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Abstract 

Background and objective. Machine learning and deep learning models are very powerful in 

predicting the presence of a disease. To achieve good predictions, those models require a 

certain amount of data to train on, whereas this amount i) is generally limited and difficult to 

obtain; and, ii) increases with the complexity of the interactions between the outcome (disease 

presence) and the model variables. This study compares the ways training dataset size and 

interactions affect the performance of those prediction models. 

Methods. To compare the two influences, several datasets were simulated that differed in the 

number of observations and the complexity of the interactions between the variables and the 

outcome. A few logistic regressions and neural networks were trained on the simulated 

datasets and their performance evaluated by cross-validation and compared using accuracy, 

F1 score, and AUC metrics. 

Results. Models trained on simulated datasets without interactions provided good results: 

AUC close to 0.80 with either logistic regression or neural networks. Models trained on 

simulated dataset with order 2 interactions led also to AUCs close to 0.80 with either logistic 

regression or neural networks. Models trained on simulated datasets with order 4 interactions 

led to AUC close to 0.80 with neural networks and 0.85 with penalized logistic regressions. 

Whatever the interaction order, increasing the dataset size did not significantly affect model 

performance, especially that of machine learning models. 

Conclusion. Machine learning models were the less influenced by the dataset size but needed 

interaction terms to achieve good performance, whereas deep learning models could achieve 

good performance without interaction terms. Conclusively, with the considered scenarios, 

well-specified machine learning models outperformed deep learning models. 

Keywords: 

Deep Learning; Machine Learning; Data Set Size; Interactions   
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1. Introduction 

In the last decades, Artificial Intelligence (AI) was largely used in a wide range of fields 

such as Pattern Recognition [1], Image Recognition [2], or Natural Language Processing [3]. 

In medicine, the main challenges have been assessing a disease risk, establishing a diagnosis, 

making a prognosis, or predicting the response to a treatment. All these challenges have been 

separately or jointly investigated in numerous medical specialties. Nevertheless, the 

superiority of AI methods over others was not always conclusive because of peculiarities of 

some methods, some diseases, some dataset contents or structure and, especially in prediction 

studies, because of the variety of metrics used to evaluate and compare model predictive 

performance; e.g., accuracy, sensitivity, specificity, area under the receiver operating curve 

(AUC), F1 score, etc. 

Among the several hundreds of recent studies about the use of Deep Learning or Neural 

Networks for the analysis of medical data or, more specifically, prediction in medicine, a few 

selected works are briefly summarized herein. 

In 2019, Ayon et al. [4] evaluated the performance of a deep neural network in predicting 

diabetes mellitus. With five-fold and ten-fold cross-validations on the Pima Indians Diabetes 

Dataset, the validations showed respectively 98.04 and 97.27% accuracy, 98.80 and 97.8% 

sensitivity, 96.64 and 96.27% specificity, 0.99 and 0.98 F1 score, and, finally, 0.96 and 0.94 

Matthew’s Correlation Coefficient. The deep neural network outperformed other current 

methods (e.g., with logistic regression, accuracy was only 78%). 

In 2019 too, Tomita et al. [5] compared the performance of logistic regression, support 

vector machine, and deep neural network in making an initial diagnosis of adult asthma. The 

study included 566 adults with non-specific symptoms who visited a university hospital for 

the first time. Ten to 22 inputs were used with each model and performance assessed in terms 

of accuracy and AUC. With 10 symptom-physical signs as inputs, the accuracies were 65, 62, 
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and 68%, respectively, but, with 22 inputs (10 + biochemical, functional, and other tests) the 

accuracies were 94, 82, and 98%, respectively, whereas the AUCs were 72.6, 54.5, and 63.2, 

respectively, with 10 inputs but 0.97, 0.83, and 0.99, respectively, with 22 inputs. Thus, with 

all inputs available, the neural network outperformed clearly the other methods in diagnosing 

adult asthma. 

In 2020, Nazari et al. [6] used neural networks (with one and three hidden layers) and deep 

learning for the diagnosis of myeloid leukemia using microarray gene data from the Gene 

Expression Omnibus (GEO) database. The accuracies with a single-layer and three hidden 

layers were 63.33 and 96.67%, respectively, showing the power of the latter method. 

In 2021, Lewis et al. [7] compared deep learning models with logistic regressions in 

predicting preventable acute care use and spending among 93,260 heart failure patients from a 

single large US insurer database. With all outputs predicted (preventable hospitalization, 

preventable ED visits and preventable costs), deep learning models showed the highest 

performance (e.g., concerning preventable hospitalization, the AUC was 0.75 for logistic 

regression vs. 0.77 for non-sequential neural network and 0.78 for sequential neural 

networks). 

Machine Learning (ML) is a branch of AI based on learning from data using variables, also 

called ‘features’, to predict an ‘outcome’ (disease risk, diagnosis, prognosis, or response to 

treatment). Most ML models are trained with supervised learning, which implies a known 

outcome. Several models based on data training do exist (e.g., Linear Regression [8], Logistic 

Regression [9], Support Vector Machines [10], or Naive Bayes classifier [11]) in which it has 

been shown that increasing the amount of data improves performance [12]. In the field of 

classification, performance is the ability of a model to predict an observation’s class using a 

test dataset. A bad performance of a classifier may have two causes: 
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i) the features do not contain enough information to explain the outcome; and, ii) the model 

cannot deal with the complexity of the relationships between the features and the outcome. 

Generalized Linear Models are able to unravel part of this complexity by introducing 

interaction terms of various orders, complexity being considered as a deviation from an 

additive effect between the model’s linear components. Unfortunately, in case of high 

complexity, ML has to consider high-order interaction terms during model building. 

Deep Learning (DL) is a branch of ML that includes models with more elaborated 

architectures. The simplest DL model is the perceptron [13], an interconnection of artificial 

neurons. The perceptron may be extended by adding hidden layers to form a deeper network 

named ‘multilayer perceptron’. A onelayer perceptron is able to approximate any continuous 

function; this was proven by Hornik et al. [14, 15] with the Universal Approximation 

Theorem. One implication of that Theorem is that, in a fully connected NN, each neuron after 

the first one in the first hidden layer takes into account all interactions between the features. 

With a one-layer perceptron, DL models are thus able to deal with relationship complexity by 

including high-order interaction terms, especially that they do not have to be specified. 

However, DL models require large training datasets [16]. 

Some metrics were developed to evaluate the predictive performance of mod- 

els; e.g., accuracy, AUC, or F1 score. These metrics allow model comparisons of very 

different types (e.g., a ML model vs. a DL model). Concerning ML approaches, studies such 

as those of Tsangaratos et al. [12] compared model performance by varying both the number 

of observations and the number of features used in the models with real drug datasets. 

However, these studies did not deal with DL models. Interestingly, Korotcov et al. [17] 

compared the performance of DL and ML models in terms of accuracy and AUC. With all 

datasets used, DL models gave better results than ML models but the authors did not 

systematically explore various levels of complexity. Consequently, those results were specific 
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to the datasets used and still have be confirmed. Van der Ploeg et al. [18] created simulated 

datasets from different cohorts to study the amount of data needed by Logistic Regression or 

DL models to predict binary outcomes. They showed that Logistic Regression models needed 

less data than DL models and suggested DL models be used only with large datasets. Overall, 

the latter works took into account the amount of data but not the interaction orders. 

Theoretical studies evaluating the abilities of various models to deal with high interaction 

orders and their effects on performance are still needed. 

The aim of the present study was to compare the prediction performance of ML models vs. 

that of DL models according to the training dataset size and the complexity of the interactions 

between the variables and the outcome. The variables and the presence of disease were 

simulated in virtual patients and complexity was generated by introducing multiplicative 

interaction terms in the models. 

This report presents first the data, the way variables and subject statuses were simulated, 

the way the scenarios were built, the models used for prediction, and then the criteria used for 

comparisons of models’ predicting abilities. The results under various scenarios are then 

displayed before being discussed and finally summarized in a clear conclusion. 
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2. Materials and methods 

2.1. Simulated data 

The Framingham Study [19] is one of the longest and most important epidemiological 

studies in medical history. It was a population-based observational cohort study initiated in 

1948 to investigate prospectively the epidemiology and risk factors for cardiovascular disease 

in nearly 5210 participants, all residents of Framingham (MA, USA). Among various 

findings, that remarkable study demonstrated the detrimental roles of cigarette smoking, 

elevated blood pressure, and high cholesterol level in the development of heart disease and 

their contributions to the risk of heart attack and stroke. The original and subsequent databases 

include (but are not limited to) information on hundreds of demographic, clinical, laboratory, 

and imaging variables. (For more details see: Boston Medical Center. Framingham Study. 

https://www.bmc.org/stroke-and-cerebrovascular-center/research/framingham-study). 

The present work adopted a short list of risk factors identified by the Framingham Study 

and simulated corresponding data with various levels of interaction to simulate outcomes. 

These risk factors were the following: age (in years), total cholesterol (in mg/dL), HDL 

cholesterol (in mg/dL), systolic blood pressure (in mm Hg), treatment for hypertension, 

smoking status, and diabetic status (as binary variables) (Table 1). 

2.1.1. Feature generation 

Each continuous feature was randomly generated according to a Gaussian distribution 

having the same mean as in the Framingham study [19] and a standard deviation chosen 

according to common values seen in clinical practice (Table 1). Binary features were 

generated using binomial laws where each probability parameter corresponded to the 

distribution of the feature in the Framingham study (Table 1). All features were independently 

generated. 
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Figure 1 shows pairwise correlations between features. Because several datasets were 

simulated, only the highest correlations (in absolute value) are shown. As the maximum 

correlation value was 0.13, we considered that there is almost no correlation between the 

features. This stems from the variable generation process where all the features were 

independently simulated. 

2.1.2. Clinical status generation 

Clinical statuses were dependent on the features and their possible interactions. Here, only 

multiplicative interactions between features were considered. Considering P(X) as a 

polynomial created from a vector of features X, the probability of being a ‘case’ was 

computed with the following formula: 

 

Once a probability was computed for a given observation, a binomial law having this 

probability as parameter was used to assign a clinical status (case or non-case). In this process, 

the order of the interaction is the degree of P used to assign the clinical status. 

2.1.3. Scenario generation 

Different datasets were generated with sizes 1,000, 10,000, and 100,000 observations. 

Furthermore, three polynomials were used to assign cases to observations (see the Appendix): 

i) only the main effects considered (the features without interaction terms); ii) main effects 

and interaction terms of order 2 considered; and, iii) main effects and interaction terms up to 

order 4 considered. In this study, interactions within a single feature were not considered. 

Nine scenarios were thus generated (three sizes x three polynomials). 
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2.2. Models 

2.2.1. Machine Learning models 

The first ML model was logistic regression (LR) [9]. LR is derived from the Linear Model 

where the outcome variable is binary. In a LR with k features, the log of the odd of the 

probability p is modeled from features X = (x1,· · · ,xk) by a linear model: 

 

Parameters β = (β1,· · · ,βk) were estimated by maximizing the log-likelihood function. With n 

observations, yi and xi being respectively the clinical status and the vector of features for the i-

th observation, the log-likelihood function was given by: 

 

Variable selection was made by comparing nested models using the likelihood ratio test. In a 

first step, the main effects were kept only when the associated p-values were < 0.05. In a 

second step, all order-2 interactions were successively tested by fitting models that included 

systematically all previously retained main effects. For interaction tests, p-values < 0.10 were 

considered. Furthermore, a model that included the previously retained main effects and all 

identified order-2 interactions was fitted; this led to consider only order-2 interactions with p-

value still < 0.10. Starting from that model, order-3 then order-4 interaction terms were 

selected using similar approaches. 

Two types of penalization were applied: Lasso and Ridge. The function to maximize was 

then: 
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In this formula, λ is the tuning parameter and ω = 1 for Lasso or 2 for Ridge. In both 

situations, penalization led to shrinkage of parameters β. With Lasso penalization, a selection 

may be carried out by setting β to 0. 

With each penalization method, a model that included all main effects was fitted first then 

a model that included all main effects and all order-2 interaction terms. Finally, a model that 

included all main effects and all order-2, order-3, and order-4 interaction terms was fitted. The 

tuning parameter was fixed to 1. 

Hereafter, notations LRi, lassoi, and ridgei will indicate the different logistic regressions 

trained with the variables and their interactions up to order i. 

2.2.2. Deep Learning models 

Neural networks (NNs) [1], just like a multilayer perceptron, are based on artificial 

neurons. These neurons are connected in many layers to create a network. The input layer 

includes as many neurons as there are features and the output layer as many neurons as there 

are output possibilities. Between these two layers, some other hidden layers may be included. 

Here, a sigmoid function was used as activation function for all layers, except the last one for 

which log-softmax function was used. In addition, between hidden layers, a dropout with 

probability 0.1 was considered to reduce overfitting. All NNs were trained by 

backpropagation [20] to minimize the cross-entropy loss function [21] given, in a binary 

context, by: 

L(y,p) = −(ylog(p) + (1 − y)log(1 − p)) 

In this equation, p is the probability returned by the model and y the clinical status (1 for 

‘case’, 0 for ‘non-case’). For the backpropagation, Adam optimizer was used to update the 

parameters of the model [22]. Furthermore, to optimize the backpropagation process, the 

weights of the NNs were initialized using Xavier normal function, which is recommended for 
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NNs with sigmoid activation functions [23]. The training process needed some other 

hyperparameters that were selected from sets of possible values using cross-validation. Doing 

so, four hyperparameters were fixed for each model in each scenario: i) the number of epochs 

(25, 50, or 100); ii) the batch size (32 or 64); iii) the learning rate used for backpropagation 

(0.01 or 0.1); and, iv) the number of neurons in each hidden layer (3, 5, or 7). Here, for 

simplicity, all layers had the same number of neurons and four different NNs with 1, 3, 5, or 7 

hidden layers were considered. Hereafter, NNi will denote a NN with i hidden layers. 

2.3. Performance evaluation 

2.3.1. Metrics 

To evaluate the predictive performance of each model, three metrics were considered: i) 

accuracy; i.e., the proportion of well-classified observations; ii) the AUC; i.e., the probability 

of ranking a random positive observation higher than a random negative observation; and, iii) 

F1 score, a harmonic mean between precision and recall; i.e., between the proportion of 

positive identifications actually correct = TP/(TP+FP) and the proportion of actual positives 

correctly identified = TP/(TP+FN) (T, F, P, and N stand respectively for True, False, 

Positives, and Negatives). 

2.3.2. Evaluation of the results 

Ten-fold cross-validations were used to simulate an internal validation. Theoretically, to 

avoid random sample fluctuations inherent to dataset generation, a large number of datasets in 

each scenario should be simulated with their corresponding outcomes. Here, only five datasets 

were used to reduce computing times and because the observed fluctuations were very small. 

The results show, in each scenario, the mean value of each metric as computed by cross-

validation on the five datasets. 
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3. Results 

3.1. Main effects 

In scenarios with only main effects used to assign cases, LR results were similar whatever 

the order of the interaction terms used for training. Thus, with 1,000 observations, LR1 had an 

AUC of 0.70, whereas LR2 and LR4 had AUCs of 0.74 and 0.75, respectively (Table 2). Table 

2 shows also that using penalization (either Lasso or Ridge) led to an improvement of 

performance. Indeed, the AUCs were around 0.80 with Lasso and Ridge whatever the order of 

interaction terms used for training. Furthermore, Table 2 shows that increasing the dataset size 

did not improve performance whatever the penalization technique (AUC = 0.80 with 10,000 

observations vs. 0.79 with 100,000 observations). The AUC was around 0.78 with non-

penalized LRs, especially LR2 and LR4. 

Concerning NNs, the AUCs were quite good: 0.79 (SD: 0.03) for NN1, 0.77 (SD: 0.02) for 

NN3, 0.79 (SD: 0.03) for NN5, and 0.77) for NN7 (Table 2). When only the main effects were 

considered, the number of hidden layers had only a limited effect on performance. 

Table 2 shows that increasing the dataset size did not increase the values of the metrics; it 

only stabilized the AUC around value 0.77 for 10,000 observations and 0.78 for 100,000 

observations. 

Similar results were observed for accuracy and F1 score. 

3.2. Interactions of order 2 

When interactions of order 2 were used to assign cases, differences in performance 

appeared between different LRs. Table 3 shows that with 1,000 observations, the AUC was 

0.71 for LR1, 0.80 for LR2, and 0.79 for LR4. Penalization improved slightly the results of all 

classical LRs. Indeed, Table 3 shows that the AUCs with Lasso and Ridge were 0.75 when 

only the main effects were used for training, 0.82 otherwise. Increasing the dataset size 
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improved slightly AUC values. Table 3 shows also AUC values of 0.71, 0.81, and 0.82 for 

LR1, LR2, and LR4, respectively with dataset sizes > 1,000. With dataset sizes 10,000 and 

100,000, penalization improved the performances regardless of the order of interaction terms 

used for training: the AUC was 0.77 for ridge and lasso trained without interactions and 0.84 

for ridge and lasso trained with interactions. 

Concerning NNs, Table 3 shows similar performances whatever the number of hidden 

layers. With 1,000 observations, the AUC was 0.79 for NN1, 0.81 for NN3, 0.80 for NN5, and 

0.78 for NN7. 

Increasing the dataset size stabilized the AUC for all NNs but did not improve 

performance. Table 3 shows that the AUC was 0.81 for all NNs, except NN7 with 10,000 

observations (AUC = 0.80). Similar results were observed for accuracy and F1 score. 

3.3. Interaction of order 4 

When interactions of order 4 were used to assign cases, the performance of LR differed 

according to the order of interaction terms used during the training. 

Table 4 shows that for 1,000 observations, the AUC was 0.71 for LR1, 0.78 for LR2, and 0.79 

for LR4. When the relationship between the features and the outcome required one or more 

interactions of order 4, penalization improved performance. Table 4 shows that the AUCs 

with Lasso and Ridge were above 0.76, 0.80, and 0.82 for penalized LR with main effects, 

main effects and order-2 interactions, main effects and all interactions up to order 4, 

respectively. Increasing the dataset size improved performance (Table 4). This improvement 

concerned especially penalized and non-penalized LRs with order-4 interaction terms. Indeed, 

the AUC for lasso4 and ridge4 peaked at 0.85 with 10,000 or 100,000 observations. 

Furthermore, the AUCs for LR4 were 0.82 and 0.83 for 10,000 and 100,000 observations, 

respectively. Nevertheless, for LRs without order-4 interaction, increasing the dataset size did 

not improve performance. 
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Concerning NNs, the number of hidden layers had no important impact on performance 

(Table 4). The AUCs were 0.77 for NN1, 0.80 for NN3, 0.79 for NN5, and 0.80 for NN7. 

Table 4 shows also that increasing the dataset size stabilized the metric values rather than 

increasing them. Indeed, the AUC was around 0.80 for all NNs whatever the number of 

hidden layers. 

Similar results were obtained for accuracy and F1 score. 
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4. Discussion 

This work aimed at investigating the effects of one form of complexity (i.e., logistic 

interactions) and dataset size on logistic regression and neural network predicting abilities. 

The former effect was investigated with simulated data. Assuming that neural networks can 

approach any function in a complex space, low and high interaction orders were simulated. 

Another form (namely, model complexity) was used to compare the prediction ability of 

logistic regression (with various levels of interaction used as inputs and various penalization 

functions) vs. neural networks (with different numbers of hidden layers). 

In all studied scenarios, penalization of the LR improved performance of all models. In 

addition, very few changes were seen by varying the size of the dataset, except for NNs. 

Unsurprisingly, LR with interaction terms provided better results than other models, 

especially with datasets with order-4 interactions. NNs provided good results with almost all 

datasets and had nearly the same level of performance than LR with datasets with interaction 

of order 1in scenarios without interaction terms. With higher interaction orders, NNs 

performed less well than LRs that used the right interaction term orders. Despite this, when 

simulated data integrated interaction terms, NNs outperformed LRs that did not include such 

terms. With order-4 interactions, NNs provided similar results to LRs trained with main 

effects and order-2 interactions. 

The present results show that almost all scenarios with Lasso or Ridge penalization 

improved performance. This was not surprising, especially with interactions of high orders. 

Indeed, in LRs, increasing the interaction order increases the number of variables used as 

inputs. Term selection during training classical LRs led to optimism (overfit with the training 

dataset leading to worse predictions with the test dataset) [24]. This problem may be solved 

using penalization techniques, either Lasso or Ridge. With penalization, the predictive 

performance improved but neither penalization method outperformed the other. 
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Concerning NNs, the performance was good but less than that of wellspecified LRs. One 

may recall that optimizing NNs is more complex than optimizing LRs. A high number of 

hyperparameters must be set to train NNs. This study used a restricted number of possible 

values for each hyperparameter. 

More combinations of hyperparameters may lead to better optimization of NNs and, thereby, 

to better performance. Furthermore, training of NNs requires more computation time than 

training LRs. 

Neural networks and logistic regression are subject to uncertainty. There are two types of 

uncertainty: aleatory uncertainty (the uncertainty inherent to the data and that the modeler 

cannot reduce) and epistemic uncertainty (the uncertainty due to the model design and that 

can be reduced by the modeler) through adding knowledge [25]. Though the effects of 

interaction terms on uncertainty were not studied yet, we expect that increasing the dataset 

size would decrease epistemic uncertainty (for a recent technical point on the techniques able 

to quantify uncertainty, see the comprehensive review of Abdar et al. [26]).  

Two peculiarities of the present study is that, by construction, the data were idealized; i.e., 

free from bias. The lack of bias may inflate NN performance in cases of large datasets. 

Besides, the data were homoscedastic; i.e., generated as if they were drawn from a single 

population. The latter fact might not be true in other real-world datasets or in multicenter 

datasets. In case of several data sources, these points should be taken into account during 

model building. Moreover, the features were independently simulated (i.e., without any 

correlation) whereas correlations between features make interaction term influence model’s 

prediction. Thus, correlations between features should be thoroughly examined. Furthermore, 

the effects of bias, heteroscedasticity, and correlation on prediction may be investigated in 

more extended studies. 
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One major asset of this study is the use of simulated data. Indeed, simulating the data 

allowed a better knowledge of their structure and complexity. In most cases, with real 

datasets, the complexity of the data structure is not known beforehand; consequently, its 

impact on models’ performance is difficult (if not impossible) to assess and counterweight. In 

the present work, complexity was restricted to logistic interactions. Working with simulated 

data allows investigating the way NNs behave according to various forms and levels of 

complexity.  

Consequently, a future work will examine the performance of LRs and NNs with datasets 

that display more complexity; e.g., non-linear relationship between the features and the 

outcomes or interactions of very high orders. The abilities of other models such as Random 

Forest, Support Vector Machines, or Kernel regressions to approximate that relationship may 

also be evaluated considering various complexity levels. Besides, within the spirit of a 

previous review, a specific work might be dedicated to the effect of ‘interaction’ or ‘dataset 

size’ the two types of uncertainty [26]. 

 

5. Conclusions 

The present study investigated the ability of LRs and NNs to deal with multiplicative 

interactions. With all interaction orders, well-specified LRs provided the best results. 

Furthermore, penalized LRs outperformed regular LRs. NNs performed at least as well as LRs 

without the right interaction order. The study showed no significant impact of the dataset size. 

DL can be a powerful tool but well-specified classical ML approaches are likely to be more 

efficient in many biomedical applications. 
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Table 1: Description of the features considered 

Features Mean Standard deviation Proportion 

Continuous features    

Age 50 5.92 — 

Total cholesterol 215 4.47 — 

HDL cholesterol 45 5.00 — 

Systolic blood pressure 130 12.25 — 

Binary features    

Treatment for hypertension — — 0.1013 

Smoking status — — 0.3522 

Diabetes status — — 0.0650 
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Table 2: Metrics relative to the main effects. 

 Dataset size: 1000  Dataset size: 10000  Dataset size: 100000 

Model Accuracy F1-score AUC  Accuracy F1-score AUC  Accuracy F1-score AUC 

LR1 0.70 0.48 0.70  0.71 0.49 0.71  0.71 0.49 0.71 

LR2 0.76 0.54 0.74  0.78 0.58 0.78  0.79 0.58 0.78 

LR4 0.76 0.55 0.75  0.79 0.59 0.78  0.80 0.60 0.79 

lasso1 0.89 0.69 0.80  0.89 0.70 0.80  0.89 0.69 0.79 

lasso2 0.89 0.69 0.79  0.89 0.70 0.80  0.89 0.69 0.79 

lasso4 0.88 0.68 0.78  0.89 0.70 0.80  0.89 0.69 0.79 

ridge1 0.89 0.70 0.80  0.89 0.70 0.80  0.89 0.69 0.79 

ridge2 0.88 0.68 0.79  0.89 0.69 0.80  0.89 0.69 0.79 

ridge4 0.88 0.67 0.78  0.89 0.69 0.79  0.89 0.69 0.79 

NN1 0.88 0.67* 0.79  0.89 0.68 0.78  0.89 0.67 0.78 

NN3 0.88 0.66† 0.77  0.88 0.66 0.77  0.89 0.68 0.78 

NN5 0.88 0.67† 0.79  0.88 0.65 0.77  0.88 0.67 0.78 

NN7 0.86 0.63‡ 0.77*  0.88 0.65 0.77  0.88 0.66 0.77 

†The SD for this value was 0.04 - * the SD for this value was 0.05 - ‡The SD for this value was 0.08 -All 

other SDs were ≤ 0.03 
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Table 3: Metrics relative to order-2. 

 Dataset size: 1000  Dataset size: 10000  Dataset size: 100000 

Model Accuracy F1-score AUC  Accuracy F1-score AUC  Accuracy F1-score AUC 

LR1 0.72 0.50 0.71  0.72 0.49 0.71  0.72 0.49 0.70 

LR2 0.80 0.62 0.80  0.81 0.63 0.81  0.82 0.63 0.81 

LR4 0.80 0.61 0.79  0.83 0.65 0.82  0.84 0.66 0.82 

lasso1 0.88 0.64$ 0.75 †  0.89 0.67 0.77  0.89 0.66 0.76 

lasso2 0.90 0.74 0.82  0.92 0.77 0.84  0.92 0.77 0.84 

lasso4 0.90 0.74 0.82  0.92 0.77 0.84  0.92 0.77 0.84 

ridge1 0.88 0.64$ 0.76 †  0.89 0.67 0.77  0.89 0.65 0.76 

ridge2 0.91 0.74 0.82  0.92 0.77 0.84  0.92 0.77 0.84 

ridge4 0.90 0.73 0.82  0.92 0.77 0.84  0.92 0.77 0.84 

NN1 0.89 0.69 † 0.79  0.90 0.73 0.81  0.90 0.72 0.81 

NN3 0.89 0.71 0.81  0.90 0.73 0.81  0.91 0.73 0.81 

NN5 0.88 0.69* 0.80  0.90 0.73 0.81  0.90 0.72 0.81 

NN7 0.87 0.66+ 0.89*  0.90 0.72 0.80  0.90 0.72 0.81 

†The SD for this value was 0.04 - * The SD for this value was 0.05 -$The SD for this value was 0.06 - + The SD 

for this value was 0.07 - All other SDs were ≤ 0.03 
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Table 4: Metrics relative to order-4 interactions. 

 Dataset size: 1000  Dataset size: 10000  Dataset size: 100000 

Model Accuracy F1-score AUC  Accuracy F1-score AUC  Accuracy F1-score AUC 

LR1 0.73 0.49* 0.71  0.73 0.49 0.70  0.73 0.49 0.70 

LR2 0.80 0.59 0.78  0.81 0.61 0.79  0.81 0.61 0.79 

LR4 0.80 0.60 0.79  0.83 0.65 0.82  0.83 0.65 0.83 

lasso1 0.89 0.64$ 0.76 †  0.89 0.66 0.76  0.89 0.66 0.76 

lasso2 0.90 0.71 † 0.80  0.90 073 0.81  0.91 0.73 0.81 

lasso4 0.91 0.74 † 0.82  0.92 0.78 0.85  0.92 0.79 0.85 

ridge1 0.89 0.64$ 0.76  0.89 0.66 0.77  0.89 0.66 0.76 

ridge2 0.90 0.70 † 0.80  0.90 0.73 0.81  0.91 0.73 0.81 

ridge4 0.91 0.74 0.83  0.92 0.78 0.85  0.92 0.79 0.85 

NN1 0.89 0.66 † 0.77  0.90 0.71 0.80  0.90 0.71 0.80 

NN3 0.89 0.70 0.80  0.90 0.72 0.81  0.90 0.73 0.81 

NN5 0.88 0.67 † 0.79  0.90 0.72 0.81  0.90 0.72 0.81 

NN7 0.89 0.69 0.80  0.90 0.71 0.80  0.90 0.71 0.81 

†The SD for this value was 0.04 - * The SD for this value was 0.05 -$The SD for this value was 0.06 - All 

other SDs were ≤ 0.03 
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Figure 1: Pairwise correlation between features 
 




