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Abstract

In this paper, we give precise rates of convergence in the strong invariance prin-

ciple for stationary sequences of bounded real-valued random variables satisfying

weak dependence conditions. One of the main ingredients is a new Fuk-Nagaev

type inequality for a class of weakly dependent sequences. We describe also several

classes of processes to which our results apply.
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1 Introduction

Let (Xi)i∈Z be a strictly stationary sequence of real-valued random variables (r.v.) de-

fined on a probability space (Ω,A,P), with mean zero and positive finite variance.

Set Sn = X1 + X2 + · · · + Xn. In this paper, we assume furthermore that the series

σ2 =
∑

k∈Z Cov(X0, Xk) is convergent (under this assumption limn n
−1Var(Sn) = σ2).

We are interested in obtaining sharp rates in the invariance principle (both in the al-

most sure sense and in the L2-sense). Recall that such invariance principles consist in

constructing, on a possible larger probability space, a sequence (Zi)i≥1 of i.i.d. centered

Gaussian variables with variance σ2 in such a way that, setting Tk =
∑k

i=1 Zi,

sup
1≤k≤n

∣∣Sk − Tk∣∣ = O(an) a.s. or in L2, (1.1)

where (an)n≥1 is a nondecreasing sequence of positive reals tending to infinity, satisfying

an = o(
√
n). In the independent setting, the almost sure rates are an = o(n1/p) when

E(|X0|p) < ∞ for p > 2 and are an = O(log n) when X0 has a finite Laplace transform
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in a neighborhood of 0 (see [18, 21]). Furthermore these rates are optimal according to

Breiman [4] in the first case and to Bártfai [1] in the second one.

In the dependent setting, even when the random variables are bounded the almost

sure rates can be arbitrarily large. More precisely, let us consider the class of irreducible

aperiodic and positively recurrent Markov chains (ξn) with an atom denoted by A (see

the definition page 286 in [3]). Let τA be the first return time in A, PA be the probability

of the chain starting from the atom and EA be the expectation under PA. Let then π be

the unique invariant distribution, (ξn) be the Markov chain starting from π, and (Xk)

be the strictly stationary sequence defined by Xk = f(ξk) with f a bounded function.

Theorem 2.2 in [13] asserts that, for any p > 2 there exists an irreducible aperiodic and

positively recurrent Markov chain (ξk)k≥0 with uniform distribution over [0, 1] satisfying

PA(τA > x) = O(x−p) and such that for any absolutely continuous function f on [0, 1]

with π(f) = 0 and a strictly positive derivative,

lim sup
n→∞

(n log n)−1/p
∣∣Sn − n∑

k=1

gk
∣∣ > 0 a.s.

for any stationary and Gaussian centered sequence (gk)k∈Z with convergent series of

covariances. This shows that for this type of Markov chains, the rates in the almost sure

invariance principle are linked to the moments of the return times in A.

For p ∈]2, 4], under the slightly stronger condition EA(τ pA) < ∞, Csáki and Csörgő

[5] proved the almost sure rates an = O(n1/p log n) in the strong invariance principle

(see their Theorem 2.1). Our main objective is to extend this result to the case of

general stationary sequences of bounded random variables including the case of bounded

variation functions of non irreducible Markov chains. We shall then consider the case of

θ-dependent sequences whose coefficients are defined as follows:

Definition 1.1. Let Γp,q = {(ai)1≤i≤p ∈ Np : a1 ≥ 1 and
∑p

i=1 ai ≤ q}, for p and q

positive integers. Let (Xi)i∈Z be a stationary sequence of centered and bounded real-

valued random variables and F0 = σ(Xi, i ≤ 0). For k ≥ 0, set

θX,p,q(k) = sup
kp>kp−1>...>k2>k1≥k

(a1,...,ap)∈Γp,q

∥∥∥E( p∏
i=1

Xai
ki
|F0

)
− E

( p∏
i=1

Xai
ki

)∥∥∥
1
.

These coefficients are suitable for non irreducible Markov chains (see the examples

given in Section 4.2). In addition, in case of bounded additive functionals of irreducible

aperiodic and positively recurrent Markov chains with an atom A, for any p ≥ 2, the

condition EA(τ pA) < ∞ implies that
∑

k≥1 k
p−2θX,4,4(k) < ∞ (see Section 4.1 for more

details). Our aim is then to show that for any stationary sequences of bounded random

variables satisfying the later weak dependence condition for some p in ]2, 4], the rate in

the almost sure invariance principle is n1/p up to some power of log n .
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To obtain such rates, a possible approach is to use a martingale approximation and

the Skorokhod embedding theorem. Recall that with this method, the rate cannot be

better than n1/4 up to some power of log n. The closest results in this direction are

given in Wu [28] and Doukhan et al [9]. For instance, for p in ]2, 4], Corollary 3.9 in [9]

provides the rate an = o(n1/p(log n)1/2+1/p+ε) for any ε > 0 in the almost sure invariance

principle under the condition
∑

k>0 k
p−1−2/pθX,4,4(k) <∞, which is suboptimal. Still by

means of the Skorokhod embedding theorem, it is possible to get rates for the L2-norm

of the error in the invariance principle with suboptimal conditions (see Liu and Wang

[19]).

Let θ(k) = θX,4,4(k), for any k ≥ 0 (recall that the random variables are bounded

in Definition 1.1). If p is in ]2, 3] and
∑

k≥1 k
p−2θ(k) < ∞, one can obtain the rates

an = O(n1/p) (up to some power of log n) both for the almost sure invariance principle

and the L2-norm of the error, by adapting the proof of [23, Theorem 2.1]. The main

ingredients used in [23] are a Fuk-Nagaev type inequality to control the fluctuations

and an estimate of the quadratic cost in the conditional central limit theorem. However,

compared to inequality (2.1) below, the second term in their Fuk-Nagaev type inequality

cannot be better than Cn/x3. In addition, their estimate of the quadratic cost in the

conditional central limit theorem cannot be better than n−1/2 (this follows from their

inequality (A.6)). These upper bounds induce a limitation of the rates in the invariance

principle at the level n1/3 (up to some power of log n). Recently, the authors proved that

for p in ]3, 4] and under the condition
∑

k≥1 k
p−2θ(k) <∞, the estimate of the quadratic

cost in the conditional central limit theorem is of order n−(p−2)/2. This together with the

Fuk-Nagaev type inequality stated in Section 2 are the main ingredients to go beyond

the rate n1/3 in the almost sure invariance principle and to get the rates n1/p (up to some

power of log n) for p ∈]3, 4].

Our paper is organized as follows. In Section 2, we state a Fuk-Nagaev type inequal-

ity for partial sums associated with stationary sequences of bounded random variables

satisfying the condition
∑

k≥1 kθ(k) <∞. In this inequality, the second term is of order

n/x4 under the condition
∑

k≥1 k
2θ(k) <∞. In Section 3, we give our main results con-

cerning the rates in the invariance principles (in L2 and almost surely). In Section 4, we

present several classes of examples to which our results apply, including the example of

BV observables of the Liverani-Saussol-Vaienti map (see [20]). An application to rates of

convergence in the functional central limit theorem for the quadratic cost associated with

the uniform deviation between the Donsker line and the Brownian motion is provided in

Section 4.4. The proof of the Fuk-Nagaev type inequality is given in Section 5. Section

6 is devoted to the proof of our results concerning the rates in the invariance principles

in the non degenerate case, whereas the degenerate case is considered in Section 7.

In this paper, we shall use the following notations: a � b means that there exists a
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numerical positive constant C such that a ≤ Cb, and X(0) means X − E(X).

2 Deviation inequalities

We set S0 = 0 and Sn = X1 + X2 + · · · + Xn for any positive integer n. In all the

paper, except in Section 7, we denote θX,4,4(k) by θ(k) for all k in N and we assume that

‖X0‖∞ = 1. The general case follows by dividing the random variables by ‖X0‖∞.

Theorem 2.1. Assume that
∑

k≥1 kθ(k) <∞. Let S∗n = max0≤k≤n Sk. Then the series

E(X2
0 ) + 2

∑
k≥1 E(X0Xk) converges to some nonnegative real σ2. Moreover, for any

positive real x and any positive integer n,

P
(
S∗n ≥ x

)
≤ c11{σ2>0}

(nσ2

x2

)4

exp
(
− x2

16nσ2

)
+c2

n

x4

(
Θ1Θ2 +

∑
k≥1

k(k∧x)θ(k)
)
, (2.1)

where Θ1 = 1 +
∑

k≥1 θ(k), Θ2 = 1 +
∑

k≥1 kθ(k) and c1, c2 are positive numerical

constants.

Remark 2.1. Recall that limn→∞ n
−1E(S2

n) = σ2 as soon as
∑

k≥1 θ(k) <∞.

Let p ∈]3, 4[ and assume that
∑

k≥1 k
p−2θ(k) < ∞. An application of Theorem 2.1

gives that for any α ∈]1/2, 1] and any ε > 0,
∑

n≥1 n
αp−2P

(
S∗n ≥ nαε

)
< ∞. Note that

when p ∈]2, 3[ the same result holds by using Proposition A.2 in [23].

3 Application to strong approximations

Let (Xi)i∈Z be a stationary sequence of centered and bounded real-valued random vari-

ables such that
∑

k>0 θ(k) <∞. In this situation, the series E(X2
0 ) + 2

∑
k≥1 E(X0Xk) is

absolutely convergent. In this section, we are interested in strong approximations in the

non degenerate case, meaning that the sum σ2 of this series is positive. We will consider

the case σ2 = 0 in Section 7. In the sequel, we assume that the underlying probability

space is rich enough to contain a random variable δ uniformly distributed over [0, 1],

independent of the sequence (Xk)k∈Z. From δ, we construct a sequence (δi)i∈Z of i.i.d.

random variables uniformly distributed over [0, 1] and independent of (Xk)k∈Z.

As explained in [23], having a suitable bound for the quadratic transportation cost

in the conditional central limit theorem allows to derive strong approximation results.

Indeed, let us recall the construction given in [23] which is inspired from Bártfai [1]. For

L ∈ N, let m(L) ∈ N be such that m(L) ≤ L. Let

Ik,L =]2L + (k − 1)2m(L), 2L + k2m(L)] ∩ N and Uk,L =
∑
i∈Ik,L

Xi , k ∈ {1, · · · , 2L−m(L)} .
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For k ∈ {1, · · · , 2L−m(L)}, let Vk,L be the N(0, σ22m(L))-distributed random variable

defined from Uk,L via the conditional quantile transformation, that is

Vk,L = σ2m(L)/2Φ−1(F̃k,L(Uk,L − 0) + δ2L+k2m(L)(F̃k,L(Uk,L)− F̃k,L(Uk,L − 0))) , (3.1)

where F̃k,L := FUk,L|F2L+(k−1)2m(L)
is the d.f. of PUk,L|F2L+(k−1)2m(L)

(the conditional law of

Uk,L given F2L+(k−1)2m(L)) and Φ−1 is the inverse of the standard Gaussian distribution

function Φ. Since δ2L+k2m(L) is independent of F2L+(k−1)2m(L) , the random variable Vk,L is

independent of F2L+(k−1)2m(L) , and has the Gaussian distribution N(0, σ22m(L)) (see [26,

Lemma F.1]. By induction on k, the random variables (Vk,L)k are mutually independent

and independent of F2L . In addition

E(Uk,L − Vk,L)2 = E
∫ 1

0

(
F−1
Uk,L|F2L+(k−1)2m(L)

(u)− σ2m(L)/2Φ−1(u)
)2
du

:= E
(
W 2

2 (PUk,L|F2L+(k−1)2m(L)
, Gσ22m(L))

)
, (3.2)

where Gσ22m(L) is the Gaussian distribution N(0, σ22m(L)).

This construction together with Theorem 2.1 and estimates of the quadratic condi-

tional cost in the central limit theorem given in [14] are the main ingredients to get the

next strong approximations results.

Theorem 3.1.

(i) Assume that θ(k) = O(k1−p) if p ∈]2, 3[∪]3, 4[ and
∑

k>0 k
p−2θ(k) < ∞ if p ∈

{3, 4}. Then, one can construct a sequence of i.i.d. Gaussian random variables

(Zi)i≥1 centered and with variance σ2, such that, setting Tk =
∑k

i=1 Zi, we have∥∥∥ sup
k≤n
|Sk − Tk|

∥∥∥
2

= O(n1/p(log n)(1/2−1/p)) .

(ii) Let p ∈ {3, 4} and assume that θ(k) = O(k1−p). Then, one can construct a sequence

of i.i.d. Gaussian random variables (Zi)i≥1 centered and with variance σ2, such

that, setting Tk =
∑k

i=1 Zi,∥∥∥ sup
k≤n
|Sk − Tk|

∥∥∥
2

= O(n1/p(log n)1/2) .

We now give almost sure rates for strong approximations.

Theorem 3.2.

(i) Let p ∈]2, 3[∪]3, 4[ and assume that
∑

k>0 k
p−2θ(k) <∞. Then, one can construct

a sequence of i.i.d. Gaussian random variables (Zi)i≥1 centered and with variance

σ2, such that, setting Tk =
∑k

i=1 Zi,

sup
k≤n
|Sk − Tk| = o(n1/p(log n)1/2−1/p) a.s.
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(ii) Assume that θ(k) = O(k1−p) if p ∈]2, 3[∪]3, 4[ and
∑

k>0 k
p−2θ(k) < ∞ if p ∈

{3, 4}. Then, for any η > 1/2, one can construct a sequence of i.i.d. Gaussian

random variables (Zi)i≥1 centered and with variance σ2, such that, setting Tk =∑k
i=1 Zi,

sup
k≤n
|Sk − Tk| = o(n1/p(log n)η) a.s.

(iii) Let p ∈ {3, 4} and assume that θ(k) = O(k1−p). Then, for any η > 1/2 + 1/p, one

can construct a sequence of i.i.d. Gaussian random variables (Zi)i≥1 centered and

with variance σ2, such that, setting Tk =
∑k

i=1 Zi,

sup
k≤n
|Sk − Tk| = o(n1/p(log n)η) a.s.

Remark 3.1. Let (β(k))k≥1 be the sequence of the usual β-mixing coefficients. Accord-

ing to the definition of β(k) given page 147 in [22], θ(k) ≤ 2‖X0‖4
∞ β(k). Hence, by Item

(b) of Theorem 2.2 in [13], for any p > 2 there exists a stationary Markov chain (Xk)k≥0

with uniform distribution such that θ(k) ≤ Ck1−p and

lim sup
n→∞

(n log n)−1/p
∣∣Sn − n∑

k=1

gk
∣∣ > 0 a.s.

for any stationary and Gaussian centered sequence (gk)k∈Z with convergent series of

covariances. Consequently, the rates in Theorem 3.2 (and then also in Theorem 3.1) are

optimal up to a power of log n.

4 Examples and applications

4.1 α-mixing sequences

Let (Ω,A,P) be a probability space and let U and V be two σ-algebras of A. The strong

mixing coefficient α(U ,V) between these σ-algebras is defined as follows:

α(U ,V) = sup{| P(U ∩ V )− P(U)P(V )| : U ∈ U , V ∈ V} .

Next, for a stationary sequence (Yi)i∈Z of random variables with values in a Polish space

S, define its strong mixing (or α-mixing) coefficients of order 4 as follows: Let

α∞,4(n) = sup
i4>i3>i2>i1≥n

α(F0, σ(Yi1 , Yi2 , Yi3 , Yi4)) ,

where F0 = σ(Yi, i ≤ 0). As page 146 in [22], these coefficients can be rewritten in the

following form: Let B1 be the class of measurable functions from S4 to R and bounded

by one. Then

α∞,4(n) =
1

4
sup
f∈B1

sup
i4>i3>i2>i1≥n

∥∥E(f(Yi1 , Yi2 , Yi3 , Yi4)|F0)− E(f(Yi1 , Yi2 , Yi3 , Yi4))
∥∥

1
.
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Let now f be a bounded measurable numerical function and let Xk = f(Yk)−E(f(Yk)).

Then Theorems 3.1 and 3.2 apply to the partial sum Sn =
∑n

k=1 Xk, replacing the

conditions on θ(k) by the same conditions on α∞,4(k).

Consequently, our results apply to irreducible stationary S-valued Markov chains

(Yi)i≥0 with invariant probability π and transition kernel P (·, ·) satisfying the following

minorization condition: there exists a positive integer m such that

Pm(x,A) ≥ s(x)ν(A) for x ∈ S, A ∈ B(S) ,

where s is a measurable function with values in [0, 1] such that π(s) > 0 and ν is a

probability measure absolutely continuous with respect to π (see [25, Chapter 2] and [16,

Th. 9.2.15] for the fact that the invariant probability measure is a maximal irreducibility

measure).

Indeed, let us explain how the strong mixing coefficients of the chain (Yi)i≥0 can

be computed (we simply denote by α(k) these coefficients, because in this Markovian

setting, α(σ(Y0), σ(Yk)) = α(σ(Y0),Gk), where Gk = σ(Yi, i ≥ k)). Let Zk = Ykm. It

follows that (Zk)k≥0 is an irreducible stationary Markov chain satisfying the minorization

condition with m = 1 and then the conditions of [26, Proposition 9.7]. Let αZ(k)

denote the α-mixing coefficients of (Zi)i≥0. According to [26, Page 165] (see also [3]),

if τ is one of the return times (i.e. the difference between two regeneration times) of

the extended chain constructed from (Zi)i≥0, then for q ≥ 1,
∑

k≥1 k
q−1αZ(k) < ∞

iff E(τ q+1) < ∞. Now, since α(k) ≤ αZ([k/m]), we infer that E(τ q+1) < ∞ also

implies that
∑

k≥1 k
q−1α(k) < ∞. In particular, if τ is such that E(τ p) < ∞, then∑

k≥1 k
p−2α(k) <∞, and Theorems 3.1 and 3.2 apply to Sn =

∑n
k=1(f(Yk)−E(f(Yk))).

In their paper, Merlevède and Rio [24] proved the almost sure invariance principle

with rate O(log n) when the Markov chain is geometrically ergodic and the minorization

condition holds with m = 1. This last condition allows the use of the regeneration

technique. However in some situations one can only prove that the minorization condition

holds for m > 1 (see for instance Exemple 2.3 (f) in Nummelin [25]), or even that it

cannot hold with m = 1 (even with the additional assumption that there exists a joint

density for (X0, X1), see Kendall and Montana [17]). Nevertheless, as explained before,

for this class of Markov chain we do not need to assume m = 1 since our conditions are

only expressed in terms of the α-mixing coefficients of the chain.

4.2 α-dependent sequences

We start by recalling the definition of the α-dependence coefficients as considered in [10].

Definition 4.1. For any random variable Y = (Y1, · · · , Yk) with values in Rk and any

σ-algebra F , let α(F , Y ) = sup(x1,...,xk)∈Rk

∥∥E(∏k
j=1(1IYj≤xj)

(0) | F
)(0)∥∥

1
, where we recall
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that Z(0) means Z − E(Z). For the sequence Y = (Yi)i∈Z, let F0 = σ(Yi, i ≤ 0),

αY,4(0) = 1 and αY,4(n) = max
1≤l≤4

sup
n≤i1≤···≤il

α(F0, (Yi1 , . . . , Yil)) for n > 0 . (4.1)

Let BV1 be the space of bounded variation functions f such that ‖df‖ ≤ 1, where

‖df‖ is the variation norm on R of the measure df . As mentioned in [10], α(F , Y ) can

also be defined by

α(F , Y ) = sup
(f1,...,fk)∈BV1

∥∥∥E( k∏
j=1

fj(Yj)
(0)
∣∣∣F)(0)∥∥∥

1
,

It follows that, if f is a bounded variation function such that ‖df‖ ≤ C, and Xk =

f(Yk) − E(Yk), then θ(k) ≤ C4αY,4(k). Then Theorem 3.1 and 3.2 apply to the partial

sum Sn =
∑n

k=1 Xk, replacing the condition on θ(k) by the same conditions on αY,4(k).

From this result and proceeding as in [23, Section 3], we can derive rates in the strong

approximation results for the partial sums associated with BV observables of the LSV

map. More precisely, for γ ∈]0, 1[, let Tγ defined from [0, 1] to [0, 1] by

Tγ(x) =

x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1] .

This is the so-called LSV [20] map with parameter γ. Recall, that there exists a unique

Tγ-invariant measure νγ on [0, 1], which is absolutely continuous with respect to the

Lebesgue measure with positive density denoted by hγ. From [10, Prop. 1.17], we know

that the coefficients αY,4(k) of the Markov chain associated with Tγ are exactly of order

1/k(1−γ)/γ. Consequently, if f is a BV observable, we get that:

• For any γ ∈]0, 1/2[ and any ε > 0, one can construct on the probability space

([0, 1]×[0, 1], νγ⊗λ) a sequence of i.i.d. Gaussian random variables (Zi)i≥1 centered

and with variance σ2, such that

sup
k≤n

∣∣∣∣∣
k∑
i=1

(f ◦ T iγ(x)− νγ(f))−
k∑
i=1

Zi(x, y)

∣∣∣∣∣ = o(nmax(γ,1/4)(log n)η+ε) νγ ⊗ λ a.e.

(4.2)

where η = 3/4 for γ ≤ 1/4, η = 5/6 if γ = 1/3 and η = 1/2 otherwise.

• For any γ ∈]0, 1/2[, one can construct on the probability space ([0, 1]×[0, 1], νγ⊗λ)

a sequence of i.i.d. Gaussian random variables (Zi)i≥1 centered and with variance

σ2, such that∫ sup
k≤n

∣∣∣∣∣
k∑
i=1

(f ◦ T iγ(x)− νγ(f))−
k∑
i=1

Zi(x, y)

∣∣∣∣∣
2

νγ(dx)dy

 1
2

= o(nmax(γ,1/4)(log n)η) ,

(4.3)

where η = 1/4 if γ < 1/4, η = 1/2 if γ = 1/4 or γ = 1/3 and η = 1/2−γ otherwise.
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4.3 Maps modelled by Young towers

Let (M,d) be a complete bounded separable metric space with the Borel σ-algebra.

Let T : M 7→ M be a map that can be modelled by a Young tower (see [29], or for

instance [6]), and denote by ν the T -invariant probability measure on M induced by

this Young tower. Let ϕ be an Hölder observable from M to R. Then, as explained in

[14], one can compute the coefficients θ(k) of the sequence (ϕ(Xi))i≥0, where (Xi)i≥0 is

the stationary Markov chain associated with T , whose transition kernel is the Perron-

Frobenius operator of the composition by T with respect to ν. We infer that Theorems

3.1 and 3.2 apply to (ϕ(Xi)− ν(ϕ))i≥0, and also (proceeding as in [23, Section 3]) to the

sequence (ϕ(T i)− ν(ϕ))i≥0 on the probability space (M, ν).

More precisely, the behaviour of the coefficients θ(k) of the sequence (ϕ(Xi))i≥0 de-

pends on the behaviour of the return time to the base of the tower. For instance, if the

return time has a moment of order p > 1, then
∑

k>0 k
p−2θ(k) < ∞; if it has a weak

moment of order p > 1 then θ(k) = O(k1−p); if it has an exponential moment, then

θ(k) = O(ak), for some a ∈]0, 1[ (see Proposition 2.1 and its remark 2.1 in [7] in case of

strong moments and Proposition 5.3 in [11] in case of weak moments). Our results apply

in particular to Hölder observables of the LSV map, leading to the same upper bounds

(4.2)-(4.3) as for BV observables.

Note that, for Hölder observables of maps that can be modelled by a Young tower,

optimal almost sure rates can be obtained via another method described in the paper [6]

and inspired by [2]. In particular, for Hölder observables of the LSV map of parameter

γ < 1/2, the optimal almost sure rate o(nγ(log n)γ+ε) is given in [6]. However, no results

similar to the L2 control (4.3) are given in [6]. Moreover, with our approach, we can also

obtain rates for a larger class of continuous observables (including Hölder observables

of any exponent) when the return time to the base as an exponential moment (see [14,

Corollary 3.4]).

4.4 Rates of convergence in the functional CLT

Let (Xi)i∈Z be a strictly stationary sequence of centered and bounded random variables,

and define the Donsker line

Bn(t) =
1√
n

( [nt]∑
k=1

Xk + (nt− [nt])X[nt]

)
.

It is well known that, if
∑

k>0 θ(k) <∞, then Bn converges in distribution to σB on the

space C([0, 1]) with the uniform distance, where B is a standard Brownian motion, and

σ2 is the covariance series defined in Theorem 2.1.

One can now ask for the convergence rate in this functional CLT, with respect to the

Wasserstein distance of order p ≥ 1, that is rates for the quantity Wp(PBn , PσB), where

9



PBn and PσB are the distributions of Bn and σB, and the cost function is | · |p∞, | · |∞
being the supremum norm on C([0, 1]). Note that, by definition of Wp,

Wp(PBn , PσB) ≤
∥∥∥ sup

0≤t≤1
|Bn(t)− σB(t)|

∥∥∥
p
,

for any standard Brownian motion B. Consequently Theorem 3.1 applies when p = 2.

For instance, if
∑

k>0 k
2θ(k) <∞, Item (i) of Theorem 3.1 implies that

W2(PBn , PσB) = O
(
n−1/4(log n)1/4

)
. (4.4)

Note that, according to Section 4.3, the upper bound (4.4) applies to sequences

(ϕ(T i)− ν(ϕ))i≥0, where ϕ is an Hölder observable and T can be modelled by a Young

tower with return time to the base having a moment of order 4. Let us compare this

result with some recent results obtained in this context by Liu and Wang [19].

Assume that the return time to the base has a finite moment of order q ≥ 4. Using

the Skorohod embedding theorem, Liu and Wang [19] (see their Theorem 3.4) proved

that

Wq/2(PBn , PσB) = O(n−(q−2)/(4(q−1))) . (4.5)

Therefore, for q = 4, (4.5) gives the rate O
(
n−1/6

)
, while the upper bound (4.4) gives

the rate O
(
n−1/4(log n)1/4

)
.

5 Proof of Theorem 2.1

Starting from inequality (A.42) in [23] (in the bounded case) together with the fact

that ‖Ei−q(Xi)‖1 ≤ θ(q), we infer that for any nondecreasing, non negative and convex

function ϕ and any x > 0,

P
(
S∗n ≥ 4x

)
≤ E(ϕ(Sn))

ϕ(x)
+ nx−1θ([x]) .

Now, since x3 ≤ 8
∑[x]

k=1 k
2 when x ≥ 1, (θ(k))k≥0 is non increasing and θ(0) ≤ 1 (since

‖X0‖∞ = 1),

x3θ([x]) ≤ 1 + 8

[x]∑
k=1

k2θ(k) ≤ 1 + 8
∑
k≥1

k(k ∧ x)θ(k) .

Hence

P
(
S∗n ≥ 4x

)
≤ E(ϕ(Sn))

ϕ(x)
+

8n

x4

(
1 +

∑
k≥1

k(k ∧ x)θ(k)
)
. (5.1)

Next we handle the first term in the right-hand side of (5.1) with the following

selection of ϕ: For any real t,

ϕ(t) =


0 if t ≤ x/2
1
24

(t− x
2
)4 if x/2 ≤ t ≤ x

x4

24×24 + x
12

(t− x)3 + x2

16
(t− x)2 + x3

48
(t− x) if t ≥ x .

10



This is a nondecreasing and convex function such that ‖ϕ(3)‖∞ = x/2 and ‖ϕ(4)‖∞ = 1.

Furthermore 384ϕ(x) = x4, whence E(ϕ(Sn))/ϕ(x) = 384 x−4E(ϕ(Sn)).

To bound up E(ϕ(Sn)), we start by a symmetrization argument. Let (X ′k)k∈Z be a

stationary sequence independent of the sequence (Xi)i∈Z and with the same joint law as

(Xi)i∈Z. Set S ′n = X ′1 + X ′2 + · · · + X ′n. Since S ′n is centered and independent of Sn, it

follows from the conditional version of the Jensen inequality that

E
(
ϕ(Sn)

)
≤ E

(
ϕ(Sn − S ′n)

)
. (5.2)

Hence Inequality (2.1) will follow from (5.1) if we prove that

E
(
ϕ(Sn−S ′n)

)
� 1{σ2>0}

(nσ2

x

)4

exp
(
− x2

16nσ2

)
+n
(

Θ1Θ2 +
∑
k≥1

k(k∧x)θ(k)
)
. (5.3)

Define then the stationary sequence (Zi)i∈Z of centered and bounded random variables

by Zi = Xi −X ′i for any integer i, and set

S̃0 = 0 and S̃n = Z1 + Z2 + · · ·+ Zn = Sn − S ′n for any integer n > 0. (5.4)

From the definition of (Zi)i∈Z,

E(Z0Zk) = 2E(X0Xk) for any k ∈ N, whence E(Z2
0) + 2

∑
k≥1

E(Z0Zk) = 2σ2. (5.5)

To prove (5.3), we shall apply the Lindeberg method to (Zi)i∈Z: we consider a se-

quence (Yk)k≥1 of i.i.d. random variables with normal law N(0, 2σ2), independent of

(Zi)i∈Z. Set T0 = 0 and Tn = Y1 + Y2 + · · ·+ Yn for n > 0. Clearly

E(ϕ(S̃n)) = E(ϕ(Tn)) +
(
E(ϕ(S̃n))− E(ϕ(Tn))

)
. (5.6)

We start by computing E(ϕ(Tn)). If σ2 = 0, then Tn = 0 and E(ϕ(Tn)) = 0. If σ2 > 0,

then Tn has the normal law N(0, 2nσ2) and consequently

P
(
Tn ≥ t+ x/2

)
≤ exp

(
−(t+ x/2)2/(4nσ2)

)
,

Since (t+ x/2)2 ≥ tx+ x2/4, we derive that∫ +∞

0

t3P
(
Tn ≥ t+ x/2

)
dt ≤ e−x

2/(16nσ2)

∫ +∞

0

t3e−tx/(4nσ
2)dt ≤ 6

(4nσ2

x

)4

e−x
2/(16nσ2) .

So, overall,

E(ϕ(Tn)) ≤ E((Tn − x/2)4
+) ≤ 4

∫ +∞

0

t3P
(
(Tn ≥ t+ x/2

)
dt�

(nσ2

x

)4

e−x
2/(16nσ2) .
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According to (5.6) and the above inequality, to end the proof of Inequality (5.3), it

remains to prove that

E(ϕ(S̃n))− E(ϕ(Tn))� n
(
Θ1Θ2 +

∑
k≥1

k(k ∧ x)θ(k)
)
. (5.7)

With this aim, let ϕn−k(t) = E(ϕ(t+ Tn − Tk)) and define, for k ≥ 1,

∆n,k = ϕn−k(S̃k−1 + Zk)− ϕn−k(S̃k−1 + Yk) .

The functions ϕn−k(·) are C∞, ‖ϕ(3)
n−k‖∞ = b3 ≤ x/2 and ‖ϕ(4)

n−k‖∞ = b4 ≤ 1. Since the

sequence (Yi)i∈N is independent of the sequence (Zi)i∈Z,

E(ϕ(S̃n))− E(ϕ(Tn)) =
n∑
k=1

E(∆n,k). (5.8)

Notation 5.1. Set ∆
(1)
n,k = ϕ′n−k(S̃k−1)(Zk − Yk), ∆

(2)
n,k = ϕ′′n−k(S̃k−1)(Z2

k − Y 2
k ) and

∆
(3)
n,k = ϕ

(3)
n−k(S̃k−1)(Z3

k − Y 3
k ). Let ∆∗n,k = ∆

(1)
n,k + 1

2
∆

(2)
n,k + 1

6
∆

(3)
n,k.

With the above notations, from the Taylor integral formula at order 4,

∆n,k = ∆∗n,k +Rn,k , (5.9)

with Rn,k =
1

6
Z4
k

∫ 1

0

(1− s)3ϕ
(4)
n−k(S̃k−1 + sZk)ds+

1

6
Y 4
k

∫ 1

0

(1− s)3ϕ
(4)
n−k(S̃k−1 + sYk)ds .

Since 0 ≤ ϕ
(4)
n−k ≤ 1, ‖Zk‖∞ ≤ 2 and E(Y 4

k ) = 12σ4, we derive that

0 ≤
n∑
k=1

E(Rn,k) ≤ n(1 + σ4) ≤ 4n(1 + Θ1Θ2) . (5.10)

Indeed σ4 ≤ 4Θ2
1 ≤ 4Θ1Θ2. Next

E(∆∗n,k) = E(∆n,k −Rn,k) = E(∆
(1)
n,k) + 1

2
E(∆

(2)
n,k) + 1

6
E(∆

(3)
n,k) . (5.11)

From the fact that (Yk)k≥1 is independent of (Zi)i∈Z, E(∆
(1)
n,k) = E(ϕ′n−k(S̃k−1)Zk),

E(∆
(2)
n,k) = E(ϕ′′n−k(S̃k−1)(Z2

k − 2σ2)) and E(∆
(3)
n,k) = E(ϕ

(3)
n−k(S̃k−1)Z3

k). We now develop

each term in the right-hand side of (5.11) with the help of the Lindeberg method.

Since E(ϕ′n−k(0)Zk) = ϕ′n−k(0)E(Zk) = 0, we have

E(∆
(1)
n,k) =

k−1∑
i=1

E
(
{ϕ′n−k(S̃k−i)− ϕ′n−k(S̃k−i−1)}Zk

)
= E(∆

(1)
n,k,2) + 1

2
E(∆

(1)
n,k,3) + A

(1)
n,k,2 + 1

2
A

(1)
n,k,3 +B

(1)
n,k , (5.12)
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where the following notations have been used: for j = 2, 3,

∆
(1)
n,k,j =

k−1∑
i=1

ϕ
(j)
n−k(S̃k−i−1)(Zj−1

k−iZk)
(0), A

(1)
n,k,j =

k−1∑
i=1

E{ϕ(j)
n−k(S̃k−i−1)}E(Zj−1

k−iZk),

and B
(1)
n,k =

1

2

k−1∑
i=1

∫ 1

0

(1− s)2E
(
ϕ

(4)
n−k(S̃k−i−1 + sZk−i)Z

3
k−iZk

)
ds .

In the decomposition (5.12), A
(1)
n,k,3 = 0. This is due to the lemma below, whose proof

uses the symmetry properties of (Zi)i∈Z.

Lemma 5.1. For any integers i, j and k, E(ZiZjZk) = 0.

Proof of Lemma 5.1. From the definition of (Zi)i∈Z, (−Zi,−Zj,−Zk) has the same

joint law as (Zi, Zj, Zk). Hence E(−ZiZjZk) = E(ZiZjZk), which implies Lemma 5.1.

Next, concerning the coefficients (θZ,p,q(k))k≥0 associated with the sequence (Zi)i∈Z,

they can be compared with the former coefficients (θX,p,q(k))k≥0 as follows.

Lemma 5.2. For any integer k ≥ 0 and any positive integers p and q,

θZ,p,q(k) ≤ 2q+1θX,p,q(k) .

Proof of Lemma 5.2. Let F ′0 = σ(X ′i, i ≤ 0) and F̃0 = F0 ∨ F ′0. By definition,

θZ,p,q(k) = sup
kp>kp−1>...>k2>k1≥k

(a1,...,ap)∈Γp,q

∥∥∥E( p∏
i=1

Zai
ki
|F̃0

)
− E

( p∏
i=1

Zai
ki

)∥∥∥
1
.

Let (ai)1≤i≤p in Γp,q and k1, · · · , kp such that kp > kp−1 > . . . > k2 > k1 ≥ k. Note

that Zai
ki

=
∑ai

`=0C
`
ai
X`
ki

(−X ′ki)
ai−`. Next, let (αi)1≤i≤p, (βi)1≤i≤p in Γp,q and k1, · · · , kp

such that kp > kp−1 > . . . > k2 > k1 ≥ k. Setting U =
∏p

i=1X
αi
ki

, V =
∏p

i=1(X ′ki)
βi and

σ(X ′) = σ(X ′k, k ∈ Z), note that∥∥E(UV |F̃0

)
− E

(
UV
)∥∥

1
=
∥∥E(E(UV |σ(X ′) ∨ F0

)
|F̃0

)
− E

(
UV
)∥∥

1

=
∥∥E(V E

(
U |σ(X ′) ∨ F0

)
|F̃0

)
− E(V )E(U)

∥∥
1
.

Next we use the following well-known fact. Let Y be an integrable random variable, and

G1 and G2 be two σ-algebras such that σ(Y ) ∨ G1 is independent of G2, then

E
(
Y |G1 ∨ G2

)
= E

(
Y |G1

)
a.s.

From the above fact and since we assume that the Xi’s are uniformly bounded by one,∥∥E(UV |F̃0

)
− E

(
UV
)∥∥

1
=
∥∥E(V {E(U |F0

)
− E(U)

}
|F̃0

)
+
{
E
(
V |F̃0

)
− E(V )

}
E(U)

∥∥
1

≤
∥∥E(U |F0

)
− E(U)

∥∥
1

+
∥∥E(V |F ′0)− E(V )

∥∥
1
≤ 2θX,p,q(k) .
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So, overall,

θZ,p,q(k) ≤ 2 sup
(a1,...,ap)∈Γp,q

p∏
i=1

2aiθX,p,q(k) ,

proving the lemma.

We now handle the rests B
(1)
n,k. Since ‖Z3

k−iϕ
(4)
n−k(S̃k−i−1 + sZk−i)‖∞ ≤ 2,

n∑
k=1

|B(1)
n,k| � nΘ1 . (5.13)

To handle the second term in the right-hand side of (5.11), we introduce the following

additional notations.

Notation 5.2. Let γi = E(Z0Zi). Define β2,k = 2
∑k−1

i=1 γi and β
(k)
2 = 2

∑
i≥k γi.

Since E(Zk−iZk) = γi, note that

1

2
E{ϕ′′n−k(S̃k−1)}β2,k − A(1)

n,k,2 =
k−1∑
i=1

γi

i∑
j=1

E{ϕ′′n−k(S̃k−j)− ϕ′′n−k(S̃k−j−1)}

=
k−1∑
i=1

γi

i∑
j=1

E
{
ϕ

(3)
n−k(S̃k−j−1)Zk−j

}
+ r

(1)
n,k,2 , (5.14)

where

r
(1)
n,k,2 :=

∫ 1

0

(1− t)
k−1∑
i=1

γi

i∑
j=1

E
{
ϕ

(4)
n−k(S̃k−j−1 + tZk−j)Z

2
k−j
}
dt .

From the fact that ‖ϕ(4)
n−k(S̃k−j−1 + tZk−j)Z

2
k−j‖1 ≤ b4E(Z2

0) ≤ 4b4, it follows that

n∑
k=1

|r(1)
n,k,2| � n

n∑
i=1

iγi � nΘ2. (5.15)

Starting from (5.11) and taking into account (5.12), (5.13), (5.15) and the definition of

σ2, we get

E(∆∗n,k) = E(∆
(1)
n,k,2) +

1

2
E
(
ϕ′′n−k(S̃k−1)(Z2

k)(0)
)
− 1

2
E
(
ϕ′′n−k(S̃k−1)

)
β

(k)
2 +

1

2
E(∆

(1)
n,k,3)

−
k−1∑
i=1

γi

i∑
j=1

E
{
ϕ

(3)
n−k(S̃k−j−1)Zk−j

}
+

1

6
E
(
ϕ

(3)
n−k(S̃k−1)Z3

k

)
+ Γ

(1)
n,k , (5.16)

where Γ
(1)
n,k satisfies

n∑
k=1

|Γ(1)
n,k| � nΘ2 . (5.17)
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Note that∣∣E(ϕ′′n−k(S̃k−1)
)∣∣ ≤ E

(
S̃k−1 + Tn − Tk

)2
= 2E(S2

k−1) + 2(n− k)σ2 ≤ 4nΘ1 .

Hence
n∑
k=1

|E
(
ϕ′′n−k(S̃k−1)

)
β

(k)
2 | � nΘ1

n∑
k=1

∑
i≥k

θ(i)� nΘ1Θ2 . (5.18)

We now handle the quantity E
(
ϕ′′n−k(S̃k−i−1)(Zk−iZk)

(0)
)

appearing in the first two terms

of the right hand side of (5.16) for any integer i in [0, k − 1]. With this aim, noticing

that E
(
ϕ′′n−k(0)(Zk−iZk)

(0)
)

= 0,

E
{
ϕ′′n−k(S̃k−i−1)(Zk−iZk)

(0)
}

=
k−1∑
j=i+1

E
{

(ϕ′′n−k(S̃k−j)− ϕ′′n−k(S̃k−j−1))(Zk−iZk)
(0)
}
,

whence

E
{
ϕ′′n−k(S̃k−i−1)(Zk−iZk)

(0)
}

=
k−1∑
j=i+1

E
{
ϕ

(3)
n−k(S̃k−j−1)Zk−j(Zk−iZk)

(0)
}

+
k−1∑
j=i+1

∫ 1

0

(1− t)E
{
ϕ

(4)
n−k(S̃k−j−1 + tZk−j)Z

2
k−j(Zk−iZk)

(0)
}
dt . (5.19)

Since ‖ϕ(4)
n−k(S̃k−j−1 + tZk−j)‖∞ ≤ 1, it follows that

n∑
k=1

k−1∑
i=0

k−1∑
j=i+1

|E
{
ϕ

(4)
n−k(S̃k−j−1 + tZk−j)Z

2
k−j(Zk−iZk)

(0)
}
|

�
n∑
k=1

k−1∑
i=0

k−1∑
j=i+1

θ(j − i) ∧ θ(i)� nΘ2 . (5.20)

Next, set ∆
(1,3)
n,k,2(i) =

∑k−1
j=i+1 ϕ

(3)
n−k(S̃k−j−1)Zk−j(Zk−iZk)

(0). Starting from (5.16) and

taking into account (5.17), (5.18), (5.19) and (5.20), we get

E(∆∗n,k) =
1

2
E(∆

(1,3)
n,k,2(0)) +

k−1∑
i=1

E(∆
(1,3)
n,k,2(i)) +

1

2
E(∆

(1)
n,k,3)

−
k−1∑
i=1

γi

i∑
j=1

E
(
ϕ

(3)
n−k(S̃k−j−1)Zk−j

)
+

1

6
E
(
ϕ

(3)
n−k(S̃k−1)Z3

k

)
+ Γ

(2)
n,k , (5.21)

where the rests Γ
(2)
n,k satisfy

n∑
k=1

|Γ(2)
n,k| � nΘ2 + nΘ1Θ2 . (5.22)
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Introduce now the following notations: for any integer i, let

∆̃
(1,3)
n,k,2(i) :=

k−1∑
j=i+1

{
ϕ

(3)
n−k(S̃k−j−1)(Zk−j(Zk−iZk)

(0))(0)
}
.

Starting from (5.21), and using the fact that E
{
Zk−jZk−iZk

}
= E

{
Zk−j(Zk−iZk)

(0)
}

= 0

thanks to Lemma 5.1, we get that

E(∆∗n,k) =
1

2
E(∆̃

(1,3)
n,k,2(0)) +

k−1∑
i=1

E(∆̃
(1,3)
n,k,2(i)) +

1

6
E
(
ϕ

(3)
n−k(S̃k−1)Z3

k)
)

+
1

2
E(∆

(1)
n,k,3)−

k−1∑
i=1

γi

i∑
j=1

E
{
ϕ

(3)
n−k(S̃k−j−1)Zk−j

}
+ Γ

(2)
n,k. (5.23)

We handle now the first two terms in the right-hand side of (5.23). Since ‖ϕ(3)
n−k‖∞ ≤ x/2,∣∣E{ϕ(3)

n−k(S̃k−j−1)Zk−j(Zk−iZk)
(0)
}∣∣� x{θ(j − i) ∧ θ(i)} ,

whence

|E(∆̃
(1,3)
n,k,2(i))| � x

(
iθ(i) +

k−i∑
j=i

θ(j)
)
. (5.24)

On another hand, since E
{
ϕ

(3)
n−k(0)Zk−j(Zk−iZk)

(0)
}

= 0, we write

E
{
ϕ

(3)
n−k(S̃k−j−1)Zk−j(Zk−iZk)

(0)
}

=

k−j−1∑
u=1

E
{(
ϕ

(3)
n−k(S̃k−j−u)− ϕ

(3)
n−k(S̃k−j−u−1)

)
Zk−j(Zk−iZk)

(0)
}

=

k−j−1∑
u=1

∫ 1

0

E
{
ϕ

(4)
n−k(S̃k−j−u−1 + tZk−j−u)Zk−j−uZk−j(Zk−iZk)

(0)
}
dt .

Since ‖ϕ(4)
n−k(Sk−j−u−1 + tXk−j−u)‖∞ ≤ 1, it follows that

|E(∆̃
(1,3)
n,k,2(i))| �

k∑
j=1

k∑
u=1

(
θ(u) ∧ θ(j) ∧ θ(i)

)
�

k∑
j=1

j
(
θ(j) ∧ θ(i)

)
. (5.25)

Therefore, using the upper bound (5.24) when i ≥ x and the upper bound (5.25) when

i < x, we derive

n∑
i=0

|E(∆̃
(1)
2,3,i)| � x

∑
i≥[x]

iθ(i) +

[x]∑
i=0

[x]∑
j=1

j
(
θ(j) ∧ θ(i)

)
+

[x]∑
i=0

∑
j≥[x]

j
(
θ(j) ∧ θ(i)

)
� x

∑
i≥[x]

iθ(i) +

[x]∑
i=0

(i+ 1)2θ(i) +
∑
j≥1

j(j ∧ x)θ(j) .
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Hence
n∑
k=1

k∑
i=0

|E(∆̃
(1)
2,3,i)| � n

(
1 +

∑
k≥1

k(k ∧ x)θ(k)
)
. (5.26)

With similar arguments, we infer that

n∑
k=1

{∣∣E(ϕ(3)
n−k(S̃k−1)Z3

k

)∣∣+
∣∣E(∆

(1)
n,k,3)

∣∣}� nΘ2 . (5.27)

Starting from (5.23) and taking into account (5.22), (5.26) and (5.27), it follows that, if

one can prove that

n∑
k=1

k∑
i=1

i∑
j=1

∣∣γiE{ϕ(3)
n−k(S̃k−j−1)Zk−j

}∣∣� nΘ1Θ2, (5.28)

then
n∑
k=1

E(∆∗n,k)� n
(
Θ1Θ2 +

n∑
k=1

k(k ∧ x)θ(k)
)
.

This last upper bound together with (5.8), (5.9), (5.10) and (5.11) will end the proof of

(5.7). The rest of the proof is devoted to the proof of (5.28). Since E
{
ϕ

(3)
n−k(0)Zk−j

}
= 0,

we have

∣∣E{ϕ(3)
n−k(S̃k−j−1)Zk−j

}∣∣ =
∣∣∣ k−j−1∑

u=1

E
{(
ϕ

(3)
n−k(S̃k−j−u)− ϕ

(3)
n−k(S̃k−j−u−1)

)
Zk−j

}∣∣∣
=
∣∣∣ k−j−1∑

u=1

∫ 1

0

E
{
ϕ

(4)
n−k(S̃k−j−u−1 + tZk−j−u)Zk−j−uZk−j

}
dt
∣∣∣� k−j−1∑

u=1

θ(u) .

Therefore

n∑
k=1

k∑
i=1

i∑
j=1

∣∣γiE{ϕ(3)
n−k(S̃k−j−1)Zk−j

}∣∣� n∑
k=1

k∑
i=1

i∑
j=1

k−j−1∑
u=1

θ(u)θ(i) � nΘ1Θ2 ,

which ends the proof of (5.28) and then of (5.7). This ends the proof of the theorem.

6 Proof of Theorems 3.1 and 3.2 (case σ2 > 0)

Starting from the construction of the Vk,L given in (3.1), we now construct a suitable

sequence (Zi)i≥1 of i.i.d. Gaussian random variables, centered and with variance σ2. Let

Z1 = σΦ−1(δ1). For any L ∈ N and any k ∈ {1, · · · , 2L−m(L)} the random variables

(Z2L+(k−1)2m(L)+1, . . . , Z2L+k2m(L)) are defined in the following way. If m(L) = 0, then

Z2L+k2m(L) = Vk,L. If m(L) > 0, then by the Skorohod lemma [27], there exists a

measurable function g from R×[0, 1] in R2m(L)
such that, for any pair (V, δ) of independent
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random variables with respective laws N(0, σ22m(L)) and the uniform distribution over

[0, 1], g(V, δ) = (N1, . . . , N2m(L)) is a Gaussian random vector with i.i.d. components

such that V = N1 + · · ·+N2m(L) . We then set

(Z2L+(k−1)2m(L)+1, . . . , Z2L+k2m(L)) = g(Vk,L, δ2L+(k−1)2m(L)+1) .

The so defined sequence (Zi) has the prescribed distribution.

Set Sj =
∑j

i=1 Xi and Tj =
∑j

i=1 Zi. Let DL = sup`≤2L |
∑2L+`

i=2L+1(Xi − Zi)|. Then,

proceeding exactly as in [23], page 394, for any N in N∗,

sup
1≤k≤2N+1

|Sk −Bk| ≤ |X1 − Z1|+D0 +D1 + · · ·+DN . (6.1)

It remains to bound up the random variables DL. We first notice that the following

decomposition is valid:

DL ≤ DL,1 +DL,2 , (6.2)

where, recalling that Uk,L =
∑

i∈Ik,L Xi, we set

DL,1 := sup
k≤2L−m(L)

∣∣∣ k∑
`=1

(U`,L − V`,L)
∣∣∣ and DL,2 := sup

k≤2L−m(L)

sup
`∈Ik,L

∣∣∣ ∑̀
i=inf Ik,L

(Xi − Zi)
∣∣∣ .

In order to bound up DL,1 and DL,2 we shall use the two lemmas below.

Lemma 6.1. Assume that
∑

k≥1 kθ(k) < ∞. Then there exists a positive constant C

such that, for any integer m(L) in [0, L],

‖DL,1‖2
2 ≤ C2L−m(L)

(
1 +

∑
k≥1

k(k ∧ 2m(L)/2)θ(k)
)
. (6.3)

Lemma 6.2. Assume that
∑

k≥1 kθ(k) < ∞. Then there exist positive constants c and

C such that, for any positive λ and any integer m(L) in [0, L],

P(DL,2 ≥ 2λ) ≤ C2L exp
(
−2−m(L)λ2/c

)
+ C2Lλ−4

(
1 +

∑
k≥1

k(k ∧ λ)θ(k)
)
. (6.4)

Proof of Lemma 6.1. For any ` ∈ {1, · · · , 2L−m(L)}, let Ũ`,L = U`,L−E2L+(`−1)2m(L)(U`,L).

Then (Ũ`,L)`≥1 is a strictly stationary sequence of martingale differences adapted to the

filtration (F2L+`2m(L))`≥1. Notice first that

‖DL,1‖2 ≤
∥∥∥ sup
k≤2L−m(L)

∣∣∣ k∑
`=1

(Ũ`,L − V`,L)
∣∣∣∥∥∥

2
+
∥∥∥ sup
k≤2L−m(L)

∣∣∣ k∑
`=1

(Ũ`,L − U`,L)
∣∣∣∥∥∥

2
. (6.5)

Let us deal with the first term on right hand. Proceeding as in the proof of Lemma 4.12

in [23], we have∥∥∥ sup
k≤2L−m(L)

∣∣∣ k∑
`=1

(Ũ`,L − V`,L)
∣∣∣∥∥∥2

2
≤ 16

2L−m(L)∑
`=1

‖U`,L − V`,L‖2
2 .
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By using Theorem 2.1(b) in [14], it follows that∥∥∥ sup
k≤2L−m(L)

∣∣∣ k∑
`=1

(Ũ`,L − V`,L)
∣∣∣∥∥∥2

2
� 2L−m(L)

(
1 +

∑
k≥1

k(k ∧ 2m(L)/2)θ(k)
)
. (6.6)

We deal now with the second term in the right hand side of (6.5). Using Proposition 1

in [15], we obtain that

∥∥∥ sup
k≤2L−m(L)

∣∣∣ k∑
`=1

(Ũ`,L − U`,L)
∣∣∣∥∥∥2

2
≤ 4

2L−m(L)∑
k=1

‖E2L+(k−1)2m(L)(Uk,L)‖2
2

+8
2L−m(L)−1∑

k=1

∥∥∥E2L+(k−1)2m(L)(Uk,L)
( 2L−m(L)∑

i=k+1

E2L+(k−1)2m(L)(Ui,L)
)∥∥∥

1
. (6.7)

Stationarity leads to

‖E2L+(k−1)2m(L)(Uk,L)‖2
2 = ‖E0(S2m(L))‖2

2 ≤ 2
2m(L)∑
i=1

i∑
j=1

E|XjE0(Xi)| ≤ 2
2m(L)∑
i=1

iθ(i)� 1 .

Consequently,
2L−m(L)∑
k=1

‖E2L+(k−1)2m(L)(Uk,L)‖2
2 � 2L−m(L) . (6.8)

We now bound up the second term in the right hand side of (6.7). Stationarity yields

∥∥∥E2L+(k−1)2m(L)(Uk,L)
( 2L−m(L)∑

i=k+1

E2L+(k−1)2m(L)(Ui,L)
)∥∥∥

1
≤

2m(L)∑
j=1

2L−(k−1)2m(L)∑
i=2m(L)+1

E|XjE0(Xi)| .

Therefore

2L−m(L)−1∑
k=1

∥∥∥E2L+(k−1)2m(L)(Uk,L)
( 2L−m(L)∑

i=k+1

E2L+(k−1)2m(L)(Ui,L)
)∥∥∥

1
� 2L−m(L)

2L∑
i=2m(L)+1

iθ(i) .

(6.9)

Starting from (6.7) and considering the bounds (6.8) and (6.9), we get that∥∥∥ sup
k≤2L−m(L)

∣∣∣ k∑
`=1

(Ũ`,L − U`,L)
∣∣∣∥∥∥2

2
� 2L−m(L) . (6.10)

Starting from (6.5) and considering the bounds (6.6) and (6.10), we then get (6.3), which

ends the proof of Lemma 6.1.

Proof of Lemma 6.2. It follows the lines of the proof of [23, Lemma 4.1] with the

difference that Theorem 2.1 is used instead of [23, Proposition A.2].

End of the proof of Theorem 3.1. Let us start by proving Item (i). In case p ∈]2, 3[

with the condition θ(k) = O(k1−p) and in case p = 3 with the condition
∑

k>0 kθ(k) <∞
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the result can be proved exactly as in [23] (indeed, in the bounded case, these authors

could have used the coefficient θ(k) instead of their coefficient α2,X(k)). Now, we turn

to the case p ∈]3, 4]. Note that under the condition θ(k) = O(k1−p) if p ∈]3, 4[ and∑
k>0 k

2θ(k) <∞ if p = 4, ∑
k≥1

k(k ∧ λ)θ(k) ≤ C(1 + λ4−p) . (6.11)

Therefore, by Lemma 6.2, simple computations lead to

E(D2
L,2) = 2

∫ ∞
0

xP(DL,2 ≥ x)dx ≤ C
(
L2m(L) + 22L/p

)
, (6.12)

and, by Lemma 6.1,

E(D2
L,1) ≤ C2L2(1−p/2)m(L) . (6.13)

Choosing

m(L) = [2(L− log2 L)/p] so that 2−1+2L/pL−2/p ≤ 2m(L) ≤ 22L/pL−2/p , (6.14)

for the construction of the Gaussian sequence, Item (i) follows (above square brackets

designate as usual the integer part and log2(x) = (log x)/(log 2)).

We turn now to Item (ii). Let us complete the proof when p = 4, meaning that

θ(k) = O(k−3). In this case,∑
k≥1

k(k ∧ λ)θ(k) ≤ C(1 + log λ) , (6.15)

for any λ ≥ 1, and then the term 22L/p appearing in (6.12) has to be replaced by

(1 +m(L))2m(L) and the right-hand side of (6.13) will be CL2L−m(L). Choosing m(L) =

[L/2] completes the proof. Finally, the case p = 3 with the condition θ(k) = O(k−2) can

be handled similarly by taking into account Lemmas 4.2 and 4.1 in [23] instead of our

Lemmas 6.1 and 6.2.

End of the proof of Theorem 3.2. In case p ∈]2, 3[ and
∑

k>0 k
p−2θ(k) < ∞ the

result can be proved exactly as in Theorem 2.1 Item 1a) in [23] (using the coefficient

θ(k) instead of their coefficient α2,X(k)). Similarly, in case p ∈]2, 3[ and θ(k) = O(k1−p)

or p = 3 and
∑

k>0 kθ(k) <∞, the result can be proved exactly as in Theorem 2.1 Item

1b) in [23] (with θ(k) instead of α2,X(k)).

Let us now complete the proof of Item (i) when p ∈]3, 4[ and
∑

k>0 k
p−2θ(k) < ∞.

In this case we select m(L) as in (6.14) and set

λL = κ2m(L)/2
√
L , (6.16)

with κ =
√

2c log 2 where c is the positive constant of Lemma 6.2. For this choice,∑
L>0

2L exp
(
−λ2

L2−m(L)/c
)

=
∑
L≥0

2L−2L <∞ and
∑
L>0

2Lλ−4
L <∞ . (6.17)
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In addition, using the fact that
∑

k≥1 k(k ∧ (aλ))θ(k) ≤ a
∑

k≥1 k(k ∧ λ)θ(k), for any

a ≥ 1 and any positive λ, we get, since
∑

k>0 k
p−2θ(k) <∞,∑

L>0

2Lλ−4
L

∑
k≥1

k(k ∧ λL)θ(k) ≤
∑
L>0

2LL1/2λ−4
L

∑
k≥1

k(k ∧ 2m(L)/2)θ(k) <∞ .

Therefore Lemma 6.2 entails that
∑

L>0 P(DL,2 ≥ 2λL) < ∞ implying, via the Borel-

Cantelli lemma, that

DL,2 = O(2L/pL1/2−1/p) a.s. (6.18)

On another hand, from (6.3) together with the Markov inequality,∑
L>0

P(DL,1 ≥ λL) ≤ C
∑
L>0

2LL−12−2m(L)
∑
k≥1

k(k ∧ 2m(L)/2)θ(k) <∞ ,

since
∑

k>0 k
p−2θ(k) <∞. Hence, by the Borel-Cantelli lemma,

DL,1 = O(2L/pL1/2−1/p) a.s. (6.19)

Finally Item (i) when p ∈]3, 4[ follows from (6.1), (6.2), (6.18) and (6.19).

We complete now the proof of Item (ii) when p ∈]3, 4[ and θ(k) = O(k1−p) or when

p = 4 and
∑

k>0 k
2θ(k) <∞. In these cases we select m(L) as follows: let ε > 0 and set

m(L) = [2(L+ ε log2 L)/p] so that 2−1+2L/pL2ε/p ≤ 2m(L) ≤ 22L/pL2ε/p . (6.20)

We still define λL by (6.16). For this choice of λL, the convergences in (6.17) still hold. In

addition, taking into account (6.11), for any p ∈]3, 4], under the conditions on (θ(k))k>0,

we get ∑
L>0

2Lλ−4
L

∑
k≥1

k(k ∧ λL)θ(k) ≤ C
∑
L>0

2Lλ−pL <∞ . (6.21)

Therefore Lemma 6.2 entails that
∑

L>0 P(DL,2 ≥ 2λL) < ∞ implying, via the Borel-

Cantelli lemma, that

DL,2 = O(λL) = O(2L/pL1/2+ε/p) a.s. (6.22)

On another hand, from (6.3) and (6.11) together with the Markov inequality,∑
L>0

P(DL,1 ≥ λL) ≤ C
∑
L>0

(
2LL−12−2m(L)

)
2m(L)(2−p/2) <∞ . (6.23)

Hence, by the Borel-Cantelli lemma,

DL,1 = O(λL) = O(2L/pL1/2+ε/p) a.s. (6.24)

Finally Item (ii) when p ∈]3, 4] follows from (6.1), (6.2), (6.22) and (6.24).
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We turn now to the proof of Item (iii). When p = 4, meaning that θ(k) = O(k−3),

instead of (6.11), we use (6.15). We still select λL by (6.16) but with the following choice

of m(L): for ε > 0

m(L) = [2(L+ (1 + ε) log2 L)/p] so that 2−1+2L/pL2(1+ε)/p ≤ 2m(L) ≤ 22L/pL2(1+ε)/p .

(6.25)

The computations (6.21) and (6.23) are then replaced by the following ones:

∑
L>0

2L

λ4
L

∑
k>0

(k2 ∧ kλL)θ(k) ≤ C
∑
L>0

2L

λ4
L

log λL ,
∑
L>0

P(DL,1 ≥ λL) ≤ C
∑
L>0

L2L

2m(L)λ2
L

.

Note that the above upper bounds are finite for these selections of m(L) and λL. The

rest of the proof is unchanged compared to the previous cases.

It remains to prove Item (iii) when p = 3, meaning that θ(k) = O(k−2). The

differences with the case p = 4 are that [23, Lemma 4.1] is used instead of our Lemma

6.1 and ‖DL,1‖2
2 ≤ C2L−m(L)/2m(L). This upper bound on ‖DL,1‖2

2 comes from a slight

modification of the proof of [23, Lemma 4.2], taking into account that
∑

k≥1(k∧λ)θ(k) ≤
C(1 + log λ) for any λ ≥ 1. In addition, m(L) is selected by (6.25) with p = 3.

7 The degenerate case

In all this section, we shall denote θX,1,1(k) by θ(k) for all k ∈ N.

Proposition 7.1. Assume that ‖X0‖∞ ≤ M < ∞ and
∑

k≥0 θ(k) < ∞. Suppose in

addition that σ2 = 0. Then, for any q ≥ 1,

E(|Sn|q) ≤ q(2M)q
∑
k≥0

(k + 1)q−1θ(k) .

Theorem 7.1. Let p > 2 and S∗n = max1≤k≤n |Sk|. Assume that ‖X0‖∞ < ∞ and

θ(k) = O(k1−p). Suppose in addition that σ2 = 0. Then, for any r ∈ [1, p[, ‖S∗n‖r =

O(n1/p).

Remark 7.1. Since for any increasing sequence (bn)n≥1,
∑

n>0 n
−1P(S∗n > bn) < ∞

implies that Sn = o(bn) almost surely, it follows that, under the assumptions of the

theorem, Sn = o(n1/p(log n)ε+1/p) almost surely for any ε > 0.

Theorem 7.2. Let p ≥ 2 and S∗n = max1≤k≤n |Sk|. Assume that ‖X0‖∞ < ∞ and∑
k≥0(k + 1)p−2θ(k) <∞. Suppose in addition that σ2 = 0. Then, for any α ∈]0, 1[ and

any ε > 0,
∑

n>0 n
αp−2P(S∗n > εnα) <∞. Consequently Sn = o(n1/p) almost surely.

Proof of Proposition 7.1 . We start the proof with the following lemma.
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Lemma 7.1. Assume that X0 ∈ L2,

(a) E0(Sn) converges in L1,

(b) limn→∞ E(X0(X0 + 2Sn)) = 0,

(c) lim supN→∞ lim supn→∞ E(E−N(X0)(X0 + 2Sn)) ≤ 0.

Then, for any integer i, Xi = gi−1 − gi almost surely where gi =
∑

k≥i+1 Ei(Xk).

Proof of Lemma 7.1. Let N be a fixed positive integer. Set di,N =
∑N−1

k=0 Pi(Xk+i)

where Pi = Ei − Ei−1. Define also gi,N =
∑N

k=1 Ei(Xk+i) and Yi,N = Ei(XN+i). With

these notations, the following decomposition is valid:

Xi = di,N + gi−1,N − gi,N + Yi,N . (7.1)

SinceN is fixed, all the random variables in the above decomposition are in L2. Moreover,

from the fact that (di,N)i∈Z is a stationary sequence of martingale differences,

‖d0,N‖1 ≤ ‖d0,N‖2 ≤ lim sup
n→∞

n−1/2
∥∥ n∑
i=1

di,N
∥∥

2
. (7.2)

Next, from (7.1),
∑n

i=1 di,N = Sn + gn,N − g0,N −
∑n

i=1 Yi,N , which implies that

n−1/2
∥∥ n∑
i=1

di,N
∥∥

2
≤ n−1/2‖Sn‖2 + 2n−1/2‖g0,N‖2 + n−1/2

∥∥ n∑
i=1

Yi,N
∥∥

2
.

Now, by item (b), limn→∞ n
−1/2‖Sn‖2 = 0. Hence

lim sup
n→∞

n−1/2
∥∥ n∑
i=1

di,N
∥∥

2
≤ lim sup

n→∞
n−1/2

∥∥ n∑
i=1

Yi,N
∥∥

2
. (7.3)

Next, by stationarity and the properties of the conditional expectation, we infer that

∥∥ n∑
i=1

Yi,N
∥∥2

2
=

n−1∑
k=0

E
(
E−N(X0)(X0 + 2Sk)

)
.

Now Item (c) combined with the Cesaro Lemma entails that

lim
N→∞

lim sup
n→∞

n−1
∥∥ n∑
i=1

Yi,N
∥∥2

2
= 0 . (7.4)

Taking into account (7.2)-(7.4), we derive that di,N converges to 0 in L1 as N tends to

∞. Therefore the lemma follows by taking into account the decomposition (7.1) and

noting that, by item (a), gi,N converges to gi in L1 and Yi,N converges to 0 in L1.
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We now prove Proposition 7.1. We start by noticing that
∑

k≥1 θ(k) <∞ and σ2 = 0

imply items (a), (b) and (c) of Lemma 7.1. More precisely, to prove item (c), starting

from Inequality (4.7) in [26], we obtain that
∣∣E(E−N(X0)Xk)

∣∣ ≤ Mθ(k + N), implying

that
∣∣E(E−N(X0)(X0 + 2Sn))

∣∣ ≤ 2M
∑

`≥N θ(`). So, overall, under the conditions of

Theorem 7.1,

Sn = g0 − gn in L1 where gm =
∑
k>0

E(Xk+m|Fm) . (7.5)

Now, let q ≥ 1 and r in ]1,+∞] be the conjugate exponent, that is 1/q + 1/r = 1.

Note first that, by the Riesz-Fisher theorem, ‖g0‖q = sup
{
E(g0Z) : Z ∈ Lr

}
, where

Lr is the class of nonnegative random variables Z such that ‖Z‖r = 1. But, by [8,

Proposition 1],∣∣E(g0Z)
∣∣ ≤∑

k>0

|E
(
ZXk

)
| ≤M

∑
k>0

∫ θ(k)

0

QZ(u)du ≤M

∫ 1

0

θ−1(u)QZ(u)du ,

where QZ is the generalized inverse of t 7→ P(Z > t) and θ−1(u) =
∑

i≥0 1u<θ(i). There-

fore, by Hölder’s inequality,∣∣E(g0Z)
∣∣ ≤M

(∫ 1

0

(
θ−1(u)

)q
du
)1/q

.

Hence, using the coboundary decomposition (7.5) and the stationarity of (gm)m∈Z,

‖Sn‖q ≤ 2‖g0‖q ≤ 2M
(∫ 1

0

(
θ−1(u)

)q
du
)1/q

.

Now, by inequality (C.5), page 184, in [26],
∫ 1

0

(
θ−1(u)

)q
du ≤ q

∑
k≥0(k+ 1)q−1θ(k).

Proof of Theorem 7.1. Let q = max(1, r(p − 1)/p). We apply inequality (5.1) with

ϕ(x) = xq. Since
∑

k>0 k
q−1θ(k) < ∞, Proposition 7.1 ensures that ‖Sn‖q � 1. There-

fore, for any x > 0,

P
(
S∗n ≥ x

)
� x−q + min(1, nx−p) . (7.6)

Next, since S∗n ≤ nM , ‖S∗n‖rr = r
∫ nM

0
xr−1P

(
S∗n ≥ x

)
dx. Hence, applying (7.6) and

taking into account the selection of q, we get

‖S∗n‖rr �
∫ nM

0

xr−1−qdx+

∫ n1/p

0

xr−1dx+ n

∫ ∞
n1/p

xr−1−pdx� nr/p .

Proof of Theorem 7.2 . We start from inequality (5.1) applied with ϕ(x) = xp−1. By

Proposition 7.1, E(ϕ(Sn))� 1. Therefore

P
(
S∗n ≥ 4εnα

)
� (εnα)1−p + n1−αε−1θ([εnα]) .

Hence ∑
n>0

nαp−2P
(
S∗n ≥ 4εnα

)
� ε1−p

∑
n>0

nα−2 + ε−1
∑
n≥1

nα(p−1)−1θ([εnα]) .

The first series converges if α < 1 and the second one also converges as soon as∑
k>0 k

p−2θ(k) <∞. This ends the proof of the theorem.
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