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This paper presents a systematic and critical literature review on dependent failure behavior modeling in risk and reliability. A literature search is conducted systematically based on pre-defined protocols. The resulting papers are first analyzed through a meta-data and bibliometric analysis, in which the trend of publication growth, important publication sources and authors, collaboration among the authors are identified. The evolution of research topics in three time periods (prior to mid-1990s, mid-1990s -2010 and 2010 -present) is also discussed through a semantic clustering: Early research (prior to mid-1990s) mainly came from nuclear risk assessment or statistical modeling. Due to the limitation of computational power, the models in this period are limited to small-scale and simplified systems. More computationally-demanding models, e.g., copula, frailty, dynamic fault trees and Bayesian network, emerged since mid-1990s. Another important research topic that appeared since mid-1990s is maintenance optimization considering dependencies. More recent research trends (since 2010) include the dependent failure models considering degradation processes and random shocks, and large-scale, complex engineering systems like critical infrastructure and cyber-physical systems.

Then, the most important papers from the literature search are chosen for a content analysis and critical review. The main results of the critical literature review include: First, we summarize the dependent failure behavior in different system hierarchies, i.e., failure mechanism level, component level, system level and systemsof-systems level. In each level, the main dependent failure behavior from literature is discussed with examples.

Second, we develop a classification framework for the dependent failure behavior models. Depending on whether the dependency mechanism is explicitly considered, we broadly classified the existing models into statistical dependency models and mechanistic dependency models. Statistical dependency models do not explicitly consider the dependency mechanisms but model them in terms of statistical association among the variables, and can be further divided into lifetime distribution models, system state models and degradation process models. Mechanistic dependency models consider the dependency mechanisms explicitly, and can be further divided into failure interaction models and failure propagation models. The most frequently-used models in each category are critically reviewed, based on which we identify five challenging problems the current dependency models face, give our perspectives on their possible solutions, and discuss future research opportunities.

Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review

I. INTRODUCTION

On the evening of 31 May 2009, flight AF447 took off as usual in the beautiful sunset of Rio de Janeiro, Brazil, intended to provide its 216 passengers with a nice and comfortable journey to a city of love and romance, Paris -But the love and romance never arrive. Shortly after taking off, the plane crashed into the Atlantic ocean, killing all the 228 people (including 12 crew members) onboard [START_REF] Et D'analyses | Final report on the accident on 1st june 2009 to the airbus a330-203 registered f-gzcp operated by air france flight af 447 rio de janeiro-paris[END_REF]. The tragedy shocked the entire world, as modern aircrafts like AF447, and modern complex engineering systems in general, have been designed with a large number of redundant safety systems connected in a "defensive-in-depth" manner. Such accidents could occur only if all these safety systems fail, which, according to classical reliability theory, is highly unlikely, given the assumption that the failures of the safety systems are independent from one another.

What went wrong, then? The AF447 accident was initiated by a wrong air speed measurement. To have such a failure event, all the three pitot tubes in the air speed measurement system have to fail simultaneously, which is considered highly unlikely if the three pitot tubes are independent. In the AF447 accident, however, the three pitot tubes do fail at the same time, since the plane flew into a thunderstorm and the low temperature froze the three pitot tubes simultaneously [START_REF] Et D'analyses | Final report on the accident on 1st june 2009 to the airbus a330-203 registered f-gzcp operated by air france flight af 447 rio de janeiro-paris[END_REF]. In other words, the failures of the three pitot tubes are dependent due to a shared common event. Similar dependent failure behavior appears frequently in practice. For example, various experiment observations discover that the presence of erosion accelerates the degradation process due to corrosion [START_REF] Nesic | Erosion corrosion and synergistic effects in disturbed liquid particle flow[END_REF]. Simultaneous failure of multiple safety barriers due to common cause events like environmental shocks or human errors has been acknowledged as one of the significant threat to nuclear and aerospace safety [START_REF] Stott | Common cause failure modeling: Aerospace versus nuclear[END_REF]. Failing to consider the dependent failure behavior in reliability analysis could severely overestimate of the reliability and significantly mislead decision makers.

Due to its extreme importance, dependent failure behavior has received great interest in the reliability community as early as 1960s. For example, Gumbel [START_REF] Gumbel | Bivariate exponential distributions[END_REF] presented a bivariate distribution for two marginal exponential lifetime distribution that are correlated. Krohn [START_REF] Krohn | Circuit model with statistical dependence[END_REF] modeled the statistical dependence among the seven failure modes in a electrical circuit. Today, the research on dependent failure behavior modeling has grown in substantial quantity, quality and diversity. A large number of models have been developed in the literature to describe dependent failure behavior in different hierarchies of a complex system. A good review of these works would be beneficial to the researchers and practitioners in the risk and reliability community for better understanding the state-of-the-art and identifying potential future research directions. Table I lists the related review articles and discusses their focuses and limitations. From Table I, we can conclude that the existing review papers can be improved from the following aspects: behavior models and presents a classification framework for them. In Section VI we discuss the challenges faced by the current models and possible future opportunities. Finally, we conclude this paper in Section VII.

II. RESEARCH METHODOLOGY

Our research methodology starts by identifying the research questions we intend to answer through the literature review:

1) What are the main research topics in the area of dependent failure behavior modeling in risk and reliability?

2) How do the research topics evolve over time?

3) What are the important sources to follow (journal, conference, key researchers)? 4) What are the challenges and opportunities for future research?

To answer these four questions, we conduct a systematic literature review following the methodology presented in Figure 1. The relevant papers are collected by a carefully-designed systematic protocol (see Sections II-A for detail). The collected papers are then analyzed statistically based on their meta-data and bibliometrics (see Section II-B for detail). Then, the important papers in the initial data set are selected for a content analysis and critically reviewed, in order to identity the challenges and opportunities for the current research (see Section II-C for detail). The research methodology in Fig. 1 is a combination a systematic literature review and a critical literature review. A systematic literature review is designed to collect and identify important papers, and have a broad perspective of the state-of-the-art of this field through bibliometric analysis. We intend to be as objective as possible by presenting clearly the protocol of data collection and the method of analysis (Sect. III). Then, the most important papers identified from the systematic literature review are critically reviewed by the authors. The aims of the critical review are to provide a classification framework for dependency phenomena to be modeled (Sect. IV), critically review the existing dependent failure behavior models used to model the dependency phenomena (Sect. V), and propose the authors vision on challenges and opportunities in this domain (Sect. VI).

A. Data collection

An initial literature search is conducted in the Web of Science Core Collection database based on predefined search query. We chose Web of Science (WoS) Core Collection because it is one of the most widely-accepted database for scientific research and it contains data from both journals and conferences. The search strategy is designed to limit the resulted papers only to the areas of dependencies in reliability and failure modeling. To do this, we require that the field "topic" in WoS has to include both "dependenc*" and either "reliability" or "failure". The symbol "*" means that any word starting with "dependenc", e.g., "dependency", "dependencies", "dependence" all match the search query. As the keyword "dependency" has been used very widely in other scientific domains like physics or microelectronics, we add a few constraints to further exclude unrelated papers:

A relevant paper must:

• contain keyword "reliability" or "failure";

• come from a limited range of research areas or published in a reliability-related journal.

The query we finally used for the initial literature search is given Figure 1, where TS, WC, SO are fields in the WoS database, representing Topic, Web of Science Categories and Publication Titles (i.e., journal names), respectively.

The initial literature search returns a total number of 2, 149 papers (As of December, 2022). However, a quick examination of the results reveals that although we already considered a number of constraints in the query, the results still contain a large number of unrelated publications. This is because, the keywords "dependency" and "reliability" all have diverse meanings. For example, papers discussing "temporal-dependency" of some events and the reliability of its statistical estimation match the defined query but are unrelated to our topic. To further remove these unrelated results, a screening is performed by performing a cursory review of the titles and abstracts of the initial results. After the screening, only 927 relevant papers are kept for further analysis.

Finally, we enrich the search results by manually adding another 135 papers that we find, based on our experience, crucial in this domain. The final data set for further analysis comprise of 1062 papers, as shown in Figure 1. One might wonder why the 135 manually added important papers are not captured by the search query defined in Figure 1. This is because, when designing the query, we add a few constraints to filter out irrelevant papers in order to improve the precision score of search query. While improving the precision, these constraints will inevitably reduce the recall score. For example, we could have some papers that are important but not published in the required field or journals. These papers are not captured by the designed search query.

We already tried our best to improve the search query so that a balance could be obtained between its precision and recall. Another important reason is that, the WoS database does not cover all the papers, especially the papers published early (e.g., before the 1990s) when the publications are not digitalized.

B. Meta-data and bibliometric analysis

Before thoroughly investigating their contents, the collected papers are preliminary analyzed based on their meta-data (title, abstract, author, publication source, publication year, etc.) and bibliometrix like citations [START_REF] Donthu | How to conduct a bibliometric analysis: An overview and guidelines[END_REF].

As shown in Figure 1, we mainly consider four analyses:

• Publication time analysis, which examines how does the number of publications evolves over time. This analysis will help us answer the research question 2 of this paper.

• Co-occurrence analysis, which aims at investigating the research areas and their evolution over time. This is done through a semantic clustering of the keywords from the title and abstract of each paper [START_REF] Van Eck | Citation-based clustering of publications using citnetexplorer and vosviewer[END_REF]. The results help us understand research questions 1 and 2 of this paper.

• Publication source analysis, which aims at identifying the important publication source. The results will help us answer research question 3 of this paper.

• Author analysis, which aims at identifying the important authors. This is done by checking the number of publications from each author. The results help us answer research question 3 of this paper.

The analyses are performed using open-source software VOSViewer [START_REF] Van Eck | Citation-based clustering of publications using citnetexplorer and vosviewer[END_REF] and Bibliometrix [START_REF] Aria | bibliometrix: An r-tool for comprehensive science mapping analysis[END_REF].

C. Content analysis and critical literature review

We then select a few important and representative papers for a deeper content analysis and critical review.

The papers are selected following a two-stage strategy: in the first stage, the top 10% most cited papers in every 10 years in the dataset are analyzed. We choose 10 years as an evaluation horizon as citations need time to accumulate. Then, in the second stage, based on the initial analysis, we define a few keywords to search for other highly relevant papers to enrich the content analysis and critical literature review.

Through the analyses, we intend to give more insights to research questions 1, 2 and 4 of this paper. In particular, we:

• summarize the commonly encountered dependent failure behavior in different hierarchies (failure mechanism, component, system and system-of-system levels) of a complex system (see Section IV).

• critically review important dependent failure behavior models and develop a classification framework for these models. (See Section V).

III. META-DATA AND BIBLIOMETRIC ANALYSIS

This section presents the results from meta-data and bibliometric analysis. The publication numbers over time are analyzed in Section III-A. Then, in Section III-B, we discuss how does the research topics in this area evolve over time through semantic clustering. Important publication sources and key researchers in this area are discussed in Sections III-C and III-D, respectively.

A. Publication growth

Figure 2 shows the number of publications in each year (blue bars). A clear growth trend can be discovered for the numbers of publications in this area. Looking at the number of papers each year, however, could be biased, as in general, people publish more papers in recent years than several decades ago. To adjust for the June 28, 2023 DRAFT the potential bias, we collect the total number of papers published in two flagship reliability journals, i.e., IEEE Transactions on Reliability and Reliability Engineering and System Safety, in the same period of time, as a measure of total number of publications related to risk and reliability in a given period of time. Then, we calculate the ratio between the blue bars in Figure 2 and the number of publications in these two journals. The result is presented as the red curve in Figure 2.

From Figure 2, there are two initial observations. First, both the absolute (blue bar) and relative (red curve) number of publications in this area grows overtime, indicating that dependency has become an increasingly popular topic in risk and reliability. Second, based on the slope of the growth curve, we discover two areas where research interests on dependency grows dramatically: one is in the mid-1990s and the other is around 2010. This observation indicates that some new research topics might arise in these two periods of time, which deserves further detailed analysis (see Section III-B).

Fig. 2: Publications by year.

B. Co-occurrence analysis

In this section, a co-occurrence analysis is conducted based on the title and abstract of the collected papers [START_REF] Van Eck | Citation-based clustering of publications using citnetexplorer and vosviewer[END_REF]. The result of such an analysis is a semantic network, where the nodes are words or phrases that appear in the titles or abstracts. The presence of links between nodes indicate that the two words/phrases tend to appear together in the same document. The size of the nodes indicates their appearance frequency, while the width of the link indicates the degree of correlation between two items. From the constructed network, one can identify different research topics by identifying clusters in the network. This is done by examining the network structure and the semantic meanings of the nodes. The analysis is conducted using VOSViewer [START_REF] Van Eck | Citation-based clustering of publications using citnetexplorer and vosviewer[END_REF].

As discussed in Section III-A, we can discover from Figure 2 that significant increments on research activities occurred around the mid-1990s (1995) and 2010. We intend to explore the cause of such growth by identifying the main research topics in each period. Therefore, we consider the three ranges for the co-occurrence analysis: The co-occurrence network for these papers are presented in Figure 3. From the figure, we can identify two key semantic clusters that represent different research topics, as shown in Table II. In general, the research considering dependency modeling in this period is relatively scarce, with a strong emphasize on developing statistical models for joint probability distribution from marginal distributions. Models that consider the detailed description of dependency mechanisms, especially on a system level, are not discussed extensively. The very few existing probabilistic models are developed only for relatively simple systems with exact (or approximate) solutions for system reliability (e.g., see [START_REF] Ge | Exact reliability formula for consecutive-k-out-of-n: F systems with homogeneous markov dependence[END_REF]). Part of the reason might be, in this period of time, the computational and simulation capability is not well-developed, which prevents the researchers from developing very sophisticated (but realistic) models for dependency that cannot be solved analytically. Fig. 3: Co-occurrence network for papers prior to 1994.

2)

From 1995 to 2009: A total number of 261 papers (≈ 18 per year) in our literature search results was published in this period of time. The co-occurrence network for this period of time is presented in Figure 4.

From Figure 4, we discover three clusters. The representative keywords for each cluster are listed in Table III. Boudali and Dugan [START_REF] Boudali | A discrete-time bayesian network reliability modeling and analysis framework[END_REF], Cepin [START_REF] Čepin | Depend-hra-a method for consideration of dependency in human reliability analysis[END_REF] Among the three clusters, cluster 1 and 3 exist also in an earlier time period (see the previous subsection).

However, compared to the previous period, copula [START_REF] Huard | Bayesian copula selection[END_REF] and frailty models [START_REF] Ripatti | Estimation of multivariate frailty models using penalized partial likelihood[END_REF] have emerged in cluster 1 while common cause failure has become an important topic in cluster 3. The second cluster, which considers system reliability modeling considering dependent components, is a new research cluster that emerges in this period.

Some new models, e.g., dynamic fault tree and Bayesian network, also appear in this period. Also, the study about maintenance planning given dependencies emerges in cluster 2. The new models and problems in cluster 2 partly explain the first significant growth trend in Figure 2. 3) 2010 -present: A total number of 799 papers (≈ 61 papers per year) in our literature search results

were published in this period. We can discover six clusters in Figure 5. Fig. 5: Co-occurrence network for papers published from 2010 to present.

• Mechanical and civil engineering, e.g., Probabilistic Engineering Mechanics, International Journal of Critical Infrastructure Protection.

Besides, there are two conferences that also contribute large amounts of papers in our search result:

• European Conference on Safety and Reliability (ESREL) and

• Annual Reliability and Maintainability Symposium (RAMS).

These publication sources could be watched carefully for future research updates.

D. Author analysis

To identify important researchers in this field, we analyze the total number of papers by each author in our collected database. The result is given in Figure 7. Another interesting analysis is to identify the collaboration 

IV. DEPENDENT FAILURE BEHAVIOR IN DIFFERENT SYSTEM HIERARCHIES

In this section, we present the first result of the content analysis: a summary of frequently encountered dependent failure behavior in the literature. The important papers identified from the systematic literature review and biliometric analysis are analyzed manually by the authors to identify the frequently encountered dependent failure behavior. A classification framework for the dependent failure behavior is proposed by the authors from a systems engineering perspective: the frequently encountered dependent failure behavior is summarized based on the hierarchies of a complex engineering system in which the dependent failure behavior occurs, as shown in Figure 9. Four levels of system hierarchies are considered:

• The bottom level aims at modeling failure mechanisms, i.e., the physical, chemical, thermodynamic or other processes that result in failure [START_REF] Zeng | Using pof models to predict system reliability considering failure collaboration[END_REF]. The impact of dependencies on failure mechanisms is discussed in Section IV-A.

• The component level modeling focuses on the failure behavior of components in a system. Usually, a component might be subject to one or several failure mechanisms. Section IV-B, then, discusses the dependencies among the failure mechanisms in a component.

• On the next modeling level, the interactions and dependencies among components are considered to develop failure behavior models for the system (see Section IV-C).

• System-of-system level mainly concerns large-scale interconnected complex systems that, by themselves, are comprised of multiple heterogeneous complex systems. The major difference between a system-ofsystem and a "system", according to the authors, is that, the scale and degree of complexity of a systemof-system is much larger than a "system", which requires a different modeling approach than the top-down bottom-up approaches in traditional systems engineering literature. Section IV-D discusses the dependent failure behavior that could occur on the system-of-system level.

Fig. 9: Dependent failure behavior in different system hierarchies.

A. Failure mechanism level

The physics-based failure mechanism models are often used as the smallest building blocks to construct more complex system reliability models following a bottom-up approach [START_REF] Zeng | Using pof models to predict system reliability considering failure collaboration[END_REF]. As shown in Figure 9, dependent failure behavior can be observed in a single failure mechanism model. In the failure mechanism level, typical dependent failure behavior includes parameter dependency and degradation state dependency.

1) Parameter dependency: Parameter dependency arises naturally when the model parameters in the failure mechanism model are statistically associated/correlated. For example, correlations are reported between wind speed and wind direction, and between Young's modulus and Poisson's ratio, both of which are model parameters in a failure mechanism model [START_REF] Zhang | Long-term performance assessment and design of offshore structures[END_REF]. The exact cause of such a statistical association could be one parameter is related to another in some ways, or because the correlated parameters are influenced by some common factors like operating environment. An early but classical example of parametric dependencies can be found in the works of Kiureghian and Liu [START_REF] Liu | Multivariate distribution models with prescribed marginals and covariances[END_REF][START_REF] Der Kiureghian | Structural reliability under incomplete probability information[END_REF], where they considered a generic limit state equation as a physics-based failure mechanism model with dependent parameters X. Huang and An [START_REF] Huang | A discrete stress-strength interference model with stress dependent strength[END_REF] shore structure where the dependency among the input parameters was captured using vine copulas. Zheng et al. [START_REF] Zheng | Hybrid bayesian-copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties[END_REF] considered the dependency between wind speed and direction through Bayesian copulas and used them to evaluate the deformation-and comfort-based total damage probability.

2) Degradation state dependency: For degradation failure mechanisms, another type of dependency could arise when the new degradation state depends not only on the current state, but also on the historical states [START_REF] Xi | Remaining useful life prediction for degradation processes with memory effects[END_REF].

In literature, this kind of dependency is also referred to as long-term/long-range dependency, memory effect or history-dependenct degradation [START_REF] Xi | Remaining useful life prediction for degradation processes with memory effects[END_REF]. This phenomenon can be explained by the fact that the two adjacent moments might be subject to similar environment or use conditions [START_REF] Xi | Remaining useful life prediction for degradation processes with memory effects[END_REF]. Xi et al. [START_REF] Xi | Remaining useful life prediction for degradation processes with memory effects[END_REF] presented a numerical index called the Hurst exponent to quantitatively measure the degree of the degradation state dependency, and use it to investigate the degradation state dependencies in two real datasets (see Section II of [START_REF] Xi | Remaining useful life prediction for degradation processes with memory effects[END_REF] for details).

Degradation state dependency challenges the Markovian degradation models (e.g., the models based on Wiener or gamma process [START_REF] Zhang | Stochastic process-based degradation modeling and rul prediction: from brownian motion to fractional brownian motion[END_REF]), as most of them are based on the assumption that the future degradation state only depends on the current state but not the history [START_REF] Zhang | Stochastic process-based degradation modeling and rul prediction: from brownian motion to fractional brownian motion[END_REF]. A perturbed Markovian process model is developed by Oumouni and Schoefs [START_REF] Oumouni | A perturbed markovian process with state-dependent increments and measurement uncertainty in degradation modeling[END_REF] where degradation state dependency is considered by assuming that the degradation increments are state-dependent but perturbed by a Gaussian white process with degradation-dependent variances.

B. Component level

A component is likely to experience multiple failure mechanisms that are mutually dependent. For example, experimental data showed that corrosion and erosion of materials can accelerate each other, resulting in faster degradation [START_REF] Nesic | Erosion corrosion and synergistic effects in disturbed liquid particle flow[END_REF]. Another example is that when test specimens are susceptible to high temperatures and heavy loads, fatigue interacts with creep so that the specimens' times-to-failure are severely reduced [START_REF] Zhu | A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys[END_REF]. As shown in Figure 9, we can distinguish two types of dependent failure behavior: direct influence and common factors.

1) Direct influence:

A schematic illustration of direct influence is given in Figure 10, where the dependency between the two failure mechanisms (F M 1 and F M 2 ) are caused by the direct influence from F M 2 to some parameters (x dep ) of F M 1 . To model the direct influence among failure mechanisms explicitly, a graphical method called an interaction graph is developed in [START_REF] Zeng | A compositional method to model dependent failure behavior based on pof models[END_REF]. Based on the graph, the component failure behavior model considering the dependencies among failure mechanisms can be derived.

June 28, 2023 DRAFT Fig. 10: A schematic of direct influence.

A good example of the direct influence can be found in the works of Peng et al. [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF] on failure of Micro-Electro-Mechanical Systems (MEMS) device. According to an earlier test performed at Sandia National Laboratory [START_REF] Tanner | Wear mechanisms in a reliability methodology[END_REF], an MEMS can fail due to either a degradation failure caused by wear, or a catastrophic failure caused by a random shock process. The two failure mechanisms are dependent as the random shock process not only causes the catastrophic failure, but also brings additional increments to the degradation process. Another example of the direct influence can be found in [START_REF] Zeng | A compositional method to model dependent failure behavior based on pof models[END_REF], where dependency between adhesive and abrasive wear in a sliding spool is considered. The adhesive wear depends on the surface roughness, which could be impacted by the abrasive wear. After examining the degradation data, Fang et al. [START_REF] Fang | Copula-based reliability analysis of degrading systems with dependent failures[END_REF] found out that the degradation processes of the benzene ring mass loss and the stretching of aryl ether are statistically correlated. They identified cause of such correlation as shared common factors (temperature, humidity, as well as UV spectrum and intensity) between the two degradation processes [START_REF] Fang | Copula-based reliability analysis of degrading systems with dependent failures[END_REF]. In [START_REF] Wang | Remaining useful life prediction considering joint dependency of degradation rate and variation on time-varying operating conditions[END_REF], the results of an accelerated degradation test on a bearing under different rotational speeds reveal that both the degradation rate and variation in the failure mechanism model are associated with the rotational speed. Therefore, the rotational speed is a common factor affecting the two degradation parameters.

C. System level

Systems are made up of components. Therefore, when considering the system's failure behavior, the dependencies among the components need to be taken into account. In the results of our literature search, four types of dependencies among the components can be found. These four dependencies can be further classified into two categories, based on whether the dependency leads to the initial failure (failure-inducing dependency), or appears after the initial failure occurs (post-failure dependency), as shown in Figure 9.

1) Failure-inducing dependency: As can be seen in Figure 9, failure-inducing dependency includes stochastic dependency and common cause failure. Stochastic dependency arises when the degradation or failure processes of components are stochastically dependent or correlated [START_REF] Keizer | Condition-based maintenance policies for systems with multiple dependent components: A review[END_REF]. As in the component level, the root cause of the stochastic dependency could be direct influence or common factors (See Section IV-B). An example of stochastic dependency in the system level can be found in [START_REF] Yang | Reliability analysis of repairable systems with dependent component failures under partially perfect repair[END_REF], where stochastic dependency appears among the four stations in a manufacturing system as the times-to-failure of the four stations are statistically correlated.

Stochastic dependency could also involve degradation processes in different components. For example, in [START_REF] Do | Modelling and application of condition-based maintenance for a two-component system with stochastic and June 28, 2023 DRAFT economic dependencies[END_REF],

a system comprised of two interacted gears is tested. The results show that the degradation rate of one gear is dependent on the degradation state of the other. In [START_REF] Yousefi | Reliability analysis of systems considering clusters of dependent degrading components[END_REF], the component degradation paths are grouped as different clusters, where in each cluster, the degradation paths from the different components are dependent. For example, in a sliding spool, the spool and sleeve are physically in touch with the same hydraulic oil and share the same operational conditions. Therefore, they form a dependency cluster and the degradation path models share a common factor. The degradation process of one component could also impact the lifetime distribution of another component. For example, in [START_REF] Zheng | A dynamic inspection and replacement policy for a two-unit production system subject to interdependence[END_REF], the failure rate of a motor is modeled as a baseline failure rate times an adjustment factor that depends on the vibration magnitude of a pump in the same system.

According to the definition from IEC, Common-Cause Failures (CCFs) are simultaneous failures of multiple components of a system due to a shared root cause [START_REF] Fan | A stochastic hybrid systems model of common-cause failures of degrading components[END_REF]. According to [START_REF] Fleming | Reliability model for common mode failures in redundant safety systems[END_REF], common cause failures could occur due to undetected design errors, operator and maintenance errors, equipment failure caused by the failure of a different equipment, and equipment failure resulting from some unforeseen external event. For example, in [START_REF] Fan | A stochastic hybrid systems model of common-cause failures of degrading components[END_REF], a protection system comprised of four safety barriers is considered. However, two common cause failure events could affect the system: one is caused by tornado and affects three safety barriers while the other is caused by an earthquake and affects all four safety barriers [START_REF] Fan | A stochastic hybrid systems model of common-cause failures of degrading components[END_REF]. Another example of common cause failure can be found in [START_REF] Zuo | Evidential network-based failure analysis for systems suffering common cause failure and model parameter uncertainty[END_REF] on an oil supply system to an aero-engine. Two common cause failures might affect the system: (1) The differential pressure switch and the oil catheter can fail at the same time due to the physical interactions between them; (2) The warning subsystem and the oil filter fail simultaneously when an extreme work load appears due to an external shock from the environment.

2) Post-failure dependency: As shown in Figure 9, post-failure dependency includes load-sharing and functional dependency. Load-sharing often occurs when several components share the same load. Then, the failure of one component increases the load on the remaining ones and affects their failure behavior. A detailed real-world example of load-sharing is presented in [START_REF] Ruan | Reliability analysis and state transfer scheduling optimization of degrading load-sharing system equipped with warm standby components[END_REF], where they considered a simplified model for an aircraft hydraulic system of four identical active pumps and one backup pump working in warm-standby mode. The four active pumps jointly share the system working load until all the active pumps fail. If any working pump fails, the degradation of the remaining pumps accelerates as the the loads on the remaining pumps are increased. Apart from affecting the degradation of the remaining components, load-sharing could affect directly the failure rate of the remaining components. For example, in [START_REF] Jamali | Opportunistic maintenance model for load sharing k-out-of-n systems with perfect pm and minimal repairs[END_REF], a load-sharing 3-out-of-7 CNC machine system is considered.

Due to load-sharing, if any machine fails, the failure rate of the remaining machine is increased, which is modeled as a baseline failure rate multiplied by an adjustment factor related to the load on the remaining June 28, 2023 DRAFT machine.

Functional dependency is defined as the functions of some components (referred to as functional dependent components) rely on the function of other components (referred to as functional trigger components) [START_REF] Wang | Competing failure analysis in phased-mission systems with functional dependence in one of phases[END_REF].

The failure of one trigger component causes other dependent components within the same system to become unusable or isolated from the system. An example of functional dependency is given in Wang et al. [START_REF] Wang | Reliability analysis of smart home sensor systems subject to competing failures[END_REF], where sensors are functionally dependent on relays as the former requires the latter to provide communication supports.

If the relay in a functional group fails, the sensors in the same functional group are isolated. In [START_REF] Zhao | Competing failure analysis considering cascading functional dependence and random failure propagation time[END_REF], a smart home is considered where the sensors in the rooftop solar electric system is functionally dependent on a relay of the energy storage system, which is further functionally dependent on a relay in the energy management system. The reliability of this smart home considering the cascading of functional dependencies is analyzed based on a new combinatorial method in [START_REF] Zhao | Competing failure analysis considering cascading functional dependence and random failure propagation time[END_REF].

D. System-of-system level

In the literature, there are a lot of complex engineering systems that can be regarded as a system-of-system, e.g., critical infrastructure, cyber-physical system, industrial Internet-of-things, smart grid. Luiijf and Klaver [START_REF] Luiijf | Analysis and lessons identified on critical infrastructures and dependencies from an empirical data set[END_REF] analyzed a database of critical infrastructure failures reports from 2004 until the mid-2018, and concluded that, for a complex system-of-system like critical infrastructure, two types of dependent failure behavior can be identified: cascading failure and spatial dependency (in fact, in [START_REF] Luiijf | Analysis and lessons identified on critical infrastructures and dependencies from an empirical data set[END_REF], they use the term common cause failure to describe spatial dependency). Cascading failure is caused by the propagation of failures among the individual systems comprising the system-of-system, while spatial dependency refers to the fact that the components in a geographical region tends to fail together when impacted by the same event like natural hazards.

1) Cascading failure: A good example of cascading failure in systems-of-systems can be found in [START_REF] Atat | Cascading failure vulnerability analysis in interdependent power communication networks[END_REF],

where the initial failures can propagate in an interconnected power-communication network: A failure in a node in the power network can propagate to the interconnected nodes in the communication network, as the latter loses electricity supports from the power network. Bellè et al. [START_REF] Bellè | Modeling and vulnerability analysis of interdependent railway and power networks: Application to british test systems[END_REF] discussed an interconnected rail-power network. The failure in the power network can propagate within itself due to load shedding, and can propagate to the connected railway network, as the traction stations in the railway network cannot function without the electricity supported by the power network. In [START_REF] Yin | Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network[END_REF], an example is presented where an initial failure in one line could spread and cause congestion in the whole network, since the passengers affected by the failed line have to redirect themselves and increase the congestion on the other parts of the network.

2) Spatial dependency: Electrical power systems subject to seismic risks are good examples of spatial dependency, as the fragility of the power system components depends on the peak ground acceleration caused by the earthquake [START_REF] Espinoza | Risk and resilience assessment with component criticality ranking of electric power systems subject to earthquakes[END_REF]. An electricity distribution and metro networks in London are examined in [START_REF] Goldbeck | Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models[END_REF], where spatial dependency arises when the network is subject to the risk of flooding: if some assets are located in the same flood zones, they fail simultaneously due to the damages from the flood. In [START_REF] Nguyen | Joint maintenance planning of deteriorating co-located road and water infrastructures with interdependencies[END_REF], examples of spatial dependency in a deteriorating water infrastructure and transportation infrastructure are given, including both physical dependency from road to pipe, and operational dependency from pipe to road. He and Cha [START_REF] He | Modeling the damage and recovery of interdependent critical infrastructure systems from natural hazards[END_REF] discussed an infrastructure network, consisting of power, water and telecommunication systems under the threat of hurricanes. The arrival of a hurricane can destroy several items in a geographical area at the same time, creating spatial dependency in the systems-of-systems.

V. MODELS FOR DEPENDENT FAILURE BEHAVIOR

In this section, we aim to critically review important dependent failure models and propose a classification framework based on their inherent natures. The developed classification framework is presented in Figure 12.

We can first distinguish broadly between statistical and mechanistic dependency models. Statistical dependency models do not explicitly consider the mechanisms from which the dependencies arise. Rather, the focus is to develop stochastic models to capture the dependencies in terms of statistical association among variables in the model. In contrast, mechanistic dependency models first look at the mechanisms that generate the dependencies, and then develop the dependency models based on the dependency mechanisms. It should be noted that the mechanistic models can be either stochastic or deterministic. The key difference between the mechanistic and statistical dependency model is whether the dependency mechanism is considered explicitly, not whether the model is stochastic or deterministic.

Fig. 12: A classification framework for dependent failure behavior models.

The statistical dependency models can be further divided into lifetime distribution models, system state models and degradation process models, as shown in Figure 12 (See Section V-A for details). Lifetime distribution and system state models both belong to a broader class of random variable models, as they model the statistical dependencies among random variables. In the lifetime distribution models, the considered random variables are time-to-failure, while in system state models, the random variables considered are state variables that often take discrete state values (binary or multi-state) that represent the state of components and systems. Unlike the lifetime distribution and system state model, which only models the result of the failure evolution process, degradation process models focuses on the failure evolution process itself. In particular, the statistical dependencies among degradation processes are taken into consideration in these models.

Based on whether the dependency mechanism depends on an initial failure, the mechanistic dependency models can be further divided into failure interaction models and failure propagation models. The failure interaction models consider the interaction among the individual failure processes explicitly; while the failure propagation models focus on the mechanisms that the initial failures propagate and cause subsequent failures.

The different types of mechanistic dependency models are discussed in detail in Section V-B.

It should be noted that the focus of this section is to review the models frequently used for dependency modeling, while in Sect. IV, what we reviewed is the possible dependent failure behavior in different system hierarchies. Different models might be suitable to be applied on only certain system hierarchies. Table V summarizes the application levels of different models. 

× × × × × × Component level × × × × × × × × System level × × × × × × System-of-system level × × × ×
A. Statistical dependency models 1) Lifetime distribution models: Lifetime distribution models focus on modeling the statistical dependency among lifetime distributions. As shown in Figure 12, lifetime dstribution models can be further divided into multivariate distribution model, frailty model and copula model.

Multivariate distribution model

In the multivariate distribution-based models, the joint distribution of dependent marginal lifetime distributions is modeled directly by multivariate distributions. Research on multivariate distribution-based models can be dated back to as early as the 1960s. A good example of the multivariate distribution model is the Marshall-Orkin model developed in [START_REF] Marshall | A multivariate exponential distribution[END_REF]:

P (X > s, Y > t) = e -λ1s-λ2t-λ12 max(s,t) , s, t > 0. (1) 
This model and its multivariate extensions have been widely applied, not only because it has exponential marginals, but also its physical basis. For example, one way to look at this model is to view it as the lifetime of a two-component series system subject to two fatal shocks affecting the two components individually (with arrival rates λ 1 and λ 2 , respectively), and a common-cause shock that fails the two components simultaneously (with arrival rate λ 12 ). The parameters in the multivariate distribution model can be estimated based on lifetime data, collected from in-lab testing or the field. For example, the parameter of a generalized Mashall-Orkin distribution can be estimated using the EM algorithm [START_REF] Kundu | Estimating the parameters of the marshall-olkin bivariate weibull distribution by em algorithm[END_REF] and Bayesian methods [START_REF] Kundu | Bayes estimation for the marshall-olkin bivariate weibull distribution[END_REF].

Multivariate distribution models have known and explicit form of the joint distribution, which is useful for some theoretical analyses. However, to estimate the distribution parameters, we need a large number of highdimensional time-to-failure data, which might be difficult to obtain in practice. Another potential drawback is that, deriving the system reliability from the joint distribution of component time-to-failures is not a trivial task, except for some simple cases like series and parallel systems [START_REF] Jia | Reliability research of dependent failure systems using copula[END_REF].

Frailty model

Frailty models attempt to derive the joint distribution of lifetimes from the marginal distributions. The basic assumptions in frailty models are that (1) the marginal lifetime distributions are conditional independent given some unobserved frailty terms, and (2) the hazard functions of the different marginal lifetime distributions share a common frailty term, which describes the dependency arising from common factors affecting different samples. For example, in the commonly used gamma frailty model, the joint cumulative distribution function of the lifetimes T 1 , T 2 , • • • , T k given a common frailty term Z is assumed to be [78]

P (T 1 < t (1) , T 2 < t (2) , • • • , T k < t (k) | Z) = G(t (1) , t (2) , • • • , t (k) | Z) = e -Z• k j=1 Λ(t (j) ) .
(

) 2 
where t (1) , t (2) , • • • , t (k) are realizations of the corresponding random variables, Z is a shared frailty term that is assumed to follow a gamma distribution Z ∼ Gamma(w, τ ), and Λ(t (j) ) is the cumulative hazard function of the marginal distribution T j . The individual hazard function is often further assumed to follow

Cox's proportional hazard model [START_REF] Cox | Regression models and life-tables[END_REF]. The frailty term can follow other distributions as well, resulting in a variety of frailty models. Hougaard [START_REF] Hougaard | Frailty models for survival data[END_REF] summarized different frailty distributions used in the frailty model and discussed their effects.

Frailty models are often used in reliability engineering for lifetime data analysis and test planning. For example, Liu [START_REF] Liu | Planning of accelerated life tests with dependent failure modes based on a gamma frailty model[END_REF] Frailty models allow us to construct the joint distribution based on the marginal distribution. Besides, the dependency structure in the frailty model have clear physical explanations (shared common factors affecting multiple components). However, the assumptions of shared frailty might not always hold in practice [START_REF] Liu | Planning of accelerated life tests with dependent failure modes based on a gamma frailty model[END_REF]. Also, as compared to the copula models to be discussed in the next sub-section, the frailty model works well with dependencies among the latent failure times, but cannot be applied directly to model the dependencies among degradation processes.

Copula model

Copula models are another popular model that constructs the joint probability distribution of correlated random variables based on their marginal distributions [START_REF] Nelsen | An introduction to copulas[END_REF]. A copula function C(•) is defined as a joint distribution function of standard uniform random variables

U i ∼ U (0, 1), i = 1, 2, • • • , p,: C(u 1 , u 2 , • • • , u p ; θ c ) = P (U 1 < u 1 , U 2 < u 2 , • • • , U p < u p ), (3) 
where θ c are the parameters of the copula function. According to Sklar's Theorem (see [START_REF] Nelsen | An introduction to copulas[END_REF]), for a joint distribution of p random variables with continuous marginals

F i (•), i = 1, 2, • • • , p, one can always find a copula function C(•) so that [83] F (x 1 , x 2 , • • • , x p ) = C(F 1 (x 1 ), F 2 (x 2 ), • • • , F p (x p ); θ c ). (4) 
Various copula functions have been proposed with different functional form of C(•) and statistical properties.

For a review of the commonly used copula function, readers can refer to [START_REF] Nelsen | An introduction to copulas[END_REF].

Copulas have been widely used to consider the dependencies among time-to-failures. Jia et al. [START_REF] Jia | Reliability research of dependent failure systems using copula[END_REF] used copula functions to model the joint distribution of component lifetimes, and then derived the expressions of commonly-used reliability indexes for series, parallel and k-out-of-n systems. Eryilmaz [START_REF] Eryilmaz | Multivariate copula based dynamic reliability modeling with application to weighted-k-out-of-n systems of dependent components[END_REF] applied Clayton and Gumbel copulas to model the dependent lifetimes of the components in a weighted-k-out-of-n system and calculated the system reliability. Navarro and Durante [START_REF] Navarro | Copula-based representations for the reliability of the residual lifetimes of coherent systems with dependent components[END_REF] considered a general coherent system and derived the residual reliability based on the copula representation for the component lifetimes. Eryilmaz [START_REF] Eryilmaz | Estimation in coherent reliability systems through copulas[END_REF] considered a coherent system with dependent components modeled by an Archimedean copula and developed a moment estimation method for the component lifetime distribution based on system-level testing data. Zhang et al. [START_REF] Zhang | Statistical inference of accelerated life testing with dependent competing failures based on copula theory[END_REF] derived an maximum likelihood estimation for accelerated life testing data comprised of multiple dependent failure modes that are described using copulas. Gu et al. [START_REF] Gu | Reliability calculation method based on the copula function for mechanical systems with dependent failure[END_REF] developed a maximum likelihood estimation for a copula function used to model the multiple correlated failure modes in a mechanical system. Copula functions have also been applied for modeling degradation processes, which will be discussed in Section V-A3.

A significant strength of copula models, as shown in Eq. ( 4), is that it separates the marginal behavior, as represented by the F i (•)s, from the dependence structure described in C(•). However, the methods used for copula-based dependency models have significant mathematical complexity in comparison to other methods. It is also difficult to associate a physical explanation to its parameters [START_REF] Meango | Failure interaction models for multicomponent systems: a comparative study[END_REF]. Another pratical problem when trying to apply the copula models is how to select the most appropriate copula functions [START_REF] Huard | Bayesian copula selection[END_REF].

2) System state models: System state models focus on the statistical dependencies among random variables that represent the system/component states. As shown in Figure 12, system state-based models mainly include combinatorial models, state space models and Bayesian network.

Combinatorial models

Combinatorial models are system reliability models that intend to derive the system state variable as a function (Boolean function for binary systems and multi-value functions for multistate systems) of component state variables by considering all combinations of component states that lead to a system failure [START_REF] Trivedi | Reliability and availability engineering: modeling, analysis, and applications[END_REF]. Typical combinatorial models include reliability block diagrams, fault tree/event trees, decision diagrams, universal generating function, etc. [START_REF] Trivedi | Reliability and availability engineering: modeling, analysis, and applications[END_REF]. Traditionally, combinatorial models assume that the basic events are independent.

In recent years, however, a large number of extended combinatorial models have been proposed to consider dependencies.

A large variety of the extended combinatorial models aim at considering the dependencies among basic events by their joint failure probability. An intuitive approach, called the implicit approach [START_REF] Vaurio | An implicit method for incorporating common-cause failures in system analysis[END_REF][START_REF] Vaurio | Treatment of general dependencies in system fault-tree and risk analysis[END_REF], calculates the system reliability by simply replacing the multiplication of failure probabilities of the dependent basic events with their joint probability (P (X 1 ) • P (X 2 ) → P (X 1 ∩ X 2 )). The joint failure probability is assumed to be known or can be derived based on conditional probabilities [START_REF] Vaurio | Treatment of general dependencies in system fault-tree and risk analysis[END_REF]. Vaurio [START_REF] Vaurio | Treatment of general dependencies in system fault-tree and risk analysis[END_REF] presented a general rule for transforming any groups of n dependent events into 2 n -1 s-independent virtual events whose occurrence probability can be obtained based on the joint probabilities of the original dependent events. Bobbio et al. [START_REF] Bobbio | Improving the analysis of dependable systems by mapping fault trees into bayesian networks[END_REF] transformed fault trees into a Bayesian network, in which the dependencies among basic events can be captured naturally. Tolo and Andrews [START_REF] Tolo | Fault tree analysis including component dependencies[END_REF] introduced a novel methodology based on binary decision diagrams for the analysis of fault trees that allows considering component dependencies and dynamic features in the fault trees.

Combinatorial models have been extended to consider other types of dependencies. For example, the implicit approach was applied in [START_REF] Vaurio | An implicit method for incorporating common-cause failures in system analysis[END_REF] to model the dependency caused by common cause failure in fault trees. Andrews

and Dunnett [START_REF] Andrews | Event-tree analysis using binary decision diagrams[END_REF] proposed a binary decision diagram-based model to consider the dependencies in event trees, which are caused by common cause failures due to shared basic events. Post-failure dependencies (see Section IV-C) can also be considered in combinatorial models. For example, Sun and Andrews [START_REF] Sun | Identification of independent modules in fault trees which contain dependent basic events[END_REF] developed an efficient algorithm to identified the sections in a fault tree that are subject to post-failure dependencies and applied Markov modeling only for the identified sections. Dynamic fault trees have been developed as an extension of fault trees to consider post-failure dependencies by introducing new gates, like functional dependency gates [START_REF] Meshkat | Dependability analysis of systems with on-demand and active failure modes, using dynamic fault trees[END_REF]. Multi-valued decision diagram were used in [START_REF] Mo | A multiple-valued decision diagram based method for efficient reliability analysis of non-repairable phased-mission systems[END_REF] to model the stochastic dependencies among the component states in different phases of a phased-mission system.

Extending combinatorial models to capture dependencies can be beneficial as combinatorial models are widely used in risk and reliability and one could easily make use of existing code/simulation tools to assist the reliability analysis. However, a common limitation of these approaches is that, the derivation of the extended model needs to be done in a case-by-case manner, and for complex system structure, one cannot guarantee obtaining the required system reliability function. Also, the complexity of deriving and calculating the model grows significantly when the system size increases, which limits the application of such methods on a large-scale system with complex structures.

State space models

According to Trivedi and Bobbio [START_REF] Trivedi | Reliability and availability engineering: modeling, analysis, and applications[END_REF], apart from the combinatorial models, system reliability can also be modeled by state space models like Markov models and Stochastic Petri net models. These models get their names because these models enumerate all the possible system states to form a finite state space, and calculate the system reliability and availability by modeling the transitions among the system states. State space models can naturally capture the dependencies arising from the conditional dependence of some component states on the state of the other components. Thus, they can be naturally applied to model post-failure dependencies like load sharing, functional dependencies and failure propagation. For example, a Markov model is used as a benchmark model for an imperfect coverage system subject to functional dependency [START_REF] Xing | Combinatorial reliability analysis of imperfect coverage systems subject to functional dependence[END_REF]. A semi-Markov model is used in [START_REF] Zhou | Semi-markov based dependability modeling of bitcoin nodes under eclipse attacks and state-dependent mitigation[END_REF] to model bitcoin nodes under eclipse attacks, where the dependency exists as different state has a different migration behavior. Petri net is also a widely-used state space model for describing dependencies. For example, Whiteley et al. [START_REF] Whiteley | Simulation of polymer electrolyte membrane fuel cell degradation using an integrated petri net and 0d model[END_REF] developed a comprehensive Petri-Net model integrated with a 0-D fuel cell performance model of the fuel cell system to develop a more accurate degradation model for a polymer electrolyte membrane fuel cell considering harbouring dependencies between multiple failure modes.

State space models can directly describe various dependencies of some component states on the states of the other components. Therefore, they are commonly used as a benchmark for validating the newly developed models. However, they are required to be defined over the global state space of the system, thus incurring into the well-known state-space explosion problem for large-scale systems [START_REF] Xing | Bdd-based reliability evaluation of phased-mission systems with internal/external common-cause failures[END_REF]. Also, state space models have analytical solutions only for some special cases (e.g., Markov models). For a general system without analytical solutions, evaluating the time-dependent reliability through numerical methods is also very computationally intensive [START_REF] Zeng | Resilience analysis of multi-state systems with time-dependent behaviors[END_REF].

Bayesian network

Bayesian networks are widely used to represent uncertain knowledge and derive the joint probability distribution between random variables in a compact way. A Bayesian network is comprised of a tuple < V, E, P >, where V and E represent the nodes and the edges of a directed acyclic graph, and P is a probability distribution over V [START_REF] Bobbio | Improving the analysis of dependable systems by mapping fault trees into bayesian networks[END_REF]. Discrete random variables V = [X 1 , X 2 , • • • , X n ] are assigned to the nodes, while the edges E represent the causal probabilistic relationship among the nodes. The joint probability distribution of the nodes can be calculated in a compact way:

P [X 1 , X 2 , • • • , X n ] = Π n i=1 P [X i | Parents(X i )] (5) 
Equation ( 5) provides a flexible way of calculating the joint probability distribution of dependent basic events.

For example, Bobbio et al. [START_REF] Bobbio | Improving the analysis of dependable systems by mapping fault trees into bayesian networks[END_REF] presented a general protocol of using Bayesian network for system reliability analysis, where component and system states become nodes in the network and the failure logic is represented by the conditional probability tables attached to the nodes. The dependencies can be captured by adding edges between the dependent nodes and deriving the joint probability distribution through the calculation rules in Eq.

(5). Khakzad et al. [START_REF] Khakzad | Quantitative risk analysis of offshore drilling operations: A bayesian approach[END_REF] applied a Bayesian network to calculate the blowout risk in the process industry and showed that, compared to conventional probabilistic risk assessment models like event tree and bow-tie models, the benefits of a Bayesian network is its flexibility to capture various dependencies between basic events and due to common cause failures. To consider the time-dependent behavior, especially the degradation of dependent components, Rebello et al. [START_REF] Rebello | An integrated approach for system functional reliability assessment using dynamic bayesian network and hidden markov model[END_REF] proposed a system functional reliability assessment model based on a dynamic Bayesian network and hidden Markov model. Morato et al. [START_REF] Morato | Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through bayesian networks and deep reinforcement learning[END_REF] used a dynamic Bayesian network to capture the probabilistic dependencies in a deteriorating system, based on which a deep decentralized multi-agent actor-critic reinforcement learning approach is developed for inspection and maintenance planning.

Bayesian networks allows using modeler's knowledge on the causal relationships between the dependent events to derive the joint probability distribution, which make modeling of dependent events more intuitive [START_REF] Bobbio | Improving the analysis of dependable systems by mapping fault trees into bayesian networks[END_REF]. However, to apply the model, it is required to construct the network structure based on the knowledge of the modeler, which is often not an easy task, especially for a large scale system. Also, Bayesian networks are more mature with respect to discrete nodes. When the state of the nodes are continuous, although theoretically possible, evaluating the network in practice is not a trivial job. Another difficulty of applying Bayesian networks is one needs a large amount of fully observed failure data to accurately estimate the conditional probability tables, which is not often achievable in practice.

3) Degradation process models: Degradation process models are statistical dependency models that involves degradation processes. As shown in Figure 12, the degradation-based models can be further divided into common random effect models, copula models and degradation-shock models. It should be noted that the degradation process could also be modeled by a discrete state random process like Markov/semi-Markov process. In this case, the state space model reviewed in Section V-A2 can be applied. Shen et al. [START_REF] Shen | Two preventive replacement strategies for systems with protective auxiliary parts subject to degradation and economic dependence[END_REF] used Markov processes to describe the degradation of two dependent components, where the transition rate matrix of one component depends on the degradation state of the other component. To reduce repetition, we do not include the discrete state degradation models in this section.

Common random effect models

Common random effect models consider the dependencies among multiple degradation processes. Each degradation process is modeled separately by statistical degradation models, and the dependencies among the degradation processes are captured by some common parameters shared by different degradation models (the idea is similar to the frailty model discussed in Section V-A1). Common random effect models are named because the shared parameters are often used to describe random effect in the degradation processes. As reviewed by Ye and Xie [START_REF] Ye | Stochastic modelling and analysis of degradation for highly reliable products[END_REF], frequently used degradation process models in the literature include general path model [START_REF] Lu | Using degradation measures to estimate a time-to-failure distribution[END_REF] and stochastic process model (e.g., Wiener process [START_REF] Xu | On modeling bivariate wiener degradation process[END_REF], gamma process [START_REF] Lawless | Covariates and random effects in a gamma process model with application to degradation and failure[END_REF], inverse Guassian process [START_REF] Fang | Inverse gaussian processes with correlated random effects for multivariate degradation modeling[END_REF]). Each degradation model can be used as a basic model to derive the common random effect model for multiple dependent degradation processes.

Si et al. [START_REF] Si | Reliability analysis considering dynamic material local deformation[END_REF] generalized the famous general path model from Lu and Meeker [START_REF] Lu | Using degradation measures to estimate a time-to-failure distribution[END_REF] into a multivariate general path model:

     y ijk = x ijk + ijk = η(t k ; Ψ, ψ ij ) + ijk Φ i = (ψ i1 , ψ i2 , • • • , ψ ip ) ∼ M V N (µ Φ , Σ Φ ). (6) 
In their developed model (Eq. ( 6)), y ijk represents the degradation level of the jth performance characteristics of the ith sample being tested, measured at time t k ; x ijk is the corresponding true value of the performance characteristics; ijk is the measurement noise which are assumed to be independently and identically distributed with a Gaussian distribution; η(•) is the degradation path function with fixed-effect parameter vector Ψ, which is shared by all the samples, and a random-effect parameter vector ψ ij that is unique for the ith sample and jth performance characteristics. The stochastic dependencies among the p performance characteristics are modeled by assuming that the random effect vectors of different performance characteristics in the same sample, Common random effect models can also be derived based on the stochastic process-based degradation models.

Φ i = (ψ i1 , ψ i2 , • • • , ψ ip )
In Sun et al. [START_REF] Sun | Statistical modeling of multivariate destructive degradation tests with blocking[END_REF], a multivariate Wiener process is used to model the correlation among different dimensions of degradation characteristics through a correlation matrix. Fang et al. [START_REF] Fang | Inverse gaussian processes with correlated random effects for multivariate degradation modeling[END_REF] developed a common random effect model based on inverse Gaussian process where the drift parameters of each degradation model are assumed to share a common effect, which is modeled by a multivariate normal distribution.

Common random effect models are attractive in modeling dependent multivariate degradation processes because of their tractability and flexibility in handling both heterogeneity among the units and the dependencies among the multiple degradation processes [START_REF] Sun | Statistical modeling of multivariate destructive degradation tests with blocking[END_REF]. However, some limitations still exist for such models. For example, parameter estimation is in general complex due to the shared parameters in the model [START_REF] Fang | Inverse gaussian processes with correlated random effects for multivariate degradation modeling[END_REF]. Besides, calculating multivariate integrals is required for the reliability assessment since multiple degradation processes are involved, which could be very demanding in terms of computations, especially when a large number of degradation processes are considered [START_REF] Fang | Inverse gaussian processes with correlated random effects for multivariate degradation modeling[END_REF].

Copula models

Similar to in the lifetime-based models discussed in Section V-A1, copula models can also be used to describe the dependencies among the multiple dependent degradation processes. In the literature, there are mainly two ways to use copula models for multiple dependent degradation processes. The first way is to estimate the parameters in the marginal degradation processes as if they were independent, and then use a copula function to model the joint distribution of the first passage times (latent failure times) of the marginal degradation processes. A typical example can be found in Sari et al. [START_REF] Sari | Bivariate constant stress degradation model: Led lighting system reliability estimation with two-stage modelling[END_REF] where they considered the dependencies between two degradation processes of LEDs. The marginal degradation process is assumed to follow the general path model [START_REF] Lu | Using degradation measures to estimate a time-to-failure distribution[END_REF] and fit independently. Then, a copula function is used to represent the joint distribution of the predicted time-to-failures from the two marginal degradation paths:

P (T T F (1) > t, T T F (2) > t) = P (Y (1) t 
< c (1) , Y

t < c (2) ) = C(F (1) (t; y (1) ), F (2) (t; y (2) )), (2) 
where T T F (1) and T T F (2) are the predicted time-to-failure of the marginal degradation paths 1 and 2, respectively; Y

(1) t and Y

(2) t

represent the degradation values of the two degradation paths at t; c (1) and c (2) are the degradation thresholds; F (1) (t; y (1) ) and F (2) (t; y (2) ) are predicted marginal failure probability at t, respectively, and C(•) is the copula function. A similar model was developed by Ruiz et al. [START_REF] Ruiz | Analysis of correlated multivariate degradation data in accelerated reliability growth[END_REF] where n dependent degradation paths are considered where the marginal degradation paths follow inverse Guassian processes. Ye et al. [START_REF] Ye | Reliability assessment of film capacitors oriented by dependent and nonlinear degradation considering three-source uncertainties[END_REF] used random-effect nonlinear Wiener-based model with measurement errors to model the marginal degradation processes and copula functions to consider the dependencies among the degradation paths when estimating the reliability. Frank, Gumbel and Clayton copulas are compared and selected based on the value of Akaike information criterion.

The second way of applying copulas for dependent degradation processes is to model the dependencies among the degradation increments. Fang et al. [START_REF] Fang | Copula-based reliability analysis of degrading systems with dependent failures[END_REF] presented a general framework of using copulas to model the dependent degradation processes that have independent increments:

(∆Y i1 (t k ), ∆Y i2 (t k ), • • • , ∆Y iM (t k )) ∼ C F 1 (∆y i1 (t k )), F 2 (∆y i2 (t k ), • • • , F M (∆y iM (t k ))); θ Cop ∆Y ij (t k ) ∼ M DP (Y j , θ M ar j ) (8) 
where C(•) is a copula function with parameter θ Cop ; F j (∆y i1 (t k )), j = 1, 2 . The MDPs considered in this model need to have independent increments, e.g., Wiener process, gamma process and inverse Gaussian process. Rodríguez-Picón et al. [START_REF] Rodríguez-Picón | Degradation modeling of 2 fatigue-crack growth characteristics based on inverse gaussian processes: A case study[END_REF] developed a similar model for two fatigue crack processes, where the marginal degradation processes are assumed to follow the inverse Gaussian process, and the dependency between the degradation increments is modeled by copulas. A systematic framework for applying copulas to model the dependencies among the degradation increments and predict the reliability and remaining useful life is presented in Fang and Pan [START_REF] Fang | On multivariate copula modeling of dependent degradation processes[END_REF], where they compare the performances of different marginal degradation models and copula functions through a numerical and a real-world case study.

Compared to the other methods that consider dependencies among multiple degradation processes, a significant strength of the copula models is that they allow separating the marginal distribution with the dependence structure. In this way, one could be more flexible in describing the dependencies [START_REF] Fang | Copula-based reliability analysis of degrading systems with dependent failures[END_REF]. The drawbacks of the copula approach include (1) there are usually no analytic forms for calculating the reliability indices for high-dimensional problems [START_REF] Fang | Inverse gaussian processes with correlated random effects for multivariate degradation modeling[END_REF];

(2) it is hard to incorporate physical knowledge of the correlation structure described by copula functions [START_REF] Sun | Statistical modeling of multivariate destructive degradation tests with blocking[END_REF] and (3) estimating parameters in copula models with three or more degradation processes can be numerically challenging [START_REF] Lu | General path models for degradation data with multiple characteristics and covariates[END_REF].

Degradation-shock models

Degradation-shock models are those models that consider the dependencies between degradation processes and random shock processes. The research on such models can be dated back to the 1960s, when Mercer [START_REF] Mercer | Some simple wear-dependent renewal processes[END_REF] presented a partial differential equation to consider failures due to wear caused by the arrival of random shocks. The failure rate is assumed to be dependent on the wear level x: λ(t, x) = λ 1 (t) + λ 2 x, where λ 1 (t) is a baseline failure rate function. Since then, a large number of degradation-shock models have been developed in the literature.

Singpurwalla [START_REF] Singpurwalla | Survival in dynamic environments[END_REF] summarized three typical ways of considering degradation-shock dependencies (although in his original paper, the focus is to introduce stochastic processes in degradation modeling, not discussing dependencies). The first way is to model the occurrences of shocks by a Poisson process whose arrival rate is dependent on the degradation state [START_REF] Singpurwalla | Survival in dynamic environments[END_REF]. We refer to these models dependent intensity models in this paper. A good example of the dependent intensity models is presented in Lemoine and Wenocur [START_REF] Lemoine | On failure modeling[END_REF], in which a system is subject to a degradation process X = {X(t), t ≥ 0} and a fatal shock process. The system fails whenever the degradation exceeds a threshold value or a fatal shock occurs. The arrival rate of the shock process is assumed to be a function of X(t). Therefore, the system reliability can be calculated as:

P (T > t) = E X e -t 0 k(s,X(s))ds • I {τ >t} , (9) 
where T is the time to failure of the system; E X [•] represents taking expectation over the random process X(t); I {•} is an indicator function, and τ is the instant when X(t) exceeds the failure threshold, as predicted by the degradation process model. The dependence structure k(s, X(s)) simply means the arrival rate is a function of current age and the degradation levels [START_REF] Lehmann | Joint modeling of degradation and failure time data[END_REF]. Parameter estimation under different specific degradation processes and dependency structure have been discussed by Lehmann [START_REF] Lehmann | Joint modeling of degradation and failure time data[END_REF] and Bagdonavicius and Nikulin [START_REF] Bagdonavicius | Estimation in degradation models with explanatory variables[END_REF]. Such a formulation has been widely applied in the literature. For example, Huynh et al. [START_REF] Huynh | A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events[END_REF] assumed that the arrival rate of the shock processes is a piecewise function of X(t) and presented a periodic inspection and replacement policy considering the degradation and traumatic events due to shocks. Hu et al. [START_REF] Hu | Condition-based maintenance planning for systems subject to dependent soft and hard failures[END_REF] considered condition-based maintenance planning for systems subject to dependent soft and hard failure, where the failure rate of hard failure increases as the degradation level becomes higher.

The second type of approach does not model the degradation process explicitly. Rather, the time-to-failure T is considered as a random variable and its failure rate function is assumed to be dependent on the random shock processes [START_REF] Singpurwalla | Survival in dynamic environments[END_REF]. In this paper, we refer this type of models the dependent failure rate models. For example, in Lemoine and Wenocur [START_REF] Lemoine | On failure modeling[END_REF], it is assumed that the failure rate function λ(t) of the lifetime distribution is dependent on the accumulative effect of a random shock process:

λ(t) = ∞ i=1 D i h(t -S i ) (10) 
where D i is the magnitude of the ith shock that arrives at instant S i , and h(t) is a decreasing function that models the attenuation of the shock effect overtime. The arrival of the random shocks

S i , i = 1, 2, • • • is, by
itself, a random process (e.g., a Poisson process). Then, the reliability function can be derived as:

R(t) = P (T > t) = E e -t 0 λ(s)ds , (11) 
where λ(s) is defined in Eq. ( 10) and the expectation is taken over λ(s) as it is a random variable given S.

Note that the formulation in Eq. ( 10) is also known in literature as a shot-noise process, which is defined in [START_REF] Rice | On generalized shot noise[END_REF] as a stochastic process that models the accumulative effects of a counting process. The failure rate dependency models have been widely applied in literature. For example, Qiu et al. [START_REF] Qiu | Preventive maintenance policy of single-unit systems based on shot-noise process[END_REF] investigated the preventive maintenance of a system whose failure rate is influenced by a shot-noise process. Wang et al. [START_REF] Wang | Failure rate-based models for systems subject to random shocks[END_REF] extended the dependent failure rate models to a case where the failure rate increments caused by shocks need not be identical or identically distributed.

The third type of approach focuses on modeling the impact from the random shock processes to the degradation process. The shock processes might further depend on some covariates that models the influence from the environment [START_REF] Singpurwalla | Survival in dynamic environments[END_REF]. In this paper, we call this type of model dependent shock-degradation model, as the dependency is caused by the impact of the shock process on the degradation process. A typical example of such models was presented in Figure 13, where a system switches between three operation modes due to an environment covariate process Z(t), and in mode 1, the system is subject to degradation described by a Wiener process, while in the other two modes, the system is subject to random shock processes where the arrivals of shocks introduce an additional increment to the degradation measurements [START_REF] Singpurwalla | Survival in dynamic environments[END_REF].

Fig. 13: An an illustration of the sample path from a dependent degradation model [START_REF] Singpurwalla | Survival in dynamic environments[END_REF].

A typical example of such models can be found in Peng, Feng and Coit [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF], where they modeled the competing failure processes of soft failures caused jointly by continuous smooth degradation with additional abrupt degradation damage from a shock process, and catastrophic failures caused by an abrupt and sudden stress from the same shock process. Following their work, many dependent shock-degradation models have been proposed to consider different shock patterns and dependence structure between the shock and degradation processes. For example, Rafiee et al. The three typical models, i.e., the dependent intensity, failure rate and shock-degradation models, can be combined to develop more complicated degradation-shock models. For example, Fan et al. [START_REF] Fan | Modeling dependent competing failure processes with degradation-shock dependence[END_REF] developed a dependent failure behavior model for a spool valve that integrates the dependent intensity and shock-degradation model, where the arrival of shocks leads to additional increments of the natural degradation process, while the intensity of the random shock process also increases as the degradation gets worse. Yang et al. [START_REF] Yang | Hybrid preventive maintenance of competing failures under random environment[END_REF] developed models where the arrivals of shocks have two impacts: (1) increase the failure rate of sudden failure; (2) cause abrupt degradation increments. Recently, there is a growing trend in the literature that aims at providing a unified framework for different degradation-shock dependencies. For example, Fan et al. [START_REF] Fan | A stochastic hybrid systems model of common-cause failures of degrading components[END_REF][START_REF] Fan | A stochastic hybrid systems based framework for modeling dependent failure processes[END_REF] developed a unified modeling framework based on stochastic hybrid systems, which is a special case of a more general model called stochastic hybrid automaton [START_REF] Castaneda | Stochastic hybrid automata model for dynamic reliability assessment[END_REF], to model different types of degradation-shock dependencies.

Similar attempts have been made in [START_REF] Lin | A framework for modeling and optimizing maintenance in systems considering epistemic uncertainty and degradation dependence based on pdmps[END_REF] based on piece-wise deterministic Markov processes, which are another special case of stochastic hybrid automaton.

A significant strength of the degradation-shock models is that it allows modeling dependencies from a physicsbased perspective, i.e., the interaction between the shock and degradation processes are explicitly considered [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF]. When covariates are used, the models also allows analysts to consider the dependencies that are related to some external factors from the environmental [START_REF] Singpurwalla | Survival in dynamic environments[END_REF]. There are a few limitations of the degradation-shock models as well. First, the evaluation of the reliability function often involves high-dimensional convolution or summation over infinite terms [START_REF] Fan | A stochastic hybrid systems based framework for modeling dependent failure processes[END_REF]. When the number of the involved processes increases, it becomes computationally difficult for the evaluation. Besides, the developed degradation-shock models often contain parameters, especially those related to the shock processes, which do not have sufficient historical data to support a good estimation [START_REF] Fan | A sequential bayesian approach for remaining useful life prediction of dependent competing failure processes[END_REF]. Finally, the validation of the model, especially the assumptions made on the dependence structure involving the shock processes, is a difficult task due to lack of available validation data.

B. Mechanistic dependency models

The other category of the dependent failure models, as shown in Figure 12, is the mechanistic dependency models. In mechanistic dependency models, the dependency mechanisms, i.e., the physical cause of the dependency, is considered explicitly in the developed dependency models. This fact makes the mechanistic models different from the stochastic models, as the latter considers the dependencies as statistical correlation without looking into the exact cause of the correlation. Based on the dependency mechanisms being modeled, the mechanistic dependency models can be further divided into failure interaction models and failure propagation models.

1) Failure interaction models: Failure interaction models focus on modeling the interactions among different failure mechanisms. As shown in Figure 12, failure interaction models can be further divided into deterministic interaction and stochastic interaction models.

Deterministic interaction models

As shown in its name, the deterministic interaction models consider the interactions among different failure processes from a physics-based perspective and modeled in a deterministic way. Zeng et al., [START_REF] Zeng | A model-based reliability metric considering aleatory and epistemic uncertainty[END_REF] considers three basic interactions, i.e., competition, superposition, and coupling, and proposed a physics-based framework to develop failure behavior models considering the dependencies among failure mechanisms. In their framework, the performance margin of each failure mechanism is modeled based on physics-of-failure, and the interactions among the failure mechanisms are considered through an interaction graph as a combination of the three basic interactions. Chen et al. [START_REF] Chen | Failure mechanism dependence and reliability evaluation of non-repairable system[END_REF] proposes another three types of interaction, i.e., trigger, where one failure processes causes another, acceleration, where the presence of one process accelerate the evolution of another, inhibition, where the occurrence of one process will prohibit another process from occurring, and discussed how to consider each basic interaction in a dependent failure behavior model. Li et al. [START_REF] Li | Compact modeling of mosfet wearout mechanisms for circuit-reliability simulation[END_REF] considered three common failure mechanisms, including hot-carrier injection, time-dependent dielectric breakdown and negative bias temperature instability, and simulate the evolution of the three failure mechanisms and its impact on the performance of MOSFET using a electrical circuit simulation tool SPICE. The dependencies among the failure mechanisms are considered as the failure mechanism models share some common parameters.

The deterministic interaction model has the significant strength of being able to explicitly describe how do the dependencies arise. The major limitation of such models is that, the model development requires deep understanding of the failure mechanisms and the interactions among them, which is not always achievable in practice [START_REF] Zeng | A compositional method to model dependent failure behavior based on pof models[END_REF]. Another potential drawback is that the model parameters are often estimated from data generated from controlled in-lab experiments. Whether the parameters can be safely generalized to a practical case needs to be carefully examined [START_REF] Zeng | A model-based reliability metric considering aleatory and epistemic uncertainty[END_REF].

Stochastic interaction models

In stochastic interaction models, the interactions among the failure processes involve some random events.

Most commonly-used stochastic interaction models are expressed in terms of the degradation-shock models as reviewed in Section V-A3. However, not all degradation-shock models are used to decribe the interactions explicitly. That is why we chose to put the degradation-shock model in Section V-A3 with other stochastic models. Examples of the stochastic interaction models include the works by Peng et al. [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF] and Fan et al.

[129], which have been discussed in Section V-A3. To reduce repetition, we directly refer the readers to Section V-A3 for further details. The stochastic interaction can be caused by not only degradation, but also failure of other components. For example, Zhang et al. [START_REF] Zhang | Deep reinforcement learning for dynamic opportunistic maintenance of multi-component systems with load sharing[END_REF] presented a stochastic interaction model where the failure rate of surviving components in a multi-component load sharing system increases after initial failure of some components occurred. A similar model, called a tempered failure rate model is used in [START_REF] Zhao | Inspection policy optimization for a k-out-of-n/cl system considering failure dependence: a case study[END_REF] to consider the fact that the impact of load-sharing to the surviving components in a k-out-of-n:G system.

2) Failure propagation models: Failure propagation models focus on describing the dependencies in which some initial failures trigger the failure of the other components in a system (also referred to as cascading failure). A large fraction of failure propagation models in the literature originated from the study of cascading failures in electrical power grids but have demonstrated wide applicability in other domains as well (see [START_REF] Bialek | Benchmarking and validation of cascading failure analysis tools[END_REF] and [START_REF] Xiaohui | Review on power system cascading failure thoeries and studies[END_REF] for a good review). According to Xing [START_REF] Xing | Cascading failures in internet of things: review and perspectives on reliability and resilience[END_REF], the main failure propagation models include, but are not limited to, the self-organized critical (SOC) theory-based, complex network, and simulation models. The three models do not consider randomness when evaluating the failure propagation. To be more complete, we add a forth category of the propagation model, the stochastic propagation model, as shown in Figure 12.

SOC models

SOC models include a variety of models that are dedicated to modeling the self-evolution process of a complex dynamical system until it reaches a critical steady state, known as the SOC state [START_REF] Xing | Cascading failures in internet of things: review and perspectives on reliability and resilience[END_REF]. One of the most well-known example of the SOC-based failure propagation model is the ORNL-PSerc-Alask (OPA) model, which combines DC load flow and optimal power flow models to simulate the cascading failure on transmission lines in a power grid after some trips due to over-loading caused by load redistribution [START_REF] Bellè | Modeling and vulnerability analysis of interdependent railway and power networks: Application to british test systems[END_REF]. CASCADE model was another widely used SOC-based models for cascading failures in the power grid [START_REF] Dobson | A probabilistic loading-dependent model of cascading failure and possible implications for blackouts[END_REF]. In the CASCADE model, the propagation process is modeled by adding a fixed load increment on all the remaining functioning components, and the propagation continues until all the components fail or loads on the remaining functioning components are all within their acceptable limits [START_REF] Dobson | A probabilistic loading-dependent model of cascading failure and possible implications for blackouts[END_REF].

The SOC models allow simulating the cascade of failures through some simplification of the actual cascading mechanism. The degree of simplification lies between the complex network models and the simulation models.

Therefore, the SOC models can achieve a balance between representing reality and the computational costs [START_REF] Bellè | Modeling and vulnerability analysis of interdependent railway and power networks: Application to british test systems[END_REF]. However, the SOC process has to be defined in a case-by-case manner for the system under investigation, which limits the generalization of the SOC models. Also, when the scale of the system becomes large, the evaluation of the model can easily becomes intractable [START_REF] Bellè | Modeling and vulnerability analysis of interdependent railway and power networks: Application to british test systems[END_REF].

Complex network models

Another way of investigating cascading failures is through complex network theory. Scale-free and small world networks are the two well-known and also well-studied classes of complex networks. Motter and Lai [START_REF] Motter | Cascade-based attacks on complex networks[END_REF] presented an early application of the complex network models for analyzing cascading failures. In their work, it is assumed that the loads on a given node are approximated by the number of shortest paths passing through it. A failure is modeled by removing the corresponding node and the edges passing through the failed node. As the initial failure changes the topology of the network, the loads on the nodes are redistributed.

As a result, subsequent cascading failures can occur. The application of such models on random networks and real-world networks of the Internet and a power grid showed that a heterogeneous network is robust to random attacks but vulnerable to intentional attacks, while a homogeneous network appears to be more robust against attacks than the heterogeneous ones [START_REF] Motter | Cascade-based attacks on complex networks[END_REF]. Buldyrev et al. [START_REF] Buldyrev | Catastrophic cascade of failures in interdependent networks[END_REF] developed a complex network model to analyze the cascading failure behavior in an interdependent complex network. In their framework, a cascading failure can occur due to (1) the dependent node in another network fails, and (2) the node does not belong to any mutually connected clusters. Through their analysis, they discovered that for an interdependent complex network, a broader degree distribution increases the vulnerability to random failure, which is opposite to how a single complex network behaves.

In terms of modeling the failure cascading, the complex network models take a highly abstract approach: cascade failures following principles that are defined based on only network structure and dynamics. The high degree of abstraction makes the complex network model easy to generalize and evaluate, compared to the other failure propagation models. The drawback of such an approach is that, the model cannot fully capture the actual way of failure propagation [START_REF] Bellè | Modeling and vulnerability analysis of interdependent railway and power networks: Application to british test systems[END_REF]. Therefore, the assumption of failure propagation in complex network models need to be carefully examined when applied in a practical problem.

Simulation models

Simulation models rely on performance simulation models to analyze dynamic response of a complex system under certain disturbances and simulate the potential failure propagation. For example, Cadini et al. [START_REF] Cadini | A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions[END_REF] developed a sequential Monte Carlo scheme which combines an extreme weather model, a DC power flow model and a proportional re-dispatch strategy to simulate the cascading failures under extreme weather events.

In Hasan et al., [START_REF] Hasan | A simulation testbed for cascade analysis[END_REF] a cascade simulation model in Matlab/Simscape was proposed, which incorporates a detailed behavioral model of protection devices to consider both cyber failures and time causality of events;

the result was validated using a different simulation platform called OpenDSS.

Simulation models allows us to consider in details the realistic ways of how failure propagates in practical systems, considering different contributing factors from the system itself and also the environment. However, the construction of simulation models requires a lot of domain knowledge and historical data. The model itself can be very computationally expensive to evaluate as well [START_REF] Xing | Cascading failures in internet of things: review and perspectives on reliability and resilience[END_REF].

Stochastic propagation models

The stochastic models, in particular the combinatorial models and state space models discussed in Section V-A2, can also be used to model failure propagation. A widely-used combinatorial model for failure propagation is the dynamic fault tree, in which where logic AND, OR and k-out-of-n gates are used to represent the combinations of component statuses while multiple cascading Function DEPendency (FDEP) gates are used to model the cascading failures [START_REF] Xing | Cascading failures in internet of things: review and perspectives on reliability and resilience[END_REF]. For example, Zhao and Xing [START_REF] Zhao | Reliability analysis of iot systems with competitions from cascading probabilistic function dependence[END_REF] models the failure propagation in an Internet-of-Things (IoT) system using a dynamic fault tree with probabilistic functional dependence gates. State space models like a Markov model can also be used to model failure propagation. For example, in [START_REF] Rahnamay-Naeini | Stochastic analysis of cascading-failure dynamics in power grids[END_REF], a CTMC-based method was developed to assess the evolution of blackout probability in time, and further the probability mass function of the blackout size for power grids subject to cascading failures. For further details, we refer the readers to Section V-A2, in order to avoid too much repetition in the paper.

VI. CHALLENGE AND OPPORTUNITIES

Through the reviews and analyses in Sects. III -V, we can see clearly the quantity and quality of the existing research on dependent failure behavior. Although great achievements have been made, there are still a few challenges that could potentially motivate future research and researchers.

A. Identification and validation of the dependencies

Dependent failure models rely on fundamental assumptions on how the dependent variables relate to one another. In statistical dependency models, these assumptions are mainly statistical and empirical, while in mechanistic models, these are more physics-based dependency assumptions (see Section V for details). Regarding these assumptions, a question arises naturally: how to identify which variables are dependent and in which manner?

If one has large amount of historical data, the identification problem can be solved by checking the statistical association among the variables directly from data [START_REF] Fang | Copula-based reliability analysis of degrading systems with dependent failures[END_REF][START_REF] Ye | Reliability assessment of film capacitors oriented by dependent and nonlinear degradation considering three-source uncertainties[END_REF]. In a large number of practical cases, however, we do not have enough data. Most of the existing papers rely on direct assumption or analysis based on expert knowledge to identify potential dependencies in this case [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF]. There are two shortcomings for this kind of approach. First, the identification has to be done manually and case-by-case, which is not easy to implement in a complex system with a large number of components. Second, the results could be subjective and highly dependent on the knowledge level of the domain experts who make the analysis [START_REF] Fan | A stochastic hybrid systems based framework for modeling dependent failure processes[END_REF]. A possible improvement could be to leverage the recent advancement on artificial intelligence, especially the research and models on knowledge graphs and knowledge-based machine learning and reasoning [START_REF] Chen | A review: Knowledge reasoning over knowledge graph[END_REF]. For example, we can create a knowledge graph, based on prior knowledges, describing the interlinked relationships among components, working environment, failure mechanisms, dependencies, etc., and use it as a knowledge base to design AIbased reasoning algorithms that can automatically identify the potential dependencies in a complex system.

A related problem is how to validate whether the assumptions on dependence structures are valid? With enough data, validation of the model can be done by evaluating the model performance on testing data through metrics like Akaike information criterion, Bayesian information criterion, Kendall's τ [START_REF] Fang | On multivariate copula modeling of dependent degradation processes[END_REF] etc. Validating the dependency assumptions when few data is available is, however, a difficult task that deserves further exploration.

B. Scalability of the model

Scalability is another challenge to most of the existing models. When systems grow in size and complexity, scalability issues can come from two aspects. First, developing the model itself becomes a complex problem, as exploring all the possible dependencies in a large-scale system can be a time-consuming and difficult task for the modeler. One promising idea to solve this issue is to leverage the advancements in knowledgebased systems and AI-based reasoning, as detailed in Section VI-A. Second, evaluating the model can be computationally intensive for a large-scale model with complex structure. A common solution is to develop surrogate models to approximate the model output in less computational time [START_REF] Mack | Surrogate model-based optimization framework: a case study in aerospace design[END_REF]. Recently, physics-informed deep learning has emerged as a promising approach that integrate physics-based knowledge with machine learning models and can achieve good balance between model capability and computational complexity [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF].

A possibly promising direction could be using physics-informed machine learning to improve the scalability of the dependent failure models.

C. Parameter estimation

Although statistical parameter estimation approaches have been well-developed for dependent failure models [START_REF] Fang | Copula-based reliability analysis of degrading systems with dependent failures[END_REF], applying them requires large amounts of historical data, which is not always available in practice.

Determining precise parameter values under a practical constraint of limited historical data remains a challenging problem. There are two possible solutions. First, as sensor technology advances, it is possible to collect condition-monitoring data during system operation through sensors. This permits us to develop a Bayesian framework to update the parameter estimations of a dependent failure model online using the conditionmonitoring data [START_REF] Xiahou | Remaining useful life prediction by fusing expert knowledge and condition monitoring information[END_REF]. Remaining useful life prediction and predictive maintenance can also be considered.

Currently, however, parameter updating and remaining useful life prediction are not well-explored in the research of dependent failure models [START_REF] Fan | A sequential bayesian approach for remaining useful life prediction of dependent competing failure processes[END_REF]. Another possible solution is to consider the epistemic uncertainty in the parameters, and quantify the impact of such uncertainty in the model output and the decisions made based on the models. Helton [START_REF] Helton | Representation of analysis results involving aleatory and epistemic uncertainty[END_REF] summarized various frameworks for modeling and propagating epistemic uncertainty.

However, there are not much effort trying to apply them on dependent failure models.

D. Validation of the added values of considering dependencies

Validating the added value of considering dependencies is an important question in practice. This question, however, is not well-addressed in the existing literature, as in most of the existing papers, the focus is on developing new models. To show the added values of the developed models, an easy way is to apply them on decision-making problems, and compare the results with some benchmark models that do not consider dependencies. In Table VI, we list a few typical decision-making problems that might be useful for validating the added value of the dependent failure models.

TABLE VI: Typical decision-making problems that could be used for validating the dependent failure models.

Problems Descriptions

Qualification based on risk/reliability Decisions often need to be made regarding whether to accept/reject an engineering system based on its reliability/risk.

For example, in safety-critical industries like nuclear, the risks of some severe accidents are not allowed exceed given reference values [START_REF] Agency | Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants: Specific Safety Guide[END_REF]. The impacts on the regulatory decisions can be investigated by comparing the dependent failure models with traditional models like probabilistic risk assessment that do not consider dependencies.

Maintenance planning

Optimal maintenance policies can be decided based on the predicted lifetime and reliability from the dependent failure models. For components, a typical example is to determine optimal intervals for preventive maintenance [START_REF] Peng | Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[END_REF], while for systems, we can consider grouping of components due to economical dependencies.

Inspection planning

For a multistate/continuous degraded system, inspection on the system can measure the current degradation level and/or reveal the actual degradation state. The optimal inspection interval has to be planned carefully by balancing the cost of inspection and the failure cost [START_REF] Cai | Reliability evaluation and maintenance planning for systems with load-sharing auxiliary components[END_REF].

Remaining useful life prediction and predictive maintenance

For the dependent failure models that involve degradation processes, we could apply the model to make remaining useful life prediction based on condition-monitoring data [START_REF] Fan | A sequential bayesian approach for remaining useful life prediction of dependent competing failure processes[END_REF]. The predicted remaining useful life can then be used to support predictive maintenance planning. The added value of the dependent failure models can be validated by comparing the results with a benchmark model that does not consider the dependencies.

Design optimization

Reliability can be used as a constraint or an objective function in a design optimization problem. Then, the results from a dependent failure model can be compared to that from a traditional model without dependencies. Typical use cases include redundancy allocation and reliability-based design optimization [START_REF] Youn | Hybrid analysis method for reliability-based design optimization[END_REF], etc.

E. Joint optimization of reliability, maintenance and other operational problems

As shown in Table VI, maintenance and reliability optimization are two important use cases of dependent failure models with respect to decision-making. Recently, there is a growing trend in research to consider joint optimization of reliability, maintenance and other important operational objectives. For example, joint optimization of production scheduling and predictive maintenance of the machines is considered in [START_REF] Xiao | Joint optimization of production scheduling and machine group preventive maintenance[END_REF] by developing an optimization model to minimize the total cost comprising of production cost, preventive maintenance cost, minimal repair cost for unexpected failures and tardiness cost. Zhang et al. [START_REF] Zhang | Determining the optimal production-maintenance policy of a parallel production system with stochastically interacted yield and deterioration[END_REF] jointly optimized the production and maintenance plans for a parallel production system, where the dependency between production yield and the degradation process is considered. A joint optimization model is developed in [START_REF] Xiao | Balancing the demand and supply of a power grid system via reliability modeling and maintenance optimization[END_REF] to determine the optimal redundancy and maintenance strategy needed to satisfy a given reliability requirement with lowest cost. Joint optimization of spare part supply and opportunistic condition-based maintenance for onshore wind farms is considered in [START_REF] Zhu | Joint optimization of spare part supply and opportunistic condition-based maintenance for onshore wind farms considering maintenance route[END_REF] where the economic and graphical dependencies among wind turbines and the stochastic degradations of their components are considered. A promising future direction is to integrate the dependent failure models in the joint optimization model and investigate the impact of the dependencies on the optimal decisions.

VII. CONCLUSION

In this paper, we conduct a systematic and critical literature review on dependent failure behavior models in risk and reliability. In the systematic literature review, a total number of 1062 papers are collected from a carefully designed literature search protocol and analyzed through a meta-data and biliometric analysis. In particular, a semantic clustering is performed to identify the main research topics related to dependencies in risk and reliability in three periods of time: before 1994, 1995 -2010 and from 2011 to present. The results of the analyses help to understand the main research topics in this domain and how they evolve over time.

The top 10% most-cited papers from the systematic literature review are then selected for a critical literature reivew. First, the dependent failure behavior in different levels of a complex system, including failure mechanism, component, system, and system-of-system levels, are summarized in a hierarchical framework. This result could help a researcher identify the potential dependencies in a complex system that need to be considered. Then, the most important models for dependent failure behavior are critically reviewed. A classification framework is also proposed for models. Future researchers could benefit from this when they try to choose an appropriate model for their dependent failure behavior modeling problem.

The results of our review emphasize once again that dependent failure modeling is a problem whose importance should never be overlooked. A direct consequence of failing to capture the dependent failure behavior is an inaccurate reliability/risk estimation, which will further impact the decisions made based on these assessments. Although substantial works have been done on this topics, our analyses still identify five important research gaps that deserve future investigations. We believe these research gaps, and the field of dependent failure behavior modeling in general, should and will attract more attentions from the academia and industry. The solution of these problems, together with introduction of promising new technologies like knowledge graph and physics-informed machine learning, will greatly improve our capability to accurately assess and reduce the risk, and significantly contribute to more reliable and resilient engineering systems and society.
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  before 1994, 1995-2009 and 2010 to present. The results are presented in Figs. 3 -5. These results can help us formulate a broad picture of the research field and understand the fundamental research topics in this field, which laid down foundations for the critical literature reviews in Sects. IV -VI. 1) Prior to 1994: Only 36 papers (less than 2 papers per year) in our data set are published before 1995.
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  considered a simple physics-based model g m (X) = C -S, where X = [S, C] and S, C represent the stress on a material and its associated strength, respectively. The dependency arises because the conditional probability density function of the strength varies as the stress changes. Aghatise et al. [44] developed a physics-based failure mechanism model based on finite element simulation for a off-

2 )

 2 Common factor: Dependencies in the component-level can also be due to common factors affecting the failure mechanism models, as illustrated in Figure 11. Common factors could be the parameters shared by several failure mechanism models (Figure 11(a)), or some common external factors that affect different failure mechanism models simultaneously (Figure 11(b)).
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  used a gamma frailty model to describe the dependencies among different failure modes, whose lifetimes follow a generic log-location-scale distribution, and derived the optimal accelerated test plans by minimizing the large-sample approximate variance of the maximum likelihood estimator of a certain life quantile at use condition. Hajiha et al.[START_REF] Hajiha | Degradation under dynamic operating conditions: Modeling, competing processes and applications[END_REF] proposed a model for multiple degradation processes under dynamic operating conditions, where the multiple degradation paths follow Wiener processes and a frailty model is used to consider the statistical dependence among the latent remaining lifetimes of the multiple degradation processes due to unobserved future environmental factors. Moustafa et al.[START_REF] Moustafa | System reliability analysis using component-level and system-level accelerated life testing[END_REF] developed a Bayesian framework to estimate the system lifetime based on both system and component-level accelerated life testing data, in which shared frailty models are used to model the dependence between failure time distributions of the components of a system.

  follows a multivariate normal distribution. A similar model was developed by Lu et al.[START_REF] Lu | General path models for degradation data with multiple characteristics and covariates[END_REF] to quantify the multidimensional degradation data considering the dependencies among the different performance characteristics. An expectation-maximization algorithm combined with the Markov chain Monte Carlo simulation is developed for estimating the model parameters and predicting system reliability.

[ 127 ]

 127 considered a dependent competing failure process where the degradation rate could be impacted by the arrival of random shocks. Four different shock patterns are considered in their model, i.e., generalized extreme shock, when the first shock above a critical value is recorded; generalized δ-shock model, when the inter-arrival time of two sequential shocks is less than a threshold δ; generalized mshock model: when m shocks greater than a critical level are recorded; and generalized run shock model, when there is a run of n consecutive shocks that are greater than a critical value. Jiang et al. [35] developed a model in which the arrival of the shocks shifts the failure threshold of the degradation process. The considered shock patterns include the generalized extreme shock model, generalized δ-shock model and generalized m-shock model. Lyu et al. [128] considered a δ-shock model, where the δ-shock causes failure of the system directly, while the other shocks affect the degradation process by changing the degradation rate and causing additional degradation increments.

  

  

  

  

TABLE II :

 II Representative keywords for the clusters (before 1994).

	Cluster	Representative keywords	Representative papers

cluster 1 marginal distribution, multivariate failure time data, covariate Liang et al. [19], Liu and Kiureghian [20]

cluster 2 probabilistic safety assessment, common cause failure, fault tree Apostolakis and Moieni

[START_REF] Apostolakis | The foundations of models of dependence in probabilistic safety assessment[END_REF]

, Acosta and Siu

[START_REF] Acosta | Dynamic event trees in accident sequence analysis: application to steam generator tube rupture[END_REF] 

TABLE III :

 III Representative keywords for the clusters(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009).

	Cluster	Representative keywords	Representative papers
	cluster 1	multivariate failure time data, frailty, copula, covariate	Huard et al. [23], Lebrun and Dutfoy [24]
			[27]
	cluster 3	probabilistic safety assessment, basic event, human re-	
		liability analysis, common cause failure	

cluster 2 system reliability, component failure, dynamic fault tree, Markov chain, petri net, Bayesian network, maintenance Andrews and Dunnett [25], Malhotra and Trivedi [26], Kang et al.

  Table IV lists most representativekeywords and papers for each cluster. Among them, clusters 1 -3 are inherent from the previous time periods,

	while clusters 4 -6 represent some new research trends that emerge in this period. The first emerging cluster
	(cluster 4) represents research on dependent competing failure processes, where the dependencies between
	hard failure caused by random shocks and soft failure caused by performance degradation are considered. We
	will discuss this cluster in detail in Section V-A3. The second new research cluster (cluster 5) focuses on
	applying combinatorial methods to model dependencies. For details, readers can refer to Section V-A2. Another
	important cluster that emerges in this period is cluster 6 that focuses mainly on dependent failure behavior
	related to vulnerability and resilience of critical infrastructures. For details, readers can refer to Section IV-D.
	C. Publication source	
	Figure 6 listed the top 35 publication sources on which the papers we collected are published. It can be seen
	that most of the collected papers are coming from journals. More specifically, the journals of interests might
	involve several categories:	
	June 28, 2023	DRAFT

• Risk and reliability, e.g., Reliability Engineering and System Safety, IEEE Transactions on Reliability, Journal of Risk and Reliability;

• Industrial engineering, e.g., IISE Transactions, EJOR, Computer and Industrial Engineering, IJPR;

• Statistics, e.g., Technometrics, Lifetime Data Analysis, Communication in Statistics;

TABLE IV :

 IV Representative keywords for the clusters (2010-present).

	Cluster	Representative keywords	Representative papers
	cluster 1	copula, frailty model, vine copula, bivariate copula	Li et al. [31], Navarro and Durante [32]
	cluster 2	system reliability, component dependency, maintenance opti-	Guo et al. [33], Meango and Ouali [10]
		mizaion, condition-based maintenance	
	cluster 3	probabilistic safety assessment, human error, human reliability	Mkrtchyan et al. [7], Kabir and Papadopoulos [9]
		analysis, Bayesian network	
	cluster 4	dependent competing risk, degradation, shock, hard failure, soft	Peng et al. [34], Jiang et al. [35]
		failure	
	cluster 5	combinatorial method, decision diagram, stochastic dependen-	Xing and Leviten [36], Mo et al. [37]
		cy, failure isolation, propagated failure	
	cluster 6	critical infrastructure, resilience, vulnerability	Cagno et al. [38], Hosseini et al. [39]

TABLE V :

 V Application levels of dependency models.

	Multivariate distribution	model	Frailty model	Copula model	Combinatorial models	State space model	Bayesian network	Common random effect	model	Degradation-shock model	Deterministic model	Stochastic interaction	model	SOC-based models	Complex network models	Simulation-based models	Stochastic propagation	models
	Failure mechanism level																	
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