of multiple safety barriers due to common cause events like environmental20

shocks or human errors has been acknowledged as one of the significant threat to nuclear and aerospace safety21

[3]. Failing to consider the dependent failure behavior in reliability analysis could severely overestimate of the22

reliability and significantly mislead decision makers.23

Due to its extreme importance, dependent failure behavior has received great interest in the reliability24

community as early as 1960s. For example, Gumbel [4] presented a bivariate distribution for two marginal25

exponential lifetime distribution that are correlated. Krohn [5] modeled the statistical dependence among the26

seven failure modes in a electrical circuit. Today, the research on dependent failure behavior modeling has27

grown in substantial quantity, quality and diversity. A large number of models have been developed in the28

literature to describe dependent failure behavior in different hierarchies of a complex system. A good review29

of these works would be beneficial to the researchers and practitioners in the risk and reliability community30

for better understanding the state-of-the-art and identifying potential future research directions. Table I lists31

the related review articles and discusses their focuses and limitations. From Table I, we can conclude that the32

existing review papers can be improved from the following aspects:33

• most of the existing reviews focus on maintenance optimization, but not failure behavior and reliability34
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modeling;1

• the existing reviews only partially cover some particular types of dependencies: no holistic review exists2

that covers dependent failure behavior in different hierarchies of a complex system.3

TABLE I: Related review papers.

Paper Focuses Limitations

Dekker et al. [6] Economic dependency on multi-component maintenance

models.

Only maintenance grouping models under economic depen-

dency are reviewed. No discussions on failure behavior.

Mkrtchyan et al. [7] Use of Bayesian Belief Networks (BBNs) in human re-

liability analysis, and in particular modeling dependency

assessment among human failure events.

Only BBN is reviewed. No discussions on the problems

other than human reliability.

Keizer et al. [8] Condition-based maintenance for multi-component systems

considering economic, structural, stochastic, resource and

performance dependence.

The focus is on maintenance modeling, but not on failure

behavior and reliability modeling.

Kabir et al. [9] Applications of Bayesian networks and Petri nets in safety,

reliability, and risk assessments.

Only Bayesian netwrok and Petri net are reviewed. Only the

dependencies among basic events are discussed.

Meango and Ouali [10] Reliability models that consider stochastic dependence be-

tween failure modes, including degradation processes. Three

categories are considered: reliability indexes’ interaction,

state-based interaction and copula-based interaction.

Not a systematic literature review. Therefore, some im-

portant works are not included, e.g., Bayesian network,

cascading failure models, dynamic fault tree, frailty models.

Xing [11] Cascading failure models. Only discuss cascading failure but not the other dependent

failure behavior.

Zhao et al. [12] Maintenance Strategies considering economic, structural,

stochastic and resource dependence.

The focus is on maintenance modeling, but not on failure

behavior and reliability modeling.

Apart from the two points listed above, it should also be noted that all of the existing reviews rely on4

subjective categorization and qualitative analysis to summarize previous research, which are highly dependent5

on the experience of the authors and might lead to inaccurate interpretation and unreliable results [13]. Different6

from standard literature reviews, the systematic literature review employs a replicable, scientific and intelligible7

structured process to weaken the bias of studies selection and uses rigorous bibliometric tools to analyze the8

selected literature objectively [13]. Hence, we use a systematic literature review to collect important papers9

on dependent failure behavior modeling, and then conduct a critical literature review on the resulted papers.10

Compared to the existing works, the contributions of this paper can be summarized as follows:11

• it is the first known systematic and critical literature review on dependent failure behavior modeling;12

• the dependent failure behavior in different hierarchies of a complex system are systematically summarized;13

• a classification framework is presented for failure behavior and reliability models considering dependencies.14

It should be noted that we limit the scope of this paper to dependent failure behavior modeling. Therefore, the15

dependencies mainly arise in maintenance planning, e.g., economical dependency, are not considered in this16

review. For dependencies in maintenance planning, interested readers can refer to the review articles [6, 14].17

The rest of this paper is summarized as follows. In Section II, we present the research questions we aim18

to answer through the review and the methodology designed to answer these questions. Section III presents19

the results of meta-data and bibliometric analysis. Section IV discusses typical dependent failure behavior in20

different hierarchies of a complex system. Section V critically reviews the most important dependent failure21
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behavior models and presents a classification framework for them. In Section VI we discuss the challenges1

faced by the current models and possible future opportunities. Finally, we conclude this paper in Section VII.2

II. RESEARCH METHODOLOGY3

Our research methodology starts by identifying the research questions we intend to answer through the4

literature review:5

1) What are the main research topics in the area of dependent failure behavior modeling in risk and reliability?6

2) How do the research topics evolve over time?7

3) What are the important sources to follow (journal, conference, key researchers)?8

4) What are the challenges and opportunities for future research?9

To answer these four questions, we conduct a systematic literature review following the methodology pre-10

sented in Figure 1. The relevant papers are collected by a carefully-designed systematic protocol (see Sections11

II-A for detail). The collected papers are then analyzed statistically based on their meta-data and bibliometrics12

(see Section II-B for detail). Then, the important papers in the initial data set are selected for a content analysis13

and critically reviewed, in order to identity the challenges and opportunities for the current research (see Section14

II-C for detail).15

Fig. 1: Research methodology and results.

The research methodology in Fig. 1 is a combination a systematic literature review and a critical literature16

review. A systematic literature review is designed to collect and identify important papers, and have a broad17

perspective of the state-of-the-art of this field through bibliometric analysis. We intend to be as objective as18

possible by presenting clearly the protocol of data collection and the method of analysis (Sect. III). Then, the19

most important papers identified from the systematic literature review are critically reviewed by the authors. The20
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aims of the critical review are to provide a classification framework for dependency phenomena to be modeled1

(Sect. IV), critically review the existing dependent failure behavior models used to model the dependency2

phenomena (Sect. V), and propose the authors vision on challenges and opportunities in this domain (Sect. VI).3

A. Data collection4

An initial literature search is conducted in the Web of Science Core Collection database based on predefined5

search query. We chose Web of Science (WoS) Core Collection because it is one of the most widely-accepted6

database for scientific research and it contains data from both journals and conferences. The search strategy is7

designed to limit the resulted papers only to the areas of dependencies in reliability and failure modeling. To8

do this, we require that the field "topic" in WoS has to include both "dependenc*" and either "reliability" or9

"failure". The symbol "*" means that any word starting with "dependenc", e.g., "dependency", "dependencies",10

"dependence" all match the search query. As the keyword "dependency" has been used very widely in other11

scientific domains like physics or microelectronics, we add a few constraints to further exclude unrelated papers:12

A relevant paper must:13

• contain keyword "reliability" or "failure";14

• come from a limited range of research areas or published in a reliability-related journal.15

The query we finally used for the initial literature search is given Figure 1, where TS, WC, SO are fields16

in the WoS database, representing Topic, Web of Science Categories and Publication Titles (i.e., journal17

names), respectively.18

The initial literature search returns a total number of 2, 149 papers (As of December, 2022). However, a quick19

examination of the results reveals that although we already considered a number of constraints in the query,20

the results still contain a large number of unrelated publications. This is because, the keywords "dependency"21

and "reliability" all have diverse meanings. For example, papers discussing "temporal-dependency" of some22

events and the reliability of its statistical estimation match the defined query but are unrelated to our topic. To23

further remove these unrelated results, a screening is performed by performing a cursory review of the titles24

and abstracts of the initial results. After the screening, only 927 relevant papers are kept for further analysis.25

Finally, we enrich the search results by manually adding another 135 papers that we find, based on our26

experience, crucial in this domain. The final data set for further analysis comprise of 1062 papers, as shown27

in Figure 1. One might wonder why the 135 manually added important papers are not captured by the search28

query defined in Figure 1. This is because, when designing the query, we add a few constraints to filter out29

irrelevant papers in order to improve the precision score of search query. While improving the precision, these30

constraints will inevitably reduce the recall score. For example, we could have some papers that are important31

but not published in the required field or journals. These papers are not captured by the designed search query.32

We already tried our best to improve the search query so that a balance could be obtained between its precision33

and recall. Another important reason is that, the WoS database does not cover all the papers, especially the34

papers published early (e.g., before the 1990s) when the publications are not digitalized.35
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B. Meta-data and bibliometric analysis1

Before thoroughly investigating their contents, the collected papers are preliminary analyzed based on their2

meta-data (title, abstract, author, publication source, publication year, etc.) and bibliometrix like citations [15].3

As shown in Figure 1, we mainly consider four analyses:4

• Publication time analysis, which examines how does the number of publications evolves over time. This5

analysis will help us answer the research question 2 of this paper.6

• Co-occurrence analysis, which aims at investigating the research areas and their evolution over time. This7

is done through a semantic clustering of the keywords from the title and abstract of each paper [16]. The8

results help us understand research questions 1 and 2 of this paper.9

• Publication source analysis, which aims at identifying the important publication source. The results will10

help us answer research question 3 of this paper.11

• Author analysis, which aims at identifying the important authors. This is done by checking the number of12

publications from each author. The results help us answer research question 3 of this paper.13

The analyses are performed using open-source software VOSViewer [16] and Bibliometrix [17].14

C. Content analysis and critical literature review15

We then select a few important and representative papers for a deeper content analysis and critical review.16

The papers are selected following a two-stage strategy: in the first stage, the top 10% most cited papers in17

every 10 years in the dataset are analyzed. We choose 10 years as an evaluation horizon as citations need time18

to accumulate. Then, in the second stage, based on the initial analysis, we define a few keywords to search for19

other highly relevant papers to enrich the content analysis and critical literature review.20

Through the analyses, we intend to give more insights to research questions 1, 2 and 4 of this paper. In21

particular, we:22

• summarize the commonly encountered dependent failure behavior in different hierarchies (failure mecha-23

nism, component, system and system-of-system levels) of a complex system (see Section IV).24

• critically review important dependent failure behavior models and develop a classification framework for25

these models. (See Section V).26

III. META-DATA AND BIBLIOMETRIC ANALYSIS27

This section presents the results from meta-data and bibliometric analysis. The publication numbers over28

time are analyzed in Section III-A. Then, in Section III-B, we discuss how does the research topics in this area29

evolve over time through semantic clustering. Important publication sources and key researchers in this area30

are discussed in Sections III-C and III-D, respectively.31

A. Publication growth32

Figure 2 shows the number of publications in each year (blue bars). A clear growth trend can be discovered33

for the numbers of publications in this area. Looking at the number of papers each year, however, could be34

biased, as in general, people publish more papers in recent years than several decades ago. To adjust for the35
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the potential bias, we collect the total number of papers published in two flagship reliability journals, i.e., IEEE1

Transactions on Reliability and Reliability Engineering and System Safety, in the same period of time, as a2

measure of total number of publications related to risk and reliability in a given period of time. Then, we3

calculate the ratio between the blue bars in Figure 2 and the number of publications in these two journals. The4

result is presented as the red curve in Figure 2.5

From Figure 2, there are two initial observations. First, both the absolute (blue bar) and relative (red curve)6

number of publications in this area grows overtime, indicating that dependency has become an increasingly7

popular topic in risk and reliability. Second, based on the slope of the growth curve, we discover two areas8

where research interests on dependency grows dramatically: one is in the mid-1990s and the other is around9

2010. This observation indicates that some new research topics might arise in these two periods of time, which10

deserves further detailed analysis (see Section III-B).11

Fig. 2: Publications by year.

B. Co-occurrence analysis12

In this section, a co-occurrence analysis is conducted based on the title and abstract of the collected papers13

[16]. The result of such an analysis is a semantic network, where the nodes are words or phrases that appear in14

the titles or abstracts. The presence of links between nodes indicate that the two words/phrases tend to appear15

together in the same document. The size of the nodes indicates their appearance frequency, while the width of16

the link indicates the degree of correlation between two items. From the constructed network, one can identify17

different research topics by identifying clusters in the network. This is done by examining the network structure18

and the semantic meanings of the nodes. The analysis is conducted using VOSViewer [16].19

As discussed in Section III-A, we can discover from Figure 2 that significant increments on research activities20

occurred around the mid-1990s (1995) and 2010. We intend to explore the cause of such growth by identifying21

the main research topics in each period. Therefore, we consider the three ranges for the co-occurrence analysis:22

before 1994, 1995-2009 and 2010 to present. The results are presented in Figs. 3 - 5. These results can help23

us formulate a broad picture of the research field and understand the fundamental research topics in this field,24

which laid down foundations for the critical literature reviews in Sects. IV - VI.25

1) Prior to 1994: Only 36 papers (less than 2 papers per year) in our data set are published before 1995.26

The co-occurrence network for these papers are presented in Figure 3. From the figure, we can identify two27
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key semantic clusters that represent different research topics, as shown in Table II. In general, the research1

considering dependency modeling in this period is relatively scarce, with a strong emphasize on developing2

statistical models for joint probability distribution from marginal distributions. Models that consider the detailed3

description of dependency mechanisms, especially on a system level, are not discussed extensively. The very4

few existing probabilistic models are developed only for relatively simple systems with exact (or approximate)5

solutions for system reliability (e.g., see [18]). Part of the reason might be, in this period of time, the6

computational and simulation capability is not well-developed, which prevents the researchers from developing7

very sophisticated (but realistic) models for dependency that cannot be solved analytically.8

TABLE II: Representative keywords for the clusters (before 1994).

Cluster Representative keywords Representative papers

cluster 1 marginal distribution, multivariate failure time data, covariate Liang et al. [19], Liu and Kiureghian [20]

cluster 2 probabilistic safety assessment, common cause failure, fault tree Apostolakis and Moieni [21], Acosta and Siu [22]

Fig. 3: Co-occurrence network for papers prior to 1994.

2) From 1995 to 2009: A total number of 261 papers (≈ 18 per year) in our literature search results was9

published in this period of time. The co-occurrence network for this period of time is presented in Figure 4.10

From Figure 4, we discover three clusters. The representative keywords for each cluster are listed in Table III.11

TABLE III: Representative keywords for the clusters (1995-2009).

Cluster Representative keywords Representative papers

cluster 1 multivariate failure time data, frailty, copula, covariate Huard et al. [23], Lebrun and Dutfoy [24]

cluster 2 system reliability, component failure, dynamic fault tree,

Markov chain, petri net, Bayesian network, maintenance

Andrews and Dunnett [25], Malhotra and Trivedi [26], Kang et al.

[27]

cluster 3 probabilistic safety assessment, basic event, human re-

liability analysis, common cause failure

Boudali and Dugan [28], Cepin [29]
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Among the three clusters, cluster 1 and 3 exist also in an earlier time period (see the previous subsection).1

However, compared to the previous period, copula [23] and frailty models [30] have emerged in cluster 1 while2

common cause failure has become an important topic in cluster 3. The second cluster, which considers system3

reliability modeling considering dependent components, is a new research cluster that emerges in this period.4

Some new models, e.g., dynamic fault tree and Bayesian network, also appear in this period. Also, the study5

about maintenance planning given dependencies emerges in cluster 2. The new models and problems in cluster6

2 partly explain the first significant growth trend in Figure 2.7

Fig. 4: Co-occurrence network for the papers published between 1995 to 2009.

3) 2010 - present: A total number of 799 papers (≈ 61 papers per year) in our literature search results8

were published in this period. We can discover six clusters in Figure 5. Table IV lists most representative9

keywords and papers for each cluster. Among them, clusters 1 - 3 are inherent from the previous time periods,10

while clusters 4 - 6 represent some new research trends that emerge in this period. The first emerging cluster11

(cluster 4) represents research on dependent competing failure processes, where the dependencies between12

hard failure caused by random shocks and soft failure caused by performance degradation are considered. We13

will discuss this cluster in detail in Section V-A3. The second new research cluster (cluster 5) focuses on14

applying combinatorial methods to model dependencies. For details, readers can refer to Section V-A2. Another15

important cluster that emerges in this period is cluster 6 that focuses mainly on dependent failure behavior16

related to vulnerability and resilience of critical infrastructures. For details, readers can refer to Section IV-D.17

C. Publication source18

Figure 6 listed the top 35 publication sources on which the papers we collected are published. It can be seen19

that most of the collected papers are coming from journals. More specifically, the journals of interests might20

involve several categories:21

• Risk and reliability, e.g., Reliability Engineering and System Safety, IEEE Transactions on Reliability,22

Journal of Risk and Reliability;23

• Industrial engineering, e.g., IISE Transactions, EJOR, Computer and Industrial Engineering, IJPR;24

• Statistics, e.g., Technometrics, Lifetime Data Analysis, Communication in Statistics;25
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TABLE IV: Representative keywords for the clusters (2010-present).

Cluster Representative keywords Representative papers

cluster 1 copula, frailty model, vine copula, bivariate copula Li et al. [31], Navarro and Durante [32]

cluster 2 system reliability, component dependency, maintenance opti-

mizaion, condition-based maintenance

Guo et al. [33], Meango and Ouali [10]

cluster 3 probabilistic safety assessment, human error, human reliability

analysis, Bayesian network

Mkrtchyan et al. [7], Kabir and Papadopoulos [9]

cluster 4 dependent competing risk, degradation, shock, hard failure, soft

failure

Peng et al. [34], Jiang et al. [35]

cluster 5 combinatorial method, decision diagram, stochastic dependen-

cy, failure isolation, propagated failure

Xing and Leviten [36], Mo et al. [37]

cluster 6 critical infrastructure, resilience, vulnerability Cagno et al. [38], Hosseini et al. [39]

Fig. 5: Co-occurrence network for papers published from 2010 to present.

• Mechanical and civil engineering, e.g., Probabilistic Engineering Mechanics, International Journal of1

Critical Infrastructure Protection.2

Besides, there are two conferences that also contribute large amounts of papers in our search result:3

• European Conference on Safety and Reliability (ESREL) and4

• Annual Reliability and Maintainability Symposium (RAMS).5

These publication sources could be watched carefully for future research updates.6

D. Author analysis7

To identify important researchers in this field, we analyze the total number of papers by each author in our8

collected database. The result is given in Figure 7. Another interesting analysis is to identify the collaboration9
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Fig. 6: Publication sources.
Fig. 7: Important authors based on number of related

publications.

among the researchers. A collaboration network is constructed for the important authors listed in Figures 7 by1

checking if a pair of authors have co-authored papers together [16]. The result is given in Figure 8. From this2

figure, it is easy to see some researchers are the focal point of collaborations. We should take special care on3

the updates of these active researchers.4

Fig. 8: Collaborations among the relevant authors.

IV. DEPENDENT FAILURE BEHAVIOR IN DIFFERENT SYSTEM HIERARCHIES5

In this section, we present the first result of the content analysis: a summary of frequently encountered6

dependent failure behavior in the literature. The important papers identified from the systematic literature review7

and biliometric analysis are analyzed manually by the authors to identify the frequently encountered dependent8

failure behavior. A classification framework for the dependent failure behavior is proposed by the authors from9

a systems engineering perspective: the frequently encountered dependent failure behavior is summarized based10

on the hierarchies of a complex engineering system in which the dependent failure behavior occurs, as shown11

in Figure 9. Four levels of system hierarchies are considered:12
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• The bottom level aims at modeling failure mechanisms, i.e., the physical, chemical, thermodynamic or1

other processes that result in failure [40]. The impact of dependencies on failure mechanisms is discussed2

in Section IV-A.3

• The component level modeling focuses on the failure behavior of components in a system. Usually, a4

component might be subject to one or several failure mechanisms. Section IV-B, then, discusses the5

dependencies among the failure mechanisms in a component.6

• On the next modeling level, the interactions and dependencies among components are considered to develop7

failure behavior models for the system (see Section IV-C).8

• System-of-system level mainly concerns large-scale interconnected complex systems that, by themselves,9

are comprised of multiple heterogeneous complex systems. The major difference between a system-of-10

system and a ”system”, according to the authors, is that, the scale and degree of complexity of a system-11

of-system is much larger than a ”system”, which requires a different modeling approach than the top-down12

bottom-up approaches in traditional systems engineering literature. Section IV-D discusses the dependent13

failure behavior that could occur on the system-of-system level.14

Fig. 9: Dependent failure behavior in different system hierarchies.

A. Failure mechanism level15

The physics-based failure mechanism models are often used as the smallest building blocks to construct more16

complex system reliability models following a bottom-up approach [40]. As shown in Figure 9, dependent failure17

behavior can be observed in a single failure mechanism model. In the failure mechanism level, typical dependent18

failure behavior includes parameter dependency and degradation state dependency.19
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1) Parameter dependency: Parameter dependency arises naturally when the model parameters in the failure1

mechanism model are statistically associated/correlated. For example, correlations are reported between wind2

speed and wind direction, and between Young’s modulus and Poisson’s ratio, both of which are model parameters3

in a failure mechanism model [41]. The exact cause of such a statistical association could be one parameter is4

related to another in some ways, or because the correlated parameters are influenced by some common factors5

like operating environment.6

An early but classical example of parametric dependencies can be found in the works of Kiureghian and Liu7

[20, 42], where they considered a generic limit state equation as a physics-based failure mechanism model with8

dependent parameters X. Huang and An [43] considered a simple physics-based model gm(X) = C−S, where9

X = [S,C] and S,C represent the stress on a material and its associated strength, respectively. The dependency10

arises because the conditional probability density function of the strength varies as the stress changes. Aghatise11

et al. [44] developed a physics-based failure mechanism model based on finite element simulation for a off-12

shore structure where the dependency among the input parameters was captured using vine copulas. Zheng et13

al. [45] considered the dependency between wind speed and direction through Bayesian copulas and used them14

to evaluate the deformation- and comfort-based total damage probability.15

2) Degradation state dependency: For degradation failure mechanisms, another type of dependency could16

arise when the new degradation state depends not only on the current state, but also on the historical states [46].17

In literature, this kind of dependency is also referred to as long-term/long-range dependency, memory effect18

or history-dependenct degradation [46]. This phenomenon can be explained by the fact that the two adjacent19

moments might be subject to similar environment or use conditions [46]. Xi et al. [46] presented a numerical20

index called the Hurst exponent to quantitatively measure the degree of the degradation state dependency, and21

use it to investigate the degradation state dependencies in two real datasets (see Section II of [46] for details).22

Degradation state dependency challenges the Markovian degradation models (e.g., the models based on Wiener23

or gamma process [47]), as most of them are based on the assumption that the future degradation state only24

depends on the current state but not the history [47]. A perturbed Markovian process model is developed by25

Oumouni and Schoefs [48] where degradation state dependency is considered by assuming that the degradation26

increments are state-dependent but perturbed by a Gaussian white process with degradation-dependent variances.27

B. Component level28

A component is likely to experience multiple failure mechanisms that are mutually dependent. For example,29

experimental data showed that corrosion and erosion of materials can accelerate each other, resulting in faster30

degradation [2]. Another example is that when test specimens are susceptible to high temperatures and heavy31

loads, fatigue interacts with creep so that the specimens’ times-to-failure are severely reduced [49]. As shown32

in Figure 9, we can distinguish two types of dependent failure behavior: direct influence and common factors.33

1) Direct influence: A schematic illustration of direct influence is given in Figure 10, where the dependency34

between the two failure mechanisms (FM1 and FM2) are caused by the direct influence from FM2 to some35

parameters (xdep) of FM1. To model the direct influence among failure mechanisms explicitly, a graphical36

method called an interaction graph is developed in [50]. Based on the graph, the component failure behavior37

model considering the dependencies among failure mechanisms can be derived.38
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Fig. 10: A schematic of direct influence.

A good example of the direct influence can be found in the works of Peng et al. [34] on failure of1

Micro-Electro-Mechanical Systems (MEMS) device. According to an earlier test performed at Sandia National2

Laboratory [51], an MEMS can fail due to either a degradation failure caused by wear, or a catastrophic failure3

caused by a random shock process. The two failure mechanisms are dependent as the random shock process not4

only causes the catastrophic failure, but also brings additional increments to the degradation process. Another5

example of the direct influence can be found in [50], where dependency between adhesive and abrasive wear in6

a sliding spool is considered. The adhesive wear depends on the surface roughness, which could be impacted7

by the abrasive wear.8

2) Common factor: Dependencies in the component-level can also be due to common factors affecting the9

failure mechanism models, as illustrated in Figure 11. Common factors could be the parameters shared by10

several failure mechanism models (Figure 11(a)), or some common external factors that affect different failure11

mechanism models simultaneously (Figure 11(b)).12

(a) Shared common parameters.
(b) Common factor affecting the model parameters.

Fig. 11: A schematic of common factor.

After examining the degradation data, Fang et al. [52] found out that the degradation processes of the13

benzene ring mass loss and the stretching of aryl ether are statistically correlated. They identified cause of such14

correlation as shared common factors (temperature, humidity, as well as UV spectrum and intensity) between15

the two degradation processes [52]. In [53], the results of an accelerated degradation test on a bearing under16

different rotational speeds reveal that both the degradation rate and variation in the failure mechanism model17

are associated with the rotational speed. Therefore, the rotational speed is a common factor affecting the two18

degradation parameters.19

C. System level20

Systems are made up of components. Therefore, when considering the system’s failure behavior, the depen-21

dencies among the components need to be taken into account. In the results of our literature search, four types22

of dependencies among the components can be found. These four dependencies can be further classified into23
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two categories, based on whether the dependency leads to the initial failure (failure-inducing dependency), or1

appears after the initial failure occurs (post-failure dependency), as shown in Figure 9.2

1) Failure-inducing dependency: As can be seen in Figure 9, failure-inducing dependency includes stochastic3

dependency and common cause failure. Stochastic dependency arises when the degradation or failure processes4

of components are stochastically dependent or correlated [8]. As in the component level, the root cause of5

the stochastic dependency could be direct influence or common factors (See Section IV-B). An example of6

stochastic dependency in the system level can be found in [54], where stochastic dependency appears among7

the four stations in a manufacturing system as the times-to-failure of the four stations are statistically correlated.8

Stochastic dependency could also involve degradation processes in different components. For example, in [55],9

a system comprised of two interacted gears is tested. The results show that the degradation rate of one gear10

is dependent on the degradation state of the other. In [56], the component degradation paths are grouped as11

different clusters, where in each cluster, the degradation paths from the different components are dependent. For12

example, in a sliding spool, the spool and sleeve are physically in touch with the same hydraulic oil and share13

the same operational conditions. Therefore, they form a dependency cluster and the degradation path models14

share a common factor. The degradation process of one component could also impact the lifetime distribution15

of another component. For example, in [57], the failure rate of a motor is modeled as a baseline failure rate16

times an adjustment factor that depends on the vibration magnitude of a pump in the same system.17

According to the definition from IEC, Common-Cause Failures (CCFs) are simultaneous failures of multiple18

components of a system due to a shared root cause [58]. According to [59], common cause failures could occur19

due to undetected design errors, operator and maintenance errors, equipment failure caused by the failure of20

a different equipment, and equipment failure resulting from some unforeseen external event. For example, in21

[58], a protection system comprised of four safety barriers is considered. However, two common cause failure22

events could affect the system: one is caused by tornado and affects three safety barriers while the other is23

caused by an earthquake and affects all four safety barriers [58]. Another example of common cause failure24

can be found in [60] on an oil supply system to an aero-engine. Two common cause failures might affect the25

system: (1) The differential pressure switch and the oil catheter can fail at the same time due to the physical26

interactions between them; (2) The warning subsystem and the oil filter fail simultaneously when an extreme27

work load appears due to an external shock from the environment.28

2) Post-failure dependency: As shown in Figure 9, post-failure dependency includes load-sharing and func-29

tional dependency. Load-sharing often occurs when several components share the same load. Then, the failure of30

one component increases the load on the remaining ones and affects their failure behavior. A detailed real-world31

example of load-sharing is presented in [61], where they considered a simplified model for an aircraft hydraulic32

system of four identical active pumps and one backup pump working in warm-standby mode. The four active33

pumps jointly share the system working load until all the active pumps fail. If any working pump fails, the34

degradation of the remaining pumps accelerates as the the loads on the remaining pumps are increased. Apart35

from affecting the degradation of the remaining components, load-sharing could affect directly the failure rate of36

the remaining components. For example, in [62], a load-sharing 3-out-of-7 CNC machine system is considered.37

Due to load-sharing, if any machine fails, the failure rate of the remaining machine is increased, which is38

modeled as a baseline failure rate multiplied by an adjustment factor related to the load on the remaining39
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machine.1

Functional dependency is defined as the functions of some components (referred to as functional dependent2

components) rely on the function of other components (referred to as functional trigger components) [63].3

The failure of one trigger component causes other dependent components within the same system to become4

unusable or isolated from the system. An example of functional dependency is given in Wang et al. [64], where5

sensors are functionally dependent on relays as the former requires the latter to provide communication supports.6

If the relay in a functional group fails, the sensors in the same functional group are isolated. In [65], a smart7

home is considered where the sensors in the rooftop solar electric system is functionally dependent on a relay8

of the energy storage system, which is further functionally dependent on a relay in the energy management9

system. The reliability of this smart home considering the cascading of functional dependencies is analyzed10

based on a new combinatorial method in [65].11

D. System-of-system level12

In the literature, there are a lot of complex engineering systems that can be regarded as a system-of-system,13

e.g., critical infrastructure, cyber-physical system, industrial Internet-of-things, smart grid. Luiijf and Klaver14

[66] analyzed a database of critical infrastructure failures reports from 2004 until the mid-2018, and concluded15

that, for a complex system-of-system like critical infrastructure, two types of dependent failure behavior can be16

identified: cascading failure and spatial dependency (in fact, in [66], they use the term common cause failure to17

describe spatial dependency). Cascading failure is caused by the propagation of failures among the individual18

systems comprising the system-of-system, while spatial dependency refers to the fact that the components in a19

geographical region tends to fail together when impacted by the same event like natural hazards.20

1) Cascading failure: A good example of cascading failure in systems-of-systems can be found in [67],21

where the initial failures can propagate in an interconnected power-communication network: A failure in a22

node in the power network can propagate to the interconnected nodes in the communication network, as the23

latter loses electricity supports from the power network. Bellè et al. [68] discussed an interconnected rail-power24

network. The failure in the power network can propagate within itself due to load shedding, and can propagate25

to the connected railway network, as the traction stations in the railway network cannot function without the26

electricity supported by the power network. In [69], an example is presented where an initial failure in one line27

could spread and cause congestion in the whole network, since the passengers affected by the failed line have28

to redirect themselves and increase the congestion on the other parts of the network.29

2) Spatial dependency: Electrical power systems subject to seismic risks are good examples of spatial30

dependency, as the fragility of the power system components depends on the peak ground acceleration caused31

by the earthquake [70]. An electricity distribution and metro networks in London are examined in [71], where32

spatial dependency arises when the network is subject to the risk of flooding: if some assets are located in33

the same flood zones, they fail simultaneously due to the damages from the flood. In [72], examples of spatial34

dependency in a deteriorating water infrastructure and transportation infrastructure are given, including both35

physical dependency from road to pipe, and operational dependency from pipe to road. He and Cha [73]36

discussed an infrastructure network, consisting of power, water and telecommunication systems under the threat37

of hurricanes. The arrival of a hurricane can destroy several items in a geographical area at the same time,38
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creating spatial dependency in the systems-of-systems.1

V. MODELS FOR DEPENDENT FAILURE BEHAVIOR2

In this section, we aim to critically review important dependent failure models and propose a classification3

framework based on their inherent natures. The developed classification framework is presented in Figure 12.4

We can first distinguish broadly between statistical and mechanistic dependency models. Statistical dependency5

models do not explicitly consider the mechanisms from which the dependencies arise. Rather, the focus is to6

develop stochastic models to capture the dependencies in terms of statistical association among variables in the7

model. In contrast, mechanistic dependency models first look at the mechanisms that generate the dependencies,8

and then develop the dependency models based on the dependency mechanisms. It should be noted that the9

mechanistic models can be either stochastic or deterministic. The key difference between the mechanistic and10

statistical dependency model is whether the dependency mechanism is considered explicitly, not whether the11

model is stochastic or deterministic.12

Fig. 12: A classification framework for dependent failure behavior models.

The statistical dependency models can be further divided into lifetime distribution models, system state models13

and degradation process models, as shown in Figure 12 (See Section V-A for details). Lifetime distribution and14

system state models both belong to a broader class of random variable models, as they model the statistical15

dependencies among random variables. In the lifetime distribution models, the considered random variables are16

time-to-failure, while in system state models, the random variables considered are state variables that often take17

discrete state values (binary or multi-state) that represent the state of components and systems. Unlike the lifetime18

distribution and system state model, which only models the result of the failure evolution process, degradation19

process models focuses on the failure evolution process itself. In particular, the statistical dependencies among20

degradation processes are taken into consideration in these models.21

Based on whether the dependency mechanism depends on an initial failure, the mechanistic dependency22

models can be further divided into failure interaction models and failure propagation models. The failure23
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interaction models consider the interaction among the individual failure processes explicitly; while the failure1

propagation models focus on the mechanisms that the initial failures propagate and cause subsequent failures.2

The different types of mechanistic dependency models are discussed in detail in Section V-B.3

It should be noted that the focus of this section is to review the models frequently used for dependency4

modeling, while in Sect. IV, what we reviewed is the possible dependent failure behavior in different system5

hierarchies. Different models might be suitable to be applied on only certain system hierarchies. Table V6

summarizes the application levels of different models.7

TABLE V: Application levels of dependency models.
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Failure mechanism level × × × × × ×
Component level × × × × × × × ×

System level × × × × × ×
System-of-system level × × × ×

A. Statistical dependency models8

1) Lifetime distribution models: Lifetime distribution models focus on modeling the statistical dependency9

among lifetime distributions. As shown in Figure 12, lifetime dstribution models can be further divided into10

multivariate distribution model, frailty model and copula model.11

Multivariate distribution model12

In the multivariate distribution-based models, the joint distribution of dependent marginal lifetime distributions13

is modeled directly by multivariate distributions. Research on multivariate distribution-based models can be dated14

back to as early as the 1960s. A good example of the multivariate distribution model is the Marshall-Orkin15

model developed in [74]:16

P (X > s, Y > t) = e−λ1s−λ2t−λ12 max(s,t), s, t > 0. (1)

This model and its multivariate extensions have been widely applied, not only because it has exponential17

marginals, but also its physical basis. For example, one way to look at this model is to view it as the lifetime18

of a two-component series system subject to two fatal shocks affecting the two components individually (with19

arrival rates λ1 and λ2, respectively), and a common-cause shock that fails the two components simultaneously20

(with arrival rate λ12). The parameters in the multivariate distribution model can be estimated based on lifetime21

data, collected from in-lab testing or the field. For example, the parameter of a generalized Mashall-Orkin22

distribution can be estimated using the EM algorithm [75] and Bayesian methods [76].23
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Multivariate distribution models have known and explicit form of the joint distribution, which is useful for1

some theoretical analyses. However, to estimate the distribution parameters, we need a large number of high-2

dimensional time-to-failure data, which might be difficult to obtain in practice. Another potential drawback is3

that, deriving the system reliability from the joint distribution of component time-to-failures is not a trivial task,4

except for some simple cases like series and parallel systems [77].5

Frailty model6

Frailty models attempt to derive the joint distribution of lifetimes from the marginal distributions. The basic7

assumptions in frailty models are that (1) the marginal lifetime distributions are conditional independent given8

some unobserved frailty terms, and (2) the hazard functions of the different marginal lifetime distributions9

share a common frailty term, which describes the dependency arising from common factors affecting different10

samples. For example, in the commonly used gamma frailty model, the joint cumulative distribution function11

of the lifetimes T1, T2, · · · , Tk given a common frailty term Z is assumed to be [78]12

P (T1 < t(1), T2 < t(2), · · · , Tk < t(k) | Z) = G(t(1), t(2), · · · , t(k) | Z)

= e−Z·
∑k

j=1 Λ(t(j)).
(2)

where t(1), t(2), · · · , t(k) are realizations of the corresponding random variables, Z is a shared frailty term13

that is assumed to follow a gamma distribution Z ∼ Gamma(w, τ), and Λ(t(j)) is the cumulative hazard14

function of the marginal distribution Tj . The individual hazard function is often further assumed to follow15

Cox’s proportional hazard model [79]. The frailty term can follow other distributions as well, resulting in a16

variety of frailty models. Hougaard [80] summarized different frailty distributions used in the frailty model and17

discussed their effects.18

Frailty models are often used in reliability engineering for lifetime data analysis and test planning. For19

example, Liu [78] used a gamma frailty model to describe the dependencies among different failure modes,20

whose lifetimes follow a generic log-location-scale distribution, and derived the optimal accelerated test plans21

by minimizing the large-sample approximate variance of the maximum likelihood estimator of a certain life22

quantile at use condition. Hajiha et al. [81] proposed a model for multiple degradation processes under dynamic23

operating conditions, where the multiple degradation paths follow Wiener processes and a frailty model is used24

to consider the statistical dependence among the latent remaining lifetimes of the multiple degradation processes25

due to unobserved future environmental factors. Moustafa et al. [82] developed a Bayesian framework to estimate26

the system lifetime based on both system and component-level accelerated life testing data, in which shared27

frailty models are used to model the dependence between failure time distributions of the components of a28

system.29

Frailty models allow us to construct the joint distribution based on the marginal distribution. Besides, the30

dependency structure in the frailty model have clear physical explanations (shared common factors affecting31

multiple components). However, the assumptions of shared frailty might not always hold in practice [78]. Also,32

as compared to the copula models to be discussed in the next sub-section, the frailty model works well with33

dependencies among the latent failure times, but cannot be applied directly to model the dependencies among34

degradation processes.35

Copula model36
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Copula models are another popular model that constructs the joint probability distribution of correlated random1

variables based on their marginal distributions [83]. A copula function C(·) is defined as a joint distribution2

function of standard uniform random variables Ui ∼ U(0, 1), i = 1, 2, · · · , p,:3

C(u1, u2, · · · , up;θc) = P (U1 < u1, U2 < u2, · · · , Up < up), (3)

where θc are the parameters of the copula function. According to Sklar’s Theorem (see [83]), for a joint4

distribution of p random variables with continuous marginals Fi(·), i = 1, 2, · · · , p, one can always find a5

copula function C(·) so that [83]6

F (x1, x2, · · · , xp) = C(F1(x1), F2(x2), · · · , Fp(xp);θc). (4)

Various copula functions have been proposed with different functional form of C(·) and statistical properties.7

For a review of the commonly used copula function, readers can refer to [83].8

Copulas have been widely used to consider the dependencies among time-to-failures. Jia et al. [77] used9

copula functions to model the joint distribution of component lifetimes, and then derived the expressions of10

commonly-used reliability indexes for series, parallel and k-out-of-n systems. Eryilmaz [84] applied Clayton11

and Gumbel copulas to model the dependent lifetimes of the components in a weighted-k-out-of-n system and12

calculated the system reliability. Navarro and Durante [85] considered a general coherent system and derived13

the residual reliability based on the copula representation for the component lifetimes. Eryilmaz [86] considered14

a coherent system with dependent components modeled by an Archimedean copula and developed a moment15

estimation method for the component lifetime distribution based on system-level testing data. Zhang et al. [87]16

derived an maximum likelihood estimation for accelerated life testing data comprised of multiple dependent17

failure modes that are described using copulas. Gu et al. [88] developed a maximum likelihood estimation for a18

copula function used to model the multiple correlated failure modes in a mechanical system. Copula functions19

have also been applied for modeling degradation processes, which will be discussed in Section V-A3.20

A significant strength of copula models, as shown in Eq. (4), is that it separates the marginal behavior, as21

represented by the Fi(·)s, from the dependence structure described in C(·). However, the methods used for22

copula-based dependency models have significant mathematical complexity in comparison to other methods. It23

is also difficult to associate a physical explanation to its parameters [10]. Another pratical problem when trying24

to apply the copula models is how to select the most appropriate copula functions [23].25

2) System state models: System state models focus on the statistical dependencies among random variables26

that represent the system/component states. As shown in Figure 12, system state-based models mainly include27

combinatorial models, state space models and Bayesian network.28

Combinatorial models29

Combinatorial models are system reliability models that intend to derive the system state variable as a30

function (Boolean function for binary systems and multi-value functions for multistate systems) of component31

state variables by considering all combinations of component states that lead to a system failure [89]. Typical32

combinatorial models include reliability block diagrams, fault tree/event trees, decision diagrams, universal33

generating function, etc. [89]. Traditionally, combinatorial models assume that the basic events are independent.34

In recent years, however, a large number of extended combinatorial models have been proposed to consider35

dependencies.36
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A large variety of the extended combinatorial models aim at considering the dependencies among basic1

events by their joint failure probability. An intuitive approach, called the implicit approach [90, 91], calculates2

the system reliability by simply replacing the multiplication of failure probabilities of the dependent basic3

events with their joint probability (P (X1) · P (X2) → P (X1 ∩X2)). The joint failure probability is assumed4

to be known or can be derived based on conditional probabilities [91]. Vaurio [91] presented a general rule5

for transforming any groups of n dependent events into 2n − 1 s-independent virtual events whose occurrence6

probability can be obtained based on the joint probabilities of the original dependent events. Bobbio et al. [92]7

transformed fault trees into a Bayesian network, in which the dependencies among basic events can be captured8

naturally. Tolo and Andrews [93] introduced a novel methodology based on binary decision diagrams for the9

analysis of fault trees that allows considering component dependencies and dynamic features in the fault trees.10

Combinatorial models have been extended to consider other types of dependencies. For example, the implicit11

approach was applied in [90] to model the dependency caused by common cause failure in fault trees. Andrews12

and Dunnett [25] proposed a binary decision diagram-based model to consider the dependencies in event13

trees, which are caused by common cause failures due to shared basic events. Post-failure dependencies (see14

Section IV-C) can also be considered in combinatorial models. For example, Sun and Andrews [94] developed15

an efficient algorithm to identified the sections in a fault tree that are subject to post-failure dependencies16

and applied Markov modeling only for the identified sections. Dynamic fault trees have been developed as17

an extension of fault trees to consider post-failure dependencies by introducing new gates, like functional18

dependency gates [95]. Multi-valued decision diagram were used in [37] to model the stochastic dependencies19

among the component states in different phases of a phased-mission system.20

Extending combinatorial models to capture dependencies can be beneficial as combinatorial models are21

widely used in risk and reliability and one could easily make use of existing code/simulation tools to assist the22

reliability analysis. However, a common limitation of these approaches is that, the derivation of the extended23

model needs to be done in a case-by-case manner, and for complex system structure, one cannot guarantee24

obtaining the required system reliability function. Also, the complexity of deriving and calculating the model25

grows significantly when the system size increases, which limits the application of such methods on a large-scale26

system with complex structures.27

State space models28

According to Trivedi and Bobbio [89], apart from the combinatorial models, system reliability can also be29

modeled by state space models like Markov models and Stochastic Petri net models. These models get their30

names because these models enumerate all the possible system states to form a finite state space, and calculate31

the system reliability and availability by modeling the transitions among the system states. State space models32

can naturally capture the dependencies arising from the conditional dependence of some component states on the33

state of the other components. Thus, they can be naturally applied to model post-failure dependencies like load34

sharing, functional dependencies and failure propagation. For example, a Markov model is used as a benchmark35

model for an imperfect coverage system subject to functional dependency [96]. A semi-Markov model is used in36

[97] to model bitcoin nodes under eclipse attacks, where the dependency exists as different state has a different37

migration behavior. Petri net is also a widely-used state space model for describing dependencies. For example,38

Whiteley et al. [98] developed a comprehensive Petri-Net model integrated with a 0-D fuel cell performance39
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model of the fuel cell system to develop a more accurate degradation model for a polymer electrolyte membrane1

fuel cell considering harbouring dependencies between multiple failure modes.2

State space models can directly describe various dependencies of some component states on the states of3

the other components. Therefore, they are commonly used as a benchmark for validating the newly developed4

models. However, they are required to be defined over the global state space of the system, thus incurring into the5

well-known state-space explosion problem for large-scale systems [36]. Also, state space models have analytical6

solutions only for some special cases (e.g., Markov models). For a general system without analytical solutions,7

evaluating the time-dependent reliability through numerical methods is also very computationally intensive [99].8

Bayesian network9

Bayesian networks are widely used to represent uncertain knowledge and derive the joint probability distri-10

bution between random variables in a compact way. A Bayesian network is comprised of a tuple < V,E, P >,11

where V and E represent the nodes and the edges of a directed acyclic graph, and P is a probability distribution12

over V [92]. Discrete random variables V = [X1, X2, · · · , Xn] are assigned to the nodes, while the edges E13

represent the causal probabilistic relationship among the nodes. The joint probability distribution of the nodes14

can be calculated in a compact way:15

P [X1, X2, · · · , Xn] = Πn
i=1P [Xi | Parents(Xi)] (5)

Equation (5) provides a flexible way of calculating the joint probability distribution of dependent basic events.16

For example, Bobbio et al. [92] presented a general protocol of using Bayesian network for system reliability17

analysis, where component and system states become nodes in the network and the failure logic is represented18

by the conditional probability tables attached to the nodes. The dependencies can be captured by adding edges19

between the dependent nodes and deriving the joint probability distribution through the calculation rules in Eq.20

(5). Khakzad et al. [100] applied a Bayesian network to calculate the blowout risk in the process industry and21

showed that, compared to conventional probabilistic risk assessment models like event tree and bow-tie models,22

the benefits of a Bayesian network is its flexibility to capture various dependencies between basic events and23

due to common cause failures. To consider the time-dependent behavior, especially the degradation of dependent24

components, Rebello et al. [101] proposed a system functional reliability assessment model based on a dynamic25

Bayesian network and hidden Markov model. Morato et al. [102] used a dynamic Bayesian network to capture26

the probabilistic dependencies in a deteriorating system, based on which a deep decentralized multi-agent27

actor-critic reinforcement learning approach is developed for inspection and maintenance planning.28

Bayesian networks allows using modeler’s knowledge on the causal relationships between the dependent29

events to derive the joint probability distribution, which make modeling of dependent events more intuitive30

[92]. However, to apply the model, it is required to construct the network structure based on the knowledge of31

the modeler, which is often not an easy task, especially for a large scale system. Also, Bayesian networks are32

more mature with respect to discrete nodes. When the state of the nodes are continuous, although theoretically33

possible, evaluating the network in practice is not a trivial job. Another difficulty of applying Bayesian networks34

is one needs a large amount of fully observed failure data to accurately estimate the conditional probability35

tables, which is not often achievable in practice.36

June 28, 2023 DRAFT



22

3) Degradation process models: Degradation process models are statistical dependency models that involves1

degradation processes. As shown in Figure 12, the degradation-based models can be further divided into common2

random effect models, copula models and degradation-shock models. It should be noted that the degradation3

process could also be modeled by a discrete state random process like Markov/semi-Markov process. In this4

case, the state space model reviewed in Section V-A2 can be applied. Shen et al. [103] used Markov processes5

to describe the degradation of two dependent components, where the transition rate matrix of one component6

depends on the degradation state of the other component. To reduce repetition, we do not include the discrete7

state degradation models in this section.8

Common random effect models9

Common random effect models consider the dependencies among multiple degradation processes. Each10

degradation process is modeled separately by statistical degradation models, and the dependencies among the11

degradation processes are captured by some common parameters shared by different degradation models (the idea12

is similar to the frailty model discussed in Section V-A1). Common random effect models are named because13

the shared parameters are often used to describe random effect in the degradation processes. As reviewed by14

Ye and Xie [104], frequently used degradation process models in the literature include general path model15

[105] and stochastic process model (e.g., Wiener process [106], gamma process [107], inverse Guassian process16

[108]). Each degradation model can be used as a basic model to derive the common random effect model for17

multiple dependent degradation processes.18

Si et al. [109] generalized the famous general path model from Lu and Meeker [105] into a multivariate19

general path model:20 
yijk = xijk + εijk = η(tk;Ψ,ψij) + εijk

Φi = (ψi1,ψi2, · · · ,ψip) ∼MVN(µΦ,ΣΦ).
(6)

In their developed model (Eq. (6)), yijk represents the degradation level of the jth performance characteristics21

of the ith sample being tested, measured at time tk; xijk is the corresponding true value of the performance22

characteristics; εijk is the measurement noise which are assumed to be independently and identically distributed23

with a Gaussian distribution; η(·) is the degradation path function with fixed-effect parameter vector Ψ, which24

is shared by all the samples, and a random-effect parameter vector ψij that is unique for the ith sample25

and jth performance characteristics. The stochastic dependencies among the p performance characteristics are26

modeled by assuming that the random effect vectors of different performance characteristics in the same sample,27

Φi = (ψi1,ψi2, · · · ,ψip) follows a multivariate normal distribution. A similar model was developed by Lu et28

al. [110] to quantify the multidimensional degradation data considering the dependencies among the different29

performance characteristics. An expectation-maximization algorithm combined with the Markov chain Monte30

Carlo simulation is developed for estimating the model parameters and predicting system reliability.31

Common random effect models can also be derived based on the stochastic process-based degradation models.32

In Sun et al. [111], a multivariate Wiener process is used to model the correlation among different dimensions33

of degradation characteristics through a correlation matrix. Fang et al. [108] developed a common random effect34

model based on inverse Gaussian process where the drift parameters of each degradation model are assumed35

to share a common effect, which is modeled by a multivariate normal distribution.36
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Common random effect models are attractive in modeling dependent multivariate degradation processes1

because of their tractability and flexibility in handling both heterogeneity among the units and the dependencies2

among the multiple degradation processes [111]. However, some limitations still exist for such models. For3

example, parameter estimation is in general complex due to the shared parameters in the model [108]. Besides,4

calculating multivariate integrals is required for the reliability assessment since multiple degradation processes5

are involved, which could be very demanding in terms of computations, especially when a large number of6

degradation processes are considered [108].7

Copula models8

Similar to in the lifetime-based models discussed in Section V-A1, copula models can also be used to describe9

the dependencies among the multiple dependent degradation processes. In the literature, there are mainly two10

ways to use copula models for multiple dependent degradation processes. The first way is to estimate the11

parameters in the marginal degradation processes as if they were independent, and then use a copula function12

to model the joint distribution of the first passage times (latent failure times) of the marginal degradation13

processes. A typical example can be found in Sari et al. [112] where they considered the dependencies between14

two degradation processes of LEDs. The marginal degradation process is assumed to follow the general path15

model [105] and fit independently. Then, a copula function is used to represent the joint distribution of the16

predicted time-to-failures from the two marginal degradation paths:17

P (TTF (1) > t, TTF (2) > t) = P (Y
(1)
t < c(1), Y

(2)
t < c(2))

= C(F (1)(t; y(1)), F (2)(t; y(2))),
(7)

where TTF (1) and TTF (2) are the predicted time-to-failure of the marginal degradation paths 1 and 2,18

respectively; Y (1)
t and Y

(2)
t represent the degradation values of the two degradation paths at t; c(1) and c(2)19

are the degradation thresholds; F (1)(t; y(1)) and F (2)(t; y(2)) are predicted marginal failure probability at t,20

respectively, and C(·) is the copula function. A similar model was developed by Ruiz et al. [113] where21

n dependent degradation paths are considered where the marginal degradation paths follow inverse Guassian22

processes. Ye et al. [114] used random-effect nonlinear Wiener-based model with measurement errors to model23

the marginal degradation processes and copula functions to consider the dependencies among the degradation24

paths when estimating the reliability. Frank, Gumbel and Clayton copulas are compared and selected based on25

the value of Akaike information criterion.26

The second way of applying copulas for dependent degradation processes is to model the dependencies27

among the degradation increments. Fang et al. [52] presented a general framework of using copulas to model28

the dependent degradation processes that have independent increments:29

(∆Yi1(tk),∆Yi2(tk), · · · ,∆YiM (tk)) ∼ C
(
F1(∆yi1(tk)), F2(∆yi2(tk), · · · , FM (∆yiM (tk))); θCop

)
∆Yij(tk) ∼MDP (Yj , θ

Mar
j )

(8)

where C(·) is a copula function with parameter θCop; Fj(∆yi1(tk)), j = 1, 2, · · · ,M are the marginal CDF30

of individual degradation indicators, respectively; ∆Yij(tk) is the degradation increments of the marginal31

degradation process, which is assumed to follow a given Marginal Degradation Process (MDP) with parameter32

θMar
j . The MDPs considered in this model need to have independent increments, e.g., Wiener process, gamma33

process and inverse Gaussian process. Rodríguez-Picón et al. [115] developed a similar model for two fatigue34
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crack processes, where the marginal degradation processes are assumed to follow the inverse Gaussian process,1

and the dependency between the degradation increments is modeled by copulas. A systematic framework for2

applying copulas to model the dependencies among the degradation increments and predict the reliability and3

remaining useful life is presented in Fang and Pan [116], where they compare the performances of different4

marginal degradation models and copula functions through a numerical and a real-world case study.5

Compared to the other methods that consider dependencies among multiple degradation processes, a signifi-6

cant strength of the copula models is that they allow separating the marginal distribution with the dependence7

structure. In this way, one could be more flexible in describing the dependencies [52]. The drawbacks of8

the copula approach include (1) there are usually no analytic forms for calculating the reliability indices for9

high-dimensional problems [108]; (2) it is hard to incorporate physical knowledge of the correlation structure10

described by copula functions [111] and (3) estimating parameters in copula models with three or more11

degradation processes can be numerically challenging [110].12

Degradation-shock models13

Degradation-shock models are those models that consider the dependencies between degradation processes14

and random shock processes. The research on such models can be dated back to the 1960s, when Mercer15

[117] presented a partial differential equation to consider failures due to wear caused by the arrival of random16

shocks. The failure rate is assumed to be dependent on the wear level x: λ(t, x) = λ1(t) +λ2x, where λ1(t) is17

a baseline failure rate function. Since then, a large number of degradation-shock models have been developed18

in the literature.19

Singpurwalla [118] summarized three typical ways of considering degradation-shock dependencies (although20

in his original paper, the focus is to introduce stochastic processes in degradation modeling, not discussing21

dependencies). The first way is to model the occurrences of shocks by a Poisson process whose arrival rate is22

dependent on the degradation state [118]. We refer to these models dependent intensity models in this paper. A23

good example of the dependent intensity models is presented in Lemoine and Wenocur [119], in which a system24

is subject to a degradation process X = {X(t), t ≥ 0} and a fatal shock process. The system fails whenever the25

degradation exceeds a threshold value or a fatal shock occurs. The arrival rate of the shock process is assumed26

to be a function of X(t). Therefore, the system reliability can be calculated as:27

P (T > t) = EX

[
e−

∫ t
0
k(s,X(s))ds · I{τ>t}

]
, (9)

where T is the time to failure of the system; EX [·] represents taking expectation over the random process X(t);28

I{·} is an indicator function, and τ is the instant when X(t) exceeds the failure threshold, as predicted by the29

degradation process model. The dependence structure k(s,X(s)) simply means the arrival rate is a function of30

current age and the degradation levels [120]. Parameter estimation under different specific degradation processes31

and dependency structure have been discussed by Lehmann [120] and Bagdonavicius and Nikulin [121]. Such32

a formulation has been widely applied in the literature. For example, Huynh et al. [122] assumed that the33

arrival rate of the shock processes is a piecewise function of X(t) and presented a periodic inspection and34

replacement policy considering the degradation and traumatic events due to shocks. Hu et al. [123] considered35

condition-based maintenance planning for systems subject to dependent soft and hard failure, where the failure36

rate of hard failure increases as the degradation level becomes higher.37
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The second type of approach does not model the degradation process explicitly. Rather, the time-to-failure T1

is considered as a random variable and its failure rate function is assumed to be dependent on the random shock2

processes [118]. In this paper, we refer this type of models the dependent failure rate models. For example,3

in Lemoine and Wenocur [119], it is assumed that the failure rate function λ(t) of the lifetime distribution is4

dependent on the accumulative effect of a random shock process:5

λ(t) =

∞∑
i=1

Dih(t− Si) (10)

where Di is the magnitude of the ith shock that arrives at instant Si, and h(t) is a decreasing function that6

models the attenuation of the shock effect overtime. The arrival of the random shocks Si, i = 1, 2, · · · is, by7

itself, a random process (e.g., a Poisson process). Then, the reliability function can be derived as:8

R(t) = P (T > t) = E
[
e−

∫ t
0
λ(s)ds

]
, (11)

where λ(s) is defined in Eq. (10) and the expectation is taken over λ(s) as it is a random variable given S.9

Note that the formulation in Eq. (10) is also known in literature as a shot-noise process, which is defined10

in [124] as a stochastic process that models the accumulative effects of a counting process. The failure rate11

dependency models have been widely applied in literature. For example, Qiu et al. [125] investigated the12

preventive maintenance of a system whose failure rate is influenced by a shot-noise process. Wang et al. [126]13

extended the dependent failure rate models to a case where the failure rate increments caused by shocks need14

not be identical or identically distributed.15

The third type of approach focuses on modeling the impact from the random shock processes to the16

degradation process. The shock processes might further depend on some covariates that models the influence17

from the environment [118]. In this paper, we call this type of model dependent shock-degradation model, as18

the dependency is caused by the impact of the shock process on the degradation process. A typical example of19

such models was presented in Figure 13, where a system switches between three operation modes due to an20

environment covariate process Z(t), and in mode 1, the system is subject to degradation described by a Wiener21

process, while in the other two modes, the system is subject to random shock processes where the arrivals of22

shocks introduce an additional increment to the degradation measurements [118].23

Fig. 13: An an illustration of the sample path from a dependent degradation model [118].

A typical example of such models can be found in Peng, Feng and Coit [34], where they modeled the24

competing failure processes of soft failures caused jointly by continuous smooth degradation with additional25
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abrupt degradation damage from a shock process, and catastrophic failures caused by an abrupt and sudden1

stress from the same shock process. Following their work, many dependent shock-degradation models have been2

proposed to consider different shock patterns and dependence structure between the shock and degradation3

processes. For example, Rafiee et al. [127] considered a dependent competing failure process where the4

degradation rate could be impacted by the arrival of random shocks. Four different shock patterns are considered5

in their model, i.e., generalized extreme shock, when the first shock above a critical value is recorded; generalized6

δ-shock model, when the inter-arrival time of two sequential shocks is less than a threshold δ; generalized m-7

shock model: when m shocks greater than a critical level are recorded; and generalized run shock model, when8

there is a run of n consecutive shocks that are greater than a critical value. Jiang et al. [35] developed a model9

in which the arrival of the shocks shifts the failure threshold of the degradation process. The considered shock10

patterns include the generalized extreme shock model, generalized δ-shock model and generalized m-shock11

model. Lyu et al. [128] considered a δ−shock model, where the δ−shock causes failure of the system directly,12

while the other shocks affect the degradation process by changing the degradation rate and causing additional13

degradation increments.14

The three typical models, i.e., the dependent intensity, failure rate and shock-degradation models, can be15

combined to develop more complicated degradation-shock models. For example, Fan et al. [129] developed a16

dependent failure behavior model for a spool valve that integrates the dependent intensity and shock-degradation17

model, where the arrival of shocks leads to additional increments of the natural degradation process, while the18

intensity of the random shock process also increases as the degradation gets worse. Yang et al. [130] developed19

models where the arrivals of shocks have two impacts: (1) increase the failure rate of sudden failure; (2) cause20

abrupt degradation increments. Recently, there is a growing trend in the literature that aims at providing a21

unified framework for different degradation-shock dependencies. For example, Fan et al. [58, 131] developed22

a unified modeling framework based on stochastic hybrid systems, which is a special case of a more general23

model called stochastic hybrid automaton [132], to model different types of degradation-shock dependencies.24

Similar attempts have been made in [133] based on piece-wise deterministic Markov processes, which are25

another special case of stochastic hybrid automaton.26

A significant strength of the degradation-shock models is that it allows modeling dependencies from a physics-27

based perspective, i.e., the interaction between the shock and degradation processes are explicitly considered28

[34]. When covariates are used, the models also allows analysts to consider the dependencies that are related29

to some external factors from the environmental [118]. There are a few limitations of the degradation-shock30

models as well. First, the evaluation of the reliability function often involves high-dimensional convolution31

or summation over infinite terms [131]. When the number of the involved processes increases, it becomes32

computationally difficult for the evaluation. Besides, the developed degradation-shock models often contain33

parameters, especially those related to the shock processes, which do not have sufficient historical data to34

support a good estimation [134]. Finally, the validation of the model, especially the assumptions made on the35

dependence structure involving the shock processes, is a difficult task due to lack of available validation data.36
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B. Mechanistic dependency models1

The other category of the dependent failure models, as shown in Figure 12, is the mechanistic dependency2

models. In mechanistic dependency models, the dependency mechanisms, i.e., the physical cause of the depen-3

dency, is considered explicitly in the developed dependency models. This fact makes the mechanistic models4

different from the stochastic models, as the latter considers the dependencies as statistical correlation without5

looking into the exact cause of the correlation. Based on the dependency mechanisms being modeled, the6

mechanistic dependency models can be further divided into failure interaction models and failure propagation7

models.8

1) Failure interaction models: Failure interaction models focus on modeling the interactions among different9

failure mechanisms. As shown in Figure 12, failure interaction models can be further divided into deterministic10

interaction and stochastic interaction models.11

Deterministic interaction models12

As shown in its name, the deterministic interaction models consider the interactions among different failure13

processes from a physics-based perspective and modeled in a deterministic way. Zeng et al., [135] considers14

three basic interactions, i.e., competition, superposition, and coupling, and proposed a physics-based framework15

to develop failure behavior models considering the dependencies among failure mechanisms. In their framework,16

the performance margin of each failure mechanism is modeled based on physics-of-failure, and the interactions17

among the failure mechanisms are considered through an interaction graph as a combination of the three18

basic interactions. Chen et al. [136] proposes another three types of interaction, i.e., trigger, where one failure19

processes causes another, acceleration, where the presence of one process accelerate the evolution of another,20

inhibition, where the occurrence of one process will prohibit another process from occurring, and discussed21

how to consider each basic interaction in a dependent failure behavior model. Li et al. [137] considered three22

common failure mechanisms, including hot-carrier injection, time-dependent dielectric breakdown and negative23

bias temperature instability, and simulate the evolution of the three failure mechanisms and its impact on the24

performance of MOSFET using a electrical circuit simulation tool SPICE. The dependencies among the failure25

mechanisms are considered as the failure mechanism models share some common parameters.26

The deterministic interaction model has the significant strength of being able to explicitly describe how do27

the dependencies arise. The major limitation of such models is that, the model development requires deep28

understanding of the failure mechanisms and the interactions among them, which is not always achievable in29

practice [50]. Another potential drawback is that the model parameters are often estimated from data generated30

from controlled in-lab experiments. Whether the parameters can be safely generalized to a practical case needs31

to be carefully examined [135].32

Stochastic interaction models33

In stochastic interaction models, the interactions among the failure processes involve some random events.34

Most commonly-used stochastic interaction models are expressed in terms of the degradation-shock models35

as reviewed in Section V-A3. However, not all degradation-shock models are used to decribe the interactions36

explicitly. That is why we chose to put the degradation-shock model in Section V-A3 with other stochastic37

models. Examples of the stochastic interaction models include the works by Peng et al. [34] and Fan et al.38

[129], which have been discussed in Section V-A3. To reduce repetition, we directly refer the readers to Section39
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V-A3 for further details. The stochastic interaction can be caused by not only degradation, but also failure of1

other components. For example, Zhang et al. [138] presented a stochastic interaction model where the failure2

rate of surviving components in a multi-component load sharing system increases after initial failure of some3

components occurred. A similar model, called a tempered failure rate model is used in [139] to consider the4

fact that the impact of load-sharing to the surviving components in a k-out-of-n:G system.5

2) Failure propagation models: Failure propagation models focus on describing the dependencies in which6

some initial failures trigger the failure of the other components in a system (also referred to as cascading7

failure). A large fraction of failure propagation models in the literature originated from the study of cascading8

failures in electrical power grids but have demonstrated wide applicability in other domains as well (see [140]9

and [141] for a good review). According to Xing [11], the main failure propagation models include, but are not10

limited to, the self-organized critical (SOC) theory-based, complex network, and simulation models. The three11

models do not consider randomness when evaluating the failure propagation. To be more complete, we add a12

forth category of the propagation model, the stochastic propagation model, as shown in Figure 12.13

SOC models14

SOC models include a variety of models that are dedicated to modeling the self-evolution process of a15

complex dynamical system until it reaches a critical steady state, known as the SOC state [11]. One of the16

most well-known example of the SOC-based failure propagation model is the ORNL-PSerc-Alask (OPA) model,17

which combines DC load flow and optimal power flow models to simulate the cascading failure on transmission18

lines in a power grid after some trips due to over-loading caused by load redistribution [68]. CASCADE model19

was another widely used SOC-based models for cascading failures in the power grid [142]. In the CASCADE20

model, the propagation process is modeled by adding a fixed load increment on all the remaining functioning21

components, and the propagation continues until all the components fail or loads on the remaining functioning22

components are all within their acceptable limits [142].23

The SOC models allow simulating the cascade of failures through some simplification of the actual cascading24

mechanism. The degree of simplification lies between the complex network models and the simulation models.25

Therefore, the SOC models can achieve a balance between representing reality and the computational costs26

[68]. However, the SOC process has to be defined in a case-by-case manner for the system under investigation,27

which limits the generalization of the SOC models. Also, when the scale of the system becomes large, the28

evaluation of the model can easily becomes intractable [68].29

Complex network models30

Another way of investigating cascading failures is through complex network theory. Scale-free and small31

world networks are the two well-known and also well-studied classes of complex networks. Motter and Lai32

[143] presented an early application of the complex network models for analyzing cascading failures. In their33

work, it is assumed that the loads on a given node are approximated by the number of shortest paths passing34

through it. A failure is modeled by removing the corresponding node and the edges passing through the failed35

node. As the initial failure changes the topology of the network, the loads on the nodes are redistributed.36

As a result, subsequent cascading failures can occur. The application of such models on random networks37

and real-world networks of the Internet and a power grid showed that a heterogeneous network is robust to38

random attacks but vulnerable to intentional attacks, while a homogeneous network appears to be more robust39
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against attacks than the heterogeneous ones [143]. Buldyrev et al. [144] developed a complex network model to1

analyze the cascading failure behavior in an interdependent complex network. In their framework, a cascading2

failure can occur due to (1) the dependent node in another network fails, and (2) the node does not belong to3

any mutually connected clusters. Through their analysis, they discovered that for an interdependent complex4

network, a broader degree distribution increases the vulnerability to random failure, which is opposite to how5

a single complex network behaves.6

In terms of modeling the failure cascading, the complex network models take a highly abstract approach:7

cascade failures following principles that are defined based on only network structure and dynamics. The high8

degree of abstraction makes the complex network model easy to generalize and evaluate, compared to the other9

failure propagation models. The drawback of such an approach is that, the model cannot fully capture the actual10

way of failure propagation [68]. Therefore, the assumption of failure propagation in complex network models11

need to be carefully examined when applied in a practical problem.12

Simulation models13

Simulation models rely on performance simulation models to analyze dynamic response of a complex system14

under certain disturbances and simulate the potential failure propagation. For example, Cadini et al. [145]15

developed a sequential Monte Carlo scheme which combines an extreme weather model, a DC power flow16

model and a proportional re-dispatch strategy to simulate the cascading failures under extreme weather events.17

In Hasan et al., [146] a cascade simulation model in Matlab/Simscape was proposed, which incorporates a18

detailed behavioral model of protection devices to consider both cyber failures and time causality of events;19

the result was validated using a different simulation platform called OpenDSS.20

Simulation models allows us to consider in details the realistic ways of how failure propagates in practical21

systems, considering different contributing factors from the system itself and also the environment. However,22

the construction of simulation models requires a lot of domain knowledge and historical data. The model itself23

can be very computationally expensive to evaluate as well [11].24

Stochastic propagation models25

The stochastic models, in particular the combinatorial models and state space models discussed in Section26

V-A2, can also be used to model failure propagation. A widely-used combinatorial model for failure propagation27

is the dynamic fault tree, in which where logic AND, OR and k-out-of-n gates are used to represent the28

combinations of component statuses while multiple cascading Function DEPendency (FDEP) gates are used29

to model the cascading failures [11]. For example, Zhao and Xing [147] models the failure propagation in an30

Internet-of-Things (IoT) system using a dynamic fault tree with probabilistic functional dependence gates. State31

space models like a Markov model can also be used to model failure propagation. For example, in [148], a32

CTMC-based method was developed to assess the evolution of blackout probability in time, and further the33

probability mass function of the blackout size for power grids subject to cascading failures. For further details,34

we refer the readers to Section V-A2, in order to avoid too much repetition in the paper.35

VI. CHALLENGE AND OPPORTUNITIES36

Through the reviews and analyses in Sects. III - V, we can see clearly the quantity and quality of the existing37

research on dependent failure behavior. Although great achievements have been made, there are still a few38
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challenges that could potentially motivate future research and researchers.1

A. Identification and validation of the dependencies2

Dependent failure models rely on fundamental assumptions on how the dependent variables relate to one3

another. In statistical dependency models, these assumptions are mainly statistical and empirical, while in4

mechanistic models, these are more physics-based dependency assumptions (see Section V for details). Re-5

garding these assumptions, a question arises naturally: how to identify which variables are dependent and in6

which manner?7

If one has large amount of historical data, the identification problem can be solved by checking the statistical8

association among the variables directly from data [52, 114]. In a large number of practical cases, however,9

we do not have enough data. Most of the existing papers rely on direct assumption or analysis based on expert10

knowledge to identify potential dependencies in this case [34]. There are two shortcomings for this kind of11

approach. First, the identification has to be done manually and case-by-case, which is not easy to implement12

in a complex system with a large number of components. Second, the results could be subjective and highly13

dependent on the knowledge level of the domain experts who make the analysis [131]. A possible improvement14

could be to leverage the recent advancement on artificial intelligence, especially the research and models on15

knowledge graphs and knowledge-based machine learning and reasoning [149]. For example, we can create16

a knowledge graph, based on prior knowledges, describing the interlinked relationships among components,17

working environment, failure mechanisms, dependencies, etc., and use it as a knowledge base to design AI-18

based reasoning algorithms that can automatically identify the potential dependencies in a complex system.19

A related problem is how to validate whether the assumptions on dependence structures are valid? With20

enough data, validation of the model can be done by evaluating the model performance on testing data through21

metrics like Akaike information criterion, Bayesian information criterion, Kendall’s τ [116] etc. Validating the22

dependency assumptions when few data is available is, however, a difficult task that deserves further exploration.23

B. Scalability of the model24

Scalability is another challenge to most of the existing models. When systems grow in size and complexity,25

scalability issues can come from two aspects. First, developing the model itself becomes a complex problem,26

as exploring all the possible dependencies in a large-scale system can be a time-consuming and difficult27

task for the modeler. One promising idea to solve this issue is to leverage the advancements in knowledge-28

based systems and AI-based reasoning, as detailed in Section VI-A. Second, evaluating the model can be29

computationally intensive for a large-scale model with complex structure. A common solution is to develop30

surrogate models to approximate the model output in less computational time [150]. Recently, physics-informed31

deep learning has emerged as a promising approach that integrate physics-based knowledge with machine32

learning models and can achieve good balance between model capability and computational complexity [151].33

A possibly promising direction could be using physics-informed machine learning to improve the scalability of34

the dependent failure models.35
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C. Parameter estimation1

Although statistical parameter estimation approaches have been well-developed for dependent failure models2

[52], applying them requires large amounts of historical data, which is not always available in practice.3

Determining precise parameter values under a practical constraint of limited historical data remains a challenging4

problem. There are two possible solutions. First, as sensor technology advances, it is possible to collect5

condition-monitoring data during system operation through sensors. This permits us to develop a Bayesian6

framework to update the parameter estimations of a dependent failure model online using the condition-7

monitoring data [152]. Remaining useful life prediction and predictive maintenance can also be considered.8

Currently, however, parameter updating and remaining useful life prediction are not well-explored in the research9

of dependent failure models [134]. Another possible solution is to consider the epistemic uncertainty in the10

parameters, and quantify the impact of such uncertainty in the model output and the decisions made based on11

the models. Helton [153] summarized various frameworks for modeling and propagating epistemic uncertainty.12

However, there are not much effort trying to apply them on dependent failure models.13

D. Validation of the added values of considering dependencies14

Validating the added value of considering dependencies is an important question in practice. This question,15

however, is not well-addressed in the existing literature, as in most of the existing papers, the focus is on16

developing new models. To show the added values of the developed models, an easy way is to apply them17

on decision-making problems, and compare the results with some benchmark models that do not consider18

dependencies. In Table VI, we list a few typical decision-making problems that might be useful for validating19

the added value of the dependent failure models.20

TABLE VI: Typical decision-making problems that could be used for validating the dependent failure models.

Problems Descriptions

Qualification based on

risk/reliability

Decisions often need to be made regarding whether to accept/reject an engineering system based on its reliability/risk.

For example, in safety-critical industries like nuclear, the risks of some severe accidents are not allowed exceed given

reference values [154]. The impacts on the regulatory decisions can be investigated by comparing the dependent

failure models with traditional models like probabilistic risk assessment that do not consider dependencies.

Maintenance planning Optimal maintenance policies can be decided based on the predicted lifetime and reliability from the dependent

failure models. For components, a typical example is to determine optimal intervals for preventive maintenance

[34], while for systems, we can consider grouping of components due to economical dependencies.

Inspection planning For a multistate/continuous degraded system, inspection on the system can measure the current degradation level

and/or reveal the actual degradation state. The optimal inspection interval has to be planned carefully by balancing

the cost of inspection and the failure cost [155].

Remaining useful life

prediction and predic-

tive maintenance

For the dependent failure models that involve degradation processes, we could apply the model to make remaining

useful life prediction based on condition-monitoring data [134]. The predicted remaining useful life can then be

used to support predictive maintenance planning. The added value of the dependent failure models can be validated

by comparing the results with a benchmark model that does not consider the dependencies.

Design optimization Reliability can be used as a constraint or an objective function in a design optimization problem. Then, the results

from a dependent failure model can be compared to that from a traditional model without dependencies. Typical

use cases include redundancy allocation and reliability-based design optimization [156], etc.
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E. Joint optimization of reliability, maintenance and other operational problems1

As shown in Table VI, maintenance and reliability optimization are two important use cases of dependent2

failure models with respect to decision-making. Recently, there is a growing trend in research to consider3

joint optimization of reliability, maintenance and other important operational objectives. For example, joint4

optimization of production scheduling and predictive maintenance of the machines is considered in [157]5

by developing an optimization model to minimize the total cost comprising of production cost, preventive6

maintenance cost, minimal repair cost for unexpected failures and tardiness cost. Zhang et al. [158] jointly7

optimized the production and maintenance plans for a parallel production system, where the dependency between8

production yield and the degradation process is considered. A joint optimization model is developed in [159] to9

determine the optimal redundancy and maintenance strategy needed to satisfy a given reliability requirement with10

lowest cost. Joint optimization of spare part supply and opportunistic condition-based maintenance for onshore11

wind farms is considered in [160] where the economic and graphical dependencies among wind turbines and12

the stochastic degradations of their components are considered. A promising future direction is to integrate the13

dependent failure models in the joint optimization model and investigate the impact of the dependencies on the14

optimal decisions.15

VII. CONCLUSION16

In this paper, we conduct a systematic and critical literature review on dependent failure behavior models17

in risk and reliability. In the systematic literature review, a total number of 1062 papers are collected from18

a carefully designed literature search protocol and analyzed through a meta-data and biliometric analysis. In19

particular, a semantic clustering is performed to identify the main research topics related to dependencies in20

risk and reliability in three periods of time: before 1994, 1995 − 2010 and from 2011 to present. The results21

of the analyses help to understand the main research topics in this domain and how they evolve over time.22

The top 10% most-cited papers from the systematic literature review are then selected for a critical literature23

reivew. First, the dependent failure behavior in different levels of a complex system, including failure mechanism,24

component, system, and system-of-system levels, are summarized in a hierarchical framework. This result could25

help a researcher identify the potential dependencies in a complex system that need to be considered. Then,26

the most important models for dependent failure behavior are critically reviewed. A classification framework27

is also proposed for models. Future researchers could benefit from this when they try to choose an appropriate28

model for their dependent failure behavior modeling problem.29

The results of our review emphasize once again that dependent failure modeling is a problem whose30

importance should never be overlooked. A direct consequence of failing to capture the dependent failure31

behavior is an inaccurate reliability/risk estimation, which will further impact the decisions made based on32

these assessments. Although substantial works have been done on this topics, our analyses still identify five33

important research gaps that deserve future investigations. We believe these research gaps, and the field of34

dependent failure behavior modeling in general, should and will attract more attentions from the academia35

and industry. The solution of these problems, together with introduction of promising new technologies like36

knowledge graph and physics-informed machine learning, will greatly improve our capability to accurately assess37

and reduce the risk, and significantly contribute to more reliable and resilient engineering systems and society.38
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