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On Vizing's edge colouring question *

Soon after his 1964 seminal paper on edge colouring, Vizing asked the following question: can an optimal edge colouring be reached from any given proper edge colouring through a series of Kempe changes? We answer this question in the a rmative for trianglefree graphs. * M.B., A.L. and

Introduction

Vizing proved in 1964 [START_REF] Vadim | On an estimate of the chromatic class of a p-graph[END_REF] that, to colour properly the edges of a simple graph, it su ces to have one more colour than the maximum number of neighbours.

Theorem 1.1 ( [START_REF] Vadim | On an estimate of the chromatic class of a p-graph[END_REF]). Any simple graph G satis es χ (G) ∆(G) + 1.

Here, χ (G) denotes the chromatic index of G, that is, the smallest integer k such that G admits a proper k-edge-colouring. The largest degree of a vertex in G is denoted by ∆(G), where the degree of a vertex is the number of neighbours it has.

The proof of Theorem 1.1 relies heavily on the notion of Kempe change, introduced in 1879 by Kempe 1 in a failed attempt to prove the Four Colour Theorem [START_REF] Kempe | On the geographical problem of the four colours[END_REF]. Given an edgecoloured graph, a Kempe chain is a maximal connected bicoloured subgraph. A Kempe change corresponds to selecting a Kempe chain and swapping the two colours in it. Observe that a Kempe chain may consist in a single edge e, coloured say α, when some colour β does not appears on any edge incident to e. A Kempe change on this Kempe chain therefore precisely recolour e into β, possibly decreasing the total number of colours.

Theorem 1.2 ( [START_REF] Vadim | On an estimate of the chromatic class of a p-graph[END_REF]). For every simple graph G, for any integer k > ∆(G) + 1, for any kedge-colouring α, there is a (∆(G) + 1)-edge-colouring that can be reached from α through a series of Kempe changes.

As noted in [START_REF] Mcdonald | Kempe equivalence of edgecolorings in subcubic and subquartic graphs[END_REF], Theorem 1.5 is not true when replacing (χ (G) + 2) with χ (G), regardless of whether χ (G) = ∆(G) (consider the graph K 5,5 ) or χ (G) = ∆(G)+1 (consider the graph K 5 ). As noted in [START_REF] Mohar | Kempe equivalence of colorings[END_REF], it could however be true with (χ (G) + 1).

Not much is known towards Question 1.3 or Conjecture 1.4. In 2012, McDonald, Mohar and Scheide [START_REF] Mcdonald | Kempe equivalence of edgecolorings in subcubic and subquartic graphs[END_REF] proved the case ∆(G) = 3 of the former (hence the case ∆(G) = 4 of the latter). In 2016, Asratian and Casselgren [START_REF] Asratian | Solution of Vizing's problem on interchanges for the case of graphs with maximum degree 4 and related results[END_REF] proved the case ∆(G) = 4 of the former (hence the case ∆(G) = 5 of the latter). We answer both questions a rmatively in the case where the graph is triangle-free, regardless of the value of ∆(G).

Theorem 1.6. For every triangle-free graph G, for any integer k > χ (G), any given χ (G)edge-colouring can be reached from any k-edge-colouring through a series of Kempe changes.

Theorem 1.6 improves upon an earlier theorem concerning bipartite graphs [START_REF] Armen | A note on transformations of edge colorings of bipartite graphs[END_REF]. We derive the immediate following corollary.

Corollary 1.7. For every triangle-free graph G, all (χ (G)+1)-edge-colourings are Kempe equivalent.

The general approach toward Theorem 1.6 follows that of [START_REF] Asratian | Solution of Vizing's problem on interchanges for the case of graphs with maximum degree 4 and related results[END_REF], which itself follows that of [START_REF] Mohar | Kempe equivalence of colorings[END_REF]. From a k-edge-colouring with k > χ (G), say we aim to reach a given χ (G)colouring α. We select a colour class M of α, and seek through a series of Kempe changes to reach a k-edge-colouring where M is monochromatic and its colour appears on no other edge. We can then delete M and apply induction on χ (G).

Complexity implications

As is often mentioned, Vizing's original argument can be turned into a polynomial-time algorithm-this was formally noted by Misra and Gries in 1992 [?]. However, deciding whether a graph G is ∆(G)-edge-colourable is an NP-complete problem [START_REF] Holyer | The NP-completeness of edge-coloring[END_REF], even in the case of triangle-free graphs [START_REF] Diamantis | The NP-completeness of chromatic index in triangle free graphs with maximum vertex of degree 3[END_REF]. This leaves little hope for extracting a polynomial-time algorithm from the proof of Theorem 1.6. There is however no di culty in detecting the di erence between Vizing's argument and ours: we start by assuming full access to a ∆(G)-edge-colouring, which is crucial in the proof.

More about Kempe changes

While this is irrelevant for the rest of the paper, let us mention some more applications and connections of Kempe changes to other problems. Since its introduction in the context of 4colouring planar graphs, much work has focused on determining which graph classes have good properties regarding Kempe-equivalence of their vertex colourings, see e.g. [START_REF] Mohar | Kempe equivalence of colorings[END_REF] for a comprehensive overview or [START_REF] Bonamy | On a conjecture of Mohar concerning Kempe equivalence of regular graphs[END_REF] for a recent result on general graphs. We refer the curious reader to the relevant chapter of a 2013 survey by Cereceda [vdH13]. Kempeequivalence falls within the wider setting of combinatorial recon guration, which [vdH13] is also an excellent introduction to.

Perhaps surprisingly, Kempe-equivalence has direct applications in approximate counting and statistical physics (see e.g. [START_REF] Sokal | A personal list of unsolved problems concerning lattice gases and antiferromagnetic Potts models[END_REF][START_REF] Mohar | A new Kempe invariant and the (non)-ergodicity of the Wang-Swendsen-Koteckỳ algorithm[END_REF] for nice overviews). Closer to graph theory, Kempe-equivalence can be studied with a goal of obtaining a random colouring, by proving that a given random walk is a rapidly mixing Markov chain, see e.g. [START_REF] Vigoda | Improved bounds for sampling colorings[END_REF].

General setting of the proof

Let us argue that it su ces to handle the case of a χ (G)-regular graph. Indeed, any graph G is the induced subgraph of a χ (G)-regular graph that is also χ (G)-edge-colourable. To see this, we decrease step-by-step the di erence between χ (G) and the smallest degree of a vertex in G. Let β be a χ (G)-edge-colouring of G, and consider two copies of G, each coloured β. We add an edge between both copies of every vertex of smallest degree: since both copies of G are coloured the same, there is a colour available for the new edge. Note that this construction does not create any triangle. See Figure 1 for an example. Additionally, note that any series of Kempe changes in a graph has a natural transposition to any induced subgraph of it. Indeed, if a Kempe chain in the graph corresponds to more than one Kempe chain in the induced subgraph, it su ces to operate the swap in every such Kempe chain.

This allows us to restrict our attention to the case where ∆(G) = χ (G) and the colour class M is a perfect matching, which will prove to be convenient. Theorem 1.6 was already proved in [START_REF] Mohar | Kempe equivalence of colorings[END_REF] when k χ (G) + 2. Therefore, we focus on the case k = χ (G) + 1, though the reader can convince themself that the proof could be adapted for higher k with a loss in simplicity.

From now on, we consider only (∆(G) + 1)-edge-colourings of a ∆(G)-regular graph G. Therefore, for every such colouring α, and for every vertex u, there is a unique colour m α (u) in {1, . . . , ∆ + 1} \ {α(uv) | v ∈ N (u)}, referred to as the missing colour of α at u.

We de ned the notion of Kempe changes in the introduction: let us introduce some helpful notation around them. For any colouring α, for any two (distinct) colours c, d, we denote by K α (c, d) the subgraph of G induced by the edges coloured c or d. The notion of a component of K α (c, d) containing an edge e is straightforward. We extend this notion to that of a component containing a vertex u. To describe a Kempe change, we will indicate that we swap the component of K α (c, d) containing this edge or that vertex, for some given c and d. We will write α β to indicate that two k-edge-colourings α and β are Kempe-equivalent. Formally, we should indicate the bound on the number of colours involved in an intermediary colouring in the sequence of Kempe-changes. However, we believe that there is no ambiguity anywhere regarding this. In particular, throughout the proof we only involve colours in {1, . . . , ∆(G) + 1}.

Fan-like tools

Let α be a (∆ + 1)-edge-colouring of a ∆-regular graph G. Consider an edge uv, and say we want to recolour it. If m(u) = m(v), this can be done immediately without impacting the rest of the colouring. Therefore, let us consider m(v) = m(u), and look at the obstacles around u. There is an edge uw coloured m(v). Again, if we can recolour it without impacting the rest of the colouring, we can then recolour uv into m(v). This prompts us to de ne a directed graph D u (α) on vertex set {uw | w ∈ N (u)}, where a vertex uw has a directed edge to ux if m(w) = α(ux) (see Figure 2). Note that by de nition, every vertex in D u (α) has out-degree 0 or 1, and arbitrarily large in-degree. Consider the sequence X u (α, v) of vertices than can be reached from uv in D u (α). For both D u (α) and X u (α, v), we drop α from the notation when it is clear from context.

We have three possible scenarios, by increasing di culty (see Figure 2 for an illustration):

1. X u (v) induces a path in D u . 2. X u (v) induces a cycle in D u . 3. X u (v) induces a comet in D u
, where a comet is obtained from a directed path by adding an edge from the sink to a vertex that is neither the source nor the sink.

For any edge uv, if X u (α, v) induces a path or cycle in D u , we denote by X -1 u (α, v) the colouring obtained from α by assigning the colour m(w) to every edge uw ∈ X u (α, v). Note that for every edge uw ∈ X u (α, v), we have m X -1 u (α,v) (w) = α(uw). We refer to this operation on α as inverting X u (α, v). Figure 3 illustrates the result of inverting a path. We drop v from the notation when there is no ambiguity.

1 u 3 x 0 2 4 x 1 3 5 x 2 4 1 x 3 5 1 u 3 x 0 2 4 x 1 3 5 x 2 4 2 x 3 5 1 u 3 x 0 2 4 x 1 3 5 x 2 4 3 x 3 5 ux 0 ux 1 ux 2 ux 3 ux 0 ux 1 ux 2 ux 3 ux 0 ux 1 ux 2 ux 3
Figure 2: From left to right, the three possible scenarios for a sequence X u (α, x 0 ) in the digraph D u (α): a path, a cycle or a comet. (Vertices are labeled by the missing colors.)

1 u 3 x 0 2 4 x 1 3 5 x 2 4 1 x 3 5 2 u 2 x 0 3 3 x 1 4 4 x 2 5 5 x 3 1 Figure 3: Coloring α (left) and X -1 u (α, x 0 ) (right) when X u (α, x 0 ) is a path.
In order to have an overview of the key ingredients in the proof, let us now state an Observation and some Lemmas, the proof of which are postponed to the following subsections.

Observation 2.1. For any vertex u and path

X u (α) in D u (α), α X -1 u (α).
De nition 2.2. For any vertex u and cycle X u (α) = (ux 0 , . . . , ux p ) in D u (α), we say that X u (α) is saturated if for every 0 i p, the component of K(α(ux i ), m(u)) containing u also contains x i-1 (resp. x p if i = 0).

The same conclusion holds for cycles unless the sequence is saturated:

Lemma 2.3. For any vertex u and non-saturated cycle

X u (α) in D u (α), α X -1 u (α).
To reach the desired conclusion for a saturated cycle, we need further assumptions, including the absence of triangles, as follows:

Lemma 2.4. For any vertex u and saturated cycle

X u (α, v) in D u (α), if G is triangle-free, and if the sequence Y v (α, u) of vertices of D v (α) induces a cycle, then α X -1 u (α, v).
For comets, it su ces to allow one Kempe change outside of X u (α):

Lemma 2.5. For any vertex u and comet X u (α) = (ux 0 , . . . , ux p ) in D u (α), we have α α , where α satis es m α (u) = α(ux 0 ) and is obtained from α by changing the colour of some edges in X u (α) and possibly swapping one component C in K(m(u), α(ux q )), where ux q is the endpoint of the out-edge from ux p in D u (α).

In the colouring α obtained from Lemma 2.5, we stress the fact that the number of edges coloured α(ux 0 ) strictly decreases as the swapped component C does not contain such a colour, and m α (u) = α(ux 0 ), i.e., no edge incident to u has colour α(ux 0 ) in α .

We prove the lemmas by increasing di culty in the following subsections.

Gentle introduction: a proof of Observation 2.1

Proof of Observation 2.1. Let X u (α) = (ux 0 , . . . , ux p ) be a path in D u (α). Intuitively, we will start recolouring edges from the end of the path to its beginning. Observe that since X u (α) is a path, by construction of D u (α) there is no edge incident to u that has colour m(x p ), hence m(u) = m(x p ). We proceed by induction on p. When p = 0, we have m(x 0 ) = m(u), thus swapping the single-edge component of K(α(ux 0 ), m(u)) containing ux 0 yields the desired colouring X -1 u (α). Similarly, for p > 0, we swap the (single-edge) component of K(α(ux p ), m(u)) containing ux p , and denote by α the resulting colouring. We note that in D u (α ), the sequence X u (α , x 0 ) is exactly the path (ux 0 , . . . , ux p-1 ). Moreover X u (α , x 0 ) = X -1 u (α). By induction we derive α X -1 u (α), hence α X -1 u (α).

Comets: a proof of Lemma 2.5

Proof of Lemma 2.5. Let X u (α) = (ux 0 , . . . , ux p ) be a comet in D u (α), with x q the endpoint of the out-edge from ux p in D u (α). Since X u (α) is a comet, 0 < q < p. We swap the component C of K(m(u), α(ux q )) containing the edge ux q , and denote by α the resulting colouring. In α, we have m α (x p ) = m α (x q-1 ) = α(ux q ). Since C must be a path, it contains at most two vertices (its endpoints) whose missing colour in α belongs to {m(u), α(ux q )}. We know that C already contains u, so at least one of x p and x q-1 has the same missing colour in α and α . We distinguish the two cases.

• Assume m α (x q-1 ) = α(ux q ). Since m α (u) = α(ux q ), it follows that in D u (α ), the sequence X u (α , x 0 ) is exactly (ux 0 , . . . , ux q-1 ), which induces a path. We then conclude by Observation 2.1.

• If not, m α (x q-1 ) = α (ux q ), and m α (x p ) = α(ux q ). Since m α (u) = α(ux q ), it follows that in D u (α ), the sequence X u (α , x 0 ) is exactly (ux 0 , . . . , ux p ), which induces a path. We then conclude by Observation 2.1.

Non-saturated cycles: a proof of Lemma 2.3

Proof of Lemma 2.3. Let X u (α) = (ux 0 , . . . , ux p ) be a non-saturated cycle in D u (α). Without loss of generality since X u (α) induces a cycle that is not saturated, we can assume that the component of K(α(ux 0 ), m(u)) containing u does not contain an edge incident with x p . By de nition of D u (α), we have m(x i ) = α(ux i+1 ) for every 0 i < p, and as illustrated on Figure 4(a) m(x p ) = α(ux 0 ). We consider the colouring α obtained from α by swapping the component C of K(α(ux 0 ), m(u)) containing x p (C is referred to as a 1-2 chain on Figure 4(a), see Figure 4(b) for the resulting colouring). By assumption, this has no impact on the colours of the edges incident with u, and m α (x i ) = m α (x i ) for every 0 i < p, as well as m α (u) = m α (u). Note however that m α (x p ) = m α (u). In the colouring α , X u (α , x 0 ) = (ux 0 , ..., ux p )

1 u 3 x 0 2 4 x 1 3 5 x 2 4 2 x 3 5 1-2 chain 1 (a) Colouring α 1 u 3 x 0 2 4 x 1 3 5 x 2 4 1 x 3 5 2-1 chain 2 (b) Colouring α 2 u 2 x 0 3 3 x 1 4 4 x 2 5 5 x 3 1 2-1 chain 2 (c) Colouring α = X -1 u (α , x 0 ) 1 u 1 x 0 3 3 x 1 4 4 x 2 5 5 x 3 2 1-2 chain 1 (d) Colouring X -1 u (α, x 0 ) Figure 4: Colorings α α X -1 u (α , x 0 ) X -1 u (α, x 0 ).
is a path, thus by Observation 2.1, α X -1 u (α , x 0 ); we denote this resulting colouring by α (see Figure 4(c)). In the colouring α , let C be the component of K(α(ux 0 ), m α (u)) containing x p . We have that C = C ∪ {ux p }, and that m α (u) = α(ux 0 ), so it su ces to swap C to obtain X -1 u (α) as illustrated on Figure 4(d). Hence α α X -1 u (α , x 0 ) X -1 u (α), as desired.

Double cycles: a proof of Lemma 2.4

Proof of Lemma 2.4. Let X u = (uv, ux 1 , . . . , ux p ) be a saturated cycle in D u (α), and Y v = (vu, vy 1 , . . . , vy q ) be a cycle in D v (α). Observe that m(v) = m(u), otherwise X v and Y u contain only the edge uv and thus do not induce cycles. Note that m(x p ) = m(y q ) = α(uv) and by triangle-freeness x p = y q .

Figure 5 illustrates the following argument. Since X u is saturated, the component of K(α(uv), m(u)) containing u also contains x p , and thus does not contain y q . In particular, it follows that q 2, since by de nition α(vy 1 ) = m(u) and thus y 1 is in the same component of K(α(uv), m(u)) as u and x p , while m(y q ) = α(uv).

Let C be the component of K(α(uv), m(u)) containing y q . We note that C and X u ∪ Y v are disjoint, and that neither endpoint of C is incident to an edge of X u ∪ Y v \ {vy q }, as the only vertices missing colours α(uv) or m α (u) in X u ∪Y v are by de nition u, x p , and y p , since X u and Y v induce cycles. We consider the colouring α 1 obtained from α by swapping C (see Figure 6 for all the intermediate colourings used in this proof). For every x i , we have α(ux i ) = α 1 (ux i ) and m α (x i ) = m α 1 (x i ); similarly for u, v, and every y j with 1 j < q.

The sequence X u is also a cycle-inducing sequence of vertices that can be reached from uv in D u (α 1 ). However, X u may not saturated in α 1 . We distinguish the two cases.

• Assume that X u is not saturated in α 1 . By Lemma 2.3, we have α 1 X -1 u (α 1 ). By swapping C for the second time (remember that C and X u are disjoint, and that neither endpoint of C is incident to an edge of X u ), we obtain X -1 u (α), hence the conclusion.

2 u 3 v 1 1 x p 1 y q 6 7 y 1 2 1-2 chain 2 1-2 chain C 5 y 2 7 4 x 1 3 x i y j
Figure 5: Double cycles: Illustration of the beginning of the proof of Lemma 2.4: In colouring α, the vertex y q is in a di erent component of K(α(uv), m(u)) than u and x p .

• Assume now that X u is saturated in α 1 . Hence the component of

K(m α 1 (u), m α 1 (v))
containing u also contains v thus does not contain y q , since m α 1 (y q ) = m α 1 (u).

Let C be the component of K(m α 1 (u), m α 1 (v)) containing y q . Similarly as for C, we note that C and X u ∪ Y v are disjoint, and that neither endpoint of C is incident to an edge of X u ∪ Y v \ {vy q }. We consider the colouring α 2 obtained from α 1 by swapping C . In D v (α 2 ), the sequence (vu, vy 1 , . . . , vy q ) is the sequence of vertices of D v (α 2 ) that can be reached from uv, and it induces a path. Let α 3 = (uv, vy 1 , . . . , vy q ) -1 (α 2 ). By Observation 2.1, we have α 2 α 3 . Note that α 3 assigns the colour α(uv) to no edge in X u ∪ Y v . In D u (α 3 ), the sequence (ux 1 , . . . , ux p ) is the sequence of vertices that can be reached from ux 1 , and it induces a path. Let α 4 be the colouring (ux 1 , . . . , ux p ) -1 (α 3 ). By Observation 2.1, we have α 3 α 4 . Note that in α 4 , we have m α 4 (v) = α(uv) and m α 4 (u) = m α (v), with α 4 (uv) = m α (u). Note that there is a unique connected component of K(m α (u), m α (v)) containing vertices of C , which is precisely C ∪ {uv, vy q }. In the colouring α 5 obtained from α 4 by swapping C ∪ {uv, vy q }, there is a unique component of K(α(uv), m α (u)) containing vertices of C, which is precisely C ∪ {vy q }. Moreover, in the colouring α 5 , the sequence (vy 1 , vy q , vy q-1 , . . . , vy 2 ) induces a cycle in D v . The cycle is not saturated since the component of K(α(uv), m α (u)) containing vertices of C is precisely C ∪ {vy q }: since q 2, it does not contain y 1 . We consider the colouring α 6 obtained from α 5 by inverting (vy 1 , vy q , vy q-1 , . . . , vy 2 ). By Lemma 2.3, we obtain α 5 α 6 . Note that in α 6 , the component of K(α(uv), m α (u)) containing vertices of C is precisely C: we swap it and obtain α X -1 u (α), as desired.

3 The good, the bad and the ugly (edges)

We essentially follow the outline of [START_REF] Asratian | Solution of Vizing's problem on interchanges for the case of graphs with maximum degree 4 and related results[END_REF], and proceed by induction on ∆. Given a ∆-regular triangle-free graph G that is ∆-edge-colourable, we consider a (∆+1)-edge-colouring α and a target ∆-edge colouring γ. Let M be a colour class of γ, and note that M is a perfect matching. We x a colour out of {1, 2, . . . , ∆ + 1}, say 1, and try, through Kempe changes from α, to assign the colour 1 to every edge in M . If we succeed, we can delete M and proceed by induction on G \ M with colours {2, . . . , ∆ + 1}, noting that γ restricted to G \ M uses only (∆(G) -1) colours. Let us introduce some terminology to quantify how close we are to this goal of assigning the colour 1 to every edge in M . In a given colouring, we say an edge is:

• good if it belongs to M and is coloured 1.

• bad if it belongs to M but is not coloured 1.

• ugly if it does not belong to M but is coloured 1.

Throughout the proof, we consider exclusively (∆+1)-colourings that can be reached from α through a series of Kempe changes: let us denote by C all such colourings. We de ne an order on C and we will prove that, in any minimal colouring, all edges of the perfect matching M are coloured 1.

De nition 3.1. A colouring in C is minimal if it has the fewest bad edges among all colourings in C, and among those with the fewest bad edges, has the fewest ugly edges.

Note that there may be many minimal colourings. If m(u) = 1, we say the vertex u is free. Lemma 3.2. In a minimal colouring, every ugly edge vw is such that the sequence of vertices of D v reached from vw induces a cycle.

Proof. We consider a minimal colouring β, and denote by X v (w) = (vw, vx 1 , . . . , vx p ) the sequence of vertices of D v (β) reached from vw. Suppose by contradiction that X v (w) does not induce a cycle. The simple yet key observation is that for every i, m(x i ) = 1.

If X v (w) induces a path, we conclude immediately using Observation 2.1, as X -1 v (β, w) has the same number of bad edge as β, and one fewer ugly edge.

Therefore, it su ces to consider the case where X v (w) induces a comet. We let q be such that vx p has an out-edge to vx q in D v . In addition to m(x i ) = 1 for every 1 i p, note that m(v) = 1, as β(vw) = 1. The colouring β obtained from Lemma 2.5 has therefore the same number of bad edges as β, and fewer ugly edges. Since β β, this contradicts the minimality of β.

By considering the last element of a sequence reached from an ugly edge, Lemma 3.2 yields the following statement, whose proof appeared in [START_REF] Asratian | Solution of Vizing's problem on interchanges for the case of graphs with maximum degree 4 and related results[END_REF] but which we state somewhat differently.

Corollary 3.3 ([AC16]

). In a minimal colouring, both endpoints of an ugly edge have a free neighbour.

As we shall see, a consequence of Corollary 3.3 together with the regularity assumption is that, in a minimal colouring, there are bad edges with a free endpoint (unless there is no bad edge at all). These are central to the argument2 . Let us now prove a small observation and then proceed with the core of the proof.

Observation 3.4. In any minimal colouring β, every bad edge is incident to an ugly edge.

Proof. Let xy be a bad edge. If m(x) = m(y) = 1, we can swap the (single-edge) component of K(1, β(xy)) containing xy and have one fewer bad edges, a contradiction to the minimality of β. We derive that xy is incident to some edge e satisfying β(e) = 1. Then e is necessarily ugly, as xy ∈ M and M is a matching.

Proof of Theorem 1.6. Let β be a minimal colouring. If there is no bad edge, then M is monochromatically coloured, as desired. Therefore, we assume that there is a bad edge which, by Observation 3.4, is incident to an ugly edge e. By Corollary 3.3 applied to e, there exists some free vertex u (adjacent to an endpoint of e).

Let v be such that uv ∈ M , note that since u free, uv is bad, and is thus incident to an ugly edge by Observation 3.4. Since u cannot be incident to an ugly edge (it is free), there is some vertex w ∈ N (v) such that vw is ugly. We denote by X v the sequence of vertices of D v reached from vw, and by Y w the sequence of vertices of D w reached from vw.

By Lemma 3.2, we obtain immediately that X v induces a cycle in D v , and Y w induces a cycle in D w . By Lemmas 2.3 or 2.4, we derive that β Y -1 w (β). Note that Y -1 w (β) has at most as many bad and ugly edges as β.

By triangle-freeness, u and w are not adjacent and so uw does not appear in Y w . Thus m Y -1 w (β) (v) = 1 = m Y -1 w (β) (u). We swap the (single-edge) component of K(1, β(uv)) containing the edge uv, and obtain a colouring with fewer bad edges, a contradiction.

Conclusion

The main result of this paper is based on the Vizing's fans; in his proof he only needs to handle the case of paths and comets (as described in Section 2), our main contribution is to extend this argument to non saturated cycles and double cycles. The proof yields an algorithm that, given a target optimal colouring, computes a polynomial transformation sequence in polynomialtime. The method could be pushed further, however the length and the complexity of the proof would increase exponentially. The general case for multigraphs still seems a challenging question, and an additional argument is probably needed to solve it.

Moreover, even some special cases are of their own interest. For instance, it's still unclear how to handle the case of cliques, as an induction on the chromatic index is not possible for this class of graphs.

  Figure 1: Construction of a 3-regular 3-edge colourable graph from a 3-edge colourable graph

In[START_REF] Asratian | Solution of Vizing's problem on interchanges for the case of graphs with maximum degree 4 and related results[END_REF], this allows us to assume case A happens, avoiding case B entirely.
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1 Initially in the context of vertex colouring.
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