
HAL Id: hal-04152368
https://hal.science/hal-04152368v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

FlauBERT vs. CamemBERT: Understanding patient’s
answers by a French medical chatbot

Corentin Blanc, Alexandre Bailly, Élie Francis, Thierry Guillotin, Fadi Jamal,
Béchara Wakim, Pascal Roy

To cite this version:
Corentin Blanc, Alexandre Bailly, Élie Francis, Thierry Guillotin, Fadi Jamal, et al.. FlauBERT vs.
CamemBERT: Understanding patient’s answers by a French medical chatbot. Artificial Intelligence
in Medicine, 2022, 127, pp.102264. �10.1016/j.artmed.2022.102264�. �hal-04152368�

https://hal.science/hal-04152368v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1  

Artificial Intelligence in Medicine 

FlauBERT vs. CamemBERT: understanding patient’s answers by a French 

medical chatbot 

Corentin Blanca-e, Alexandre Baillya-e, Élie Francisa, Thierry Guillotina, Fadi Jamalf, 

Béchara Wakimg, Pascal Royb-e 

 

a Everteam Software, Lyon, France 

b Université de Lyon, Lyon, France 

c Université Lyon 1, Villeurbanne, France 

d Service de Biostatistique-Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, 

Lyon, France 

e Équipe Biostatistique-Santé, Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 

5558, Villeurbanne, France 

f IzyCardio, Lyon, France 

g Mediapps Innovation, Lyon, France 

 

Corresponding author: 

Corentin Blanc 

Everteam Software 

17 quai Joseph Gillet 

F-69004, Lyon, France 

c.blanc@everteam.com 

  

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S093336572200029X
Manuscript_275a720aec5aca9b4ff00702c6ca2ced

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S093336572200029X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S093336572200029X


2  

Abstract 

In a number of circumstances, obtaining health-related information from a patient is time-

consuming, whereas a chatbot interacting efficiently with that patient might help saving health 

care professional time and better assisting the patient. Making a chatbot understand patients' 

answers uses Natural Language Understanding (NLU) technology that relies on ‘intent’ and 

‘slot’ predictions. Over the last few years, language models (such as BERT) pre-trained on 

huge amounts of data achieved state-of-the-art intent and slot predictions by connecting a 

neural network architecture (e.g., linear, recurrent, long short-term memory, or bidirectional 

long short-term memory) and fine-tuning all language model and neural network parameters 

end-to-end. Currently, two language models are specialized in French language: FlauBERT 

and CamemBERT. This study was designed to find out which combination of language model 

and neural network architecture was the best for intent and slot prediction by a chatbot from a 

French corpus of clinical cases. The comparisons showed that FlauBERT performed better 

than CamemBERT whatever the network architecture used and that complex architectures did 

not significantly improve performance vs. simple ones whatever the language model. Thus, in 

the medical field, the results support recommending FlauBERT with a simple linear network 

architecture. 

 

Keywords 

Intent and slot prediction; FlauBERT; CamemBERT; Language models; Natural Language 

Understanding; Neural network architectures 
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1. Introduction 

During a first patient's consultation or session of specialized care, the interview with a 

health care professional has to collect a non-negligible amount of data that are essential to 

establish a diagnosis and initiate or update a plan of care. A part of this essential task may 

be nevertheless time-consuming. A chatbot (i.e., a conversational interface able to interact 

with humans) might then help saving time and speeding patient management. 

A medical chatbot interacts with a patient via natural language processing (NLP); i.e., 

an artificial intelligence technology that allows computers to process human speech. Such a 

chatbot is able to collect data from a patient’s speech using an auto-guided dialogue. That 

chatbot’s function involves three iterative tasks: understanding a patient's answer, choosing 

the next information to obtain according to the previous one, and generating the 

corresponding question. The present work focuses on the first task; i.e., the natural language 

understanding (NLU).  

NLU is a sub-field of NLP that deals only with understanding human natural 

language through building a formal representation of the meaning of speech. One possible 

formal representation aims to organize the information present in a simple sentence by 

splitting it into a single ‘intent’ and several ‘slots’. The intent relates to the type of 

information (e.g., socio-demographic characteristic, symptom, etc.), whereas a slot is an 

accurate datum that one or more words add to enrich the intent of the sentence. For example, 

age is a slot that contributes to a socio-demographic intent and the date of symptom onset is 

a slot that contributes to the symptom intent. In such a formal representation, intent and slot 

prediction consists in spotting in a simple sentence a single intent and one or more related 

slots. A very simple example is given in Table 1. 
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Table 1 - Formal representation of a sentence by intent and slots. 

Speech sentence Intent Slots 

J’ai eu de la tachycardie hier soir * Symptom Type Present (tachycardie) 

  Time (hier soir) 

*I had tachycardia last night 

 

Over the past few years, language models pre-trained on huge amounts of data emerged. 

These models are able to encode each word by focusing on its context within a sentence. The 

well-known BERT [1] (Bidirectional Encoder Representation Transformers) achieves that 

coding in eleven tasks of which intent and slot prediction [1,2]. One way of using such a 

language model consists in connecting a simple neural network (NN) architecture, such as a 

linear neural network (LNN, a single layer) and fine-tuning all language model and NN 

parameters end-to-end [1]; however, other NN architectures may be used such as a recurrent 

NN (RNN) [3], a long short-term memory (LSTM) [4], or a bidirectional long short-term 

memory (BiLSTM) [5]. The success of BERT led the scientific community to extend it to other 

languages than English; in French, this extension generated two models: CamemBERT [6] and 

FlauBERT [7].  

In the literature, few researchers have focused on intent and slot prediction with 

language models, a chatbot, and a French corpus. Between 2018 and 2020, for intent and slot 

prediction in the medical domain, Neuraz et al. used ELMo and FastText, two word 

embedding methods for representing sequences of words as corresponding sequences of 

vectors. Their three papers [8,9,10] showed a clear superiority of ELMo over FastText in 

terms of F1 score. Later, in 2020, CamemBERT and FlauBERT started being used for the 

same purpose (the present work) and others too. As the latter two language models are based 

on Transformers (one of the most powerful neural architectures today), they became the 
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current references in NLP. Concomitantly, FlauBERT performed better than FastText in 

“diverse NLP tasks (text classification, paraphrasing, natural language inference, parsing, 

word sense disambiguation)” targeting of various content texts [7] and CamemBERT 

performed better than ELMo in processing sentiment analysis from texts from very various 

sources [11]. 

Since 2020, in the medical field, Anastasiadou et al. [12] compared BERT against a 

support vector machine (SVM) and a conditional random field (CRF) in a chatbot for 

diabetes management and, in 2021, Lei et al. [13] used BERT for COVID-19 patient 

monitoring. In both cases, the chatbots were domain-specific (diabetes and COVID-19). 

However, up to now, neither CamemBERT nor FlauBERT has been previously used in a 

medical chatbot on a much more extended medical corpus. 

This study aims to compare CamemBERT and FlauBERT abilities to extract intents and 

slots from a French medical corpus and determine the best language model / neural network 

architecture combination able to help patients and health care professionals 

. 
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2. Materials and methods 

 

2.1. The data 

The present study used the French CAS corpus [14], a benchmark among French medical 

corpuses. CAS includes thousands of clinical reports extracted from the specialized literature. 

From that corpus, the study analyzed a sample of 1,133 sentences. From each sentence, a 

single intent and one or several slots were manually tagged according to the taxonomy 

detailed in Table 2. 

 

Table 2 – Taxonomy and dataset description. 

Intents and slots Description Frequency (%) 

Patient  192 (17%) 

Weight Patient’s weight 44 (14%) 

Height Patient’s height 40 (12%) 

Age Patient’s age 172 (53%) 

Person Patient’s name 69 (21%) 

Symptom  203 (18%) 

Type Present Symptom description 377 (76%) 

Time Date of symptom onset 121 (24%) 

Exam  566 (50%) 

Type Present Past medical examination 639 (100%) 

Risk  172 (15%) 

Type Present Presence of risk factor 218 (65%) 

Type Absent Absence of risk factor 116 (35%) 
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The slots were tagged using the IOB format. In that format, prefix ‘B-’ indicates a word 

at the beginning of a slot, ‘I-’ a word in the middle or the end of a slot. Prefix ‘O’ was used to 

tag words that do not belong to slots. Finally, ‘</s>’ indicates the end of a sentence. For 

example, the sentence shown in Table 1 (‘J’ai eu de la tachycardie hier soir </s>’) would be 

tagged: O O O O O B-TypePresent B-Time I-Time Symptom. 

 

2.2. The proposed approaches 

Intent and slot prediction was carried out in two steps (Figure 1). First, the language model 

encoded each word of a sentence with an embedding layer and that encoding was 

contextualized with Transformer Encoder layers. Second, using the contextualized 

embeddings generated by the language model, a neural network architecture predicted intents 

and slots. 
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Figure 1 - Intent and slot prediction using a language model. At this figure top, tag </s> 

indicates the end of the sentence under analysis. First, the language model encodes the 

sentence non-contextually (with the embedding layer) then contextually (with the 

Transformer Encoder layers). Finally, the neural network architecture predicts the intent and 

the slots using the previously calculated contextualized embeddings. The slots are in IOB 

format: prefix ‘B-’ indicates a word at the beginning of a slot, ‘I-’ a word in the middle or the 

end of a slot, and ‘O’ a word that does not belong to a slot. 
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2.2.1. The language models 

Language models analyze the text in segments of one or more sentences. In the present study, 

it is important to underline that each segment corresponded to a single sentence. Each word 

(sometimes part of the same slot; e.g., slot ‘hier soir’ derives from ‘hier’ (B-Time) and ‘soir’ 

(I-Time) was indexed to a vocabulary composed of words and sub-words (also called 

‘tokens’). A tokenizer allowed managing unknown words by cutting them up and then 

associating them with vocabulary tokens. The embedding layer returned, for each token, a 

non-contextualized embedding that corresponds to the sum of three different embedding 

(Figure 2): 

• A token embedding resulting from a linear projection of the tokens indexes. 

• A position embedding resulting from a linear projection of tokens’ positions in 

the segment (here, = sentence). 

• A segment embedding resulting from a linear projection of the belonging of 

various tokens of the same sentence. Here, all tokens of a given sentence had 

the same segment embedding because each segment corresponded to a single 

sentence. 
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Figure 2 - Representation of the embedding layers. The tokenized sentence shows the tokens of the sentence (here, = segment) obtained 

with the tokenizer submitted to analysis. In this sentence, ‘tachycardie’ was cut into four tokens. The token embedding is a linear projection 

of the indexes given to the tokens of the sentence. The position embedding is a linear projection of the position of each token in the sentence. 

The segment embedding is a linear projection of the belonging of various tokens to the same sentence. Finally, the embedding layer returns a 

non-contextualized embedding that corresponds to the sum of the embeddings of the token, the position, and the segment. 
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The non-contextualized embedding resulting from the embedding layer passed then 

through a succession of twelve Transformer Encoder layers [15] (Figure 1). Each layer took 

as input the previous single output to refine the contextualization using a twelve-headed self-

attention mechanism. In each of the twelve heads, the self-attention mechanism allowed each 

token of the sentence to find out other token needed to refine the contextualization. Finally, 

the language model returned a contextualized embedding for each token of the sentence. 

Here, two language models were compared: FlauBERT and CamemBERT. These two 

models have similar structures but differ in a number of points: i) the tokenizer (Byte Pair 

Encoding [16] vs. SentencePiece [17], respectively); ii) the vocabulary size (50,000 vs. 

32,000, resp.); iii) the number of parameter (138M vs. 110M, resp.); and, iv) the size of the 

training dataset (71 GB vs. 138 GB, resp.). 

 

2.2.2 The neural network architectures 

From a contextualized embedding and for each token, the NN architecture infers the 

logarithm of a probability distribution for each potential intent and slot using a LogSoftmax 

activation function. Finally, a CRF [18] was attached at the top of every NN architecture to 

predict the most likely intent or slot while preserving the IOB format. 

Here, the results of using four NN architectures (each) associated with a CRF were compared: 

• a Linear NN (LNN) that processes linearly each contextualized embedding. 

• a Recurrent NN (RNN) that processes each contextualized embedding taking into 

account the previous one. 

• a Long Short-Term Memory (LSTM) that processes each contextualized 

embedding taking into account all previous ones. 

• a Bidirectional Long Short-Term Memory (BiLSTM) that processes each 

contextualized embedding taking into account all previous and subsequent ones. 
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2.3. The training parameters 

To train jointly all language models and NN parameters end-to-end, the number of epochs (i.e., 

number of times the corpus is explored during training) was set to ten as determined by the 

convergence value of the negative log-likelihood. AdamW learning algorithm [19] was used 

for training with a learning rate initially set to 2e-5 (first epoch) but that decreased linearly 

until it came to 0 (last epoch). A gradient clipping [20] of 1.0 was used to reduce gradient-

exploding effects; otherwise said, the gradient was scaled down whenever its norm exceeded 

1.0 to avoid too large gradients. Finally, every NN architecture has only one hidden layer. 

In this work, we used Python 3.8.2 as programming language and the following packages: 

• Torchtext 0.9.1 to load and tokenize the CAS corpus. 

• Transformers 3.1.0 from HuggingFace to apply CamemBERT and FlauBERT. 

• PyTorch 1.8.1 to deal with the NN architecture, the CRF, and model training. 

With an NVIDIA Graphics processing Unit of 16 GB, the processing time for the downstream 

task was about 20 ms per sentence and language model. 

 

2.4. The evaluation criteria 

Intent and slot predictions were separately evaluated with Macro F1 scores. A standard 

confusion matrix was calculated for intents. For slots, a ‘true positive’ slot was one whose 

every token was correctly predicted, a ‘false positive’ one whose not all tokens were correctly 

predicted, and a ‘false negative’ one that was not predicted at all. Combinations of intent and 

slot predictions were used to analyze a joint performance. 

The evaluation used a bootstrap method [21]. That method consisted in drawing 

randomly sentences from the CAS corpus –with replacement to keep constant the size of the 

training set. Thus, the training set included 1,133 sentences (just as the CAS corpus). 

Sentences 
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not drawn constituted the test set. Theoretically, about 37% of the sentences of CAS corpus 

remained in the test set (nearly 419 sentences). This bootstrapping was slot-stratified and fifty 

bootstrap iterations were run to obtain means and standard deviations for the Macro F1 score. 
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3. Results 

 

3.1. Performance of the language models 

According to the Macro F1 scores, FlauBERT performed better than CamemBERT regardless of 

the NN architecture used (Table 3). Regarding intent prediction, FlauBERT and CamemBERT 

scores were rather very close (differences less than 0.02 according to the architecture). Regarding 

slot prediction, FlauBERT and CamemBERT scores were less close (differences less than 0.2 

according to the architecture). 

 

Table 3 - Macro F1 scores for intent and slot predictions. 

Language model and architecture Intent F1 score Slot F1 score 

CamemBERT   

LNN architecture 0.957 0.836 * 

RNN architecture 0.955 * 0.838 * 

LSTM architecture 0.953 0.805 * 

BiLSTM architecture 0.952 * 0.814 * 

FlauBERT   

LNN architecture 0.975 0.879 * 

RNN architecture 0.972 0.883 

LSTM architecture 0.970 0.884 * 

BiLSTM architecture 0.972 0.883 * 

* Standard deviation range: 0.010 – 0.015. All other standard deviations range between 

0.006 and 0.010. LNN: Linear Neural Network. RNN: Recurrent Neural Network. LSTM: 

Long Short-Term Memory. BiLSTM: Bidirectional Long Short-Term Memory. 
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Regarding the combinations of intent and slot predictions, FlauBERT performed better than 

CamemBERT regardless of the NN architecture used (Table 4). FlauBERT and CamemBERT 

predicted correctly the intent and every slot with NN architecture. However, both language models 

were wrong about at least one slot in proportions very close to 0.19 with the former and 0.25 with 

the latter whatever the NN architecture. Anyway, the proportion of wrongly predicted intents never 

exceeded 0.33. 

 

Table 4 - Distribution of intent and slot prediction combinations. 

Language model and architecture Intent true  Intent false 

 Slot true Slot 

false 

 Slot true Slot false 

CamemBERT      

LNN architecture 0.714 * 0.239 *  0.014 0.033 

RNN architecture 0.719 * 0.236 *  0.015 0.030 

LSTM architecture 0.585 * 0.264 *  0.017 0.033 

BiLSTM architecture 0.695 * 0.258 *  0.014 0.033 

FlauBERT      

LNN architecture 0.779 † 0.197 †  0.009 0.015 

RNN architecture 0.786 † 0.189 †  0.010 0.015 

LSTM architecture 0.787 * 0.186 *  0.010 0.017 

BiLSTM architecture 0.785* 0.185 *  0.012 0.018 

* Standard deviation range: 0.015 – 0.020. † Standard deviation range: 0.020 – 0.25. All 

other standard deviations range between 0.006 and 0.010. LNN: Linear Neural Network. 

RNN: Recurrent Neural Network. LSTM: Long Short-Term Memory. BiLSTM: 

Bidirectional Long Short-Term Memory. 
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3.2. Performance of the NN architectures 

According to the Macro F1 scores, the NN architectures had heterogeneous performance levels 

that depended on the language model used (Table 3). Regarding intent prediction, LNN, 

RNN, LSTM, and BiLSTM architectures had very close and not significantly different Macro 

F1 scores with either FlauBERT (circa 0.972) or CamemBERT (circa 0.957). Regarding slot 

prediction with FlauBERT, Macro F1 scores with RNN, LSTM, and BiLSTM architectures 

were slightly higher (though not significantly different) than with the LNN. Regarding slot 

prediction with CamemBERT, Macro F1 scores with a LNN or a RNN architecture were 

higher (though not significantly different) than with a LSTM or a BiLSTM architecture.  

According to the combinations of intent and slot predictions, the NN architectures had 

heterogeneous performance levels that depended on the language model used (Table 4). All 

architectures (LNN, RNN, LSTM, and BiLSTM) predicted correctly the intent and every slot 

in proportions close to 0.785 with FlauBERT and to 0.710 with CamemBERT (the differences 

were not significant). LNN, RNN, LSTM, and BiLSTM architectures predicted correctly the 

intent but were wrong about at least one slot in proportions close to 0.190 with FlauBERT and 

0.240 with CamemBERT (differences not significant). The proportion of wrongly predicted 

intents never exceeded 0.033. 
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4. Discussion 

 

Given the above-shown results, FlauBERT performed better than CamemBERT regardless of 

the NN architecture used, whereas the NN architectures performed unequally depending on the 

language model. RNN, LSTM, and BiLSTM architectures outperformed slightly the LNN 

with FlauBERT but the LNN and RNN architectures outperformed slightly LSTM and 

BiLSTM architectures with CamemBERT. Undeniably, the best combinations were those that 

used FlauBERT. 

One plausible explanation for FlauBERT better performance would be its extra 28M 

parameters vs. CamemBERT. Indeed, Brow et al. [22] have recently demonstrated that the 

number of parameters in a language model has a strong impact and that the higher is the 

number of parameters, the better are the results. Another explanation would be the 18,000-

token vocabulary difference that make FlauBERT able to better deal with the input words and 

provide better contextual representations. 

The NN architectures were difficult to compare given the non-significant differences in 

most Macro F1 scores. However, it seemed that, with FlauBERT, the architectures that 

compute the tokens and take into account the rest of the sentence (i.e., RNN, LSTM, and 

BiLSTM) performed better than the LNN. With CamemBERT, the opposite was seen: LSTM 

and BiLSTM architectures performed poorly vs. the LNN and the RNN architectures. Thus, 

for the moment, concluding about architecture performance seems very difficult; it requires 

another study on much more data (say, 10 times more). 

One merit of the work is the addition to the current literature new results stemming 

from the use and comparisons of performance between CamemBERT and FlauBERT within 

the context of a medical chatbot in French language. Up to now, FastText and ELMo were the 

only language models used this way [8,9,10]; they showed much lower performance than 
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those of CamemBERT and FlauBERT in most NLP tasks. The performances of the above-

cited four word embedding methods are certainly worth being compared on the same medical 

corpus in a future dedicated work. This will be a natural and interesting extension of the 

present work. 

Although CamemBERT and FlauBERT were used here with French language, it 

seems highly probable that the same kind of study could be conducted with other languages 

that have similar sentence structures (syntaxes) and may undergo similar contextual 

embeddings; e.g., Spanish, Italian, Portuguese. Moreover, the CAS corpus used [14] included 

nearly 200 medical case reports in nearly all medical specialties. This wide coverage is a non-

negligible asset versus contexts with a single specialty or domain (e.g., diabetes [12] or 

COVID-19 [13]). A second merit of the work is the prediction of intents in addition to slots. 

Intent prediction helps slot prediction and allows a better organization of the information 

contained in a sentence. A third merit is the manual labeling of the corpus. Manual intent and 

slot labeling provides a quality corpus analysis that accounts for the accuracy and sensitivity 

of the medical language. Furthermore, manual labeling allows adapting accurately different 

performant language models to the medical chatbot; thus, extracting relevant information for 

the health care professional. However, one inconvenience of manual labeling is that it may be 

tedious and time-consuming (depending on the corpus size). For the present work, the manual 

labeling of the whole corpus required nearly two weeks full-time work. 

 

5. Conclusion 

In this comparison of intent and slot prediction between CamemBERT and FlauBERT fine-tuned 

with different NN architectures in a medical chatbot for French-speaking patients, i) FlauBERT 

achieved a better performance regardless of the NN architecture; and, ii) the most complex 

architectures did not significantly outperform the LNN which seemed to be the most reliable. Thus, 
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for a French medical chatbot, we would recommend FlauBERT with a LNN. 
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