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I. INTRODUCTION

The Inner-Outer factorization has been developed based on the spectral factorization of the transfer matrix [START_REF] Anderson | An algebraic solution to the spectral factorization problem[END_REF], [START_REF] Francis | A course in H∞ control theory[END_REF] and plays a crucial role in H ∞ control, as highlighted in [START_REF] Ball | Factorization and feedback stabilization for nonlinear systems[END_REF], [START_REF] Van Der Schaft | L 2 -gain analysis of nonlinear systems and nonlinear state feedback H∞ control[END_REF], [START_REF] Van Der Schaft | L 2 -gain and passivity techniques in nonlinear control[END_REF]. Most existing approaches for linear systems are based on the transfer matrix realization of the system, thus developed in the frequency domain. An exception is found in [START_REF] Francis | A course in H∞ control theory[END_REF] and its extension [START_REF] Chen | Spectral and inner-outer factorizations of rational matrices[END_REF], which adopts a state-space approach applicable to bi-proper systems, i.e., systems with an input feed-through term in the output mapping.

The problem of nonlinear Inner-Outer factorization was first tackled in discrete-time systems in [START_REF] Ball | Inner-outer factorization of nonlinear operators[END_REF]. It was later extended to continuous-time bi-proper (i.e., proper/causal but not strictly proper) systems in [START_REF] Van Der Schaft | Inner-outer factorization of nonlinear state space[END_REF] and further developed in [START_REF] Van Der Schaft | Nonlinear inner-outer factorization[END_REF]. The concept was expanded to systems with non-square and noninvertible input feed-through matrices in [START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF], [START_REF] Petersen | Nonsquare spectral factorization for nonlinear control systems[END_REF], utilizing the theory of self-adjoint systems [START_REF] Crouch | Adjoint and Hamiltonian input-output differential equations[END_REF] and the input-output Hamiltonian system [START_REF] Crouch | Variational and Hamiltonian control systems[END_REF], [START_REF] Van Der Schaft | L 2 -gain and passivity techniques in nonlinear control[END_REF].

The common underlying technique involves finding the nonlinear spectral factorization, producing the Outer factor, by solving a Hamilton-Jacobi equation. The Inner factor is then obtained as the input-output relationship between a left inverse of the spectral factor and the original system dynamics. The non-constructive nature of this last step poses a major limitation in practical applications, making it challenging to solve depending on the system dynamics.

Recently, a novel approach to solve the Inner-Outer factorization problem for strictly proper linear systems was proposed in [START_REF] Spirito | Inner-Outer Decomposition for Strictly Proper Linear Time Invariant Systems and Non-Minimum Phase Performance Limitations[END_REF]. This work was later extended in [START_REF] Spirito | On the Inner-Outer Decomposition for LTI Systems and the Undershoot Performance of Non-Minimum Phase Systems[END_REF] to introduce the Generalized Inner-Outer factorization, laying the foundation for its application in the nonlinear scenario.

In this work, we present a nonlinear Inner-Outer factorization approach for strictly proper non-minimum phase systems with a local normal form representation [START_REF] Isidori | Nonlinear control systems[END_REF].

In Section II, we provide a preliminary introduction to the self-adjoint description of nonlinear strictly proper systems, describing a Hamiltonian extension for the self-adjoint system and Hamiltonian cascade. Following that, in Section III, we define Inner and Outer systems. In Section IV, we revisit the approach developed in [START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF] for nonlinear systems with input feed-through terms in the output. Section V details the proposed approach for strictly proper nonlinear systems admitting a normal form whose zero dynamics is affine in the output. We introduce the Generalized Inner-Outer factorization approach to deal with a zero dynamics affine in the the output time derivative, in Section VI. We provide an optimal control interpretation of the results in Section VII, crucial for the development of the more general zero dynamics case presented in Section VIII. Numerical examples demonstrating the effectiveness of the proposed method are considered in Section IX. The paper concludes with a discussion in Section X. An appendix is considered too illustrate the factorization idea for linear strictly propert systems.

II. THE HAMILTONIAN EXTENSION AND HAMILTONIAN CASCADE

Consider a smooth non-linear system of the form

Σ : ẋ = f (x, u), f (0, 0) = 0 y = h(x), h(0) = 0 (1) 
with u ∈ R nu , y ∈ R ny , and x = (x 1 , . . . , x nx ) coordinates for a state manifold M. We can define its Hamiltonian Extension by defining the extended Hamiltonian

H E (x, p, u, u p ) = p f (x, u) + u p h(x) (2) 
that fully describes the evolution of the state x and co-state p (as local coordinates of the tangent bundle T M) with associated the Hamiltonian vector fields, as exploited in [START_REF] Van Der Schaft | Inner-outer factorization of nonlinear state space[END_REF],

Σ :

         ẋ = ∂H E ∂p (x, p, u, u p ) y = ∂H E ∂u p (x, p, u, u p ) (3a) 
[DΣ] :

         ṗ = - ∂H E ∂x (x, p, u, u p ) y p = - ∂H E ∂u (x, p, u, u p ). (3b) 
or explicitly,

Σ : ẋ = f (x, u) y = h(x) (4a) 
[DΣ] :

         ṗ = - ∂ f (x, u) ∂x p - ∂ h(x) ∂x u p y p = - ∂ f (x, u) ∂u p. (4b) 
The Hamiltonian extension provides the basic concepts needed for the following developments. In particular, it introduces the concept of Fréchet derivative DΣ of the input-output system, [START_REF] Ball | J-inner-outer factorization, J-spectral factorization, and robust control for nonlinear systems[END_REF], [START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF], whose realization is defined on the cotangent bundle T M of the original system manifold M. The system [DΣ] then defines the equivalent adjoint system that in the transfer matrix approach is referred to as G(-s) , where G(s) is the transfer matrix realization of a linear system Σ.

The Hamiltonian Cascade

By imposing in (4) (or (3)) the relationship u p = y, we obtain the Hamiltonian cascade 1[DΣ] • Σ :

             ẋ = f (x, u) ṗ = - ∂ f (x, u) ∂x p - ∂ h(x) ∂x h(x)
y p = ∂ f (x, u) ∂u p (5) 
which is indeed another Hamiltonian system, with Hamiltonian function given by

H(x, p, u) = p f (x, u) + 1 2 h (x) h(x) (6) 
as denoted in [START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF]. Accordingly with the new Hamiltonian function (6)2 , we can write the interconnected system [DΣ] • Σ in the input-output Hamiltonian form as

[DΣ] • Σ :                    ẋ = ∂H(x, p, u) ∂p ṗ = - ∂H(x, p, u) ∂x y p = ∂H(x, p, u) ∂u . (7) 
Here, the state-space is the cotangent bundle T M of the state manifold M for Σ, both inputs u and outputs y p are in R nu . As highlighted in [START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF], the system [DΣ] • Σ is the equivalent of the linear self-adjoint system G (-s)G(s) with G(s) being the equivalent Σ Transfer Matrix.

III. INNER-OUTER FACTORIZATION FOR NONLINEAR

SYSTEMS

From [START_REF] Willems | Dissipative dynamical systems part I: General theory[END_REF] we recall the definition of lossless system.

Definition III.1 (Lossless system). A nonlinear system

ẋ = f (x, u), y = h(x, u),
with input u and output y is called lossless with respect to the supply rate s(u, y) if there exists a function V (x) ≥ 0 (called storage function) such that

V (x(t 2 )) -V (x(t 1 )) = t2 t1 s(u(t), y(t))dt for all t 2 , t 1 , t 2 ≥ t 1 , and u(•), or equivalently, if V is C 1 , ∂V ∂x f (x, u) = s(u, y). ( 8 
)
for all x and u.

In [START_REF] Van Der Schaft | Inner-outer factorization of nonlinear state space[END_REF], [START_REF] Petersen | Nonsquare spectral factorization for nonlinear control systems[END_REF] we find the definition of Inner (or stableconservative) system by exploiting the dissipativity point of view, and it can be generalized as follows.

Definition III.2 (Inner system). A nonlinear system with minimal realization

Σ i : ẋi = fi (x i , u i ) y i = hi (x i , u i ) (9) 
is called Inner if Σ i is lossless with respect to a generic supply rate s(u i , y i ), with the property s(u i , 0) ≥ 0 and s(0, y i ) ≤ 0, and, for u i = 0, it is globally asymptotically stable.

This definition will then also be relevant for the developments in Section VI. Note that this definition is more general than the one given in [START_REF] Van Der Schaft | Inner-outer factorization of nonlinear state space[END_REF]. In particular, when considering the system to be affine in the control, i.e., 3fi (x i , u i ) = fi (x i ) + ḡi (x i )u i and hi (x i , u i ) = hi (x i ) + ji (x i )u i , an Inner system is lossless with respect to the L 2 -gain supply rate s(u, y) = 1 2 u i u i -y i y i . Or more explicitly, an (input affine) Inner system with minimal realization is globally asymptotically stable for a zero input u i and there exists a nonnegative-valued storage function

V (x i ) ≥ 0 with V (0) = 0 such that V (x i (t 2 )) -V (x i (t 1 )) = 1 2 t2 t1 u i u i -y i y i dt (10) 
for all t 1 ≤ t 2 and for all trajectories (u i (t), x i (t), y i (t)) of the system. For V differentiable, we can equivalently write [START_REF] Isidori | Nonlinear control systems[END_REF] as

∂V ∂x i (x i ) fi (x i ) + ḡi (x i )u i = 1 2 u i u i - 1 2 y i y i , (11) 
in particular, by considering t 1 = 0 and t 2 → ∞, it follows that the lossless system is L 2 -norm preserving [START_REF] Van Der Schaft | L 2 -gain and passivity techniques in nonlinear control[END_REF].

By substituting the expression of y i = hi (x i )+ ji (x i )u i in [START_REF] Isidori | Lectures in feedback design for multivariable systems[END_REF] we have the following properties of an Inner system,

∂ xi V (x i )ḡ i (x i ) + hi (x i ) ji (x i ) = 0 ∂ xi V (x i ) fi (x i ) + 1 2 hi (x i ) hi (x i ) = 0 ji (x i ) ji (x i ) = I,
analogous to those in the linear case [START_REF] Qiu | Performance limitations of nonminimum phase systems in the servomechanism problem[END_REF] and [START_REF] Spirito | Inner-Outer Decomposition for Strictly Proper Linear Time Invariant Systems and Non-Minimum Phase Performance Limitations[END_REF],

Remark. To avoid any confusion to the reader, in the proofs of the following theorems, we obtain a stabilizing function (as it will be clearer in the next section) V (x i ) that makes the equivalent closed loop zero dynamics only Lyapunov stable, because the obtained Inner system realization is not minimal.

In particular, the stabilizing solution V does not modify any center manifold already present in the original system zero dynamics. However, this minimal realization drawback can be overcome, in proving that a system is Inner in the nonlinear context, via geometric arguments. In other words, one can prove the system is Inner, by exploiting the geometric concept of lossless system associated to the stabilizing generating function V (x i ), that plays the role of a storage function.

Before introducing the definition of the Outer system, the reader should familiarize with the definition of weakly minimum phase and right-invertible systems.

Definition III.3 (Weakly minimum phase system). A system Σ is said to be weakly minimum phase if (without loss of generality) the origin of its zero dynamics (as described in [START_REF] Isidori | Nonlinear control systems[END_REF], or the output-nulling dynamics, as described in [START_REF] Nijmeijer | Nonlinear dynamical control systems[END_REF]) is a Lyapunov stable equilibrium point.

For the definition of a right-invertible system, we refer the reader to a closely related work on right-invertibility for nonlinear system [START_REF] Nijmeijer | Right-invertibility for a class of nonlinear control systems: A geometric approach[END_REF]. We can then introduce the concept of outer system. Definition III.4 (Outer system). A nonlinear system

Σ o : ẋo = fo (x o , u), f (0, 0) = 0 y o = ho (x o , u), h(0, 0) = 0 (12) 
is said to be Outer if weakly minimum phase and right invertible.

Definition III.5 (Outer/spectral factor). A nonlinear system Σ o , [START_REF] Nijmeijer | Right-invertibility for a class of nonlinear control systems: A geometric approach[END_REF], is said to be the Outer factor of system Σ in (1) if the Hamiltonian system

[DΣ o ] • Σ o is such that [DΣ o ] • Σ o = [DΣ] • Σ. ( 13 
)
Note that this is the nonlinear analogous of the spectral factorization problem for linear system [START_REF] Van Der Schaft | Nonlinear inner-outer factorization[END_REF], i.e. G o (s) is Outer if it is minimum phase, right-invertible, and moreover if G o (-s)G o (s) = G(-s) G(s) then it is the Outer factor of G(s). A summary of the approach developed for linear strictly proper systems is presented in the appendix.

A. Inner-Outer factorization problem

The problem of Inner-Outer factorization of a nonlinear system Σ, as introduced in [START_REF] Van Der Schaft | Inner-outer factorization of nonlinear state space[END_REF], consists in finding a lossless nonlinear system Σ i (the Inner factor) and a weakly minimum phase nonlinear system Σ o (the Outer factor), such that Σ = Σ i • Σ o . By this, we mean that for every initial condition of Σ there exist initial conditions of Σ i and Σ o such that the input-output behavior of Σ equals the input-output behavior of the cascade interconnection Σ i • Σ o . Assumption 1. Throughout the paper, we assume that the system dynamics under consideration admits an (Generalized) Inner-Outer factorization.

To justify this 'vage' assumption we would like to highlight the fact that in the Inner-Outer factorization literature (neither in the linear case), there are general assumptions guaranteeing that a system admits an Inner-Outer factorization. According to nowadays developments, only a coordinate based assumption can be thought for linear system in normal form (as shown in the appendix). For nonlinear system instead, finding coordinates-based assumptions it is still an open topic. An intuition for the nonlinaer conditions, from a coordinatedbased point of view, is that the zero dynamics of the system under consideration must be 'stabilizable' (in the equivalent linear sense) and that its related center manifold must be bounded for all forward time (equivalently, in the linear cases, zeros on the imaginary axis must be simple). How this zero dynamics requirements are then related to the original system coordinates, and how they can be given in a more general, coordinate-free, setting, is a topic currently under investigation and left for a future work. In this paper we focus on a constructive approach to obtain such a (Generalized) Inner-Outer factorization.

IV. BALL, PETERSON & VAN DER SCHAFT RESULTS FOR BI-PROPER SYSTEMS

We first give an introduction to the approach for obtaining the Inner-Outer factorization for nonlinear 4 bi-proper systems, as introduced in [START_REF] Van Der Schaft | Inner-outer factorization of nonlinear state space[END_REF] and further developed in [START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF]. Consider a smooth bi-proper nonlinear system

Σ : ẋ = a(x) + b(x)u, f (0, 0) = 0 y = c(x) + d(x)u, h(0, 0) = 0. (14) 
We construct the Hamilton cascade as shown in Section II, and we obtain

[DΣ] • Σ :                    ẋ = ∂H(x, p, u) ∂p ṗ = - ∂H(x, p, u) ∂x y p = ∂H(x, p, u) ∂u .
with Hamiltonian Function H

H = p (a(x) + b(x)u) + 1 2 (c(x) + d(x)u) (c(x) + d(x)u).
In case d(x) d(x) is invertible for all x, we can find the Outer factor by directly computing the inverse system cascade [DΣ] • Σ -1 which is again Hamiltonian, but with Hamiltonian function H z given by the partial Legendre transformation of H with respect to u and y p , i.e., H z = H -u y p with u = u(y p ) such that ∂ u H(x, p, u) = y p , or more explicitly,

H z (x, p, y p ) = p a(x) -b(x)E -1 (x)d (x)c(x) + 1 2 c (x)(I -d(x)E -1 (x)d (x))c(x)- 1 2 p b(x)E -1 (x)b (x)p + (p b(x)+ c (x)d(x))E -1 (x)y p - 1 2 y p E -1 (x)y p where E(x) = d (x)d(x).
In particular, to obtain the Outer factor Σ o we now characterize the stable invariant Lagrangian manifold N -of such an inverse system

[DΣ] • Σ -1 .
Hence, we have to find its generating function V (x), which is the stabilizing solution of the Hamilton-Jacobi equation associated with H z (x, p, 0), i.e.,

H z (x, ∂ x V , 0) = ∂ x V a(x) -b(x)E -1 (x)d (x)c(x) + 1 2 c (x)(I -d(x)E -1 (x)d (x))c(x)- 1 2 ∂ x V b(x)E -1 (x)b (x)∂ x V
with V (0) = 0 and ∂ z V (0) = 0, with the side stability condition that

ẋ = a(x) -b(x)E -1 (x) d (x)c(x) + b (x)∂ x V
is Lyapunov (or globally asymptotically) stable. We introduce the canonical transformation from (x, p) to (x, p o ), via the definition p = p o + ∂ x V (x). Then, in these new coordinates, the stable invariant Lagrangian manifold of the inverse system [DΣ] • Σ -1 , is simply characterized as 

N -= {(x, p o )|p o = 0}.
H(x, p o + ∂ x V (x), u) = p o (a(x) + b(x)u)+ 1 2 (c o (x) + d(x)u) (c o (x) + d(x)u) with c o (x) = d(x)E -1 (x) d (x)c(x) + b (x)∂ x V .
We can then write the Outer factor Σ o as

Σ o : ẋ = a(x) + b(x)u y o = c o (x) + d(x)u, (15) 
which is weakly minimum phase by the stability properties of V . The Inner system can now be defined in explicit inputoutput form by solving for u the output equation of the Outer factor, y o , and substituting it into the original system equations, i.e., the Inner factor dynamics reads as

Σ i : ẋ = a(x) + b(x)E -1 (x) -d (x)c o (x) + d (x)y o y = c(x) + d(x)E -1 (x) -d (x)c o (x) + d (x)y o . (16) 
System ( 16) can be easily seen to be lossless with storage function V ; where it is also the stability solution of the Hamilton-Jacobi equation associated with the inverse cascade dynamics H (x, ∂ x V , 0) = 0. Hence, we proved the following.

Theorem IV.1. Consider system Σ in [START_REF] Petersen | Nonsquare spectral factorization for nonlinear control systems[END_REF]. Then, the cascade Σ i • Σ o , with Σ o and Σ i given in (15) and ( 16), respectively,is equivalent to Σ and such a cascade describes a Inner-Outer nonlinear factorization of Σ.

Such an approach has been also extended to the case of noninvertible d(x) d(x), that can be found in [START_REF] Petersen | Nonsquare spectral factorization for nonlinear control systems[END_REF]. Unfortunately, the approaches described in [START_REF] Van Der Schaft | Inner-outer factorization of nonlinear state space[END_REF], [START_REF] Van Der Schaft | Nonlinear inner-outer factorization[END_REF], [START_REF] Petersen | Nonsquare spectral factorization for nonlinear control systems[END_REF] are not suitable for the case of strictly proper nonlinear systems. On the other hand, although the approach in [START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF] is potentially applicable also to strictly proper systems (since it does not involve any matrix inversion), the method is practically more complicate to solve than the one proposed here and it would be hardly applicable to the case in which the system zero dynamics is not only controlled by the output signals as described in Section VI. In particular, in [START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF] the authors consider a system dynamics

Σ : ẋ = F (x, u) F (0, 0) = 0 y = G(x, u), G(0, 0) = 0
whose origin x = 0 is assumed to be a globally asymptotically stable equilibrium (note that here we have no stability assumption on the original system). In order to find its spectral factorization they involve the maximal solution P + of the dissipation inequality

∂ x P (x) • F (x, u) + 1 2 G (x, u)G(x, u) ≥ 0
that is finding the limit functional P + of the inequality solution P , such that for all x ∈ M, P (x) ≤ P + (x). In general, this maximal solution may not existence indeed the authors assume its existence [START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF]Assumption 3]. This solution then allows the authors to find the outer factor by defining a minimum phase output ỹ = G(x, u) so that the Outer factor reads as

Σ o : ẋ = F (x, u) F (0, 0) = 0 ỹ = G(x, u), G(0, 0) = 0
and the Inner factor results to be the input-output relationship described by the dynamics

Σ i :      ẋ = F (x, u) F (0, 0) = 0 ỹ = G(x, u), G(0, 0) = 0 y = G(x, u), G(0, 0) = 0
where ỹ and y here are considered as the input and the output of the system dynamics, respectively.

In general this approach of factorization is not suitable for a system who does not have an affine in the control bi-proper structure, i.e., systems of the form [START_REF] Petersen | Nonsquare spectral factorization for nonlinear control systems[END_REF].

In the following, we provide our approach that instead applies to strictly proper nonlinear systems having a welldefined normal form.

V. INNER-OUTER FACTORIZATION FOR NONLINEAR STRICTLY PROPER SYSTEM

In the following, we consider the application of the approach to different cases of nonlinear systems in normal form with increasing complexity. Hence, we assume that the system under consideration is already in normal form, see [START_REF] Isidori | Nonlinear control systems[END_REF] or [START_REF] Nijmeijer | Nonlinear dynamical control systems[END_REF] for an extensive discussion on nonlinear systems normal forms. In this form, the state space is described by the coordinates (z, ξ) ∈ M ⊂ R nx , u ∈ R nu , and y ∈ R ny , with constant vector relative degree r = (r 1 , . . . , r ny ), with r = ny i=1 r i , hence z ∈ R nx-r and ξ ∈ R r .

A. Zero dynamics affine in the system output

In this subsection we consider a strictly proper nonlinear system with zero dynamics affine in the system output, i.e., zero dynamics is only driven by the output signal 5 y = ξ 1 , Σ :

     ż = f (z) + g(z)y ξ = Āξ + B(q(z, ξ) + b(z, ξ)u) y = Cξ (17) with (z, ξ) ∈ R nx , y ∈ R ny , u ∈ R nu , b(z, ξ) ∈ R ny×nu , with f (0) = 0, b(0, 0) =
0 and b(z, ξ) = 0 for z = 0, and q(z, ξ) ∈ R ny , ( Ā, B, C) in prime form in the MIMO sense 6 . In order to obtain the Inner-Outer system realization, we introduce the differentiable real positive function V (z) as the stabilizing solution of the Hamilton-Jacobi equation

∂V ∂z (z) f (z) - 1 2 g(z)g (z) ∂V ∂z (z) = 0 (18) 
with V (0) = 0 and ∂ z V (0) = 0, By solving the HJB equation we are obtaining a generating function that describes the stable invariant submanifold N - associated to the zero dynamics. Concurrently, the Jacobian of the generating function provides a stabilizing input trajectory 7 for the zero dynamics, i.e., stabilizing in the sense that the dynamics

ż = f (z) -g(z)g (z) ∂V ∂z (z)
is Lyapunov stable. We define the Outer dynamics as 5 The conditions to find such a normal form are in given in [START_REF] Isidori | Lectures in feedback design for multivariable systems[END_REF][Sec.6.2,prop.6.3] 6 The term 'prime form' has been used for SISO systems as denoted in [11, Eq. (2.7) at pg. 24 ]. With some abuse of notation, that does not lead to any confusion, here, we refer to its natural extension to MIMO systems, as described in [11, Eq. ( 9.48) at pg. 290]. 7 See also the optimal control interpretation in Section VII.

Σ o :      żo = f o (z o ) + g(z o )y o ξo = Āo (z o )ξ o + q o (z o , ξ o ) + Bb o (z o , ξ o )u y o = Cξ o = ξ o1 (19) 
with

f o (z o ) = f (z o ) -g(z o )g (z o )∂ z V (z o ), g o (z o ) = g(z o ), Āo (z o ) = Ā + C ∂g o (z o ) ∂ z V (z o ) ∂z o g o (z o ) C q o (z o , ξ o ) = Bq z o , ξ o -C g o (z o )∂ z V (z o ) + C ∂g o (z o )∂ z V (z o ) ∂z o f o (z o ) b o (z o , ξ o ) =b z o , ξ o -C g o (z o )∂ z V (z o ) .
The Inner dynamics is then given by

Σ i : ẋi = f i (x i ) + g i (x i )y o y i = h i (x i ) + y o . ( 20 
)
with f i (x i ) = f (x i ) -g(x i )g (x i )∂ z V (x i ), g i (x i ) = g(x i ), h i (x i ) = -g(x i ) ∂ z V (x i ).
The initial condition for the Outer and the Inner system is given by

  x i (0) z o (0) ξ o (0)   =   z(0) z(0) ξ(0) + C g(x i (0)) ∂ z V (x i (0))   (21)
Theorem V.1. The dynamical systems Σ o in [START_REF] Van Der Schaft | Inner-outer factorization of nonlinear state space[END_REF] and Σ i in [START_REF] Van Der Schaft | Nonlinear inner-outer factorization[END_REF] are respectively the Outer and Inner factors of Σ, i.e., system [START_REF] Spirito | On the Inner-Outer Decomposition for LTI Systems and the Undershoot Performance of Non-Minimum Phase Systems[END_REF], and the cascade Σ i •Σ o is equivalent to Σ, namely for all initial conditions (z(0), ξ(0)) and for all u, the output of Σ i • Σ o , with initial conditions in [START_REF] Van Der Schaft | L 2 -gain and passivity techniques in nonlinear control[END_REF], coincides with the output of the initial system Σ.

Proof. Consider Σ in [START_REF] Spirito | On the Inner-Outer Decomposition for LTI Systems and the Undershoot Performance of Non-Minimum Phase Systems[END_REF], whose zero dynamics, with coordinates z, is input affine with respect to the input y. The corresponding Hamiltonian cascade reads as

ż = f (z) + g(z)ξ 1 ξ = Āξ + B [q(z, ξ) + b(z, ξ)u] , y = Cξ żp = -∂ z f (z)z p -ξ 1 ∂ z g (z)z p - ∂ z q (z, ξ) + ∂ z (b(z, ξ)u) B ξ p ξp = -C g (x)z p -Ā ξ p - ∂ ξ q (z, ξ) + ∂ ξ (b(z, ξ)u) B ξ p -C Cξ y p = b (z, ξ) B ξ p (22) 
with Hamiltonian function

H(z, ξ, z p , ξ p , u) = z p f (z) + z p g(z)ξ 1 + ξ p Āξ + B [q(z, ξ) + b(z, ξ)u] + 1 2 ξ C Cξ.
We now compute the zero dynamics of the Hamiltonian cascade, by imposing y p and its successive time derivative to zero. We consider b(z, ξ) = 0 along the zero dynamics evolution (i.e., z = 0), hence by y p = 0 we obtain B ξ p = 0, then the first time derivative is given

ẏp = b B -C (g (x)z p + Cξ) + -Ā ξ p - ∂ ξ q (z, ξ) + ∂ ξ (b(z, ξ)u) B ξ p + ż ∂ z b (z, ξ) + ξ ∂ ξ b (z, ξ) B ξ p
then by the relative degree properties B C = 0, and with B ξ p = 0, by imposing ẏp = 0 we obtain that B Ā ξ p = 0.

Extending the same relative degree reasoning to the r time derivatives of y p , and by imposing 8 g (z)z p + Cξ = 0 when the columns of B ( Ā ) k C = 0, we obtain ξ p = 0 by the controllability properties of ( Ā, B). We then have Cξ = -g (z)z p and, with a resulting u, such that the vector ξ is equal to the successive time derivative of -g (z)z p , we obtain the cascade zero dynamics

ż = f (z) -g(z)g (z)z p żp = -∂ z f (z)z p + z p g(z)∂ z g (z)z p (23) 
In this particular case, we can easily find an explicit form of the Hamiltonian function associated with such zero-dynamics, i.e.

H z (z, z p ) = z p f (z) -g(z)g (z)z p + 1 2 z p g(z)g (z)z p (24 
) indeed, with such Hamiltonian function H z (z, z p ) the system (23) can be written as a Hamiltonian system

ż = ∂ zp H z żp = -∂ z H z . (25) 
Thus, following the approach described in [START_REF] Van Der Schaft | Inner-outer factorization of nonlinear state space[END_REF], [START_REF] Van Der Schaft | Nonlinear inner-outer factorization[END_REF], [START_REF] Ball | J-inner-outer factorization, J-spectral factorization, and robust control for nonlinear systems[END_REF], [START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF], we find the generating function for the stable Lagrangian invariant manifold N -of the Hamiltonian cascade zero dynamics by solving for the Hamilton-Jacobi equation. In particular, we look for a stabilizing and differentiable solution V of

H z z, ∂V ∂z = 0
which explicitly reads as

∂V ∂z f (z) - 1 2 g(z)g (z) ∂V ∂z (z) = 0, (26) 
whose solution V is stabilizing if

ż = f (z) -g(z)g (z)∂ z V (z)
is Lyapunov stable. At this point we define y = -g (z)∂ z V (z) and as a 8 This step is instrumental for the proof.

consequence ξ = -C g (z)∂ z V (z). We define the Outer states ξ o = ξ -ξ and z o = z, whose dynamics reads as

żo = f (z o ) -g(z o )g (z o )∂ z V (z o ) + g(z o )ξ o1 = f o (z o ) + g o (z o )ξ o1 ξo = ξ -ξ = Āξ + B(q(z, ξ) + b(z, ξ)u)+ C ∂g (z o )∂ z V (z o ) ∂z f (z o ) + g(z o ) Cξ o = Ā + C ∂g o (z o )∂ z V (z o ) ∂z g o (z o ) C ξ o + Bq z o , ξ o -C g o (z o )∂ z V (z o ) + Bb z o , ξ o -C g o (z o )∂ z V (z o ) u = Āo ξ o + q o (z o , ξ o ) + Bb o (z o , ξ o )u y o = ξ o1 = Cξ o (27) 
with f o , g o , Āo , q o , b o defined as for [START_REF] Van Der Schaft | Inner-outer factorization of nonlinear state space[END_REF]. The Inner dynamics has state

x i = z whose dynamics is ẋi = f (x i ) -g(x i )g (x i )∂ z V (x i ) + g(x i )ξ o1 = f i (x i ) + g i (x i )ξ o1 y i = y = -g i (x i )∂ z V (x i ) + ξ o1 := ξ 1 (28) 
with f i , g i defined as for [START_REF] Van Der Schaft | Nonlinear inner-outer factorization[END_REF].

It is enough to prove that Σ i in ( 20) is Inner to prove that Σ o in ( 19) is a spectral (outer) factor for Σ in [START_REF] Spirito | On the Inner-Outer Decomposition for LTI Systems and the Undershoot Performance of Non-Minimum Phase Systems[END_REF]. To prove that [START_REF] Van Der Schaft | Nonlinear inner-outer factorization[END_REF] is Inner, we have to check that there exists a smooth storage function V i (x i ) with supply rate s(u i , y i ) = u i u i /2y i y i /2, the condition f i is weakly stable is already satisfied by construction of y . And indeed, such a storage function exists and is given by V i (x i ) = V (x i ). We have to check that its time derivative is equal to the supply rate

s(u i , y i ) = 1 2 u i u i - 1 2 y i y i ,
where u i = ξ o1 and y i = y = ξ 1 . In particular, we have

s(u i , y i ) = 1 2 u i u i - 1 2 y i y i = 1 2 ξ o1 ξ o1 - 1 2 ξ 1 ξ 1 = 1 2 ξ o1 ξ o1 - 1 2 [ξ 1 + ξ o1 ] [ξ 1 + ξ o1 ] = - 1 2 ∂V ∂x i (x i )g(x i )g (x i ) ∂V ∂x i (x i ) + ∂V ∂x i (x i )g(x i )ξ o1
and concurrently, we have

V (x i ) = ∂V ∂x i f i + ∂V ∂x i g i ξ o1 = ∂V ∂x i f (x i ) -g(x i )g (x i ) ∂V ∂x i (x i ) + g(x i )ξ o1 .
By comparing the two expressions, V (x i ) and s(u i , y i ), we can write 

V (x i ) -s(u i , y i ) = ∂V ∂x i f (x i ) -g(x i )g (x i ) ∂V ∂x i (x i ) + 1 2 ∂V ∂x i (x i )g(x i )g (x i ) ∂V ∂x i (x i ) = =H z x i , ∂V ∂x i = 0 since V
• Σ = [DΣ o ] • Σ o .
The equivalence between the cascade Σ i •Σ o , described in ( 20) and ( 19), with initial conditions ( 21) is easy to check because we just applied a change of coordinates on the original system [START_REF] Spirito | On the Inner-Outer Decomposition for LTI Systems and the Undershoot Performance of Non-Minimum Phase Systems[END_REF], submerging it into a larger state space with the same coordinates (z, ξ)

→ (z, z, ξ -ξ ) = (x i , z o , ξ o ).

VI. GENERALIZED INNER-OUTER FACTORIZATION

In many cases it is hard, or even impossible, to find a realization of the zero dynamics that is only driven by the output signal y. More often, such a dynamics is influenced by the whole vector of successive time derivative of the output, ξ. In this context, we cannot apply off-the-shelf the spectral factorization technique to obtain the Outer dynamics, and we have to weaken this definition. In order to deal with this problem, in [START_REF] Spirito | On the Inner-Outer Decomposition for LTI Systems and the Undershoot Performance of Non-Minimum Phase Systems[END_REF], we introduced the concept of Generalized Inner-Outer factorization. In particular, we consider the Outer factor Σ o to be simply a minimum phase system (possibly non-right-invertible) that resembles the spectral factorization of the original plant when its output is the whole vector ξ, and the Inner factor Σ i is taken accordingly with this equivalent modified spectral factorization. In particular, the resulting Generalized Inner-Outer factorization still provides a realization of the plant dynamics Σ, i.e., Σ = C • Σ i • Σ o . This approach has been shown, [START_REF] Spirito | On the Inner-Outer Decomposition for LTI Systems and the Undershoot Performance of Non-Minimum Phase Systems[END_REF], to be effective with zero dynamics that are controlled by the whole vector ξ.

A. Zero dynamics affine in the vector of output time derivatives

In this subsection, we thus consider a strictly proper nonlinear system with zero dynamics affine in the vector of output time derivatives ξ, Σ : 

     ż = f (z) + g(z)ξ ξ = Āξ + B(q(z, ξ) + b(z, ξ)u) y = Cξ
     ż = f (z) + g(z)ξ ξ = Āξ + B(q(z, ξ) + b(z, ξ)u) y = ξ (30) so that Σ = C • Σ , with (z, ξ) ∈ R nx , y ∈ R ny , u ∈ R nu , b(z, ξ) ∈ R ny×nu ,
with f (0) = 0, b(0, 0) = 0 and b(z, ξ) = 0 for z = 0, and q(z, ξ) ∈ R ny , ( Ā, B, C) in prime form in the MIMO sense. In order to obtain the Generalized Inner-Outer factorization of Σ in (29), we need to solve for the equivalent Inner-Outer factorization of the virtual system Σ . Thus, we introduce the differentiable real positive function V (z) as the stabilizing solution of the Hamilton-Jacobi equation

∂V ∂z (z) f (z) - 1 2 g(z)g (z) ∂V ∂z (z) = 0 (31) 
with V (0) = 0 and ∂ z V (0) = 0, stabilizing in the sense that the dynamics

ż = f (z) -g(z)g (z) ∂V ∂z (z)
is Lyapunov stable. We define the Generalized Outer factor as

Σ o :      żo = f o (z o ) + g(z o )ξ o ξo = Āo (z o )ξ o + q o (z o , ξ o ) + Bb o (z o , ξ o )u y o = ξ o (32) with f o (z o ) = f (z o ) -g(z o )g (z o )∂ z V (z o ), g o (z o ) = g(z o ), Āo (z o ) = Ā + ∂g o (z o ) ∂ z V (z o ) ∂z o g o (z o ) q o (z o , ξ o ) = Bq z o , ξ o -g o (z o )∂ z V (z o ) + ∂g o (z o )∂ z V (z o ) ∂z o f o (z o ) b o (z o , ξ o ) =b z o , ξ o -g o (z o )∂ z V (z o ) .
The Generalized Inner factor is the give by

Σ i : ẋi = f i (x i ) + g i (x i )ξ o y i = h i (x i ) + ξ o . ( 33 
) with f i (x i ) = f (x i ) -g(x i )g (x i )∂ z V (x i ), g i (x i ) = g(x i ), h i (x i ) = -g(x i ) ∂ z V (x i ).
Note, that this time both the outputs of the Generalized Outer and Inner dynamics are not in R ny but rather in R r . The initial condition for the Outer and the Inner system is given by

  x i (0) z o (0) ξ o (0)   =   z(0) z(0) ξ(0) + g(x i (0)) ∂ z V (x i (0))   (34) 
Theorem VI.1. The dynamical systems Σ o in (32) and Σ i in (33) are respectively the Outer and Inner factors of Σ in (30) and the cascade C

• [Σ i • Σ o ] is equivalent to Σ in (29),
namely for all initial conditions (z(0), ξ(0)) and for all u, the output of Σ i • Σ o with initial conditions in (34) coincides with the output of the initial system Σ.

Proof. Consider Σ in (29). This time we cannot rely on the spectral factorization approach to obtain the Outer dynamics because the zero dynamics depends on and affects the vector of successive output time derivative ξ. We cannot consider the original system but, the virtual system Σ in (30), and following the same steps in the proof of theorem V.1, we find the stable Lagrangian invariant manifold of the Hamiltonian cascade zero dynamics by solving for the related Hamilton-Jacobi equation. Hence, we look for a stabilizing and differentiable solution V of

H z z, ∂V ∂z = 0 with H z z, ∂V ∂z = ∂V ∂z f (z) - 1 2 g(z)g (z) ∂V ∂z (z) .
Such as solution V is stabilizing if

ż = f (z) -g(z)g (z)∂ z V (z)
is Lyapunov stable. At this point, we define ξ = -g (z)∂ z V (z). We define the Outer states ξ o = ξ -ξ and z o = z, whose dynamics reads as

żo = f (z o ) -g(z o )g (z o )∂ z V (z o ) + g(z o )ξ o = f o (z o ) + g o (z o )ξ o ξo = ξ -ξ = Āξ + B(q(z, ξ) + b(z, ξ)u)+ ∂g (z o )∂ z V (z o ) ∂z [f (z o ) + g(z o )ξ o ] = Ā + ∂g o (z o )∂ z V (z o ) ∂z g o (z o ) ξ o + Bq z o , ξ o -g o (z o )∂ z V (z o ) + Bb z o , ξ o -g o (z o )∂ z V (z o ) u = Āo ξ o + q o (z o , ξ o ) + Bb o (z o , ξ o )u y o = ξ o with f o , g o , Āo , q o ,
b o defined as for (32). The Inner dynamics has state

x i = z whose dynamics is ẋi = f (x i ) -g(x i )g (x i )∂ z V (x i ) + g(x i )ξ o = f i (x i ) + g i (x i )ξ o y i = ξ = -g i (x i )∂ z V (x i ) + ξ o (35) 
with f i , g i defined as for (33). To prove that (33) is Inner, is enough to check that there exists a smooth storage function V i (x i ) with supply rate s(u i , y i ) = u i u i /2 -y i y i /2, the condition f i is weakly stable is already satisfied. Such a storage function exists and is given by V i (x i ) = V (x i ). We have to check that its time derivative is equal to the supply rate

s(u i , y i ) = 1 2 u i u i - 1 2 y i y i ,
where u i = ξ o and y i = ξ = y. In particular, we have

s(u i , y i ) = 1 2 u i u i - 1 2 y i y i = 1 2 ξ o ξ o - 1 2 ξ ξ = 1 2 ξ o ξ o - 1 2 [ξ + ξ o ] [ξ + ξ o ] = - 1 2 ∂V ∂x i (x i )g(x i )g (x i ) ∂V ∂x i (x i ) + ∂V ∂x i (x i )g(x i )ξ o
and concurrently, we have

V (x i ) = ∂V ∂x i f i + ∂V ∂x i g i ξ o = ∂V ∂x i f (x i ) -g(x i )g (x i ) ∂V ∂x i (x i ) + g(x i )ξ o .
By comparing the two expressions, V (x i ) and s(u i , y i ), we can write

V (x i ) -s(u i , y i ) = ∂V ∂x i f (x i ) -g(x i )g (x i ) ∂V ∂x i (x i ) + 1 2 ∂V ∂x i (x i )g(x i )g (x i ) ∂V ∂x i (x i ) = =H z x i , ∂V ∂x i = 0
since V is the stabilizing solution of the Hamilton-Jacobi equation, i.e., H z (x i , ∂ xi V ) = 0. And this shows that (33) is Inner and as a consequence, Σ o is the Generalized factor for Σ . The equivalence between the cascade C • [Σ i • Σ o ], described in (33) and (32), with initial conditions (34) is easy to check because we just applied a change of coordinates on the original system (29), submerging it into a larger state space with the same coordinates (z, ξ)

→ (x i , z o , ξ o ) = (z, z, ξ -ξ z (z)).
This time, the Generalized Outer factor Σ o is not a spectral factor of Σ in [START_REF] Spirito | On the Inner-Outer Decomposition for LTI Systems and the Undershoot Performance of Non-Minimum Phase Systems[END_REF], i.e., [DΣ] • Σ = [DΣ o ] • Σ o . However, we have the following remark.

Remark. By calling Σ the original system in (29) with output ξ, one can easily see that Σ o is only a spectral factor of Σ and not of Σ, i.e., [DΣ]

• Σ = [DΣ o ] • Σ o , because C C = I p .

VII. OPTIMAL CONTROL INTERPRETATION

A key step for the development of the following, more general, approach is the optimal (expensive) control interpretation we can give regarding the definition of the stabilizing trajectory for the zero dynamics y (or ξ , according to the context). In particular, the design of this stabilizing trajectory is related to some Hamiltonian function H z , defining the zero dynamics of the Hamiltonian cascade [START_REF] Crouch | Adjoint and Hamiltonian input-output differential equations[END_REF], which is again a Hamiltonian system (25). The state z p is then playing the role of the co-state in the standard approach of optimal control, and the related Hamiltonian function H z has an additional term along with the system dynamics that is related to the cost integrand

J = 1 2 ∞ 0 v (t)v(t)dt.
where v is the input for the zero dynamics (in our context, either y or ξ). Thus solving for a stabilizing differentiable function V the Hamilton-Jacobi equation

H z z, ∂ z V (z) = 0 ∂V ∂z f (z) - 1 2 g(z)g (z)∂ z V (z) = 0 such that ż = f (z) -g(z)g(z)∂ z V (z)
is Lyapunov stable, is equivalent to solving a non-linear optimal (expensive) control problem of the form

min 1 2 ∞ 0 v vdt sbj to ż = f (z) + g(z)v
to which we associate the Hamiltonian function

H opt (z, v, z p ) = z p (f (z) + g(z)v) + 1 2 v v.
In the following section, where the zero dynamics has a nonaffine dynamics, i.e., ż = f (z, ξ), we consider the following an optimal control problem min 1 2

∞ 0 ξ ξdt sbj to ż = f (z, ξ) (36) 
to which we associate the Hamiltonian function

H opt (z, ξ, z p ) = z p f (z, ξ) + 1 2 ξ ξ.
To solve it, we impose a structure to the stabilizing trajectory for ξ, i.e., ξ (z, z p ), so that it satisfies the necessary condition of optimality, i.e., ∂ ξ H opt (z, ξ , z p ) = 0, thus obtaining

∂H opt ∂ξ (z, ξ , z p ) = ξ + ∂f ∂ξ (z, ξ )z p = 0.
This allows us to obtain the Outer factor and hence the Inner factor with an appropriate associate supply rate, as shown in the next section.

VIII. ZERO DYNAMICS WITH NON-AFFINE DEPENDENCE ON THE VECTOR OF OUTPUT TIME DERIVATIVES

Inspired by the optimal control interpretation above, in this section, we deal with the case of a nonlinear system with zero dynamics with non-affine dependence on the vector of output time derivatives ξ, Σ :

     ż = f (z, ξ) ξ = Āξ + B(q(z, ξ) + b(z, ξ)u) y = Cξ (37) with (z, ξ) ∈ R nx , y ∈ R ny , u ∈ R nu , b(z, ξ) ∈ R ny×nu ,
with f (0, 0) = 0, b(0, 0) = 0 and b(z, ξ) = 0 for z = 0, and q(z, ξ) ∈ R ny , ( Ā, B, C) in prime form in the MIMO sense. For the sake of clarity, we also define the virtual system Σ :

     ż = f (z, ξ) ξ = Āξ + B(q(z, ξ) + b(z, ξ)u) y = ξ, ( 38 
)
hence Σ is system Σ with output vector ξ rather than Cξ. In order to obtain the Generalized Inner-Outer factorization of Σ in (37), we introduce the Hamilton-Jacobi equation

H opt (z, ξ, z p ) = z p f (z, ξ) + 1 2 ξ ξ (39)
from which we define the ideal optimal control function ξ from the necessary condition of optimality, i.e.

∂ ξ H z (z, ξ , z p ) = 0, hence ξ = ξ (z, z p ) is solution of ξ (z, z p ) + ∂f ∂ξ (z, ξ (z, z p )) z p = 0. ( 40 
)
We thus consider the Hamiltonian function H z (z, z p ) = H opt (z, ξ (z, z p ), z p ). Now, define the differentiable real positive function V (z), with V (0) = 0 and ∂ z V (0) = 0, as the stabilizing solution of the Hamilton-Jacobi equation

H z (z, ∂ z V (z)) = 0, that is, V is a stabilizing solution of the Hamilton-Jacobi-Bellman equation ∂V ∂z (z)f z, ξ z, ∂ z V (z) + 1 2 ξ z, ∂ z V (z) ξ z, ∂ z V (z) = 0 (41)
for all z ∈ R nx-r with the side condition that the Bellman function V is stabilizing in the sense that the dynamics

ż = f (z, ξ z (z)) ,
with ξ z (z) = ξ z, ∂ z V (z) solution of (40), is Lyapunov stable.

We define the Outer dynamics as

Σ o :      żo = f o (z o , ξ o ) ξo = Āξ o + q o (z o , ξ o ) + Bb o (z o , ξ o )u y o = ξ o (42) with f o (z o , ξ o ) = f (z o , ξ o + ξ z (z o )), and 
q o (z o , ξ o ) = Bq (z o , ξ o + ξ z (z o )) -Āξ z (z o ) + ∂ z ξ z (z o )f o (z o , ξ o ) b o (z o , ξ o ) =b (z o , ξ o + ξ z (z o )) .
The Inner dynamics is the give by

Σ i : ẋi = f i (x i , ξ o ) y i = h i (x i ) + ξ o . ( 43 
) with f i (x i ) = f (x i , ξ o + ξ z (x i )) and h i (x i ) = ξ z (x i )
. Also this time, the output of the Inner dynamics is not in R ny but rather in R r . The initial condition for the Outer and the Inner systems are given by  

x i (0) z o (0) ξ o (0)   =   z(0) z(0) ξ(0) -ξ z (z(0))   ( 44 
)
Theorem VIII. 

• [Σ i • Σ o ] is equivalent to Σ,
namely for all initial conditions (z(0), ξ(0)) and for all u, the output of C •[Σ i • Σ o ] with initial conditions in (44) coincides with the output of the initial system Σ.

Proof. Consider Σ in (37). Also this time we cannot rely on the spectral factorization approach to obtain the Outer dynamics. We rather find the stable Lagrangian invariant manifold N -of the Hamiltonian cascade zero dynamics by solving a Hamilton-Jacobi-Bellman equation. Hence, we want to provide a different approach to find the Generalized Inner-Outer factorization for the case of general nonlinear zero dynamics. We thus involve an expensive control optimal control problem as described in Section VII. Considering the system zero dynamics ż = f (z, ξ), we construct the Hamilton-Jacobi-Bellman equation (41) from the Hamiltonian function associated with the optimal control problem (36),

H opt (z, ξ, z p ) = z p f (z, ξ) + 1 2 ξ ξ
where z p defines the co-state (or the Lagrangian multiplier, from the optimal control standpoint) as in the zero dynamics of the system Σ self-adjoint cascade. Since we consider ξ as the control input to the system zero dynamics, from the necessary condition of optimality, i.e. ∂ ξ H z (z, ξ , z p ) = 0, we define the ideal optimal control function ξ , hence ξ = ξ (z, z p ) as the solution of (40), reported here for the sake of completeness ξ (z, z p ) + ∂f ∂ξ (z, ξ (z, z p )) z p = 0.

We thus consider the Hamiltonian function H z (z, z p )

H z (z, z p ) = H opt (z, ξ (z, z p ), z p ) = z p f (z, ξ (z, z p )) + 1 2 ξ (z, z p )ξ (z, z p ),
that defines the Hamiltonian function of the zero dynamics self-adjoint as described in (24)-(25). We can now look for a differentiable real positive function V (z), with V (0) = 0 and ∂ z V (0) = 0, defined to be the stabilizing solution of the Hamilton-Jacobi equation

H z (z, ∂ z V (z)) = 0, that is, V is stabilizing solution of the Hamilton-Jacobi-Bellman equation (41) ∂V ∂z (z)f z, ξ z, ∂ z V (z) + 1 2 ξ z, ∂ z V (z) ξ z, ∂ z V (z) = 0
for all z ∈ R nx-r with the side condition that the Bellman function V is stabilizing in the sense that the dynamics

ż = f (z, ξ z (z)) , with ξ z (z) = ξ z, ∂ z V (z) solution of (40), is Lyapunov stable.
We can now define the Outer states ξ o = ξ -ξ z and z o = z, whose dynamics reads as

żo = f (z o , ξ o + ξ z (z o )) = f o (z o , ξ o ) ξo = ξ -ξ z = Āξ + B(q(z, ξ) + b(z, ξ)u) + ∂ z ξ z (z o )f o (z o , ξ o ) = Āξ o + Bq(z o , ξ o + ξ (z o )) -Āξ z (z o )+ ∂ z ξ z (z o )f o (z o , ξ o ) + Bb (z o , ξ o + ξ z ) u = Āo ξ o + q o (z o , ξ o ) + Bb o (z o , ξ o )u y o = ξ o
with q o and b o defined as for (42). Such a system is minimum phase with respect to the output vector y o = ξ o and input u, by definition of ξ o and ξ z . The Inner dynamics has state x i = z, and it dynamics reads

as ẋi = f (x i , ξ o + ξ z (x i )) = f o (x i , ξ o ) y i = ξ = ξ z (x i ) + ξ o . (45) 
To prove that (43) is Inner, is enough to check that there exists a smooth storage function V i (x i ) associated with a supply rate s(u i , y i ). Such a storage function, if it exists, is given by the stabilizing Bellman function

V i (x i ) = V (z)| z=xi .
We only need to consider the appropriate supply rate s(u i , y i ), with s(0, y i ) < 0 for y i = 0 and s(u i , 0) > 0 for u i = 0. In particular, we consider splitting the supply rate into two terms

s(u i , y i ) = s(u i , 0) + s(0, y i ),
where s(0, y i ) = -y i y i /2 and

s(u i , 0) = H opt x i , ξ o + ξ z (x i ), ∂ z V (z) ,
where u i = ξ o , are good candidates. In fact, the input term of the supply rate thus given by the Hamiltonian function associated with optimal control problem with generic input ξ = ξ o + ξ z (x i ), by the definition of ξ o , is a positive real function and it can be easily shown. Indeed, by the Pontryagin maximum principle, we have

H opt (x i , ξ, z p ) ≥ H opt x i , ξ z , z p = H z (x i , z p ),
where the optimal value H z (x i , z p ) corresponds to Hamilton-Jacobi-Bellman equation (41) for z p = ∂ z V (x i ) and thus since H z (x i , z p ) = 0, we have that

H opt x i , ξ, ∂ z V (x i ) ≥ H opt x i , ξ (x i , ∂ z V (x i )), ∂ z V (x i ) = 0,
and thus

H opt x i , ξ o + ξ z (x i ), ∂ z V (x i
) is a nonnegative function 9 and so it is a good candidate for the supply rate input term s(u i , 0). Thus, the supply rate associated with the general form of the Inner system is given by

s(u i , y i ) = H opt x i , u i + ξ z (x i ), ∂ xi V (x i ) - 1 2 y i y i . (46) 
We can now prove that (43) is actually Inner. In particular, we consider as storage function the Bellman function V (x i ), whose derivative reads as

V (x i ) = ∂V ∂x i (x i )f (x i , ξ o + ξ z (x i )).
In order to show that V (x i ) = s(u i , y i ), we consider the difference between the two terms V and s(u i , y i ), with u i = ξ o and y i = ξ, i.e.,

V (x i ) -s(ξ o , ξ) = ∂V ∂x i (x i )f (x i , ξ o + ξ z (x i )) + 1 2 ξ ξ -H opt x i , ξ o + ξ z (x i ), ∂ xi V (x i )
and indeed this difference is zero by the definition of the Hamiltonian function

H opt x i , ξ, ∂ z V (x i ) in (39), i.e., H opt x i , ξ, ∂ z V (x i ) ξ=ξo+ξ z = ∂ z V (x i )f (z, ξ) + 1 2 ξ ξ ξ=ξo+ξ z .
Thus, system (43) is a Lossless system with respect to the supply rate (46), and hence it is Inner. The equivalence between the cascade C • [Σ i • Σ o ], described in ( 43) and ( 42), with initial conditions (44) is easy to check because we just applied a change of coordinates on the original system (37), submerging it into a larger state space with the same coordinates (z, ξ) → (x i , z o , ξ o ), with output map y = Cy i := Cξ.

Remark. Note that, also this time, the Outer system Σ o is not a spectral factor of Σ in (37), i. To obtain the self-adjoint zero dynamics we have to impose y p = 0 and its time derivative ẏp , we obtain y = -z p and thus, the cascade zero dynamics ż =z 3 -z p żp = -3z 2 z p that can be written in Hamiltonian form via the Hamiltonian function

H z (z, z p ) = z p z 3 -z p + 1 2 z 2 p .
Now, we find the stabilizing solution V of

H z z, ∂V (z) ∂z = ∂V (z) ∂z z 3 - 1 2 ∂V (z) ∂z 2 = 0, that is ∂V (z) ∂z = 2z 3 .
We thus have the Outer factor dynamics 

B. Example 2

We consider a system dynamics given in normal form

ż1 = z 2 ż2 = z 3 2 + ξ 1 ξ1 = ξ 2 ξ2 = ξ 2 1 + ξ 2 2 + ξ 1 ξ 2 + z 1 + u y = ξ 1
with zero dynamics state z = (z 1 , z 2 ). To compute the selfadjoint system, we consider the Hamiltonian function

H = z p1 z 2 + z p2 z 3 2 + z p2 ξ 1 + ξ p1 ξ 2 + ξ p2 ξ 2 1 + ξ 2 2 + ξ 1 ξ 2 + z 1 + u + 1 2 ξ 2 1
we obtained the adjoint system equations

żp1 = - ∂H ∂z 1 = -ξ p2 ṗ2 = - ∂H ∂z 2 = -z p1 -3z p2 z 2 2 ξp1 = - ∂H ∂ξ 1 = -z p2 -ξ 1 -2ξ p2 ξ 1 -ξ p2 ξ 2 ξp2 = - ∂H ∂ξ 2 = -ξ p1 -2ξ p2 ξ 2 -ξ p2 ξ 1 y p = ξ p2 .
We compute the zero dynamics of the cascade and obtain

ż1 = z 2 ż2 = z 3 2 -z p2 żp1 = 0 żp2 = -z p1 -3z 2
2 z p2 that can be written in the Hamiltonian form accordingly to the Hamiltonian function

H z (z 1 , z 2 , z p1 , z p2 ) = z p1 z 2 + z p2 z 3 2 -z p2 + 1 2 z 2 p2
indeed the zero dynamics of the self-adjoint system is given by

ż1 = ∂H z ∂z p1 = z 2 ż2 = ∂H z ∂z p2 = z 3 2 -z p2 żp1 = - ∂H z ∂z 1 = 0 żp2 = - ∂H z ∂z 2 = -z p1 -3z 2 2 z p2 .
We now have to find a generating function V (z 1 , z 2 ) such that

H z z 1 , z 2 , ∂V (z) ∂z 1 , ∂V (z) ∂z 2 = 0 ∂V (z) ∂z 1 z 2 + ∂V (z) ∂z 2 z 3 2 - ∂V (z) ∂z 2 + 1 2 
∂V (z) ∂z 2 2 = 0.
Solutions of such second-order partial differential equations might be parametrized as

∂V (z) ∂z 2 = z 3 2 ± z 6 2 + ∂V (z) ∂z 1 z 2 .
We thus have infinite solutions parametrized in the partial derivative ∂V (z) ∂z 1 which is associated with the dynamics ż1 = z 2 (and consequently żp1 = 0). We consider such partial derivative element to be equal to zero, that is V (z 1 , z 2 ) = V (z 2 ). The intuition behind this is that a Lyapunov stable dynamics, such as z 1 , is not a problem from the system stability point of view, we can thus leave it untouched. We thus consider the case ∂V (z)

∂z 1 = 0 =⇒ ∂V (z 2 ) ∂z 2 = 2z 3 2
is the stabilizing solution, and we define the ξ vector as

ξ 1 = - ∂V (z 2 ) ∂z 2 = -2z 3 2 ξ 2 = ξ 1 = -6z 2 2 z 3 2 + ξ 1 ξ2 = -30z 4 2 z 3 2 + ξ 1 -6z 2 2 ξ 2 -12z 2 (z 3 2 + ξ 1 )ξ 1 = q (z, ξ).
Thus the Outer factor of the factorization reads as

żo = z o2 -z 3 o2 + ξ o1 ξo = ξ o2 q(z o , ξ o + ξ ) + u -q (z o , ξ o + ξ ) = ξ o2 q o (z o , ξ o ) + u y o = Cξ o =ξ o1
where q o (z o , ξ o ) is given by

q o (z o , ξ o ) = 1 -6z 2 o2 ξ 2 o1 + 66z 4 o2 -72z 2 o2 + 18z 5 o2 -12z o2 ξ o1 + 36z 10 o2 -12z 8 o2 -54z 7 o2 + 40z 6 o2 -4z 3 o2 + z o1 .
While the Inner dynamics reads as ẋi = -z 3 2 + ξ o1 y = -2z 3 2 + ξ o1

C. Example of zero dynamics with non-affine right-hand side

We consider the case of the nonlinear system

ż = z 3 + 2ξ 3 ξ = z + u (47) 
with both z and ξ being scalar real quantities. Following the approach described in Section VIII, we have to consider the Hamiltonian function

H opt (z, ξ, z p ) = z p z 3 + ξ 3 + 1 2 ξ 2 .
Then we compute the optimal control function ξ (z, z p ) by the necessary condition of optimality, thus ξ is solution of

∂ ξ H opt (z, ξ , z p ) = 0, i.e., ξ + ∂ ξ f (z, ξ)z p = 0 =⇒ ξ + 6ξ 2 z p = 0
hence the nontrivial solution is ξ (z, z p ) = -(6z p ) -1 . This allows us to write the Hamiltonian function of the self-adjoint zero dynamics

H z (z, z p ) = H opt (z, ξ (z, z p ), z p ) H z (z, z p ) = z p z - 1 27z 3 p + 1 9z 2 p .
We can now look for a stabilizing solution V of the Hamilton-Jacobi-Bellman equation imposing z p = ∂ z V (z), thus considering ξ z = -(3∂ z V (z)) -1 . For this particular example, we can find a stabilizing function V and by imposing

H z (z, ∂ z V (z)) = 0, i.e., H z (z, ∂ z V (z)) = ∂ z V (z) z 3 + 2 8 • 27 (∂ z V ) 3 (z) + 1 2 • 4 • 9 (∂ z V ) 2 = 0.
Assuming ∂ z V = 0 almost everywhere, we re-write the above equation as

∂ z V 3 z 3 - 2 8 • 27 + 3 8 • 27 = 0 (48) 
yielding three coinciding solutions, i.e., ∂ z V = (6z) -1 , with V (z) = 6 -1 ln(z), implying some cyclo-dissipativity property of the Inner dynamics that is currently under investigation. We thus found the Bellman equation in closed form and we can substitute its gradient

∂ z V into the expression of ξ (z, z p ) = (z, ∂ z V ) = -(6z p ) -1 = -z.
this expression allows us to define the Outer and the Inner dynamics of the system, i.e., taking ξ o = ξ -ξ z , and z o = z, we have

żo =z 3 o + 2ξ 3 =z 3 o + 2 (ξ o -z o ) 3 = -z 3 o + 2 ξ 3 o -3ξ 2 o z o + 3ξ o z 2 o and together ξo = ξ + żo =z o + u -z 3 o + 2 ξ 3 o -3ξ 2 o z o + 3ξ o z 2 o = -z 3 o + (1 -6ξ 2 o )z o + 2(ξ 3 o + 3ξ o z 2 o ) + u
they define the Outer dynamics Σ o . While the Inner dynamics Σ i is given by x

i = z = z o with output y i = ξ = ξ + ξ o , i.e., ẋi = -x 3 i + 2 ξ 3 o -3ξ 2 o x i + 3ξ o x 2 i y i =ξ = -x i + x o .
The latter dynamical system is thus Inner by construction, with supply rate s(ξ o , ξ) given by (46). Indeed,

H opt (x i , ξ, ∂ xi V ) = H opt (x i , ξ o + ξ z (x i ), ∂ xi V ) = ∂V (x i ) ∂x i • f (x i , ξ o -ξ z (x i ))+ 1 2 (ξ o + ξ z (x i )) 2 = V (x i ) + 1 2 ξ 2
and this implies

V (x i ) = H opt (x i , ξ, ∂ xi V ) - 1 2 ξ 2 =: s(ξ o , ξ).
So the dynamics of x i with output ξ is Inner, hence lossless with supply rate s(ξ o , ξ) in (46). As a consequence the dynamics of (z o , ξ o ), with output ξ o is Outer.

X. CONCLUSIONS AND FUTURE WORK

In this work, we present the Inner-Outer factorization for strictly proper nonlinear systems. We introduce the approach by first defining the Inner and Outer factors. Subsequently, we provide, for the sake of self-containment, a description of the already developed approach and then propose our methodology. The presented methodology is applicable to nonlinear systems that admit a normal form realization with zero dynamics that is affine in the vector of output time derivatives. We demonstrate an optimal control interpretation related to the Inner-Outer factorization, allowing us to extend the approach to nonaffine zero dynamics. Additionally, numerical examples are provided to illustrate the effectiveness of the proposed methodology.

Although the Inner-Outer factorization can be employed in the context of H ∞ control, a potential future research direction, initiated by [START_REF] Spirito | Inner-Outer Decomposition for Strictly Proper Linear Time Invariant Systems and Non-Minimum Phase Performance Limitations[END_REF], is to leverage the (Generalized) Inner-Outer factorization to stabilize a non-minimum phase system via any minimum phase technique. This involves stabilizing (sufficiently fast) the origin of the Outer factor of the factorization. In other words, by knowing the Inner-Outer factorization and accessing the output of the Outer dynamics, one can address the stabilization problem for non-minimum phase systems using techniques suitable for minimum phase systems applied to the Outer dynamics.

APPENDIX A RECALL OF THE APPROACH FOR THE LINEAR CASE

In the following, we recall the approach developed in [START_REF] Spirito | Inner-Outer Decomposition for Strictly Proper Linear Time Invariant Systems and Non-Minimum Phase Performance Limitations[END_REF], [START_REF] Spirito | On the Inner-Outer Decomposition for LTI Systems and the Undershoot Performance of Non-Minimum Phase Systems[END_REF] for strictly proper linear systems.

Given the strictly proper linear system Σ = (A, B, C) with normal form realization

A = F G H Ā B = 0 B C = 0 C ,
where we have that F ∈ R (n-r)×(n-r) , Ā ∈ R r×r , with G, H, B, and C of appropriate dimensions. Moreover, ( Ā, B, C) are in prime form, in the MIMO sense. Assume that all the eigenvalues of F laying on the imaginary axis are simple, and that the (F, G C ) is stabilizable. The aim of the Inner-Outer factorization is to find the dynamical systems (the factors) Σ o = (A o , B o , C o ) and Σ i = (A i , B i , C i , D i ) (respectively, the outer and the inner dynamics) such that Σ = Σ i • Σ o . In the frequency domain, the systems Σ, Σ o , and Σ i are represented by the transfer matrice G(s), G o (s) and G i (s), respectively. In particular The inner term G i (s) has the property G i (-s) G i (s) = I, thus it is all pass system ∀s ∈ C, and it is a tall matrix. On the other side, the outer term of the factorization

G o (s) is such that G(-s) G(s) = G o (-s) G o (s)
, is right invertible, minimum phase and wide.

The first step of the approach is to find the spectral factorization of G(-s) G(s), with

G(-s) = 0 B -sI - F H G Ā -1 0 C = -0 B sI - -F -H -G -Ā -1 0 C
whose state space representation is given by We compute the cascade zero dynamics imposing y = -B ξ = 0, along with its time derivatives ξ = 0. This implies Cξ = CG z T , that can be written as Cξ = C C CG z T , because C C = I, thus

ż = -F z -H ξ ξ = -G z -Ā ξ + C u y = -B ξ .
ż = F z + G C CG z ż = -F z ( 49 
)
where u is such that Cξ = CG z T holds. Thus the zero dynamics (49) is described by the state matrix

H = F G C CG 0 -F
where H is a Hamiltonian matrix associated to the following Albegraic Riccati Equation (ARE)

XF + F X + XG C CG X = 0. ( 50 
)
whose stabilizing solution X is associated with the modal stable subspace of H, V -(H)

V -(H) = Im I X
Remark. The nonlinear analogous of this subspace is given by the stable invariant Lagrangian submanifold N -. While the quadratic form associated to X determines, on the other hand, the linear analogous to the generating function V of the submanifold.

Since X is a stabilizing solution and the pair (F, G C ) is stabilizable σ(F + G C CG X) ⊂ C -.

Thus, we define a change of coordinates for the initial system Remark. Note that, in general, this is not a minimal realization for the Inner transfer matrix G i (s).

We now show that this is an Inner system via the state space realization of the system cascade G i (-s)G i (s) and verifying that it is an all pass system, i.e., G i (-s)G i (s) = I.

We start with the state space representation of G i (-s)G i (s) ẋi = A i x i + B i u ẋi = -A i x i + C i (C i x i + D i u)

y i = -B i x i + D i C i x i + D i D i u (53) 
in which D i = I and we prove that the output term -B i x i + C i x i = 0, for the self-adjoint system initialized in the origin. That is, by substituting B i = G C and C i = CG X, we show Xx i -x i = 0 for all t ≥ 0. Define a change of coordinates χ = Xx i -x i , then

χ = X ẋi -ẋi = X(F + G C CG X)x i -XG C u- (F + G C CG X) Xx i + XG C CG Xx i + XG C u = -(F + G C CG X) χ + (F X + XG C CG X+ XF + XG C CG X -XG C CG X)x i = -(F + G C CG X) χ
for the property of X, i.e., (50). Since χ(0) = 0 and its dynamics is an autonomous system, we can conclude χ(t) = Xx i (t) -x i (t) = 0, ∀t ≥ 0. Thus, y i = u and so the cascade is all pass, and the system (A i , B i , C i , D i ) is inner with

A i = F + G C CG X, B i = G C C i = CG X, D i = I. (54) 

2 y 2

 2 e., [DΣ] • Σ = [DΣ o ] • Σ o , but rather Σ o is a Spectral factor of Σ in (38), i.e., [DΣ ] • Σ = [DΣ o ] • Σ o . IX. NUMERICAL EXAMPLES A. Example 1 An example of application is the following SISO system ż =z 3 + y ẏ =z + u with Hamiltonian function H(z, y, z p , y p ) = z p z 3 + y + y p (z + u) + 1 and co-state dynamics żp = -3z 2 z p -y p ẏp = -z p -y.

żo = -z 3 o

 3 + y o ẏo =z o -5z 5 o + 6z 2 o y o + u and the Inner factor dynamics reads as ẋi = -x 3 i + y o y = -2x 3 i + y o .

  Then the cascade G(-s) G(s) in state space reads asż = F z + Gξ ξ = Hz + Āξ + Bu ż = -F z -H ξ ξ = -G z -Ā ξ + C Cξ y = -B ξ .

  (A, B, C), ξ o = ξ -ξ , with ξ = C CG Xz ξo = ξ -C CG X ż = Hz + Āξ + Bu -C CG X(F z + Gξ) = H -C CG X(F + G C CG X) + Ā C CG X z + Ā -C CG XG ξ o + Bu = H o z + Āo ξ o + Buthis change of coordinates, with z o = z and ξ o as new states, describes the outer systemżo = F + G C CG X z o + Gξ o = F o z o + G o ξ o ξo = H o z o + Āo ξ o + Bo u y o = Cξ o .(51)Remark. Note that the output of the original system does not correspond to the output of the Outer factor, indeed y = Cξ = C(ξ o + ξ ) = y o Thus, the outer system(A o , B o , C o ) has realization A o = F o G o H o Āo = F + G C CG X G H -C CG XF o + Ā C CG X Ā -C CG XG B o = 0 B , C o = 0 Cnote that A o is similar to A because we applied a change of coordinate to the system dynamics (and we redefined it output signal). That is, the two systems (A, B, C) and(A o , B o , C o )have the same poles and, consequently, the same holds for the poles of G(-s) G(s) and of G o (-s) G o (s). It is easy to prove that the same holds the zeros of these two cascade systems. Indeed, the zeros of G o (-s) G o (s) are the eigenvalues ofH o = F o G C CG 0 -F o = F + G C CG X G C CG 0 -F -XG C CG which is similar to Ho = F G C CG XF + F X + XG C CG X -Fwhere XF + F X + XG C CG X = 0 and thus H and H o have the same spectrum. Thus we concludeG(-s) G(s) = G o (-s) G o (s).

Now, we only

  need to construct the inner systemẋi = A i x i + B i y o y = C i x i + D i y o .(52)In order to do so, we rewrite the original output signal y according to the change of definition of ξ o , i.e., ξ o = ξ -C CG Xz o and, by recalling that C C = I, we havey = Cξ = Cξ o + CG Xz o = CG Xz o + y o := C i x i + D i y oso in this case we can set D i = I and C i = CG X, andx i = z o .Then, in order to find the inner dynamics we involve the dynamics of z o , i.e.,x i = z o and ẋi = F o z o + Gξ o := A i x i + B i y o .We thus have to takeB i such that G = B i C,thus by the property C C = I p by obtain B i = G C and A i = F o , thus the inner dynamics reads as ẋi = F o x i + G C y o .

  Moreover, in the new coordinates, the Hamiltonian function H, associated with [DΣ] • Σ, becomes

  is the stabilizing solution of the Hamilton-Jacobi equation, i.e., H z (x i , ∂ xi V ) = 0. And this shows that (20) is Inner. Hence, we have Σ = Σ i • Σ o . By the properties of Inner systems, we have [DΣ i ] • Σ i = I, being I the identity operator. Consequently, we have that Σ o in (19) is a spectral factor of Σ in[START_REF] Spirito | On the Inner-Outer Decomposition for LTI Systems and the Undershoot Performance of Non-Minimum Phase Systems[END_REF], i.e.,[DΣ] 

  1. The dynamical systems Σ o in (42) and Σ i in (33) are respectively the Outer and Inner factors of Σ in (38) system and the cascade C
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The symbol • in this work is used to denote the cascade or serial interconnection of dynamical/algebraic input-output systems, without any confusion.

Note that this Hamiltonian function should be obtained by a (partial) Legendre transform of the extended Hamiltonian H E , although it not intuitive what should be the right steps to address this transformation.

With some abuse of notation, that does not change the meaning of the equations.

The reader who is not familiar with the Inner-Outer factorization problem can find in the appendix the approach developed for strict proper linear systems.

An equivalent proof can be obtained by considering the dissipation inequality involving the Bellman function, as defined in[START_REF] Ball | Inner-outer factorization for nonlinear noninvertible systems[END_REF] and[START_REF] Sontag | Mathematical control theory: deterministic finite dimensional systems[END_REF][Prop.8.5.1]