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Abstract

Given an intertwining relation between two finite Markov chains, we investigate how it can be
transformed by conditioning the primal Markov chain to stay in a proper subset. A natural assumption
on the underlying link kernel is put forward. The three classical examples of discrete Pitman, top-to-
random shuffle and absorbed birth-and-death chain intertwinings serve as illustrations.
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1 Introduction: Markov intertwining relations

Markov intertwinings are a kind of commutation or weak similarity relation from a dual Markov
process toward a primal Markov process, enabling us to transfer information between them. They
were introduced by Rogers and Pitman [13] to give an alternative proof of Pitman’s relation [12]
between the Brownian motion and the Bessel-3 process. Subsequently, they were used by Aldous
and Diaconis [1] in their analysis of the convergence to equilibrium of the top-to-random shuffle.
Nowadays they appeared in various domains in Probability Theory, see for instance the review by Pal
and Shkolnikov [11]. Our goal here is to investigate when it is possible, and how, to transform a given
Markov intertwining relation when the primal Markov chain is conditioned to stay in a proper subset
of its state space.

Our framework is that of a finite state V' with discrete time. Our primary objects are thus Markov
kernels P := (P(x,))s ey and corresponding Markov chains X := (X(n))pez, taking values in V,
standing for the primal Markov chains. The dual Markov chains Y = (Y (n))nez, take values in
another finite state space W and we denote @ = (Q(y,¥’))yyew their Markov kernels.

Let A be a Markov kernel from W to V, we say that an algebraic A-intertwining relation holds
from @ to P, when

QA = AP (1)
Such a relation from @ to P is always satisfied for some A, since it is sufficient to take
v ye W7 A(ya ) =T

where 7 is an invariant probability measure for P (which exists in the finite setting).

So to be able to transfer informations between X and Y, some further assumptions are needed, we
are to give a general example below. Nevertheless for the general purpose of this paper, we will just
assume that an intertwining relation is given.

We will also be interested in a more precise kind of intertwining relation, enabling to couple
X and Y. As above, consider Markov kernels P, Q and A, respectively from V to V., from W
to W and from W to V. We furthermore assume that for any z,2’ € V such that P(x,2’) > 0,
we are given a Markov kernel on W, say K, v = (Kz 0 (y,Y))yyew. We deduce a Markov kernel

K = (K((z,y), (xlay/)))(:p ), (' y)evxw on Vo x W given by
V(z,y), (2", y) eV xW,  K(z,),,y)) = Plx,2)Kew(y,y) (2)

Note that whatever (z,y) € V' x W, the V-marginal of K((x,y),-) is P(x,-). Indeed we compute

Va'eV, > K(y),@.y) = Pa) ), Kewl(yy)
y'eW y'eW

= P(x,2")

We would like that K is such that if (X(0),Y(0)) is a V x W-random variable satisfying that
the conditional law of X (0) knowing Y'(0) is given by A(Y'(0),-) and if (X (1),Y (1)) is obtained from
(X(0),Y(0)) through the Markov kernel K, then:

e the conditional law of Y (1) knowing Y (0) is given by Q(Y (0),),
e the conditional law of X (1) knowing Y (1) is given by A(Y (1), -).
This amounts to ask that

VyyeW va'eV, Y Aya)K((xy), (@ y) = Quy)AW,) (3)
zeV



It follows from these considerations that we are only interested in couples (z,y) € V' x W which
are such that A(y,z) > 0. Call V' x W the set of such couples (z,y). Denote

VazeV, W, = {yeW : (z,y) eV x W} (4)

For any z,2' € V with P(z,2’) > 0, the kernel K, ,» has just to be defined from W, to W.

Relation (3) is called a probabilistic A-intertwining relation from @ to P. By summing it
with respect to y' € W, we get the algebraic A-intertwining relation from @ to P: AP = QA.

Conversely Diaconis and Fill [4] show that it always possible to associate a probabilistic A-
intertwining relation to an algebraic A-intertwining relation.

The above coupling of (X(0), X (1)) and (Y (0),Y (1)) can be extended by iteration over time into
a whole coupling of X and Y, still under the assumption that the conditional law of X (0) knowing
Y (0) is given by A(Y(0),-). This coupling has the following properties for the conditional laws

VneZi,  LE0,nNX) = LV ([0,n])X([0,n])) (5)
VneZ.,  LXmY([0.n]) = AX(n)) (6)

where X ([0,n]) stands for the truncated process (X (m))me[o,n] and similarly for Y.

Relation (6) is a probabilistic counter-part of (1). Relation (5) admits the important consequence
that a stopping time for Y is also a stopping time for X, up to enriching its filtration with independent
randomness. It has also the practical advantage that Y can be constructed from X in an adapted
way. This is important since in the traditional uses of Markov intertwining relations, X is given and
we want to construct Y satisfying (5) and (6).

As a motivation, let us give such a classical application of intertwining relations coming from
Diaconis and Fill [4]. In addition to a probabilistic A-intertwining relation from @ to P, assume that
P admits a unique invariant measure m and that () admits an absorbing point, say o0 € W, such
that {oo} is the unique minimal recurrence class of @) (said otherwise, the Dirac mass o, is the unique
invariant measure of ()). From the algebraic intertwining relation, we deduce that A(co,-) = 7. Finally
assume furthermore that the respective initial laws of X and Y satisfy £(X(0)) = £(Y'(0))A, then it
is possible to couple X and Y as above.

Denote 7 the absorption time of Y:

7 = min{neZ; : Y(n) = oo}

which is a.s. finite due to the above assumptions on co. Then 7 is a strong stationary time for
X, namely a finite stopping time (relatively to a filtration generated by X and some independent
randomness), such that 7 and X, are independent and X is distributed according to .

In particular, we get the following bound on the convergence to equilibrium for X in separation:

VneZs, s(L(X(n)),m) < P[r>n] (7)

where the separation discrepancy s(u, ) between two probability measures p and v defined on the
same measurable space is defined by

du
= 1——
s(u,v) essysup ( dy)

(where Z—’Zf stands for the Radon-Nikodym density of p with respect to v).
Thus given a primal ergodic Markov chain X, one is looking for dual absorbed Markov chains Y

as above and leading to relevant bounds (7).

As already mentioned, the purpose of this paper is to investigate the behavior of a Markov inter-
twining under the conditioning of the primal Markov X to stay in a proper subset A of V. When
X is ergodic (i.e. irreducible and aperiodic) and A is connected with respect to the underlying graph



(whose edge set corresponds to positive probability transitions for P), this question is related to the
comparison of the convergence to equilibrium of X with that of the conditioned Markov chain, but we
will not address this aspect here. The case of algebraic intertwining relations is treated in the next
section, while Section 3 deals with probabilistic intertwining relations.

Sections 4, 5 and 6 respectively consider three examples: the discrete version of the Pitman in-
tertwining between the Brownian motion and the Bessel-3 process (the usual random walk on Z is
conditioned to stay in a finite segment), the top-to-random shuffle (the card initially at the bottom
of the deck is conditioned to stay in the first half of the deck after reaching it) and absorbed birth-
and-death Markov chains conditioned not to be absorbed. Finally an appendix recalls the relations
between conditioning to stay in a proper subset and Doob transforms in the framework of finite state
space and discrete time.

2 Algebraic intertwinings

We start by dealing with the simpler case of algebraic intertwinings. The following arguments will serve
as a guide for the probabilistic intertwinings, even if a posteriori the algebraic case can be formally
deduced from the probabilistic one.

Recall that we are given a transition matrix P on a finite set V. Let A be a proper subset of V', not
reduced to a singleton, such that the restriction P4 of P to A x A is irreducible (i.e. A is P-connected).
By Perron-Frobenius theorem, we can find a function A : V' — R, positive on A and vanishing on

V\A, and a number 6 € (0, 1], such that
VaxeA, Pl[h](z) = 6h(x) (8)

The number 6 and the function h are called the largest Dirichlet eigenvalue and the Doob
function.
On A, consider the transition matrix P defined by

VayeA, P(z,y) = W (9)

It corresponds to the Markov chain conditioned to stay in A, see Appendix A.

Let be given another transition matrix ¢ on a finite set W, as well as a transition matrix A from
W to V such that the algebraic A-intertwining (1) from @ to P holds.

Our goal here is to present some conditions enabling to deduce an intertwining for P.

Define

B = {yeW : A[A](y) =1}

assume that B # ¢J and consider the transition kernel A from B to A given by

Vye B,VzeA, K(y,x) = W

Denote
B = {yeW :3ze B with Q(z,y) > 0}
and furthermore assume that there exists a non-negative kernel G' from B to B such that

VyeB,Vzed  Aly.z) = > Guy)AY, ) (10)
y'eB



Remark 1 For y € B, we can take G(y, ) = d,, the Dirac mass at y, so the above assumption can be
restricted to the elements y € B\B, namely the outside boundary of B (relatively to Q). o

Summing (10) over x € A, and taking into account that A(y’, A) = 1 for 3 € B, we get

VyeB, Y Gy) = Ay A (11)

y'eB

Example 2 A particular case of the above situation is when there exist two mappings ¢ : B — B
and g : B — R, such that

VyeB, Yy eB,  Gy) = 9)d,um¥)

The mapping g is necessarily given by

VyeB, gly) = Aly,A)

due to (11).

The subset-valued situation provides such an example. Assume P irreducible and let 7 be its
invariant probability measure, it gives a positive weight to all points of V. Then we take W to be the
set of non-empty subsets of V" and A is given by

@) ifpe
) Yy
VyeW,VYzeV, Ayz) = { W (12)
0 , otherwise

In this situation we can even define ¢ and g on the whole set W
B = {yeW :yc A}
{ ynA ifymnA#J

A , otherwise

VyeW, ely) =

m(y)
0 , otherwise

7T(<P(y)) if A
yJitymA#
VyeW, gly) = {

(the definition of ¢(y) when y n A = (JJ is arbitrary, since then g(y) = 0).
In Section 6, we will encounter a measure-valued instead of a subset-valued case where the kernel
A is not of the form (12).

We construct the Markov kernel @ on B given by

Yy eB, Q) = o5 ), QG IANY) (13)
2eB
with the normalizing constant
VyeB, Zy) = Y, Qy2)G(zy)ARY)
2€B,y'eB



Note that C~2 is well-defined, namely that Z(y) > 0. Indeed, we have for y € B,

Z(y) = D QG2 YA, )h(x)

2€B,y'eB, zeA

= Y QA D)h(a)

2€B,zeA
= Q[A[R]](y)
= [1]1(y)
P[R]](y)
= 0h](y)
= 0A[R](y)

> 0

AP
A1
A1

A
A

Example 2 continued In the set-valued situation of Example 2 we get

~ Alh Y vz
VyyeB, Quy)= [ Z ny 1
ea
and
/
Viy',y" eB, 2 cV\A, Gy v,y = %5 (y").

Theorem 3 The algebraic /N\—mtertwmmg from @ to P holds.

Proof
Consider a test function f on A. We have to check that

VyeB,  QA[flly) = AP[fl(y)

Let us start with the r.h.s., we have

RPIfIy) = - A[LARP])(w)

Let us compute the last factor. For any y € B, we have

QIR = Y, Q,2)Az2)h(x)f(x)

2€B,zeA

=Y QWACGEYAY k@) (@)

2€B,y'eB, xcA

— Y QW AGE AW

y'eB, zeB

_ A1)
= 2w 2 Q0 e

= Z(yQAL(y)

6

(14)

(16)



We have thus proven that

AP[fy) = o7 —~QIALIW)

and the desired result follows from (14). |
Denote @ the kernel on B given by

YyyeB, Q) = > Q2)G(zy)

zeB

This kernel is sub-Markovian, since we compute that for any y € B, taking (11) into account,

Y RQw.y) = Y Qu2)G(zy)

y'eB y'eB, zeB

= ZQ(y7Z)A(Z7A)
< D Q,2)

=1

To transform Q into a Markov kernel, consider a point & not belonging to B and denote B:
B u {®}. Extend Q into a Markov kernel on B by taking

vyEBv @(y’o/b) = 17@(?/7‘8)
Q(0,®) = 1
Consider the mapping H : B— R, given b
A _ | Alrl(y) ifyeB

From (13) and (14), we have

I
O
—~
<
Q\
=
=

VyyeB, Q)

which is similar to (9). Thus if @ B is irreducible, according to Appendix A, @ is the conditioning
of @ to stay in B. But in situations such as the motivation presented in the introduction, @B will
not be irreducible, because @ is typically absorbed at a unique point co € B satisfying A(co,-) = ,
the unique invariant probability measure of the kernel P. Instead we are in the case mentioned in
Remark 14 of the appendix.

3 Probabilistic intertwinings

We extend here the conditioned algebraic intertwining relation of Theorem 3 into a conditioned prob-
abilistic intertwining relation.

Let the kernels P, Q and A and the sets A c V, B, B < W be as in Section 2.
Our main assumption there was the existence of non-negative kernel G from B to B such that

VyeB,Vzed  Aly.z) = > Guy)AY, ) (17)
y'eB



enabling us to define the Markov kernel @ via

~ 1
Vyy'eB,  QY) = e ), Qy,2)G(zy)A[R](Y 18
) = Gy & QACEYAN) (18)
The two other important definitions were:
/ /
Va2 eA, P(x,2") = P(xe,}ai()f;(:c)
x
~ Ay, z)h(z
Vye B,V xeA, Ay, xz) = (Ay[h])(y())

We would like to construct a probabilistic intertwining relation from @ to P. Namely, for any x, 2’ €
A with P(z,z") > 0 we want to find a Markov kernel from B, to By Ky o = (Kpo' (4, Y'))yeB,, yeB,
such that defining

~

V(zy), (@ y)eAx B, K(@y),@.y)) = Pl,a)Kew(y,y) (19)

we have

VyyeBVaed Y Ay)K(=y), @ y) = Quv)AY, ) (20)
TEA

Following (4), we used the notation
VaeA, B, = {yeB: (z,y)e Ax B}
where

AxB = {(z,y)e Ax B : A(y,z) > 0}
= {(z,y)e Ax B : Ay, z) > 0}

since h is positive on A.
Here is our main result:

Theorem 4 The probabilistic A intertwining relation from @ to P is satisfied if we take for any
x, 2’ € A with P(z,2") >0,

V y € By, y/ € By, Kx,z’(yvy,) = Z Kx,x'(y,Z)H(Z,y/,fU/)
2€BAW,,

with

G(z,y)AlY,2)
A(z,x")

Va'eA Yy eBy,VzeBnW,y, H(z,y, 2)

(note that A(z,2") > 0 for z € B n Wy ).
We do have that (K o(y,y'))yyen is a Markov kernel from By to By.

Proof



To check (20), we start with its r.h.s., fixing y,y’ € B and 2’ € A. We compute

S Ry o) B (@ y), () = Y f[(g]’(j)mm,x’)h(j') S Kyaily, o) H(z o 2)

€A zeA 2€BnW,,
h(z"YH(z,y, x") A ,
= (y,2)P(x, 2" ) Ky 2 (y, 2)
. B;WT/ OA[R](y) g;
_ MY )
- My aw e
= Y ) o ey )
PN
h(z') ~

= ﬁQ(y,y/)A(y’w’)

NA(y', )

where for the third equality we were able to replace x € A by z € V, since y € B, for the fourth
equality we used that the relation H(z,vy',2")A(z,2") = G(z,y')A(y',2’) is always satisfied, for the
fifth equality we took (18) into account, and for the last equality used the definition of A.

To check the last assertion of the above theorem, we have to show that for any z,2’ € A with
P(z,2) > 0,

AlR](y'
= Qy.y

Vye B, > Kew(yy) = 1
y'€B,

By definition, the above Lh.s. is equal to

Z Kxx Y,z Z H(Z,y/,fl‘/) = Z Kx,x/(y7z) (21)

2€BAW,, y'€B, 2€BAW,,

due to (17). B
From (3), we get that for y € B,, we have K, ,/(y, %) = 0 when Q(g, z) = 0, in particular if z ¢ B.
It follows that in the r.h.s. of (21), we can remove the restriction z € B and we get

Z Kx,x’(yuz) =1
2€W

since K, , is a Markov kernel from W, to W,. [ |

4 Discrete Pitman intertwining

We consider here the example of the discrete (probabilistic) intertwining of Pitman [12], which served
as a preliminary version of his famous (probabilistic) intertwining from the Bessel-3 process to the
Brownian motion (see also Rogers and Pitman [13]).

The primal Markov chain is the simple random walk X := (X (n))nez, on Z, jumping with probabil-
ity 1/2 to the two nearest neighbors and starting from 0. Introduce the dual process Y := (Y (n))nez,
taking values in Z, and defined by

VneZy, Y(n) = 2 max X(m)— X(n) (22)
me[0,n]

Consider the Markov kernel A from Z, to Z associating to any y € Z the uniform distribution on
{_y7 -y + 27 Y = 27y}



Pitman [12] proved the probabilistic A-intertwining from Y to X:
YneZi, LMY = AY ()

which is an instance of (6).
Extending the considerations and notations of the previous sections to countable state spaces, it
amounts to take V := Z endowed with the Markov kernel P given by

{ /2 if|' —z| =1

Va2 eV, P(x,a") =
0 , otherwise

We condition the associated Markov chain X starting from 0 to stay in A := [1— N, N —1], for any
given N > 4. It is well-known and easy to check that 6 = cos (ﬁ) and that a corresponding function
h is given by

T
h:V> — (—
x cos (5
Consider on W = Z, the Markov kernel given by

) Tp—nn-1]() (23)

y2 - ify>landy =y+1

2(y+1)
Vyy eW, Qy) = | by iy =y-1
0 , otherwise

as well as the Markov kernel A from W to V given by

r}_l 71fx€{_y7_y+277y_27y}
0 , otherwise

VyeW, zeV Ay, x) = {

The probabilistic A-intertwining of Pitman [12] from @ to P recalled above corresponds to the
Markov kernels K, o = (Kz o/(y,Y'))yew, for 2" € V with |z — 2| = 1, given by

1 Jifz=yandy =y+1
VyyeW, Kyw(yy) = {1 ,iffee{-y-y+2.,y-2}andy =y— (2’ -2
0 , otherwise

As a consequence, we also get an algebraic A-intertwining from Q to P.

Let us specify in this situation, the objects previously introduced to get algebraic as well as prob-
abilistic K—intertwinings from @ to P.

The conditioned Markov kernel P is given, for any z,2’ € [1 — N, N — 1], by

{ cos(mz’/(2N))

Jif |27 — x| =1

~

P(J}, x/) 2cos(i)cos(7r:p/(2N))

2N
0 , otherwise

By identifying an element y € W with the subset Sy = {—y,—y+2,...,y —2,y} < V, we are in the

situation of Example 2 of Section 2 (with 7 the counting measure on Z), so B, B, ¢ and g are given
by

B = [0,N—1]

B = [0,N]
_ Y ,if y e [0, N —1]
Yye B, =
Y W) {N—2 yify=N
_ 1 ,ifye Jo,N —1]
VyeB, gy = {N_l .
N+l ,lfy:N

1

)



We compute

VyeB,  Alhl(y) = yil 2, cos (%)
€Sy

T

LS (1)

z€[0,y]
1 <.W(2z—y)> ( .W(Zz—y))
- T exp (1T 4 e (722,
2(y+1) <[04] 2N 2N
The transformation z — y — z shows that the two sums in the right are equal. So
exp (—ig) Tz
ARl = SR e (7
y+1) & ( N>
exp (—i%) exp (1W) —1
(y+1) exp (i%) — 1
exp (—igd) &P (l%) (exp (1%) — exp <_1%))
(y+1) exp (isk) (exp (iz%) — exp (—izk))
1 sin (%)
= > 0.
y+1 sin (%)

As a consequence, we get

v A
Vye B,VzeA, A(y,m) = M

We also deduce that

VyyeB,  Qu.y) M[}ll](y) D1 QU 2)g(2)A[R(Y)

2€B:¢(2)=y'

= % Y, Q2)9(2)

cos (QN) 2€B: o(2)=y’ (y' + 1)sin (w(g;\;l))

It leads us to consider two cases:
e When 3/ < N — 2, then {z€ B : p(z) =} = {y/} and thus

o

Qly,y) =

T

cos (2N) (y' + 1) sin <7ﬁ(§’j\;l)

e When ¢/ = N — 2, we have {z € B : ¢(2) = N —2} = {N — 2, N}. Thus we get for y € B,

Q(y7 N — 2)

o D *5) QUy, N —2) + — v+ v () )
cos (l) _ m(y+1) ’ cos (i) N (TW+HDY N +1 ’
an) (N —1)sin ( =55 2N ) (N —1)sin =55
y+1 < 1 1
- QN =2+ Q) )
sin (w(g;l)) N—-1 N+1

11



and this expression vanishes, except, first when y = N — 3, in which case we get

~ N -2
N—-3,N-2) = N—-3,N—-2
a ) () )
v
ZCOS(%)

(where we took into account that N > 4), and second when y = N — 1, in which case we get

- N 1 1
QIN-1,N—-2) = e (N_lQ(N—l,N—Q)JrN+1Q(N—1,N)>

< 1 N-1 1 N+1>

N -1 2N +N—i—l 2N
=1

e When 3/ = N — 1, we have {z € B : p(z) = N —1} = {N — 1}. Thus we get for y € B,

~ 1 + 1) sin (ZX
-1 = UG g vy
cos (W) N sin (%)
y+1
= Qy,N —1)
N cos (ﬁ) sin (%)

and this expression vanishes, except when y = N — 2, in which case we get

QIN—-2,N—-1) = N-1 Q(N —2,N —1)

N cos (ﬁ) sin (w(12\/]\71)>
S
2 cos? (ﬁ)

It appears that a Markov chain ¥ := (Y (n))nez . with transition kernel Q is not absorbed at N — 1

(this is related to the fact that the conditioned process X does not converge in law for large times,
due to periodicity). In fact the set [1, N — 1] is a recurrence class for Y, which in particular always
returns to the point 1. As we are to see below, this leads to a strange phenomenon. For a better
understanding, let us consider the probabilistic K—intertwining.

By definition, we have, for any z,2’ € A with |2/ — x| = 1,

VyyeB,  Kewy) = ) Kiw(y2)
zeB: p(z)=y'
thus again we are led to consider two cases.
e Wheny < N—2ory =N —2, we get
VyeB, Kew(y) = Kew(y,y)
Lyma,y=yr1 + Lyso y—y—(a/—a)

e When ¢y = N — 2, we get

v Yy e B7 I?;L’,:v’(y7 N — 2) = Km,x’ (yv N — 2) + Kz,a:’(y7 N)
expression which vanishes, except, first for y = N — 3,

Kpw(N—=3,N-2) = K,u(N—3N-2)

= ly_n-—3+ 1{E<N*3,$’Z(E*l

12



and second for y = N — 1,

Ky (N=1,N—=2) = K, u(N—1,N—=2)+ K, (N—1,N)
Toant,z=z41 + Do=n1 + Tpan_1,27=2—1
-1

Thus given a transition from x to z’ for X , Y changes similarly to Y when X is making a transition

from x to 2/, except when Y is equal to N —1, then the next position is necessary N —2. Of course this
last fact is sufficient to prevent (22) to hold for X and Y, but it does hold until ¥ hits N — 1 for the
first time. In the traditional theory of Diaconis and Fill [4], the dual chain indicates how the primal
chain is progressing towards equilibrium, until the dual chain is absorbed, then the primal chain is
at equilibrium in the sense of strong stationary times. Here the situation is different: at some times
as large as we want, we can deduce concentration for the primal chain X from the observation of the
trajectory of the dual chain }N/, since at the stopping times 7 satisfying 17(7) = 1, we know from the
probabilistic intertwining relation that X (tr)=1or X (1) = —1, each event occurring with probability
1/2.
Remark 5 The periodicity can be removed by considering P?, which can be decomposed into its
two irreducible parts, one on 2Z and the other one on 1 + 2Z. The Markov kernel P? is intertwined
with Q? with the same link A. The irreducible parts of Q2 are 2 + 2Z_, and 1 + 2Z, the remaining
singleton {0} being transient (it is left in one trans1t10n) Consider for instance P the restriction of
P2to V= 27, Q the restriction of Q2 to W := 27 and A the restriction of A from W to V. We have
the algebraic A—mtertwmlng relation

QA = AP

and the probablhstlc intertwining is given with the restriction to VxWof K = K2 In particular we
have for any z, 2’ € V with P(:n x') >0,

. ~ P(z,x")P(z",2)
v Y, y/ € W; Kx,af’(ya y/) = ZA P(I 33/) (Kx,x”Ka:”,a:’)(ya y/)
z"eV ’

Assume we want to condition the underlying Markov chain to stay in A= [2— N,N — 2] with
N = 6 and even. We have Ph = 9h with h the restriction to A of the function h given in (23), and
with @ = 62. Denote P the obtained conditioned tran81t10n kernel. It appears that P = P2, Tt is
A-intertwined with Q = Q2 restricted to B = M0,2,. — 2] and with A the restriction of A from
B to A. The Markov kernel Q is irreducible and aperlodlc on [2,4,...,N — 2] and thus it is no more
absorbed there than Q, so it is not helpful to construct a strong statlonary time for P, in the spirit
of Diaconis and Fill [4]. It is nevertheless possible to construct a probabilistic A-intertwining from
Q to ]5, described as above through a family of kernels f{m/ from B to E, for any z,2’ € A with
|2/ — x| < 2. o

5 Top-to-random shuffle intertwining

We consider here the classical top-to-random shuffle (probabilistic) intertwining of Aldous and Diaconis
[1]. We condition it so that the last initial card ends up staying in the first half of the deck. Our
interest is more on an illustration of the main assumption (10) than on this particular conditioning in
itself.

For N € N\{1}, let V be the symmetric group Sy, seen as the set of decks of N cards, whose
values are the elements of [N]. The identity corresponds to the ordering where 1 is at the top, 2
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at the second place, etc., IV being the card at the bottom of the deck. Introduce the Markov chain
X = (X(n))nez, on Sy starting from the identity and whose transitions are described by: the top
card is removed and put back uniformly at random in the deck (independently from the past).

Consider the Y = (Y1(n), Y2(n))nez, where Y;(n) is the position of the card N in the deck X (n),
up to the time where this position reaches the top position 1, then the value of Yj(n) is 0 for all
subsequent times, and where Y2(n) is the Y7 (n)-tuple of the values of the cards at positions 1, 2, ...,
Yi(n), with Ya(n) = & if Y1(n) = 0. In particular the last value of Y3(n) is NV at position Yi(n), as
long as Y7(n) = 1. The chain Y is Markovian and absorbed at (0, f). Denote by W its state space.
The corresponding Markov kernel () is described by

N Jif g =51 > 1 and yh € V(y2)
Vyi=(y,u2) #(0,0), v =W,y eW, Qyy) = 1-82l ify) =y — 1 and v = yh
0 , otherwise

where 3} is obtained from yo by removing its first value (with the convention that yo = & if y; = 1)
and where Y (y2) is the set obtained from ys by inserting the first value of y2 somewhere in vy except
in last position. Furthermore, Q((0, &), -) is the Dirac mass at (0, &¥).

There is an intertwining relation from Y to X with the link A given by the requirement that for
any y = (y1,y2) € W, A(y,-) is the uniform distribution over the z € Sy such that the card N is
at position y; and the values of x up to this position are given by yo. If y = (0, ), A(y,-) is just
the uniform distribution over Sy. Thus Y can be seen as a subset-valued dual process, by identifying
y = (y1,y2) € W, with the subset of x € Sy such that the card N is at position y; and the values of
x up to this position are given by yo. In particular (0, &¥) is identified with Sy.

For simplicity, assume furthermore that N is even and consider the set A < V consisting of
permutations x € Sy such that the card N is in the first half of the deck, i.e. its position belongs to
[N/2]. Initially this condition is not satisfied, since the card N is at position N. So introduce the
stopping time

T = inf{neZ; : X(n)e A} (24)

and let mg be the law of X (7"). We shift the origin of times to 7" and thus rather consider the Markov
chain X starting with the initial distribution my.

To compute a Doob function h corresponding to the subset A, let us remark that Z = (Z(n))nez,
is a Markov chain on [N], where for any n € Zy, Z(n) stands for the position of card N in X (n)
(in particular Z coincides with the Markov chain Y; up to the hitting time of 1 by Y;. We have
Z(0) = N/2 and the transition kernel R of Z is given by

(z—1)/N yif 2/ =z and 2 > 2
, N 1—(z—1)/N Jifz/=z—1and z>2
V z, 2" € [N], R(z,2") = /N ifr—1
0 , otherwise

Thus conditioning X to stay in A amounts to condition Z to stay in A := [N/2], and denoting 0
and h corresponding largest Dirichlet eigenvalue and Doob function, we have
0 = 0 (25)
VaeeV,  hz) = h(z(z)) (26)
where z(x) is the position of the card N in z.

Since the dual chain Y is subset-valued, we could think we are in situation of Example 2. This is
not completely true, because W is only a subset of the set of all non-empty subsets of Sy.
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From our general definitions, it appears that

B = {y:=(y1,y2) e W : y1 € [N/2]}
Vy=(y1,y2) € B,V x €A, K(y,m) = W
= A(yax)
_
(N =y

where we used that h is constant on y, which is the support of A(y,-) (with value h(y;)).
Since B = {(0, &)}, our main assumption (10) consists in the existence of a family (g(y))yen of
non-negative numbers such that

VazeA, A((O,@),a:) = Z g(y)A(y,a:) (27)

yeB

Note that for any = € A, there is only one y € B such that A(y,z) > 0, call it y(z). This
y(z) = (y1(z),y2(x)) is given by

yi(x) = z(z) and  ya(x) = (2(1),2(2), ..., 2(y1))

It follows that (27) amounts to
Veed — — = 9W@)~v——"m;

relation which is satisfied by taking
N —y1)!
Vy=(y,y)eB, gy W =n)t
1
N(N—-1)---(N—y1 +1)

Taking Remark 1 into account, we get from (13), for any y := (y1,y2) € B and ¢/ = (v}, 95) € B,

@( /) Q(y>y,) ; if Y1 = 2
Yy = 4 .
Q. (0.2)g(y) gty if i =1

The last term can be simplified: on one hand Q(y, (0, &)) = 1 when y; = 1, and on the other hand,
note that for any y = (y1,y2) with y; > 1, the support of A(y,-) is included into the set of z € Sy
whose N card is at position yi1, so that A[h](y) = h(y1). It follows that for any y := (y1,y2) € B and

/. / /
y' = (y1,15) € B,

1 h(yy)
N(N —=1)---(N —y1 +1) 0h(y1)

yo=1= Quy) =
As in the previous section the Markov kernel @ is not absorbed but ergodic, so the associated dual

Markov chain Y cannot be used to construct a strong stopping time.

Nevertheless, to finish this section, let us go a little further in the simplification of the situation,
since it shows how it may sometimes be interesting to first extend the initial intertwining relation.
Coming back to the subset interpretation of W, we replace it by

W= (W\{(0,2)}) ui{l2.. N}
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where for any [ € [N], [ stands for the set of permutations from Sy which are such that the card N is
at position I. In particular we have 1 = (1, N) with the notations of the beginning of this section (and
this is the unique point belonging both to W\{(0, &)} and {1,2, ..., N}). Inspired by (12) (where 7 is
the uniform distribution on Sy), we get a Markov kernel A from W to Sy. Replace Q by the Markov
kernel @ on W, defined by

Qy,y) ,ify,yeW

L ,ifyziandy’e{i,ﬁ,...,]v}

,if y =4/ = [ for some [ € [2, N]

% ,ify:iforsomele[[Q,N]]andy’=l—/\1
, otherwise

Vyy eW, Qyy) =

s

The algebraic A-intertwining relation from @ to P can be extended into a algebraic A-intertwining
relation from Q to P.

Starting again X from the distribution mg defined after (24) and conditioning it by its card N
staying in the first half of the deck, we are led to introduce the state space

~ . N
B = B 1,...,—
U{’ ’2}

as well as the Markov kernel @ defined on B by

Qy,y) ,ify,y eW

~ ~ N%g()l) ify=1andy =l withle [N/2]
vy.y e B, Qy.y) = lﬁfgf Lif y =1/ = [ for some [ € [2, N/2]
1—1]%91 ,ifyziforsomeZGHQ,N/2]]andy’:l—/\l
0 , otherwise

(taking into account Remark 1, we have G(y,-) = d,(-) for any y € {1,2, ,]V/\2} and G(y,-) = 0 for
ye{N/2+1,..,N}). R o R

From Theorem 3, we get an algebraic A-intertwining from @ to P, where the Markov kernel A
from B to A is given by

. " Ay,z) ,ifyeWw
Vye B,V xeA, Ay, ) = {(N_l)! 7ify:lAWithlE[[N/Q]]

(as previously, we used that h is equal to h(l) onjfor any [ € [N/2]).
Consider the associated dual process Y := (Y (n))nez,. It coincides (in law) with the previous

dual chain ¥ until the hitting time 7 of 1 = (1,N). After this time, Y is a Markov chain on
[N/2] := {1,2,...,N/2} whose transition kernel R is given by

h(l) Jifk=1andle [[]V/\Q]]

NOK(T) v=1
L e IN/S S~ A -1 . .
vV k, Le[N/2], R(k,l) = NO fk=T#1
11— ifk#landl=Fk—1
0 , otherwise

This Markov chain is relatively simple and if we find a corresponding strong stationary time 7
when Y starts from 1), then 7 + 7 (where 7 and 7 are independent) has the same law as a stron
) 1 1 p g

stationary time for X (starting from the distribution mg). Furthermore, 75 has the same law as the

hitting time of 1 when Y is starting from N /2, thus to compute the law of 75 +7, we just need to work
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with the Markov chain Y restricted to [[]V/\Q]], i.e. we just need to consider the Markov kernel R. This
will not be done here, since this question is no longer related to conditioning of Markov chains. An
investigation of some features of Markov kernels such as Ris provided in [10], but it does not enable
to get an estimate on corresponding strong stationary times.

6 Birth-and-death intertwinings

Here we consider a situation where the primal Markov chain is absorbed and intertwined with a simpler
dual Markov chain, which enables to deduce the law of the absorption time. We will see that we get a
new intertwining relation by conditioning the primal Markov chain not to be absorbed. Nevertheless if
we condition the primal Markov chain to stay in a subset strictly smaller that the set of non-absorbing
points, our main assumption (10) may not be satisfied.

Let P be a birth-and-death Markov kernel on [0, N], with N € N; N > 2, whose transition
probabilities between two neighbors are positive, except that P(N,N — 1) = 0, namely N is an
absorbing point. Let 6y < 6 < 6y < --- < 6n_1 be the eigenvalues of Pjg y_1), which is diagonizable
as a birth-and-death sub-Makrov kernel on [0, N —1]. A priori these eigenvalues belong to (—1, 1) and
are all distinct (as a consequence of irreducibility and of the birth-and-death feature). The Dirichlet
eigenvalue @ appearing in (8) is here equal to Ox_1. Let us assume that 6y > 0, so that all the
eigenvalues of Pjg y_1] are non-negative.

Consider X := (X(n))nez, a corresponding Markov chain starting from 0. It ends up being
absorbed at IV in finite time.

Fill [6] (see also Fill [7] and Diaconis and Miclo [5]) has shown how to construct a probabilistic
intertwining dual birth-and-death Markov chain Y := (Y(n))pez, on [0, N], starting from 0, non-
decreasing, ending being absorbed at IV and such that, denoting A the corresponding link, we have

e for any y € [0, N — 1], the support of A(y, -) is included in [0, y] and contains y,
e A(N —1,-) is the quasi-stationary distribution associated to P,
e A(N,:) is the Dirac mass at N.

This (algebraic) intertwining is not of form of the subset-valued duals presented in Example 2, it
rather corresponds to a measure-valued dual. Despite the primal random walk of Section 4 is also
birth-and-death (but not absorbed and on Z), the discrete Pitman intertwining is not of this type.

Let M € [0, N — 1] be given, we want to condition X to stay in A = [0, M]. Our purpose here
is to investigate whether or not the considerations of Section 2 and Section 3 can be applied to this
situation. To start with, note that the kernel Pyg ps) is irreducible. The set B is equal to [0, M] and
we have B = [0, M + 1]. Taking into account Remark 1 of Section 2, we just have to check there
exists a family of non-negative numbers (G (M + 1,y))ye[o,a] Such that

Voelo, M), AM+La) = > GM+1yAy2) (28)
ye[0,M]

By backward iteration, taking into account that the support of the A(y,-) are the [0,y] for y €
[0, N — 1], (28) determines G(M + 1,M), G(M +1,M — 1), ..., G(M + 1,0), so the family (G(M +
1, y))yem ) exists and is unique. Our goal is to check that it consists of non-negative numbers.

The cases M = N —1 and M < N — 1 lead to different results.

Proposition 6 When M = N — 1, we have
Vyelo,M], G(N,y) = 0
The Markov chain Y associated to the kernel @ ends up being abﬁorbed at N — 1 and thus can be

used to construct a strong stationary time for the conditioned chain X.
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Remark 7 Recall from Fill [6] that @ is given by

b 16 0 - 0
0 6 1-6 :

Q = | ¢+ ' (29)
0 0 Oy-1 1—0n

(the fact @ is bi-diagonal comes from the fact that Y is birth-and-death and non-decreasing).
Note that @ has a similar bi-diagonal structure (but of size N x N instead of (N +1) x (N +1)).
From Proposition 6, we have Q(N — 1, N — 1) = 1 and from (13) applied with 3 = y, we get

1
%Q(% y)A[R](y)

1
= oA AW
9?/

On—1

Vyelo,N-2],  Qy,y)

(thus a posteriori it appears that this equality is also satisfied for y = N — 1)

Due to the algebraic A- intertwining from Q to P and to the fact that A is invertible (since it
is triangular with a non-degenerate diagonal, sunllarly to A), we get that Q and P have the same
eigenvalues. Thus if we denote 90 < 01 < 92 <. < GN 1 = 1 the eigenvalues of P we get

0y

vyelo,N—1], 6, = Ot

Of course, this result can also be obtained directly from (9), where P appears to be similar to
Pjo,n—1], up to the factor 1/0y_1. o

Let us now come to the second result of this section: Proposition 6 is no longer necessarily true
for M < N — 2. Introduce the transition kernel Py of the usual random walk on [0, N], reflected at 0
and absorbed at NN, given by

172 Jif |z —2'| =1, exceptif z =0or 2’ = N
V z,2’ € [0, N], Py(z,2') = 1 Jifz=0and 2’ =1
0 , otherwise

Some of the eigenvalues of this kernel are negative, so rather consider

I+ P
2

Py
(where I is the identity kernel on [0, N]), whose eigenvalues are non-negative.

Proposition 8 For N > 2 and P = Py, the family (G(2,y))ye[o,1] i non-negative if and only if
N = 2. Thus the considerations of Sections 2 and 3 cannot be applied for N = 3.

Both propositions will be consequences of a general computation of the coefficients (G(M +
L, y))yelo, 1, ! based on the theory of divided differences see e.g. de Boor [3] or [14].

Denote 90 < 6?1 < 92 << HM the eigenvalues of Py 5. Taking into account the variational
formulation of these eigenvalues, we get

V k€ [0, M], O < O < On—1—nr+k (30)
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(strict inequalities even hold as soon as M < N — 1). In particular, the eigenvalues of Pjo,nr are all

non-negative.
Denote

Ry1(X) = (X —00)(X —01)- (X —Oy)

Lemma 9 With the bracket notation of divided difference, we have

-1

Vyelo,M], GM+1y = —| J] (—=60)| Ruslbo.61,....0,]

kely,M]

Proof
Recall that from Fill [6], we have

y—1
P —0,1
vye [[OaN]]a A(yv) = 501_[ y

with the convention that the product is the identity operator I if y = 0.
For [ € [0, N — 1], consider the polynomial of degree [,

Ri(X) = (X —00)(X —61) - (X — )

(again for [ = 0, the convention is that Ry = 1).
From (28) and (31), we have

Vaoel0,M], Rya(P)(0,z) = > H(M+1,y)R,(P)0,x)
ye[0,M]
with
[ Tkego,ney (1 — 6k)
[wegoy—17(1 = Ow)

~ ey [ (-6
kelly,M]

Vyelo,M], HM+1ly) = GM+1y)

Thus to prove the above lemma, it is sufficient to show that
vye [[OaM]]a H(M+17y) = _§M+1[901017“'>9y]
Introduce the polynomial of degree M,

Su(X) = > H(M+1,y)Ry(X)
ye[0,M]

We deduce from the theory of divided difference that

VyE[[O,M]], H(M+17y) = SM[‘907917'--79y]

(31)

(32)

(34)

Our next goal is to prove that Sp;(X) is the polynomial of degree M coinciding with Rp;41 on

{00,01,....,0, 1}.

For k € [0, M], let 1211C be an eigenvector associated to the eigenvalue gk of Po,pq- Extend 12;6 into
a function defined on [0, N] by imposing that , vanishes on [M + 1, N]. We deduce from (32) that

~ ~

Rya(P)[e](0) = >, H(M +1,y)Ry(P)[¢](0)
yel0,M]
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which is equivalent (since ¢ vanishes on [M + 1, N]) to

Rar (P[] (0) = D1 H(M + 1,5)Ry(Pjo arp) [k (0)
yel0,M]
and thus to
Rarea(0)Pr(0) = | D) H(M +1,y)Ry(0r) |1 (0) (35)
ye[0,M]

Note that 1:#:;9(0) # 0, otherwise we would conclude by iteration over &k(aj) for = € [0, M], from
Po vk = Ok, that 1y = 0.

It follows that for any k € [0, M], we have RM+1(§k) =Su (GAk) and we get the desired characteri-
zation of Syy.

Denote F the linear mapping associating to any polynomial H of degree at most M + 1 the polyno-
mial of degree M coinciding with H on {éo, 51, s 5M} In particular we have Sp(X) = F[Ruy+1](X)
by the above characterization. Note that ]-"[EMH](X) = 0, so that we also get

Su(X) = f[RM+1—§M+1](X)
= Rus1(X) = Ry (X) (36)

since Ryri1 — }AEMH is of degree at most M. It follows from (34) that
Vyelo,M], H(M+1y) = Rai1[b0,61,.0,] — Rars1[00,01, ..., 0]
and the desired result follows from the fact that
v y e [0, M], Ryr41l60,61,...,04] = 0
]

Remark 10 The above proof is valid even if the eigenvalues of Py y_1) are not assumed to be non-
negative. In fact the Lh.s. of (31) is not modified if P is replaced by the affine combination al+(1—a)P,
with a € [0,1), since then 60} has also to be replaced by a + (1 — a)0y, for all k € [0,y — 1]. Thus even
if we had only proven Lemma 9 under the assumption of non-negativity of the eigenvalues, we could
extend it to the general case. The only problem with negative eigenvalues comes from the matrix @
from (29), which is non longer Markovian. o

We can now come to the

Proof of Proposition 6
When M = N — 1, we have

VkE[[O,N—l]], Hk = Hk
so that ]’%M-i-l = RM+17

Vyelo,N—1], Rars1[00,61,.,0,] = Rars1[60,61, ..., 6]
— 0

and we deduce from Lemma 9 that

vye[[ovN_l]]a G(Nay) = 0
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In particular the (G(N,y))ye[o,m] is non-negative and we can apply the considerations of Section
2 and Section 3. It follows from (11) of Section 2 with y = N — 1, that

VYN QN-LY) = e Y QN - LaGEAMW)
ze[N—1,N]
1 / /
= %Q(N - LN -1)GN - 1,y)A[R](y)
= 0

where we used, for the second equality, that G(N,y’) = 0 since (G(N,y))yefo,n—1] = 0, and for the
third equality that G(N —1,3') = 0 for y’ < N — 1, from Remark 3 of Section 2.
It follows Q(N — 1, N — 1) = 1, namely @ is absorbed at N — 1, as announced in Proposition 6. B

A more direct proof of Proposition 6 consists in noting that since A(N,-) = dy, the coefficients
(G(N,y))yefo,n—1] in the r.h.s. of (28) necessarily vanish.

Finally, we come to the
Proof of Proposition 8

Due to Remark 10, it is sufficient to prove Proposition 8 with Py, replaced by Fy. With N > 2,
M =1 and P = P, classical computations give us, on one hand,

(2N —1—k)
k N -1 0, = _
V ke o, I, k cos( 5N )

and in particular

2N —1 2N — 3
0y = cos( 5N 7r> and 6; = cos< SN 7r>

and on the other hand,
ie.

Coming back to (36), we get

Sa(X) = (X —60)(X —61) — (X — o) (X — b))
= (X —00)(X — 1) — (X2 - 63)
— B0 + 03 — (6 + 1) X
= 03— 65 — (60 + 61)(X — 60)

and thus

G(2,0) = 6363
G(27 1) = _(90 + 01)

So the desired non-negativity amounts to

=
Op+6; <
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Condition (38) is satisfied, because the mapping

2N —1 2N —3
N\{1}> N — cos( 5N 7T>~I—cos( 5N 7r>

is decreasing and vanishes at N = 2.
Condition (37) is trivially satisfied for N = 2 but it is not satisfied for N > 3, because the mapping

N\{1} 5N — cos <2]\27A; 177)

is non-positive and decreasing. |

We conjecture that Proposition 8 is true more generally: whatever the birth-and-death kernel P as
above, we can apply the considerations of Section 2 and Section 3 if and only if M = N — 1. Despite
(30) and interesting related results of Micchelli and Willoughby [8], in particular their Lemma 2.2, we
did not succeed in proving or disproving this generalization of Proposition 8.

Remark 11

a) Proposition 6 can be extended to (absorbed or irreducible) skip-free Markov kernels P, under
the assumptions that its eigenvalues are non-negative (they can now be complex) and that its spectral
polynomials are non-negative, see Fill [7]. The arguments are the same, since A satisfies the same
properties as those mentioned above.

b) It would be interesting to investigate the situation of more general absorbed Markov chains,
conditioned not to be absorbed. See the last section of Fill [7] and Miclo [9] for corresponding inter-
twinings. o

A Conditioning of finite Markov chains

Consider the setting described at the beginning of Section 2: P is a Markov kernel on the finite set
V, A is a proper subset of V' not reduced to a singleton, P4 is the restriction of P to A x A and Pis
defined in (9) under the assumption that P4 is irreducible. The goal of this appendix is to recall that
P is the transition kernel of the Markov chain conditioned to stay in A. This result is classical and
the proof is given here for the convenience of the reader, since we did not find a suitable reference (for
the continuous-time setting, see Section 3.2 of Collet, Martinez and San Martin [2]).

More precisely, let X = (X (n))nez, be a Markov chain whose transition probabilities are given by
P. Consider its exit time from A:

T4 = inf{neZy : X(n)¢ A}

For any = € V| denote P, an underlying probability when X (0) = = a.s. For any n € Z, let B(n)
be the sigma-field generated by X ([0,n]) := (X (m))mefo,n). Before treating the general situation, we
deal with the simpler case when P4 is primitive, namely irreducible and aperiodic.

Lemma 12 Assume that Py is primitive. For any x € A and any B € B(n) with fivzed n € Z,., we
have

lim P,[B N] = P,[B
N—lg-loo 2[B|Ta > N] «[B]

where Iﬁ’z is the law of a Markov chain on A, starting from x and whose transition probabilities are
given by P.
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Proof

It is sufficient to consider the case where

with (2)ie[o,n] @ sequence of elements from A with o = z.
Then we have for N > n

P,[X(0) = 20, X(1) = 1,..., X(n) = 2y, 74 > N|
P [TA > N]
= — P(zi-1,71)
Px[TA >N le[n]

Py [t4 > N —n] h(x)

= " P(xj—1,x
P.[ra > N| h(z,) lgﬂ -1,21)

P,[Blrsa > N] =

Similarly, we compute that for any x € A and N € Z,
~ [1 ~
Pi[ra > N] = 6"h(2)E, [h(X(N))]

where X = (X(n))nez . be a Markov chain on A whose transition probabilities are given by P4 and
which is starting from x € A.
It follows that

P.[Blra > N] = P,[B] (40)

Not that primitivity is a property only depending on the underlying graph (whose edge set corre-
sponds to positive probability tran51tlons) so that P is also primitive. As a consequence the Markov
chain X is ergodic and the law of X (n ) converges for large n € Z toward the invariant measure 7 of
P, whatever the initial distribution of X (0). We deduce that

T[1/h] ~
li P.[B N| = ——=P.,[B
wim BelBlra > N1 = 7 Pel Bl
= END:):[B]
as desired. n

Let us now come to the general situation, only assuming P4 irreducible, and consider how the
previous proof should be modified. Denote d € N its period. The aperiodicity (and thus primitivity
of A) corresponds to the case d = 1. Let Cy, for k € Zy := Z/(dZ), be the underlying periodic classes,
indexed so that

Vke Zd, Ve Ck, PA[]leJrl] = 1 (41)
Note that P has the same period and the same periodicity classes as P4 and that (41) also holds

with P4 replaced by P. The ergodicity of X has to be replaced by the following convergence, for any
test function f defined on A,

SR #[f1
VkleZy¥oeCy,  lim E[f(X1+dN))] = 7T7~r[[f]lch+k]]
I+k
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where 7 is still the unique invariant probability of P (and where elements of Z4 have been identified
with their representative elements in [0,d — 1], as it will also be the case in the sequel).

Let us revisit the above proof in view of this change. First in (39), we can restrict ourselves to the
situation where z¢g = = € Cy, for some k € Zg, and x; € C4y, for [ € [n]. Indeed, otherwise, we have

VNeZ,, P,[Blta> N] = 0
P,[B] = 0
so Lemma 12 holds for such events.

We can thus concentrate on events B of the form described above. From (40), which is also valid
in the periodic case, we get, for any [ € Zg,

Px[B|TA > -l-dN] =

and for large N the r.h.s. is converging toward

7’7-£]1Cl—n-;—n-%—k/h’] N%[HCH—I@] I’E)a:[B] _ ﬁ)x[B]
W[]]'Cl—n+n+k] ﬂ-[]lcl+k-/h]

Since the limit P, [B] for large N of the quantity P,[B|74 > [+dN] does not depend on ! € [0,d—1],
we deduce that Lemma 12 holds.

Remark 13 Even if it was not required by the above computations, let us mention that it is well-
known that 7 is the probability on A admitting a density proportional to h with respect to v, the
quasi-invariant probability, i.e. the unique probability on A satisfying

vPy = 0Ov (42)

(as for h, only the irreducibility of P4 is needed for the existence and uniqueness of v).
Indeed, for any test function f defined on A, we have

I
vl
0
= ihf)

Remark 14 The irreducibility of P4 was convenient to deduce the existence of h and of the quasi-
stationary measure v.

Nevertheless this irreducibility condition is not necessary for Lemma 12 to hold. In fact, looking
at the above arguments, it appears only the existence of h satistying (8) (with A >0 on A and h =0
on V\A) and the uniqueness of the invariant probability 7 for P are needed. The uniqueness of 7 is
equivalent to the uniqueness of a minimal recurrent class for P4, namely a subset J # C < A such
that Poxc is a Markov transition and such that Pgry¢r is not a Markov transition for any proper
subset C' < C.

This happens in the following situation: assume the existence of h as above and that P is absorbed
at a point o0 € A (i.e. P(00,0) = 1). Furthermore suppose that for any = € A there is a P-path going
from x to oo and staying in A. Then it is not difficult to check that do, is the unique invariant measure
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of P. Note that in this case a Markov chain associated to P ends up being absorbed at 0. Let us give
a very simple example of this situation. We take V' = {0,1,2}, A = {0,1} and P such that

10
r=(od)

with a,b > 0 such that a + b < 1. Then 0 is absorbing for P4 and (8) is satisfied with § = 1 and

v ()

We deduce that

~ 1 0
P_(l—b b>
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