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ABSTRACT 

In the context of global changes and population growth, 

agricultural activities are a growing factor influencing 

water resources availability in term of quantity and 

quality. Water management strategies have to be 

analyzed at a regional catchment scales. Yet, 

agricultural practices, crop water and nutrient 

consumption that drive the main water and nutrient 

fluxes at the catchment scale have to be monitored at a 

high spatial (crop extension) and temporal resolution 

(crop growth period). This proceeding describes some 

advances in the framework of a co-funded ESA Living 

Planet Fellowship project, called ―agro-hydrology from 

space‖, which aims at demonstrating the improvement 

brought by synergetic observations of Sentinel-1 (S1) 

and Sentinel-2 (S2) satellite mission in agro-

hydrological studies. Geo-information time-series of 

vegetation and water index with multi-spectral optical 

detection S2 together with surface roughness time series 

with C-band radar detection S1 are used to re-set soil 

water holding capacity parameters (depth, porosity) and 

agricultural practices (sowing date, irrigated area extent) 

of a crop model coupled with a hydrological model in 

two contrasted water management issues: stream water 

nitrate pollution in Gascogne region in south-west of 

France and groundwater depletion and shortages for 

irrigation in Deccan Plateau, in south-India. 

 

1. General context 

Why and how to evaluate agricultural impacts on 

water resources at a regional scale? 

Agricultural activities are highly hinging on good 

quality of natural resources (soil structure, water 

resource quality/quantity) and are also impacting the 

environment quality (soil degradation, water 

contamination and scarcity). Nowadays, intensive and 

food-producing agricultures are both challenging: 

 an increase of competing demand for land 

(Urban expansion, bio-fuel or cash crop) and 

water (industries, domestic requirements) 

 natural hazards related to global changes 

(climate changes, socio-economic changes) 

 increasing food demand of the worldwide 

market. 



 

In Europe, public environmental policies target the good 

environmental status of water resources and soon soil 

resources. In the developing world, food security and 

socio-economical changes are mainly driving the 

agricultural and environmental policies and/or 

mutations. The global trend of the last decades has been 

a conversion of 35% of ice free continental surfaces into 

agricultural areas [1], this conversion is part of the most 

significant global changes [2], with a rate that is 

recognized as non sustainable [3]. 

Irrigated areas have been multiplied by 6 during the last 

century and concerns 24% of the worldwide cultivated 

areas. They are mainly located in drought prone semi-

arid or arid areas [4]. The recent increase of this 

proportion during the end of the last century has been 

mainly sustained by the apportionment of groundwater. 

Nevertheless, the global decline of these resources 

coming with the lack of appropriate assessment and 

management is threatening the nowadays agricultural 

production that sustain economy and subsistence of 

local populations [4], [5]. Recent investigation from the 

GRACE mission data estimated a decline of 

Groundwater stock in the Gangus basin, India [6], in 

Iran [7],  and others authors estimate worldwide the role 

of agriculture in these trends [5]. 

Water bodies’ contamination by nitrate is, as well, and 

despite constraining laws in developed countries, not 

contained. Best agricultural practices solutions costs are 

difficult to compare with environmental quality benefits 

from an ecological, political, sociological and 

economical point of view. This contamination is 

becoming alarmingly common not only in western 

Europe and northern America, but also in eastern 

Mediterranean and Africa waterways where it has more 

than doubled [8]. In India and Africa, 20-50% of wells 

contain high levels of nitrate concentration. In India, 

new elements confirm the role of high pumping rates of 

groundwater for irrigation that increases the 

groundwater contamination through contaminated return 

flow from irrigated field [9]. 

 

1.1. Agricultural impact assessment for appropriate 

water resources management policies 

To be efficient, environmental decisions should be 

based on evidence and facts, being used to build fair and 

efficient environmental policies. This target supposes to 

build tools to understand, quantify and predict the 

agricultural impacts on water resources. Understanding 

supposes to multiply environmental observations of 

agro-hydro system dynamics; quantifying and 

predicting supposes to build numerical representation of 

the cascade of processes and retroactions between 

climate, soil, water resources and agricultural practices: 

cultivation of land, fertilization, irrigation.  

In its broadest concept, AGRO-HYDROLOGY, as a 

scientific discipline, is a study of interactions, to 

evaluate not only the influence of available water on 

agricultural production but also the influences of the 

cultivation of land and its agricultural practices on the 

resources availability [10]. These retroactions are 

studied in space and time using numerical modelling 

approaches. These models represent the main processes 

involved in the crop growth and water and nutrient 

transfer within catchments: soil water and nutrient 

uptake, drainage and transfers to aquifer and rivers, as a 

function of crop calendar, rotation, fertilisation, 

irrigation, tillage [11]–[16]. These modelling objectives 

require spatially distributed models, where information 

of soil-crop location within slopes as well as 

hydrological settings (topography, groundwater storage, 

reservoir location or irrigation pumping) are included to 

provide spatially explicit information: fertilisation and 

crop growth parameters [17], soil and groundwater 

stock and irrigation pumping for instance [15].  

It pictures the situation of water resources under 

human activities, test the efficiency of designed 

water/agricultural management options [18] and is 

used to project the nowadays water consumption under 

future climate or socio-economical situations [19]. 

 

1.2. Limitations: the lack of spatial information 

This spatially distributed agro-hydrological models are 

simulating a cascade of many processes, involving 

numerous parameters to represent the spatial and 

temporal dynamic of water, nutrient cycle, crop growth, 

which are calibrated on available observations: water 

and nutrients stream fluxes at the outlet of a catchment, 

average yield [17], [20], aquifer recharge [15] or 

satellite based evapotranspiration (MODIS products, 

500 meters resolution [21]). The lack of observation of 

soil, crop, climatic variables and parameters lead to a 

lack of spatial processes calibration which may lead to 

equifinality problems, e.g. more than one parameter set 

leading to similar results [22] or compensation between 

processes leading to similar stream water fluxes [17]. 

Uncertainties raised by these modelling approaches at 

the watershed level are mainly related to the lack of 

agricultural operations data and soil-crop conditions 

encountered within the catchment, i.e. saturated 

conditions within slopes and their feedback on crop 

productivity. For instance, the timing of fields 

operations (first fertilization and sowing date) has a 

strong impact on the winter wheat growth in Europe 

[23]. These data are crucial input parameters to 

accurately simulate crop growth dynamics and 

interaction with water resources and not available at the 

large spatial extent appropriate for water management. 

 

1.3. Contribution of Sentinel-2 to agro-hydrology 

Recent studies have demonstrated the benefit of the 

capacities of Sentinel-2 mission to provide such 

information of field operation and crop growth to reset 

agro-hydrological model parameters. The infra-monthly 

detection of biophysical variables such as Leaf Area 



 

Index (LAI) for selected areas  from optical acquisition 

of Sentinel-2 at 10 meters resolution [24], [25] enable to 

detect the crop emergence and refine the sowing dates 

from a time series of 105 cloud free images at 8m 

resolution [26]. A delay of few weeks in the sowing 

date of winter wheat (from October to November) could 

lead to postpone the emergence date to few months (3 

months in the case of the year 2010), whereas 

emergence date of sunflower follows directly the 

sowing dates in spring when cumulative daily 

temperature threshold are reached in few days. The 

winter wheat simulated growth and biomass is then 

highly impacting the total nitrogen and water uptake 

between ―a-priori‖ and optimized situations. Both 

effects have significant impact on in-stream nitrogen 

fluxes rather than discharge (<1% of annual discharge 

modification) but an important effect on monthly soil 

water content dynamic: the early detection of crop 

emergence from remote sensing time series enable 1-to 

accurately simulate the soil water uptake by crop 

transpiration during spring and 2-to better account for 

soil drought conditions that can occur in summer and 

affect crop productivity [27]. Another use of these time 

series of LAI derived from Sentinel-2 is to retrieve soil 

water holding capacity parameters of an agro-

hydrological model at the image pixel level (10 meters). 

The interpolation of LAI in time is done to estimate the 

maximum of LAI (LAX) reached for a growing season 

in each pixel of the image. The heterogeneity of this 

LAX is used to optimize a set of two soil parameters of 

an agro-hydrological model (soil depth and retention 

porosity) that both define the soil water holding 

capacity. A spatial distribution of optimal soil 

parameters is then obtained for several years. It allows 

to simulate the within field spatial heterogeneity of crop 

growth observed by Sentinel-2 [28]. Authors emphasize 

the importance to derive the soil moisture from 

Sentinel-1 observations, as saturated conditions could 

affect the crop growth and so the optimization 

parameters. These previous experiments show the 

strong interest of Sentinel-1&2 observations to improve 

the representation of agro-hydrological processes 

dynamics to study critical moment (drought periods) 

and the spatial heterogeneity of within field physical 

properties. 

 

2. Synergetic use of Sentinel-1 and Sentinel-2 to 

detect crop dynamics and agricultural 

practices 

We present here an example of the synergetic use of 

Sentinel-1 and 2 to monitor the small irrigated area 

extents in south-India, a first step to estimate the 

seasonal groundwater extraction for irrigation using an 

agro-hydrological modelling approach.  

Indian aagricultures represented 89% of water 

consumption in 2000, of which 39% came from 

groundwater. In South India, this contribution rise to 

90%. To cope with the recurrent groundwater shortages 

coming with dry monsoon and overexploitation, local 

farmers modulate their consumption by limiting the 

irrigated area extent (from 2 to 8 % for rice for 

instance). They also manage traditional rainWater 

Harvesting System (WHS) composed by small water 

reservoirs spread along the drainage network, to capture 

runoff and increase groundwater recharge (see black 

surfaces shown in Fig. 1). Reference [15] was the first 

to quantify the apportionment of WHS to groundwater 

recharge during the monsoon period at an experimental 

catchment scale, the Gajwel catchment (grey area in 

Fig. 1), by monitoring the surface water fluctuation in 

the WHS together with the estimate of groundwater 

extraction and recharge from both irrigated area extent 

surveys and groundwater table fluctuation monitoring. 

Both two surface variables -1 irrigated area extent and 

2- surface water dynamic - are key drivers to estimate 

the 1- groundwater extraction demand and 2- the 

groundwater recharge from WHS. Both variables can be 

easily detected from systematic remote sensing 

acquisitions.  

 

Figure 1. Kudaliar study site location (1000 km
2
), near 

Hyderabad. The potential aquifer storage estimated by 

reference [29]shows the heterogeneity of groundwater 

resource. The black areas correspond to the network of 

tanks composing the Water Harvesting System 

maintained by farmers to catch the monsoon runoff. 

 

The groundwater budget was previously simulated with 

the Soil Water Assessment Tool (SWAT) for the period 

2002-2012 in reference [19]. The main limitation of this 

application was that the irrigated area extent was 

estimated from remote sensing using only few images of 

monsoon 2009 and dry period 2010 and used to force 

the groundwater extraction for the whole period (10 

years). This is far from realistic as the irrigated area 

extent can vary from 2 to 8% depending on the 

groundwater availability and monsoon intensity.  

We intend to take the advantage of revisit frequency of 

both Sentinel 1&2 to make a clear distinction between 

water surfaces in tank, rice inundated areas, as well as 

vegetables and orchards irrigated area during the dry 

period of 2016 (Dec. 2015 to March 2016) using the set 

of exiting cloud free Sentinel-2 and Sentinel-1-IW. 



 

2.1. Land cover survey (January to March 2016) 

A survey of land cover have been carried out in 

February and March 2016 (fig. 2), corresponding to 600 

plots of natural vegetation cover, dry rainfed or 

bareground areas, agro-forestry plots (eucalyptus and 

Teak), irrigated orchards (mainly mango trees), irrigated 

crop areas (vegetables) and inundated crop areas (rice). 

In this last category, more than 100 rice paddies (few 

acres each) have been identified during both field trips. 

The dataset was especially scrutinized for rice crop 

checking accordance with the NDVI time series, due to 

the small extent of each rice paddies and the operator’s 

imprecision in delineating them. 

 

2.2. Sentinel-2 derived NDVI and NDWI time series 

The dry, cloudless season (December to April), is 

appropriate for optical acquisitions of Sentinel-2 

observations. The Kudaliar catchment where the Gajwel 

catchment is embedded (respectively delineated in black 

and filled in grey in fig. 1) has been used to set up a first 

evaluation of Sentinel-2 and Sentinel-1 classification 

potential of irrigated area extents in this context. 

Acquisitions dates are summarized in Tab. 1. 

 

Table 1: Sentinel-1 and 2 (cloud free) acquisition dates 
 Sentinel-1 Sentinel-2 

November 2015 17th  and 

29th  

clouds 

December 2015 23rd  31st  

January 2016 04th and 16th  10th and 30th  

February 2016 21st  09th and 19th  

March 2016 04th  10th  

 

Normalized Difference Vegetation Index (NDVI) has 

been extensively used to monitor vegetation dynamics 

as it is easy to compute from most of remote sensing 

sensors. It is a robust integrator of crop development. 

NDVI has also some drawbacks like for example it is 

soil dependant in lower values and it saturates at higher 

values. That’s the reason why other indicators have 

been proposed like SAVI or EVI [30]. The Normalized 

Difference Wetness Index (NDWI, [31]), has been used 

either for water detection or well-watered areas.  As 

irrigated soils are generally wetter than non irrigated 

soils, especially in semi-arid areas, NDWI can be a 

good indicator of irrigation if the image frequency 

allows seeing the impact of water added by irrigation. It 

has been previously successfully used in the 

identification of irrigated areas [32]. 

NDVI (eq. 1) was computed at 10 meters resolution 

while NDWI (eq.2) was resampled from 20 meters to 10 

meters using the bicubic method. We used the following 

Sentinel-2 bands 3, 4, 8 and 11 (respectively the green 

(560 nm), red (665 nm), near infra red (842 nm) and 

shortwave infrared (1610 nm) after the optical 

correction using Sen2cor (version 2.2.1, released on 

May the 4
th

), as proposed in [33]. 
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2.3. Sentinel-1 VH radar backscatter time series 

We have as well extracted the Sentinel-1 acquisition on 

the study site using the Google Earth Engine application 

(GEE - [34]). The Sentinel-1 observation strategy 

defines the Interferometric Wideswath (IW) mode as the 

pre-defined mode over land. This mode provides dual-

polarisation (VV and VH) imagery, at a resolution of 10 

meters, with a swath of 250km. 

The data provided by GEE is the Ground Range 

Detected (GRD) Level-1 products. They consist of 

focused SAR that has been detected, multi-looked and 

projected to ground-range using an Earth ellipsoid 

model. The Sentinel-1 data have been first calibrated 

(https://sentinel.esa.int/documents/247904/685163/S1-

Radiometric-Calibration-V1.0.pdf). We additionally 

multi-looked the data (window size of 2x2) to reduce 

the speckle noise effect, reaching a spatial resolution of 

20m. Then, terrain correction was applied to adjust the 

images by correcting SAR geometric distortions 

(foreshortening, layover and shadow) using a digital 

elevation model (DEM), producing map projected 

images. A speckle filter [35] was applied to further 

reduce the speckle effect while preserving the spatial 

resolution and the fine structure of the image. The 

method used produces images with reduced speckle 

effects from multi-temporal (10 dates) and multi-

polarized (VH and VV) images. The speckle filter is 

expressed as follows: 

 

𝐽𝑘(𝜐) =
 𝐼𝑘(𝜐) 

𝑁
 

𝐼𝑖(𝜐)

 𝐼𝑖(𝜐) 
 𝑁

𝑖=1   with  k=1,…,N         (eq. 3) 

 

where Jk(υ) is the radar intensity of the output image k at 

pixel position υ, Ii(υ) is the radar intensity of the input 

image i, <Ii(υ)> is the local average intensity of the 

input image k (window size of 7x7) and N is the number 

of images.  

The resulting theoretical number of looks is 58. 

 

2.4. Classification methods 

A cross comparison of a supervised classification 

method and a threshold method with different input data 

is done focusing only on the rice crop (80% of the 

groundwater consumption). The advantage of the 

threshold method is that it does not need a training 

dataset. The drawback is that the parameters may vary 

from one year to another depending mainly on climatic 

https://sentinel.esa.int/documents/247904/685163/S1-Radiometric-Calibration-V1.0.pdf
https://sentinel.esa.int/documents/247904/685163/S1-Radiometric-Calibration-V1.0.pdf


 

conditions. The Random Forest algorithm [36] is an 

automatic classification tree method that has the 

advantage to be fast and to explore automatically and 

randomly the different spaces of data. In this study, we 

used the implementation of the scikit-learn python 

package (http://scikit-learn.org). The threshold 

algorithm was designed to discriminate rice fields based 

on the supposed temporal behavior of the crop 

development and soil wetness of rice fields. The 

algorithm identifies the rice from other perennial or 

irrigated seasonal crops by defining high differences 

between minimum and maximum value of NDVI 

detected during the growing season, together with a low 

value of NDWI maintained during the period due to 

daily inundation of rice. After an a priori 

approximation, the parameters of the algorithm, the 

threshold of NDVI and NDWI, were optimized using 

the Nelder-Mead method [37]. Finally, the 

performances of the classifiers are compared using the 

Cohen’s kappa [38].  

 

3. Results and discussion 

Fig. 2 shows the results of one of the tested method for 

the whole Kudaliar watershed. It illustrates the main 

 
Figure 2: Rice paddy area extent (green) during the 

December-March 2016 season derived from  the 

tresholding method in the Kudaliar watershed (blue). 

The training areas (red=rice, 

black=others)corresponding to the field surveys are 

also shown. 

challenge of estimating rice area extent in this region: 

rice paddies are composed by very small plots (few 

acres each) grouped around a pumping borewell, 

themselves disseminated in the landscape. The high 

resolution of Sentinel is essential. Fig. 3 shows a zoom 

in the center of the watershed to illustrate the 

differences between the three methods.  Tab. 2 shows 

the kappa and also the percentage of good classification 

(rice pixels identified as rice fields during the field 

campaign) and the percentage of erroneous 

classification (rice pixels identified as another crop). 

 

Table 2: Cross tabulated results 

    
NDVI & 
NDWI 

NDVI & NDWI & 
BS VH 

Thresholdin
g 

Kappa 0.81 - 

% rice in 
watershed 3.7   

% Good 
detection 79.2 - 

% Bad 
detection 16.3 - 

Random 
Forest 

Kappa 0.44 0.6 

% rice in 
watershed 2.41 2.04 

% Good 
detection 46.34 50.26 

% Bad 
detection 56.33 24.43 

 

3.1. Optical detection only 

Accurate detection of irrigated area extents are obtained 

with the thresholding method based on optical indices, 

with a kappa of 0.81, almost 80% of good detection and 

16% of mislead detection. We had poor performance 

with the Random Forest method (kapp=0.44). In 

particular, the output showed a lot of confusion with the 

rainfed cotton (mainly dry since December) and 

agroforestry which will be explored in future studies. 

  

3.2. Synergetic radar and optical detection 

Optical detection was possible thanks to the low cloud 

coverage during the dry season, but it is expected that 

cloud free optical acquisitions will be infrequent during 

the monsoon season. The radar detection is then the best 

option during these periods. Tab. 1 shows that 

integrating backscattering in VH polarization from the 

Sentinel-1 time series improves the Random Forest 

algorithm prediction, increasing the Kappa from 0.44 to 

0.60, which is very encouraging. Yet, we suspect that 

the low performances of the Random Forest algorithm 

are due to both confusions affecting the land cover 

survey (geographical locations, crop identification) and 

the few number of certain crop type sampled while 

water shortages could create a high heterogeneity of 



 

spectral reflectance for a same crop type. 

 

a)  

b)  

c)  
Figure 3: Zoom with the three method 

(a:Thresholding with NDVI and NDWI, 

b:Random Forest with NDVI and NDWI, c: 

Random Forest with NDVI, NDWI and VH 

backscattering). The red plots are rice paddies, 

the yellow plots are other crops. The NDVI of 

February 2016 is used as background image. 

 

A higher acquisition frequency of S1 data should allow 

detecting not only the vegetation as the main driver of 

backscattering, but also changes in surface roughness 

and soil wetness due to tillage and irrigation. 

 

3.3. Rice area extent uncertainties and groundwater 

extraction estimates 

The range of rice detected area extent between each 

method varies from 2.04 to 3.7% of the total area, but 

with more confidence in that late proportion. Based on 

the previous agro-hydrological modelling [15], [19], 

these irrigated area extent correspond to respectively 28 

and 51 mm of irrigated water demand. In 2015, the 

monsoon rainfall accounted for 756 mm and recharge 

has been estimated to 174.4 mm using the water table 

fluctuation method (non published data from the Indo-

French Center for Groundwater Research, Hyderabad), 

method described in reference [39], in a nearby and 

similar experimental watershed. The temporal 

variability of monsoon rainfall and subsequent 

groundwater recharge is presented in Fig. 4. 

 

 
Figure 4: Temporal variability of monsoon (down) and 

recharge (up) estimated in the study region (source 

IFCGR-BRGM for the Maheshwaram watershed,  from 

[39]) 

 

4. Perspectives 

The systematic detection of rice and irrigated area 

extent with Sentinel-1&2 are foreseen to provide 

accurate quantifications of seasonal Irrigation Water 

Demand (IWD), as defined in the reference [19]. This 

amount was directly linked to the surface extent of each 

irrigated crop, associated to observed irrigation 

practices. For instance, the land cover of the dry season 

2010 in the catchment (Fig. 1) was composed by 6.96% 



 

of rice (70.6 km
2
), 6.79% of vegetables (68.9 km

2
), 

accounting for 93.44 mm and 15.59 mm of groundwater 

extraction respectively [19]. This high amount extracted 

during the dry season (January to March 2010) relied on 

relatively high groundwater level at this time. The 

estimated amount of 50 mm of irrigated water needed 

for the rice in the dry season 2016 depicts a shortage 

situation: the average 130 mm of annual recharge 

observed since 2002 (Fig. 4) could not sustain the 

irrigation water demand of two growing season as 

observed during the year 2009-2010 [19]. Farmers 

coping strategy consist mainly in limiting their rice 

production to the extent observed in dry season 2016. In 

this region, nowadays shortages of groundwater are 

explained by both climatic drought since 2013 and 

overexploitation of the groundwater for rice irrigation 

mainly. 

Sentinel-1&2 high spatial resolutions are essential for 

an accurate estimates of irrigated area extent. The multi-

spectral data of Sentinal-2 allows detecting both 

vegetation and water presence. SAR detection allows 

improving automatic optical images classification based 

on Random Forest algorithm, but Sentinel-1 detection 

suffers in this study from a lack of acquisition dates to 

demonstrate its determinant contribution in dry season.   

Finally, the water detection from both Sentinel-1&2 is 

crucial to monitor the water dynamic in the WHS, to 

better constrain by modelling the groundwater recharge 

from these installation that covers whole Deccan 

plateau. Surface water detection Algorithms will be set 

up to monitor the filling and draining period between 

respectively June to October and November to 

February. 
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