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INTRODUCTION

Conformal dimension was introduced in the late 1980s by P. Pansu in the study of quasi-isometries of hyperbolic spaces and related constructions (see, for example [START_REF] Pansu | Dimension conforme et sphère à l'infini des variétés à courbure négative[END_REF]). The conformal dimension of a metric space is the infimum of the Hausdorff dimensions of spaces quasi-symmetric to it. Since quasi-isometries of hyperbolic spaces correspond to quasi-symmetries of their boundaries, the conformal dimension is a natural invariant of hyperbolic groups and their boundaries. Since its definition, the conformal (and related Ahlfors-regular conformal) dimension became an important invariant in geometric group theory and dynamical systems. See [START_REF] Mackay | Conformal dimension[END_REF] for a survey of its properties and applications.

Ahlfors-regular conformal dimension is especially useful and natural for self-similar metric spaces. Boundaries of hyperbolic groups are examples of such self-similar spaces. Another natural class of examples is metric spaces together with an expanding (branched) covering map f : J ÝÑ J (for example complex rational functions in restriction to their Julia set). Their quasi-conformal geometry is the subject of the works [START_REF] Haïssinsky | Pilgrim, Coarse expanding conformal dynamics[END_REF][START_REF]Finite type coarse expanding conformal dynamics[END_REF][START_REF]Quasisymmetrically inequivalent hyperbolic Julia sets[END_REF] by P. Haïssinsky and K. Pilgrim.

Expanding self-coverings are encoded by the associated iterated monodromy groups, introduced in the early 2000s, see [START_REF]Self-similar groups[END_REF][START_REF]Groups and topological dynamics[END_REF]. They are examples of contracting self-similar groups. The self-covering is reconstructed from the iterated monodromy group as their limit dynamical system. The potential importance of the conformal dimension to the study of contracting self-similar groups was observed in [START_REF]Finite type coarse expanding conformal dynamics[END_REF].
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The amenability of iterated monodromy groups has been a well-known open question since their introduction. In fact, amenability of the iterated monodromy group of the complex polynomial z 2 ´1 (also known as the Basilica group) was asked even before the iterated monodromy groups were defined (see [START_REF] Rostislav | On a torsion-free weakly branch group defined by a three state automaton[END_REF]).

Amenability of the Basilica group group was proved by L. Bartholdi and B. Virág in [START_REF] Bartholdi | Amenability via random walks[END_REF]. Their proof was later generalized to include iterated monodromy groups of all postcritically finite complex polynomials in [START_REF] Bartholdi | On amenability of automata groups[END_REF] (and more generally, all groups generated by bounded automata). Their methods were extended to larger classes of self-similar groups in [START_REF] Amir | The Liouville property for groups acting on rooted trees[END_REF][START_REF] Amir | Amenability of linear-activity automaton groups[END_REF].

Amenability was proved in these papers by constructing a self-similar random walk step distribution µ on the group and using the self-similarity to prove that the asymptotic entropy (equivalently, speed) of the µ-random walk is zero (see also [START_REF] Vadim | Münchhausen trick" and amenability of self-similar groups[END_REF]). By the results of V. Kaimanovich and A. Vershik [START_REF] Kaȋmanovich | Random walks on discrete groups: boundary and entropy[END_REF] and Y. Derriennic [START_REF] Derriennic | Quelques applications du théorème ergodique sous-additif[END_REF] this implies the triviality of the Poisson boundary of the corresponding random walk, also known as the Liouville property that all bounded µ-harmonic functions are constant, which in turn implies amenability of the group. Self-similarity is a very restrictive condition in this case, and it is not clear how to construct such self-similar random walks in general (it seems that a finitely supported self-similar step distribution does not exist in most cases), so the corresponding groups have to be embedded into special "mother groups" for which such a self-similar random walk can be constructed. For groups generated by bounded automata, this self-similarity restriction was removed in in [START_REF] Amir | The Liouville property for groups acting on rooted trees[END_REF], by showing that every symmetric finitely supported measure generates a Liouville random walk.

A different approach to prove the amenability of groups is based on the notion of extensively amenable actions, first introduced by K. Juschenko and N. Monod [START_REF] Juschenko | Cantor systems, piecewise translations and simple amenable groups[END_REF]. This method was used in [START_REF] Juschenko | Extensions of amenable groups by recurrent groupoids[END_REF] to show amenability of a class of iterated monodromy groups. This approach allows one to prove the amenability of iterated monodromy groups of complex rational functions with "crochet" Julia sets, see [START_REF] Nekrashevych | On amenability of iterated monodromy groups[END_REF]. The framework of extensive amenability is not based on the study of the Liouville property for random walks, but random walks are implicitly present in it, as one of the main conditions used to prove amenability is recurrence of the induced random walk on an orbit of some action of the group.

We show in our paper how conformal geometry can be used to prove the Liouville property for symmetric random walks under suitable moment conditions on many contracting groups (equivalently, iterated monodromy groups of expanding covering maps).

Namely, we prove the following.

Theorem 1.1. Let pG, Bq be a finitely generated contracting self-similar group, and suppose that its limit space has Ahlfors-regular conformal dimension α, with α ă 2. Then for every symmetric measure µ on G having finite β-moment for some β ą α, the µ-random walk is Liouville. In particular, any such group is amenable.

Corollary 1.2. Let f be a post-critically finite complex rational function such that its Julia set is not the whole sphere. Then the iterated monodromy group of f is amenable.

Our results cover many new examples of amenable groups. Namely, all previously known contracting amenable groups had limit spaces of conformal dimension equal to 1 (this is true for any contracting group which can be generated by an automaton of polynomial activity in the sense of S. Sidki [START_REF] Said | Automorphisms of one-rooted trees: growth, circuit structure and acyclicity[END_REF], see Theorem 6.1). In this case, Theorem 1.1 implies that any random walk on them generated by symmetric measures of finite p1 `εq-moment is Liouville, encompassing various previous results for some more restricted classes of groups and measures. Beyond this case, Theorem 1.1 can be applied to contracting groups whose amenability was an open question until now, in particular to groups whose limit space is homeomorphic to the Sierpiński carpet. As shown in [START_REF]Quasisymmetrically inequivalent hyperbolic Julia sets[END_REF], there exist hyperbolic rational maps with Sierpiński carpet Julia sets whose conformal dimensions are arbitrarily close to 2 (the corresponding groups must therefore be generated by automata of exponential activity).

It is known that for symmetric random walks with finite second moment, sufficiently slow decay of return probability, namely µ p2nq pidq decaying slower than expp´n 1{2 q implies that µ-random walk is Liouville, see [START_REF] Peres | On groups, slow heat kernel decay yields liouville property and sharp entropy bounds[END_REF]. However this result is not applicable in the study of contracting self-similar groups: first it is not clear for what subclass of groups one can expect such a slow decay, secondly, even in the case of bounded automata groups, it is challenging to prove lower estimates for return probability. Indeed, to the best our knowledge, for all contracting groups whose amenability has been proven so far and those covered by Theorem 1.1, the best known lower bound for µ p2nq pidq comes from entropy, that is, µ p2nq pidq ě expp´HpX 2n qq. It is an open problem to find methods to establish sharper lower estimates for return probability, even in examples such as the Basilica group, and a tightly related problem is to find contracting groups that are amenable but not Liouville for symmetric simple random walks (see § 6.4 for an example of non-Liouville contracting group).

1.1. On the proof. Let us give some further insight on Theorem 1.1 and compare it with previous work. Recall that contracting group G is generated by a finite state-automata over a finite alphabet X, and has a natural action on the associated rooted tree X ˚whose vertex set consists of finite words. For every integer n, the action of an element g P G on X is determined by two pieces of information: the permutation induced on the n-th level of the tree, and associated collection of sections pg| v q vPX n , which describe the action of g on the subtrees rooted at level n. In order to show vanishing of the asymptotic entropy of the random walk measure µ, one is immediately led to study the distribution of sections g t | v for a sample g t of the µ-random walk. More precisely, it is enough to show that the rate of growth of the sum of word lengths of all sections g t | v at level n is bounded by some constant which tends to 0 as n tends to infinity (Proposition 5.4). This criterion was the starting point, in various different formulations, of the previous results establishing the Liouville property for random walk on automata groups [START_REF] Amir | The Liouville property for groups acting on rooted trees[END_REF][START_REF] Amir | Amenability of linear-activity automaton groups[END_REF][START_REF] Bartholdi | On amenability of automata groups[END_REF][START_REF] Bartholdi | Amenability via random walks[END_REF]. All these results were dealing with groups generated by some explicit automaton of polynomial (in fact, bounded or linear) activity. This means that for every element s in a generating set of the group, the number of vertices v P X n such that the sections s| v is non-trivial is bounded by a polynomial in n. The behaviour of the process g t | v was analysed by explicit computations based on the form of the automaton. In order to control the behaviour of the section, one needs to first understand the behaviour of the process g t pvq, which performs a random walk on the finite Schreier graph associated with the n-th level of the tree. A crucial feature in all previous examples is the fact that the sections g t | v of the random walk can be essentially controlled by studying the visits of g t pvq to some uniformly finite subset consisting of "singular points". In the simplest case of automata groups of bounded activity, the singular points are just the vertices w such that s| w is nontrivial for some generator s (for groups of polynomial activity, they can be defined inductively on the activity degree). In this situation, the length of the g t | v can be estimated by the number of traverses up to time t of the walk pg i pvqq between certain pairs of distinct singular points. The expected number of traverses can be estimated by analysing the Schreier graphs explicitly and computing the ℓ 2 -capacity (or effective conductance) between singular points. This is precisely the method used in [START_REF] Amir | The Liouville property for groups acting on rooted trees[END_REF] to show that all symmetric finitely supported measures on automata groups of bounded activity generate a Liouville random walk. The finiteness of the singular points can equivalently be interpreted in terms of germs of the action on the boundary of the tree X ω , and is crucial also to apply the framework of extensive amenability [START_REF]Amenability of quadratic automaton groups[END_REF][START_REF] Juschenko | Extensions of amenable groups by recurrent groupoids[END_REF][START_REF] Nekrashevych | On amenability of iterated monodromy groups[END_REF], which relies in a similar way on recurrence of the Schreier graphs to control visits to the singular points, and deduce amenability.

For iterated monodromy groups, the finiteness condition of singular points seems to be related to the existence of countable separating subsets in the limit space. This is a restrictive condition limited to examples with limit space of conformal dimension 1, see [START_REF] Nekrashevych | On amenability of iterated monodromy groups[END_REF].

For a group satisfying the assumption in Theorem 1.1, the relevant set of singularities is intrinsically infinite (corresponding to a Cantor subset of the boundary of the tree). An automaton generating the group will typically have exponential activity and might be quite complicated. Our proof of Theorem 1.1 is no longer based on the combinatorial analysis of some explicit set of generators, but instead on the study of contracting groups through the theory of limit spaces. It has three ingredients. The first ingredient, purely geometric, is Theorem 2.17, which estimates the total length of n-th level sections of a word g " s t ¨¨¨s 1 in terms of the paths that the word describes on the corresponding Schreier graph. It says that in order for the total length of sections to be large, these paths must traverse many times between certain regions which approximate some disjoint parts of the limit space (which roughly speaking correspond to different tiles). The precise identifications of these regions requires the framework of contracting models developed in [START_REF]Combinatorial models of expanding dynamical systems[END_REF][START_REF]Topological dimension and self-similar groups[END_REF]. The second ingredient is Theorem 5.6, where the assumption that conformal dimension of the limit space is less than 2 is used to show that the ℓ 2 -capacity between such disjoint regions must tend to 0 as n Ñ 8. This is reminiscent of the results of M. Carrasco [START_REF] Carrasco | On the conformal gauge of a compact metric space[END_REF] and J. Kigami [START_REF] Kigami | Geometry and analysis of metric spaces via weighted partitions[END_REF], which relate the conformal dimension of a metric space to potential theory on graphs that approximate the space (although our proof of Theorem 5.6 is self-contained). These two ingredients put us in position to apply a traverse-counting argument to show vanishing of random walk asymptotic entropy, at least for symmetric finitely supported measures.

The third ingredient, which allows to extend the result to measures under a moment condition, is the study of another numeric invariant for contracting self-similar groups: critical exponent. For every p P p0, 8s we define the ℓ p -contraction coefficient η p of a finitely generated contracting group pG, Bq. It is the exponential rate of decay of the ℓ pnorm of the vector of lengths of the sections g| v for the vertices v of the nth level of the tree. The condition for a self-similar group to be contracting is equivalent to the condition η 8 ă 1. The function p Þ Ñ η p is continuous and non-increasing. The critical exponent p c pG, Bq is the infimum of the values p for which η p ă 1. It is a measure of the complexity of the group. For example, the action on the tree of every element g P G of length n can be explicitly described with Opn pc`ϵ q bits of information. In particular, p c ă 1 implies sub-exponential volume growth. In our setting, such complexity bounds can be used to control contribution to entropy from long jumps of the random walk.

In analogy to critical constant for recurrence introduced in [START_REF] Erschler | Critical constants for recurrence of random walks on G-spaces[END_REF], for a finitely generated group G equipped with word metric, we define the (symmetric) critical constant for the Liouville property, denoted by Cr Liouv pGq, to be the infimum of p, such that all symmetric random walks with finite p-moment are Liouville. For a contracting group pG, Bq we denote by ARdimpG, Bq the Ahlfors-regular conformal dimension of its limit space. Between these critical quantities and conformal dimension, we show the following inequality.

Theorem 1.3. Let pG, Bq be a finitely generated contracting self-similar group such that ARdimpG, Bq ă 2, then Cr Liouv pGq ď p c pG, Bq ď ARdimpG, Bq.

Then Theorem 1.1 above is a consequence of this inequality. The second inequality is not sharp in general, see the discussion after Theorem 4.7; we do not know of an example of a contracting group for which the first inequality is strict.

1.2. Organization of the article. Section 2 of the paper is an overview of the theory of self-similar contracting groups and their limit spaces. In Section 3 we describe the natural class of pairwise (weakly) quasi-symmetric metrics on the limit space. Similarly to the case of boundaries of hyperbolic groups, examples of such metrics can be defined as the visual metrics on the boundary of a natural Gromov-hyperbolic graph (the self-similarity complex of the group). The Ahlfors-regular conformal dimension ARdimpG, Bq is defined as the infimum of the Hausdorff dimensions of metrics weakly quasisymmetric to a visual metric, see [START_REF]Finite type coarse expanding conformal dynamics[END_REF]. If the group is self-replicating (which is automatically satisfied, for example, for the iterated monodromy groups of postcritically finite rational functions), then any weak quasisymmetry is actually a quasisymmetry (we do not know if this is true in general).

Section 4 discusses the critical exponent p c pG, Bq for contracting self-similar groups as mentioned above. We prove that the critical exponent p c pG, Bq of a contracting group is not larger than the conformal dimension ARdimpG, Bq, see Theorem 4.7. Lower estimates of for p c pG, Bq, and hence also for ARdimpG, Bq, can be obtained from exhibiting a carefully chosen sequence of group elements. In Theorem 4.11, we show a relation between ℓ p -contraction and spectral radius of the linear operator T p , where T p is the Thurston linear transform adapted to ℓ p calculations.

Section 5 contains proofs of statements on Liouville property. It starts with a brief review of preliminaries on random walk and electric network theory, bounded harmonic functions and the entropy criterion. We then show a direct bound on ℓ q -capacity on the Schreier graphs of action of a contracting group pG, Bq on levels of the tree, which is valid for q ą ARdimpG, Bq and for all symmetric measures which admit a finite moment of order p ą p c pG, Bq, see Proposition 5.5, from which estimates on capacity stated in Theorem 5.6 follow. We then give a proof of Liouville property for the finite support case based on traverse counting and ℓ 2 -capacity estimates. For the general case under finite p-moment, p ą p c pG, Bq, we first apply a geometric argument similar to the proof of Theorem 2.17, then random walk entropy is bounded by contributions from traverses and long jumps separately. The former is controlled by ℓ 2 -capacity estimates in the same way as in the finite supported case; and the latter is controlled by ℓ p -contraction.

Section 6 contains several examples of applications of the main theorem. The first class of examples are groups generated by automata of polynomial activity growth, as defined by S. Sidki in [START_REF] Said | Automorphisms of one-rooted trees: growth, circuit structure and acyclicity[END_REF]. It was shown in [START_REF] Nekrashevych | On amenability of iterated monodromy groups[END_REF] that limit spaces of all contracting self-similar groups in this class have Ahlfors-regular dimension 1. Amenability of such groups also follows (as explained in [START_REF] Nekrashevych | On amenability of iterated monodromy groups[END_REF]) from the theory of extensively amenable actions, developed in [START_REF] Juschenko | Extensive amenability and an application to interval exchanges[END_REF][START_REF] Juschenko | Extensions of amenable groups by recurrent groupoids[END_REF] (the Liouville property for all groups in this class seems to be new even for finitely supported symmetric measures).

The second class of examples is iterated monodromy groups of post-critically finite complex rational functions. If f is a post-critically finite rational function, then the limit space of its iterated monodromy group IMG pf q is canonically homeomorphic to the Julia set of f . Moreover, the spherical metric restricted to the Julia set, seen as a metric on the limit space of the group, is quasi-conformal and Ahlfors-regular. In particular, the Hausdorff dimension of the Julia set is an upper bound of the conformal dimension of the limit space of the iterated monodromy group. It follows that if the Julia set of the function is not the whole sphere, then the iterated monodromy group is Liouville (for every symmetric measure with finite second moment) and thus amenable. We provide an explicit example of the iterated monodromy group of a rational function whose Julia set is homeomorphic to the Sierpiński carpet (and thus can not be generated by an automaton of polynomial activity growth).

We also describe explicitly a contracting self-similar group whose limit space coincides with the classical Sierpiński carpet (i.e., quasi-symmetric to it).

Finally, we give an example of a self-similar contracting group, which is not Liouville for any finitely supported measure. 1.3. Acknowledgements. This work was initiated during the trimester Groups acting on fractals at IHP from April to June 2023. We thank the organizers of the program and the Institut for the support and hospitality.

SELF-SIMILAR GROUPS AND THEIR LIMIT SPACES

2.1. Basic definitions. Definition 2.1. An action of a group G on the set X ˚of finite words over a finite alphabet X is said to be self-similar if such that for every g P G and v P X ˚there exists an element g| v P G such that gpvwq " gpvqg| v pwq for all w P X ˚.

Consider a faithful self-similar action of G on X ˚. The biset of the action is the set B of transformations of X ˚of the form

x ¨g : v Þ Ñ xgpvq
for x P X and g P G. Since the action is faithful, the set B is in a natural bijection with the set X ˆG.

The set B is closed under pre-and post-compositions with elements of G, hence it is a biset, i.e., a set with commuting left and right actions of G. They are given by the rules px ¨gq ¨h " x ¨gh, h ¨px ¨gq " hpxq ¨h| x g.

The right action of G on the biset B is free and has |X| orbits, where X ¨t1u Ă B (naturally identified with X) intersects each orbit exactly once.

In general, a self-similar group pG, Bq is a group G and a biset B such that the right action is free and has finitely many orbits. A subset X Ă B is called a basis of the biset if it intersects each orbit exactly once.

If B 1 , B 2 are two G-bisets, then the biset B 1 b B 2 is quotient of B 1 ˆB2 by the identification px ¨g, yq " px, g ¨yq and with the action on the quotient induced by the actions g ¨px, yq ¨h " pg ¨x, y ¨hq. We denote the image of the element px, yq P B 1 ˆB2 in B 1 b B 2 by x b y or just by xy.

This operation is associative up to isomorphisms of bisets. In particular, for every biset B we get bisets B bn for all n ě 0. Here B b0 is defined as G with the natural left and right G-actions.

If X Ă B is a basis of a biset, then every element of B is written in a unique way as x ¨g for x P X and g P G. For every g P G and every x P G there exist unique y P X and h P G such that g ¨x " y ¨h.

It is easy to see that the map x Þ Ñ y is a permutation of X (since the left G-action permutes the right G-orbits). We get the associated action of G on X, and denote y " gpxq, h " g| x . The map g Þ Ñ σ g pg| x q xPX P SymmpXq ⋉ G X , where σ g P SymmpXq is the image of g under the associated action on X, is called the wreath recursion. It is a homomorphism from G to the wreath product SymmpXq ⋉ G X .

Changing the basis X corresponds to composing the wreath recursion with an inner automorphism of the wreath product.

If X is a basis of B, then X bn is a basis of B bn . We identify the set X bn with X n in the natural way.

In particular, for every v P X n Ă B bn and for every g P G there exist unique u P X n and g| v P G such that g ¨v " u ¨g| v .

The map v Þ Ñ u is a permutation of X n (conjugate to the permutation induced by g on the set of right orbits of B bn ), so we denote u " gpvq.

We get hence the associated action of G on X ˚. The associated action on X ˚does not depend, up to conjugacy on the choice of the basis X (since it is conjugate to the left action of G on Ť ně0 B bn {G). The faithful quotient of a self-similar group pG, Bq is the quotient of G by the kernel of the associated action.

2.2. Contracting groups and limit space. Let pG, Bq be self-similar group. Let X Ă B be a basis. The self-similar group is said to be contracting if there exists a finite set N Ă G such that for every g P G there exists n such that g| v P N for all v P X m for all m ě n. The smallest set N satisfying this condition is called the nucleus of the group. It is shown in [START_REF]Self-similar groups[END_REF]Corollary 2.11.7] that the property to be contracting does not depend on the choice of the basis X. The nucleus, however, depends on X. Definition 2.2. Let pG, Bq be a contracting group. Choose a basis X Ă B, and let X ´ω be the space of left-infinite sequences . . . x 2 x 1 with the direct product topology (where X is discrete). The limit space J G is the quotient of X ´ω by the asymptotic equivalence relation, identifying two sequences . . . x 2 x 1 , . . . y 2 y 1 if and only if there exists a sequence g n of elements of the nucleus N such that g n px n . . . x 2 x 1 q " y n . . . y 2 y 1 .

It is shown in [START_REF]Self-similar groups[END_REF] that the asymptotic equivalence relation is transitive, and that the limit space is a metrizable compact space of finite topological dimension.

It follows from the definition that the asymptotic equivalence relation is invariant under the shift . . . x 2 x 1 Þ Ñ . . . x 3 x 2 . Consequently, the shift induces a continuous map s : J G ÝÑ J G , which we call the limit dynamical system. It is shown in [START_REF]Self-similar groups[END_REF] that the limit dynamical system does not depend, up to topological conjugacy, on the choice of the basis X.

Definition 2.3. Let pG, Bq and X be as above. The limit G-space X G is the quotient of the direct product X ´ω ˆG (where G is discrete) by the equivalence relation identifying . . . x 2 x 1 ¨g and . . . y 2 y 1 ¨h if and only if there exists a sequence g n of elements of the nucleus such that g n ¨xn . . . x 2 x 1 ¨g " y n . . . y 2 y 1 ¨h in B bn for all n.

The equality in the definition of X G is equivalent to the equalities

g n px n . . . x 2 x 1 q " y n . . . y 2 y 1 , g n | xn...x2x1 g " h.
We have a natural right action of G on X G induced by the action p. . . x 2 x 1 ¨gq ¨h " . . . x 2 x 1 ¨gh on X ´ω ˆG. One can show that the space X G and the action do not depend (up to topological conjugacy) on the choice of the basis X.

Definition 2.4. We denote by T the image of X ´ω in X G .

The action of G on X G is proper and co-compact with the quotient X G {G naturally homeomorphic to the limit space J G . The set T is compact and intersects every G-orbit. Definition 2.5. We say that a self-similar group pG, Bq is self-replicating if the left action of G on B is transitive.

It is shown in [START_REF]Self-similar groups[END_REF]Theorem 3.5.1] that if a contracting group pG, Bq is self-replicating, then the spaces J G and X G are connected and locally connected. Definition 2.6. For v P X ˚, we denote by T v the image of the set X ´ω v of sequences ending with v in the limit space J G . We call it a tile of nth level if n " |v|.

For every point ξ P J G and every n ě 0, the union of the tiles of the nth level containing ξ is a neighborhood of ξ. Proposition 2.7. Two tiles T v , T u of the same level intersect if and only if there exists an element g of the nucleus such that gpvq " u.

Contracting models.

Let pG, Bq be a contracting self-similar group, and let X be a metric space on which G acts properly and co-compactly by isometries.

Then X b B is defined as the quotient of X ˆB (where B is discrete) by the action pξ, xq Þ Ñ pξ ¨g´1 , g ¨xq. We denote the orbit of pξ, xq by ξ b x. We have then ξ b g ¨x " ξ ¨g b x for all ξ P X , x P B, and g P G.

Let X be a basis of B. Assume that I : X b B ÝÑ X is a G-equivariant map. Then I is uniquely determined by the maps I x pξq " Ipξ b xq, which satisfy the following condition:

(1) I x pξ ¨gq " I gpxq pξq ¨g| x , for all x P X, g P G, and ξ P X , where gpxq P X and g| x P G, as usual, are given by g ¨x " gpxq ¨g| x . Conversely, every collection of maps I x : X ÝÑ X satisfying (1) defines an equivariant map I : X b B ÝÑ X by the formula Ipξ b x ¨gq " I x pξq ¨g.

Every equivariant map I : X b B ÝÑ X induces an equivariant map I n : X b B bpn`1q ÝÑ X b B bn by the rule

I n pξ b x b vq " Ipξ b xq b v
for ξ P X , x P B, v P B bn . According to this, we will sometimes denote I by I 0 .

We also denote by

I n : ξ b B bn ÝÑ X the composition I n´1 ˝In´2 ˝¨¨¨˝I 1 ˝I.
Definition 2.8. A G-equivariant map I : X b B ÝÑ X is said to be contracting if there exist n ě 1 and λ P p0, 1q such that dpIpξ 1 b vq, Ipξ 2 b vqq ď λdpξ 1 , ξ 2 q for all ξ 1 , ξ 2 P X and v P B bn .

A G-equivariant map I : X b B ÝÑ X is contracting if and only if there exist C ą 0 and λ P p0, 1q such that

dpI n pξ 1 b vq, I n pξ 2 b vqq ď Cλ n dpξ 1 , ξ 2 q for all n, v P B bn , ξ 1 , ξ 2 P X . The natural map X G b B ÝÑ X G mapping ξ b x, where ξ is represented by . . . b x 2 b x 1 P Ω, to the point of X G represented by . . . b x 2 b x 1 b x, is a G-equivariant homeomorphism X G b B ÝÑ X G . Since it is "identical," we will denote the image of ξ b x just by ξ b x, thus identifying X G b B with X G .
It is proved in [START_REF]Topological dimension and self-similar groups[END_REF]Theorem 2.10] that the natural homeomorphism X G b B ÝÑ X G is contracting in the sense of Definition 2.8 (with respect to a natural distance on X G ) provided G is finitely generated.

The following theorem is proved in [START_REF]Combinatorial models of expanding dynamical systems[END_REF].

Theorem 2.9. Let I : X bB ÝÑ X be a contracting G-equivariant map. Then the inverse limit of the sequence of G-spaces X bB bn and maps I n is G-equivariantly homeomorphic to the limit G-space X G . The map on the limit induced by the maps I n is conjugated by the homeomorphism with the natural homeomorphism X G b B ÝÑ X G .

Definition 2.10. Let pG, Bq be a contracting self-similar group. A contracting model of pG, Bq is a proper co-compact action of G on a metric space X by isometries together with a contracting equivariant map I :

X b B ÝÑ X .
It is proved in [START_REF]Combinatorial models of expanding dynamical systems[END_REF] (see also [START_REF]Topological dimension and self-similar groups[END_REF]Theorem 3.1]) that every finitely generated contracting group has a contracting model I : X b B ÝÑ X where X is a connected simplicial complex and the maps I x are piecewise affine.

We will need the following simple lemma.

Lemma 2.11. Suppose that G is finitely generated, and let lpgq denote the length of an element g P G with respect to a fixed finite generating set of G. Choose a basis X Ă B.

Let X be a metric space on which G acts by isometries from the right so that the action is co-compact and proper. Let I : X b B ÝÑ X be a G-equivariant map. Let T be a compact subset of X such that I n pξ b vq P T for every ξ P T and v P X ˚.

Then for every ξ P X there exists a constant C ą 0 such that

lpg| v q ď CdpI n pξ b vq, I n pξ ¨g b vqq `C
for all n ě 1, g P G, ξ P T , and v P X n .

It follows directly from co-compactness of the action and Definition 2.8 that a compact set T satisfying the conditions of the lemma exists for every contracting equivariant map I : X b B ÝÑ X and every basis X of B.

Proof. Since the action of G on X is isometric, proper, and co-compact, there exists C such that lpgq ď Cdpξ 1 , ξ 2 ¨gq `C for all ξ 1 , ξ 2 P T .

It follows that lpg| v q ď CdpI n pξ b vq, I n pξ b gpvqq ¨g| v q `C " CdpI n pξ b vq, I n pξ g b vq `C. □ 2.4. Iterated monodromy groups.

Definition 2.12. A virtual endomorphism of a topological space J is a finite degree covering map f : J 1 ÝÑ J together with a continuous map ϕ : J 1 ÝÑ J .

Let f, ϕ : J 1 ÝÑ J be a virtual endomorphism. Suppose that J is path connected. Consider the fundamental group G " π 1 pJ , tq. The associated biset is the set B of pairs pz, rδsq, where z P f ´1ptq, and rδs is the homotopy class of a path δ in J connecting t to ϕpzq. The action of G on B is given by the formulas pz, rδsq ¨rγs " pz, rδγsq, rγspz, rδsq " py, rϕpγ z qδsq, where γ is a loop based at t, γ z is the lift of γ by f starting in z, y is the end of γ z . We multiply paths as functions: in a product αβ the path β is passed before α.

The iterated monodromy group of the virtual endomorphism is the faithful quotient of the self-similar group pG, Bq.

By the definition of the associated biset, a basis of B is a collection

tpz 1 , rℓ 1 sq, pz 2 , rℓ 2 sq, . . . , pz n , rℓ n su,
where tz 1 , z 2 , . . . , z n u " f ´1ptq, and ℓ i is a path from t to ϕpz i q. Let us denote x i " pz i , rℓ i sq, then the action of the iterated monodromy group on the tree X ˚for X " tx 1 , x 2 , . . . , x n u is given by the recurrent formula

(2)

rγspx i wq " x j rϕpℓ ´1 j γ i ℓ i qspwq,
where γ i is the unique lift of γ by f starting in z i , and j is such that z j is the end of γ i .

A particular case of this situation is a partial self-covering, i.e., a finite degree covering map f : J 1 ÝÑ J where J 1 Ă J . It is a virtual endomorphism with the map ϕ : J 1 ÝÑ J equal to the identical embedding. Then the iterated monodromy group of f is the iterated monodromy group of the virtual endomorphism f, ϕ : J 1 ÝÑ J . In this case, it is natural to omit ϕ (as it is the identity map) in the formula [START_REF] Amir | Amenability of linear-activity automaton groups[END_REF].

An important class of examples consists of post-critically finite complex rational functions. Let f pzq P Cpzq be a rational function seen as a self-map of the Riemannian sphere PC 1 . Let P f be the union of the forward orbits of the critical values of f (i.e., values at the critical points of the map f : PC 1 ÝÑ PC 1 ). We say that f is post-critically finite if the set P f is finite.

Then f defines a partial self-covering f : PC 1 zf ´1pP f q ÝÑ PC 1 zP f . The iterated monodromy group of this partial self-covering is, by definition, the iterated monodromy group of f .

The following theorem is proved in [START_REF]Self-similar groups[END_REF]Theorem 6.4.4].

Theorem 2.13. Let f be a post-critically finite complex rational function. Then its iterated monodromy group G " IMG pf q is contracting and its limit dynamical system s : J G ÝÑ J G is topologically conjugate to the restriction of f to its Julia set.

In fact, Theorem 2.13 is a corollary of Theorem 2.9 and of the Schwarz-Pick theorem.

2.5. One-dimensional limit spaces. The following theorem is proved in [START_REF]Topological dimension and self-similar groups[END_REF].

Theorem 2.14. Suppose that the limit space J G (equivalently the X G ) of a contracting finitely generated group pG, Bq has topological dimension 1. Then there is n 0 and a contracting model I : ∆ 0 b B bn0 ÝÑ ∆ 0 , where ∆ 0 is a locally finite connected graph on which G acts properly and co-compactly by automorphisms.

Below we suppose to be in the situation of Theorem 2.14. Denote ∆ n " ∆ 0 b B bn . Since the action of G on ∆ 0 is by automorphisms of graphs, the spaces ∆ n are also graphs.

Denote by Γ n the quotient ∆ n {G and by π n : ∆ n Ñ Γ n the quotient projection. Then Γ n is a finite graph. The maps I n : ∆ n`1 ÝÑ ∆ n induce continuous maps ϕ n : Γ n`1 ÝÑ Γ n . We may assume that in the original action of G on ∆ 0 , no pair of neighbouring vertices of ∆ 0 belong to the same G-orbit (otherwise pass to the barycentric subdivision of ∆ 0 ). In particular, Γ 0 has no loops. Notation 2.15. Denote by U z the ball of radius 1/3 with center in a vertex z of the graph Γ 0 " X {G. It is a bouquet of segments of length 1/3. (We use the combinatorial distance in the graphs, identifying each edge with a real segment of length 1.) Fix a basepoint ξ 0 P ∆ 0 . Denote by U z,n the set of elements v P X n such that π 0 pI n pξ 0 b vqq P U z . Definition 2.16. Let s t s t´1 . . . s 1 be a word in elements s i P G (formally, an element of the free group with basis G). A traverse of level n from z 1 to z 2 is a triple pi, j, v 1 , v 2 q, where

1 ď i ď j ď t, v 1 P U z1,n , v 2 P U z2,n for z 1 ‰ z 2 are such that s k ¨¨¨s i`1 s i pv 1 q R U z1,n Y U z2,n for i ă k ă j, and s j s j´1 ¨¨¨s i pv 1 q " v 2 .
In other words, a traverse is a segment of a the word s t s t´1 . . . s 1 corresponding to a travel from a point of U z1,n to a point of U z2,n such that the sets U z1,n and U z2,n are not touched during the travel.

We denote by τ n ps t s t´1 . . . s 1 q the total number of traverses of level n for the word s t s t´1 . . . s 1 .

Theorem 2.17. Let S be a finite generating set for G. There exists C ą 1 such that for all n big enough and every element g " s t s t´1 ¨¨¨s 1 P G, where s i P S, we have

ÿ vPX n lpg| v q ď Cτ n ps t s t´1 ¨¨¨s 1 q `C|X n |.
Proof. Since the G action is isometric, the quantity dpξ 0 ¨g, ξ 0 ¨sgq is uniformly bounded for s P S and g P G. Hence there exists n 0 such that dpI n pξ 0 ¨g bvq, I n pξ 0 ¨sg bvqq ă 1{3 for every g P G, s P S and v P X n , n ě n 0 . Fix such a v, consider g " s t ¨¨¨s 1 as in the statement of the theorem, and set ξ i " ξ 0 ¨si ¨¨¨s 1 . Then the distance between two consecutive points I n pξ i b vq is at most 1/3. By Lemma 2.11, the length of g| v is bounded from above by C 1 dpI n pξ 0 b vq, I n pξ t b vqq `C1 for some constant C 1 ą 0. Let δ i be a geodesic curve joining I n pξ i´1 b vq to I n pξ i b vq and γ " δ t ¨¨¨δ 1 be their concatenation (where the rightmost curve is passed first). Consider an edge e which is crossed by γ, meaning that there is a subcurve γ| rt1,t2s such that γpt 1 q, γpt 2 q are the extreme points of the edge and γpsq is in the interior of e for s P pt 1 , t 2 q. For every such edge crossing we can find i ă j such that I n pξ i b vq and I n pξ j b vq are at distance at most 1/3 from the two extreme points of e, and every I n pξ k b vq with i ă k ă j is in the interior of e at distance at least 1/3 from the extreme points. The distance between dpI n pξ 0 b vq, I n pξ t b vqq is not larger than the total number of edge crossings of γ plus 2. Now recall that the quotient projection π 0 : ∆ 0 Ñ Γ 0 maps edges homeomorphically to edges, and moreover π 0 pI n pξ i b vqq " π 0 pI n pξ 0 b s i ¨¨¨s 1 pvqq ¨si ¨¨¨s 1 | v q " π 0 pI n pξ 0 b s i ¨¨¨s 1 pvqqq.

We deduce that to every edge-crossing of γ we can associate (injectively) a traverse. Thus there is a constant C ą 0 such that lpg| v q ď Cτ n,v ps t ¨¨¨s 1 q `C, where τ n,v denotes the number traverses at level n of the form pi, j, v 1 , v 2 q with v 1 " s i ¨¨¨s 1 pvq. Summing over v we obtain the statement of the theorem. □

CONFORMAL DIMENSION OF CONTRACTING GROUPS

3.1. Visual metric. Let pG, Bq be a contracting group. Choose a basis X of B and let N be the corresponding nucleus of G. The self-similarity complex is the graph with set of vertices X ˚in which two vertices are connected by an edge in one of the following two situations: either they are of the form v, xv for v P X ˚and x P X (vertical edges), or they are of the form v, gpvq for v P X ˚and g P N (horizontal edges).

The following theorem is proved in [START_REF] Nekrashevych | Hyperbolic spaces from self-similar group actions[END_REF] (see also [START_REF]Self-similar groups[END_REF]Theorem 3.8.8]). The statement about the Gromov product follows directly from the proof.

Theorem 3.1. The self-similarity complex is Gromov hyperbolic. Its boundary is homeomorphic to the limit space J G , where a point of J G represented by . . . x 2 x 1 P X ´ω corresponds to the limit of the geodesic path px 1 , x 2 x 1 , x 3 x 2 x 1 , . . .q in the self-similarity complex.

The Gromov product ℓpx n . . . x 2 x 1 , y m . . . y 2 y 1 q of the vertices x n . . . x 2 x 1 and y m . . . y 2 y 1 is equal (up to an additive constant) to the largest k ď minpn, mq such that there exists g P N such that gpx k . . . x 2 x 1 q " y k . . . y 2 y 1 .

Define ℓp. . . x 2 x 1 , . . . y 2 y 1 q as the largest n such that gpx n . . . x 2 x 1 q " y n . . . y 2 y 1 for some g P N . It is the natural extension of the Gromov product to J G (its value does not depend, up to an additive constant, on the choice of the sequences . . . x 2 x 1 , . . . y 2 y 1 P X ´ω representing the points of the limit space). Note that we define ℓpξ, ξq " 8 for ξ P J G .

The following is a classical result of the theory of Gromov-hyperbolic spaces, see [16, §3]. Theorem 3.2. There exists α 0 ą 0 such that for every α ă α 0 there exists a metric d α on J G and a constant C ą 1 such that

(3) C ´1e ´αℓpξ1,ξ2q ď d α pξ 1 , ξ 2 q ď Ce ´αℓpξ1,ξ2q
for all ξ 1 , ξ 2 P J G .

Note that (for a fixed value of α) the metric d α is unique up to bi-Lipschitz equivalence. We call it the visual metric of exponent α.

If f, g are real-valued functions with the same domain of definition, we write fg if there exists a constant C ą 0 such that C ´1f ď g ď Cf .

It follows from Proposition 2.7 that for every ζ P J G the set T pζ, nq " tξ P J G : ℓpξ, ζq ě nu is equal to the union of the tiles T v of nth level intersecting tiles of the nth level that contain ζ. Note that T pζ, nq is a union of not more than |N | 2 tiles of the nth level. Note also that if d α is a visual metric, then we have (4) Bpζ, C ´1e ´αn q Ă T pζ, nq Ă Bpζ, Ce ´αn q,

where Bpx, Rq denotes the ball of radius R with center in x, and C satisfies (3).

Let µ be the push-forward of the uniform Bernoulli measure on X ´ω by the quotient map X ´ω ÝÑ J G . Since the quotient map is at most |N |-to-one, we have, for every

v P X n |X| ´n ď µpT v q ď |N | ¨|X| ´n. It follows that µpT pζ, nqq -|X| ´n, so µpBpζ, Rqq -|X| ´´ln R α " exp ˆln R ln |X| α ˙" R ln |X| α .

Conformal dimension.

Let pG, Bq be a contracting self-similar group. Recall that T pξ, nq for ξ P J G denotes the union of the nth level tiles T ¨v, v P B bn intersecting the nth level tiles that contain ξ.

Definition 3.3. A metric on J G is said to be quasi-conformal if there exists C ą 1 such that for every ξ P J G and every n ě 1 there exists r such that Bpξ, rq Ă T pξ, nq Ă Bpξ, Crq,

where the balls Bpξ, rq are defined using the metric d.

A metric d on a space X is said to be Ahlfors-regular if there exists β ą 0 and a measure µ on X such that µpBpx, Rqq -R β for all x P X and R ă diampX q. The exponent β is equal to the Hausdorff dimension of d.

We have seen that the visual metric d α on J G is quasi-conformal. We have also seen that it is Ahlfors-regular of Hausdorff dimension ln |X| α . Definition 3.4. The infimum of the set of Hausdorff dimensions of Ahlfors-regular quasiconformal metrics on J G is called the Ahlfors-regular conformal dimension of J G and is denoted ARdim J G or ARdimpG, Bq.

A map f : X 1 ÝÑ X 2 between metric spaces pX 1 , d 1 q and pX 2 , d 2 q is said to be quasisymmetric if there exists a homeomorphism η : r0, 8q ÝÑ r0, 8q such that

d 2 pf pxq, f pyqq d 2 pf pxq, f pzqq ď η ˆd1 px, yq d 1 px, zq ḟor all x, y, z P X 1 .
It is not hard to see that the inverse of every quasisymmetric homeomorphism is also quasisymmetric.

Two metrics on the same spaces are said to be quasisymmetric to each other if the identity map is quasisymmetric.

It follows directly from the definitions that any two visual metrics d α1 , d α2 on J G are quasisymmetric to each other. Proposition 3.5. Let pG, Bq be a self-replicating group. Then an Ahlfors-regular metric d on J G is quasi-conformal if and only if it is quasisymmetric to a visual metric.

Proof. It is easy to see that every Ahlfors-regular metric on J G quasisymmetric to a visual metric is quasiconformal.

If d α is a visual metric, and d is quasi-conformal, condition (3) implies that there exists a constant C ą 1 such that for every ζ P J G and every r ą 0 (such that B dα pζ, rq ‰ J G ) there exists R r,ζ ą 0 such that

B d pζ, R r,ζ q Ă B dα pζ, rq and B dα pζ, rq Ă B d pζ, CR r,ζ q,
where B and B denote the open and the closed balls, respectively. Let ξ 1 , ξ 2 P J G be such that d α pζ, ξ 1 q ď d α pζ, ξ 2 q. Let d α pζ, ξ 2 q " r. Then dpζ, ξ 1 q ă CR ζ,r . If dpζ, ξ 2 q ď R ζ,r , then d α pζ, ξ 2 q ă r, which is a contradiction. Therefore, dpζ, ξ 2 q ą R ζ,r . We see that d α pζ, ξ 1 q ď d α pζ, ξ 2 q implies dpζ, ξ 1 q ď CR ζ,r ă Cdpζ, ξ 2 q. It follows that the identity map from pJ G , d α q to pJ G , dq is weakly quasisymmetric.

Consequently (as J G is connected and doubling in the self-replicating case), by [ Proof. The first statement follows from the fact that it is true for a visual metric and that compact spaces have a unique uniformity, so uniform convergence to 0 does not depend on the choice of a metric. Suppose now that d is quasisymmetric to a visual metric d α . Let η : r0, 8q ÝÑ r0, 8q be the homeomorphism such that dpx,yq dpx,zq ď η ´dαpx,yq dαpx,zq ¯for all x, y, z P J G , where d α is a visual metric on J G . Let u 1 , u 2 P X ˚. Then for every x P T u2u1 Ă T u1 there exists y P T u2u1 such that 2dpx, yq ě diam d pT u2u1 q. Similarly, there exists z P T u1 such that d α px, zq ě diam dα pT u1 q{2. Then diampT u2u1 q diampT u1 q ď 2dpx, yq dpx, zq ď 2η ˆdα px, yq d α px, zq ˙ď 2η ˆdiam dα pT u 2 u 1 q diam dα pT u1 q{2

˙.

It follows from the definition of the visual metric that diam dα pT v q -e ´|v|α . It follows that there exists C ą 1 such that diam dα pTu 2 u 1 q diam dα pTu 1 q ď Ce ´|u2|α for all u 1 , u 2 P X ˚.

Since η : r0, 8q ÝÑ r0, 8q is a homeomorphism, this implies that there exists m and λ 0 P p0, 1q such that diampTu 2 u 1 q diampTu 1 q ď λ 0 for all u 2 P X m . This implies the statement of the proposition. □

CONTRACTION COEFFICIENTS

4.1. ℓ p -contraction. Let pG, Bq be a contracting finitely generated group. Fix some finite generating set of G, and let lpgq be the corresponding word length. The ℓ p -contraction coefficient of the group is

η p " lim nÑ8 n g f f e lim sup lpgqÑ8 p ř vPX n lpg| v q p q 1{p lpgq .
The ℓ 8 -contraction coefficient η 8 is defined in the similar way, replacing the ℓ p norm of the vector plpg| v qq vPX n by its ℓ 8 norm max vPX n lpg| v q. The existence of the first limit in the formula defining η p follows from the lemma below. Then η p,n1`n2 ď η p,n1 η p,n2 .

If η p ă 1, then there exist n 0 , l 0 , and η ă 1 such that ÿ vPX n 0 lpg| v q p ď ηlpgq p for all g P G such that lpgq ě l 0 . If we redefine the length by setting lpgq " " lpgq if lpgq ě l 0 0 otherwise , then we get ÿ vPX n 0 lpg| v q p ď ηlpgq p for all g P G. Consequently, ÿ vPX kn 0 lpg| v q p ď η k lpgq p for every k ě 0 and every g P G, hence for all ξ 1 , ξ 2 P X G .

ÿ vPpX n 0 q ˚,lpg|v qěl0 lpg| v q p ď 8 ÿ k"0 ÿ vPX kn 0 lpg| v q p ď 1 1 ´η lpgq p ,
Proof. Denote the sum in the proposition by Σpδ, ξ 1 , ξ 2 q. If δ 1 ą δ, then the set of summands in Σpδ 1 , ξ 1 , ξ 2 q is a subset of the set of summands of Σpδ, ξ 1 , ξ 2 q. It follows from the definition of a contracting model that we have dpI |v| pξ 1 bvq, I |v| pξ 2 b vqq ď Cλ |v| dpξ 1 , ξ 2 q for some constants C ą 1 and λ P p0, 1q. Consequently, for every summand dpI |v| pξ 1 b vq, I |v| pξ 2 b vqq p of Σpδ 1 , ξ 1 , ξ 2 q there is at most some fixed number of summands of Σpδ, ξ 1 , ξ 2 q of the form dpI |vu| pξ 1 b vuq, I |vu| pξ 2 b vuqq p and all the values of these summands are bounded by C p dpI |v| pξ 1 b vq, I |v| pξ 2 b vqq p . It follows that there exists a constant K not depending on ξ 1 , ξ 2 such that Σpδ, ξ 1 , ξ 2 q ď KΣpδ 1 , ξ 1 , ξ 2 q.

Consequently, it is enough to prove the proposition for an arbitrary δ. Let T Ă X be a compact set intersecting every G-orbit and such that IpT b xq Ă T for every x P X. We can find such a set since the maps ξ Þ Ñ Ipξ b xq are contractions. There exist g 1 , g 2 P G such that ξ i P T ¨gi . Since the action of G on X is proper, isometric, and co-compact, there exists a constant L ą 1 such that L ´1lpg 1 g ´1 2 q ´L ď dpξ 1 , ξ 2 q ď Llpg 1 g ´1 2 q `L. In particular, if dpξ 1 , ξ 2 q ą 2L, then p2Lq ´1lpg 1 g ´1 2 q ď dpξ 1 , ξ 2 q ď 2Llpg 1 g ´1 2 q. For every v P X ˚, we have I |v| pξ i bvq " I |v| pξ 1 i ¨gi bvq " I |v| pξ 1 i bg i pvqq¨g i | v for some ξ 1 i P T . By the choice of T , we have I |v| pξ 1 i b g i pvqq P T . Note that pg 1 | v qpg 2 | v q ´1 " pg 1 g ´1 2 q| g2pvq . Therefore, if dpI |v| pξ 1 b vq, I |v| pξ 2 b vqq ą 2L, then it is equal, up to multiplicative constants to the word length of pg 1 g ´1 2 q| g2pvq . We also can guarantee that the word length is greater than any fixed number by bounding from below the distance dpI |v| pξ 1 b vq, I |v| pξ 2 b vqq. It follows that the sum Σpδ, ξ 1 , ξ 2 q, if δ is large enough, is bounded from above by a constant multiple of the sum ř vPX ˚,lpg|v qěl lpg| v q p , where g " g 1 g ´1 2 and l is an arbitrary constant. Proposition 4.3 then finishes the proof. □ Definition 4.5. The portrait of an element g P G is the set P pgq of finite words v P X such that g| u does not belong to the nucleus N of G for any proper prefix u of v. If g P N , then we set P pgq " tHu.

The portrait is prefix-closed, i.e., a rooted subtree of X ˚. Let us denote by Lpgq the set of leaves of this subtree, i.e., the set of words v P X ˚such that g| v P N but g| u R N for any proper prefix u of v.

The following bounds on the size of the portrait is proved in the same way as Proposition 4.3. Proposition 4.6. Let pG, Bq be a contracting group, choose a basis X Ă B. Let p ě 1 be such that η p ă 1. Then there exists a constant C ą 1 such that |P pgq X X n | ď Cη n p lpgq p and |P pgq| ď Clpgq p for every g P G and n ě 0.

The portrait P pgq of an element g together with the labeling of the elements v P P pgq by the permutations the sections g| v induce on the first level X Ă X ˚and the labeling of the elements of Lpgq by the sections g| v P N uniquely determine g. This, together with Proposition 4.6 implies that the growth of the group G is bounded from above by e Cn α for every α ą p c pG, Bq.

Critical exponent and conformal dimension.

Theorem 4.7. Let pG, Bq be a finitely generated contracting group. Its critical exponent p c is not greater than ARdim J G .

Proof. Let d be an Ahlfors-regular quasiconformal metric on J G . Let ν be the corresponding Hausdorff measure, and let α be its Hausdorff dimension. Take β ą α. It is enough to prove that p c ď β, i.e., that η β ă 1.

Let S be a finite symmetric generating set of G. Consider a product g " s m . . . s 2 s 1 of of elements of S. Let n 0 be such that all sections of elements of S in words of length n 0 belong to the nucleus. Then for every u P X n and v 0 P X n0 consider the sequence v 0 u, s 1 pv 0 uq, s 2 s 1 pv 0 uq, . . . , s m . . . s 2 s 1 pv 0 uq.

Denote by u 0 , u 1 , . . . , u m the corresponding suffixes of length n. Then u i " s i | si´1¨¨¨s1pv0q pu i´1 q, so the tiles T ui and T ui´1 intersect in J G , and the tiles T b u i and T b u i´1 intersect in X G .

Choose ξ i,v0u P T ui X T ui´1 for every i " 1, 2, . . . , m. Let R i,v0u and r i,v0u be the smallest and the largest radii such that Bpξ i,v0u , r i,v0u q Ď T pξ i,v0u , nq Ď Bpξ i,v0u , R i,v0u q.

We know that R i,v0u {r i,v0u P r1, Cs and that µpT pξ i,v0u , nqq ě C ´1r α i,v0u ě C ´1´α R α i,v0u , for some constant C ą 1.

Denote by M n the maximum over ξ P J G of the minimal radius R such that T pξ, nq Ă Bpξ, Rq. It follows from Proposition 3.6 that M n Ñ 0 as n Ñ 8.

Consequently (using β ą 1),

pR 1,v0u `R2,v0u `¨¨¨`R m,v0u q β ď m β´1 pR β 1,v0u `Rβ 2,v0u `¨¨¨`R β m,v0u q ď m β´1 M β´α n pR α 1,v0u `Rα 2,v0u `¨¨¨`R α m,v0u q ď m β´1 M β´α n C 1`α pνpT pξ 1,v0u
, nqq `νpT pξ 2,v0u , nqq `¨¨¨`νpT pξ m,v0u , nqqq.

We have ř v0PX n 0 ,uPX n νpT pξ i,v0u , nqq ď |X| n0 ¨|N | 2 ¨νpJ G q, hence adding all the inequalities over all v 0 P X n0 , u P X n , we will get ÿ

v0PX n 0 ,uPX n pR 1,v0u `R2,v0u `¨¨¨`R m,v0u q β ď |X| n0 ¨|N | 2 ¨νpJ G q ¨C1`α ¨M β´α n ¨mβ .
Lemma 4.8. There exists a constant C 1 ą 0, depending only on G, X, and d, such that lpg| v0u q ď C 1 pR 1,v0u `R2,v0u `¨¨¨`R m,v0u q `C1 .

Proof. Let us define a metric on X G . Let ζ 1 , ζ 2 P X G . Take all v 1 , v 2 P B bn for all n ě 0 such that ζ i P pT Sq b v i and pT Sq b v 1 X pT Sq b v 2 ‰ H, and then take the infimum

d 0 pζ 1 , ζ 2 q of diamppT Sq b v 1 {Gq `diamppT Sq b v 2 {Gq.
(Here B b0 " G.) Denote the infimum by d 0 pζ 1 , ζ 2 q (it may be infinite).

We obviously have that d 0 pζ 1 , ζ 2 q is not smaller than the distance between the images of ζ 1 and ζ 2 in J G .

Define then d 1 pζ 1 , ζ 2 q as the infimum of d 0 pξ 0 , ξ 1 q `d0 pξ 1 , ξ 2 q `¨¨¨`d 0 pξ n´1 , ξ n q over all sequences ξ i such that ξ 0 " ζ 1 and ξ n " ζ 2 . Then d 1 is a finite metric on X G . It is obviously G-invariant. For every ξ P X G , the diameter of the union of the tiles of the nth level of X G containing ξ is not larger than the diameter of the union of the tiles of the nth level of J G containing the image of ξ. Consequently, the metric d 1 is compatible with the topology on X G .

Choose a point ξ 0 P T , and consider the sequence

ξ 0 b v 0 u, ξ 0 ¨s1 b v 0 u, ξ 0 ¨s2 s 1 b v 0 u, . . . , ξ 0 ¨sm ¨¨¨s 2 s 1 b v 0 u.
Then R 1,v0u `R2,v0u `¨¨¨`R m,v0u is an upper bound on d 1 pξ 0 b v 0 u, ξ 0 ¨g b v 0 uq. The lemma follows then from Lemma 2.11. □

Note that each R i,v0u is bounded from below by some number r n ą 0. Consequently,

˜ÿ vPX n`n 0 lpg| v q β ¸1{β ď C 1 ˜ÿ v0PX n 0 ,uPX n pR 1,v0u `R2,v0u `¨¨¨`R m,v0u `1q β ¸1{β ď C 1 ˜ÿ v0PX n 0 ,uPX n pR 1,v0u `R2,v0u `¨¨¨`R m,v0u q β ¸1{β `|X n | 1{β ď KM 1´α β n ¨lpgq `|X n | 1{β , which implies that lim sup lpgqÑ8 p ř vPX n`n 0 lpg|vq β q 1{β lpgq ď KM 1´α β n
. Since M n Ñ 0 as n Ñ 8, Lemma 4.1 implies that η β ă 1. □ Remark 4.9. The inequality in Theorem 4.7 is not sharp. For example, it is known that η 1 for the first Grigorchuk group G is strictly less than 1 (this is the classical sum-contraction of Grigorchuk [START_REF] Grigorchuk | Degrees of growth of finitely generated groups and the theory of invariant means[END_REF]), which implies by the inequality (5) that its critical exponent is strictly less than 1. On the other hand, the limit space of the Grigorchuk group is a segment, hence we have ARdim J G " 1. In fact, it follows from the norm contracting inequality in [START_REF] Bartholdi | The growth of Grigorchuk's torsion group[END_REF] and the explicit sequence of group elements which satisfies the reverse inequality (see [START_REF] Bartholdi | Growth of permutational extensions[END_REF][Prop 4.7]), we have that its critical exponent is equal to α 0 " log 2{ log λ 0 » 0.7674, where λ 0 is the positive real root of the polynomial X 3 ´X2 ´2X ´4. Recall the definition of critical constant for Liouville property in the Introduction. From the random walk with nontrivial Poisson boundary constructed in [START_REF] Erschler | Growth of periodic Grigorchuk groups[END_REF] for the purpose of volume lower estimate, we have that Cr Liouv pGq is also equal to α 0 and α 0 is the growth exponent of G.

Thurston obstructions.

Let pG, Bq be a self-similar group. Consider the linear span V of conjugacy classes of infinite order elements of G. We denote by rgs the conjugacy class of an element g P G seen as an element of V . If g is of finite order, then we define rgs to be equal to zero. Choose a basis X Ă B and the associated self-similar action on X ˚.

Let g P G. Consider the action of g on X, and for every cycle

x 1 Þ Ñ x 2 Þ Ñ . . . Þ Ñ x k Þ Ñ x 1
of the action, consider the conjugacy class rg| x k ¨¨¨g| x2 g| x1 s " rpg k q| x1 s. Note that it does not depend on the choice of the initial element x 1 of the cycle. Choose p ě 1, and denote by T p prgsq the sum of the elements k 1´p rpg k q| x1 s P V taken over all cycles of the action of g on X. Since a change of the basis X corresponds to conjugation of the wreath recursion by an element of the wreath product, the value of T p prgsq does not depend on the choice of X. For example, if a " σp1, aq is the binary odometer, then we have T p prasq " 2 1´p ras.

We call the linear operator T p the Thurston's p-map.

Lemma 4.10. If T p is the Thurston's p-map for pG, Bq, then the Thurston's p-map for pG,

B bn q is T n p . Proof. Let x 1 Þ Ñ x 2 Þ Ñ ¨¨¨Þ Ñ x k Þ Ñ x 1 be a cycle of the action of g on X. Denote h " pg k q| x1 . For every cycle v 1 Þ Ñ v 2 Þ Ñ ¨¨¨Þ Ñ v m Þ Ñ v 1 of
the action of h on X n we get the cycle

x 1 v 1 Þ Ñ x 2 g| x1 pv 1 q Þ Ñ ¨¨¨Þ Ñ x k pg k´1 q x1 pv 1 q Þ Ñ x 1 v 2 Þ Ñ x 2 g| x1 pv 2 q Þ Ñ ¨¨¨Þ Ñ x k pg k´1 q x1 pv 2 q Þ Ñ . . . x 1 v m Þ Ñ x 2 g| x1 pv m q Þ Ñ ¨¨¨Þ Ñ x k pg k´1 q x1 pv m q Þ Ñ x 1 v 1
of length km of the action of g on X n`1 . We have pg km q| x1v1 " h m | v1 . A proof of the lemma now follows by induction. □ Theorem 4.11. Suppose that U ă V is T p -invariant subspace spanned by a finite set of conjugacy classes. If the ℓ p -contraction coefficient η p of pG, Bq is less than 1, then the spectral radius of T p | U is also less than 1.

In particular, we can use this theorem to find lower estimates for p c pG, Bq, and hence for ARdimpG, Bq.

A particular case of this theorem is related to one direction of the Thurston's theorem (see [START_REF] Douady | A proof of Thurston's topological characterization of rational functions[END_REF]) characterizing post-critically finite branched self-coverings of the sphere that are realizable as complex rational function. In Thurston's theorem one considers subspaces spanned by conjugacy classes defined by disjoint simple closed curves of the punctured sphere (with some additional conditions). Such collections of curves are called multicurves.

Proof. Let trg 1 s, rg 2 s, . . . , rg m su be a finite spanning set of U . Let N be a natural number such that the action of each element g N i on X is identical. Denote by L i,kN the length of g iN i (with respect to some fixed finite generating set of the group). We have then L i,k1k2N ď k 1 L i,k2N for all i " 1, . . . , m, k 1 , k 2 ě 1. Equivalently, we have

L i,k2N ě k ´1 1 L i,k1k2N
. Note also that L i,kN Ñ 8 as kN Ñ 8, since we assume that the elements g i are of infinite order.

Assume that η p ă 1. Let η be such that η p ă η ă 1. After replacing X by X n for a large n (using Lemma 4.10) and assuming that N is large enough, we will have

ÿ xPX lpg N k i | x q p ď ηlpg N k i q p
for all i and k.

For cycle

x 1 Þ Ñ x 2 Þ Ñ ¨¨¨Þ Ñ x r Þ Ñ x 1 of g i , the corresponding sections g N k i | xi are conjugated to pg r i | x1 q N k r . If g r i |
x1 has infinite order, then it is conjugate to one of the elements g j . Since the number of corresponding conjugators is finite, we get lpg N k i | xi q ě L j,N k{r ´C. Choose an arbitrary ρ P pη, 1q, so that η ´1ρ ą 1. Assuming that N is large enough, we will get lpg N k i | xi q ě ρL j,N k{r for all k ě 1. Consequently,

r ÿ i"1 lpg N k i | xi q p ě ρrL p j,N k{r ě ρr `r´1 L j,N k ˘p " ρr 1´p L p j,N k .

It follows that

L p i,N k " lpg N k i q p ě η ´1 ÿ xPX lpg N k i | x q p ě η ´1ρ ¨ϕpT p prg i sqq,
where ϕ is the linear functional defined by ϕprg j sq " L p j,N k . Consider the matrix of the dual operator T p in the basis of U ˚dual to the basis prg 1 s, rg 2 s, . . . , rg m sq. The above inequality means that the ith coordinate T p pϕqprg i sq " ϕpT p prg i sq of T ˚pϕq P U ˚is less than or equal to ηρ ´1 times the ith coordinate ϕprg i sq of ϕ. Since all coordinates of ϕ are positive, Perron-Frobenius theorem implies that the spectral radius of T p is strictly less than 1. Consequently, the spectral radius of T p is also strictly less than 1.

□

As an example of an application of Theorem 4.11 (and Thurston's theorem), consider a mating of two cubic polynomials, found by M. Shishikura and L. Tan, see [START_REF] Shishikura | A family of cubic rational maps and matings of cubic polynomials[END_REF].

The iterated monodromy group is generated by

a 1 " p12qp1, 1, a 3 q, b 1 " p1, b 3 , 1q, a 2 " pa 1 , 1, 1q, b 2 " pb 1 , 1, 1q, a 3 " p02qpa ´1 3 , 1, a 2 a 3 q, b 3 " p012qpb ´1 3 , 1, b 2 b 3 q. Note that a 1 a 2 a 3 " b 1 b 2 b 3 " τ ,
where τ " p012qp1, 1, τ q. The groups xa 1 , a 2 , a 3 y and xb 1 , b 2 , b 3 y are the iterated monodromy groups of the mated cubic polynomials.

It is checked directly that the group is contracting with the nucleus consisting of the elements a 3 , a 2 a 3 , b 3 , b 2 b 3 , a 1 a 2 a 3 " b 1 b 2 b 3 , their inverses, and the identity element. Moreover, the wreath recursion is contracting for the free group (of rank 5), hence the limit space has topological dimension 1, see [START_REF]Topological dimension and self-similar groups[END_REF]Theorem 4.4].

Post-conjugating the wreath recursion by p1, b ´1 3 , b ´1 3 q, and passing to the generating set b 1 , b 2 , b 3 , x " b ´1 1 a 1 , y " b 3 a ´1 3 (we have b ´1 2 a 2 " yx ´1 in the faithful quotient), we get an equivalent wreath recursion:

b 1 " p1, b 3 , 1q, x " p12qp1, 1, y ´1q, b 2 " pb 1 , 1, 1q, y " p12qpx, 1, y ´1q, b 3 " p012qp1, 1, b 2 q.
Let U be the formal linear span of the conjugacy classes rxs, rx ´1s, rys, ry ´1s. Thurston map T 2 acts by the rule

rxs Þ Ñ 1 2 ry ´1s, rx ´1s Þ Ñ 1 2 rys, rys Þ Ñ rxs `1 2 ry ´1s, ry ´1s Þ Ñ rx ´1s `1 2 rys.
It is easy to see that the spectral radius of T 2 | U is equal to 1. In particular, this means, by Thurston's theorem, that the mating is obstructed, i.e., is not equivalent to a rational function. Theorem 4.11 implies that the conformal dimension of the limit space of the group is at least 2.

RANDOM WALK AND LIOUVILLE PROPERTY

5.1. Random walk preliminaries.

5.1.1.

Notation. Let G be a group endowed with a symmetric probability measure µ. The measure µ is said to be non-degenerate if its support supp µ generates G as a semi-group. If G is finitely generated, the measure µ is said to have finite p-moment for p ą 0 if ř µpgqlpgq p ă `8, where lp¨q is the word metric on G associated to some finite symmetric generating set. We denote by pg t q the (left) random walk associated to µ, namely g t " s t ¨¨¨s 1 , where ps i q iě1 is a sequence of independent random variables with distribution µ.

5.1.2.

Capacities and random walk on Schreier graphs. Assume that G acts on a countable set Ω. Then for each starting point ω P Ω, the process pg t ¨ωq is a Markov chain on Ω with transition probabilities ppv, wq " ř g¨v"w µpgq. The assumption that µ is symmetric implies that the induced Markov chain is reversible with respect to the counting measure on Ω, which we use as the reference measure in the Dirichlet forms below. For p ě 1, the associated p-Dirichlet form on ℓ p pΩq is

E p,µ pf q " 1 2 ÿ gPG,vPΩ
µpgq|f pvq ´f pg ¨vq| p , f P ℓ p pΩq.

Let A, B be two disjoint finite subsets of Ω. For p ě 1, the (effective) p-capacity between A and B is defined as

Cap p,µ pA, Bq " inf tE p,v pf q : f P ℓ p pΩq, f | A " 1, f | B " 0u .
For p " 2 this has a well-known probabilistic interpretation. The following is a reformulation of [30, Exercises 2.13 and 2.47], we provide a proof for completeness. Lemma 5.1. Let pG, µq be a group endowed with a probability measure, and pg n q the associated random walk. Assume that G acts on a finite set Ω . For ω P Ω and B Ă Ω, consider the stopping time:

T ωÑB " mintt ě 1 : g t ¨ω P Bu.

(3) Assume that a random variable Y can be expressed as Y " f pX 1 , . . . , X k q for some discrete random variables X 1 , . . . , X k and some measurable function f . Then HpYq ď HpX 1 q `¨¨¨`HpX k q.

Another well-known and elementary fact is that every random variable X taking values in the non-negative integers N and with finite expectation satisfies

HpXq ď logp1 `ErXsq `1.
This in turn gives the following simple bound for random variable taking values in a group.

Lemma 5.3. Let G be a finitely generated group and lp¨q be a word metric on G associated to a finite symmetric generating set S containing the identity. Then for every G-valued random variable g with finite entropy we have Hpgq ď plog |S| `1qErlpgqs `1.

Proof. We may assume that the expectation of lpgq is finite. We have Hpgq ď Hpg|lpgqqH pgq. Let g pnq be the variable g conditioned to lpgq " n. Since g pnq belongs to S n , we have Hpg pnq q ď n log |S| and Hpg|lpgqq ď log |S|Eplpgqq. On the other hand Hplpgqq ď Eplpgqq `1. □ Assume that µ is a probability measure on a countable group G. Then the limit h µ " lim 1 n Hpµ ˚nq exists and is called the (Avez) asymptotic entropy of µ. The entropy criterion, proven by Kaimanovich and Vershik [START_REF] Kaȋmanovich | Random walks on discrete groups: boundary and entropy[END_REF] and Derriennic [START_REF] Derriennic | Quelques applications du théorème ergodique sous-additif[END_REF], states that if Hpµq ă `8, then µ has trivial Poisson boundary if and only if h µ " 0.

For groups acting on rooted trees, the entropy criterion combined with the previous properties of entropy gives the following sufficient condition for boundary triviality. Some tightly related criteria appeared in [START_REF] Bartholdi | Amenability via random walks[END_REF][START_REF] Vadim | Münchhausen trick" and amenability of self-similar groups[END_REF] and were used in several papers. Proposition 5.4. Let G be a finitely generated group of automorphisms of a rooted tree X ˚endowed with a word metric, and µ be a probability measure on G with finite entropy. Then there is a constant C ą 0 such that for every n, t ą 0 we have

Hpµ ˚tq ď CEr ÿ vPX n lpg t | v qs `C|X| n .
In particular, if there exists a sequence pε n q tending to 0 such that for every n we have

lim tÑ8 1 t E « ÿ vPX n lpg t | v q ff ď ε n ,
then µ has trivial Poisson boundary.

Proof. For every n and t, the variable g t is completely determined by the collection of sections pg t | v q vPX n and by the permutation σ describing the action on level n. Thus

Hpg t q ď ÿ vPX n
Hpg t | v q `Hpσq.

By Lemma 5.3, the first term is bounded by C 1 Er ř vPX n lpg t | v qs `C1 |X| n . The permutation σ is completely determined by the first-level permutation of all sections g t | w where |w| ď n ´1. Thus the total number of possibilities for σ is bounded by exppC 2 |X| n q, and Hpσq ď C 2 |X| n for some constant C 2 ą 0. The proposition follows. □ 5.2. Critical contraction exponent and p-capacity. Let pG, Bq be a finitely generated contracting group with a basis X, and µ be a symmetric measure on G. In this subsection we will relate the p-capacities associated to the action of G on the levels X n with p c pG, Bq and ARdim J G .

Proposition 5.5. Suppose that pG, Bq is a contracting finitely generated group. Denote by lpgq the word length with respect to some fixed finite generating set on G.

Let d be an Ahlfors-regular metric on J G of Hausdorff dimension α. Let β ą α and let p ą p c pG, Bq. Pick a basis X Ă B.

There exists a sequence ϵ n Ñ 0 such that for every g P G and every . . . 

´1

converges to zero if simultaneously n ´kn Ñ 8 and k n Ñ 8. Note that this coefficient does not depend on g. We have proved that there exists a sequence ϵ n Ñ 0 not depending on g such that ÿ

vPX n dp. . . x 2 x 1 gpvq, . . . x 2 x 1 vq β ď ϵ n lpgq p for all g P G.

If the group pG, Bq is self-replicating, then the second part of Proposition 3.6 implies that (for example, if we choose k n " tn{2u) we can choose ϵ n of the form Cλ n for some C ą 0 and λ P p0, 1q. □ Theorem 5.6. Let pG, Bq be a contracting finitely generated self-similar group, and let µ be a symmetric probability on G with finite p-moment for some p ą p c pG, Bq.

Let A and B be disjoint closed subsets of J G . Fix ξ 0 " . . . x 2 x 1 P X ´ω , and denote by A n and B n the sets of words v P X n such that the point of J G represented by the sequence . . . x 2 x 1 v belongs to A and B, respectively. If β ą ARdim J G then lim nÑ8 Cap β,µ pA n , B n q " 0.

Moreover if pG, Bq is self replicating, then there exist C ą 0 and λ P p0, 1q such that Cap β,µ pA n , B n q ď Cλ n .

Proof. The algebra of Lipschitz functions J G ÝÑ R is dense in the algebra of all continuous functions, by Stone-Weierstrass theorem. Therefore, for every ϵ ą 0, there exists a Lipschitz function f 0 : J G ÝÑ R such that |f 0 paq ´1| ă ϵ and |f 0 pbq| ă ϵ for all a P A and b P B. Let χ : R ÝÑ R be a Lipschitz (with respect to the usual metric on R) function such that χpxq " 0 for all x P p´1{3, 1{3q and χpxq " 1 for all x P p2{3, 5{3q. Then the function f " χ ˝f0 : J G ÝÑ R is a Lipschitz function such that f paq " 0 and f pbq " 1 for all a P A and b P B. By Proposition 5.5 there exists C ą 0 and a sequence pϵ n q tending to 0 such that for every g P G

ÿ vPX n |f p¨¨¨x 2 x 1 gpvqq ´f p¨¨¨x 2 x 1 vq| p ď C 1 ϵ n ℓpgq p .
This finishes the proof. □ Remark 5.7. Given an infinite index subgroup H of a finitely generated group G, the (symmetric) critical constant for recurrence CrpG, Hq is defined as the infinum of p such that all symmetric random walks with finite p-moment induce recurrent random walks on G{H. This notion was introduced by Erschler [START_REF] Erschler | Critical constants for recurrence of random walks on G-spaces[END_REF]. In our setting, Theorem 5.6 implies that if ARdim J G ă 2, and if H is a stabiliser for the action of G on the boundary X ω of the tree, then CrpG, Hq ď p c pG, Bq. This inequality is an equality in some cases (for the Grigorchuk and Basilica group for instance). We do not know whether this inequality is always sharp.

We conclude this subsection by pointing out a consequence of Theorem 5.6 which will be used in the proof of Liouville property next subsection. To state it, we first note that the topological dimension of J G is always bounded above by ARdim J G (see [START_REF] Mackay | Conformal dimension[END_REF]Theorem Since ε n tends to 0 as n Ñ 8, Proposition 5.4 concludes the proof.

□

We now move to the general case.

Proof of Theorem 5.9. First note that when p c pG, Bq ă 1, the upper volume growth exponent of G is ď p c . It follows from a general argument that any measure (not necessarily symmetric) of finite p-moment, p ą p c pG, Bq, has finite entropy and trivial Poisson boundary, see Corollary 2.3 in [START_REF] Erschler | Growth of periodic Grigorchuk groups[END_REF]. For the rest of the proof assume p c pG, Bq ě 1. Let µ be a measure on G of finite p-moment, p ą p c pG, Bq. In particular, µ has finite first moment, and thus expectations of length of sections lpg t | v q are finite. By Corollary 5.8, we have the capacity estimate [START_REF] Bartholdi | Growth of permutational extensions[END_REF] ϵ n :" max z1,z2PΓ0

Cap 2,µ pU z1,n , U z2,n q Ñ 0.

The main difference from the finite-support case is that we can no longer apply directly Theorem 2.17 to a word s t ¨¨¨s 1 consisting of samples of µ because the support of µ is infinite.

Let us follow the proof of Theorem 2.17 and take notations set there. Let s t ¨¨¨s 2 s 1 be a sample of the random walk, and set g i " s i ¨¨¨s 2 s 1 , with g 0 " 1, and ξ i " ξ 0 ¨gi . Let n be large enough and for v P X n fixed choose a geodesic path from I n pξ i´1 b vq to I n pξ i b vq and let γ " δ t ¨¨¨δ 1 be their concatenation. By the same arguments as in Theorem 2.17, the length of g| v is bounded by an affine function of the total number of edges crossed by γ. Consider a crossing of an edge e corresponding to a subcurve γ| rt1,t2s , and let δ i , δ j be the subcurves containing γpt 1 q and γpt 2 q. If both δ i and δ j have length less than 1/3, then we can associate to the crossing of e a traverse of the word s t ¨¨¨s 2 s 1 . The number of edges crossed by γ whose beginning or end is inside a path δ i of length ě 1{3 is not larger than the length of δ i plus 2, and hence less than a constant times the length of δ i . We obtain the estimate

ÿ vPX n ℓpg t | v q ď C|X| n `Cτ n ps t ¨¨¨s 2 s 1 q `C t ÿ i"1 ÿ vPX n ,dpI n pξibvq,I n pξi´1bvqqě1{3
dpI n pξ i b vq, I n pξ i´1 b vqq, for some C ą 0. By [START_REF] Bartholdi | Growth of permutational extensions[END_REF] the expected total number of traverses (summed over all v P X n ), that is, E rτ n ps t ¨¨¨s 2 s 1 qs, is bounded by ϵ n ¨t for a sequence ϵ n converging to 0, by the same argument as for finitely supported measures. Next note that each term dpI n pξ i b vq, I n pξ i´1 bvqq in the second sum is bounded above by 3 p´1 dpI n pξ i bvq, I n pξ i´1 bvqq p . By Proposition 4.4 we have that

ÿ vPX ˚,dpI |v| pξibvq,I | v|pξi´1bvqqě1{3 dpI n pξ i b vq, I n pξ i´1 b vqq p ď C 1 dpξ i , ξ i´1 q p ď pC 2 lps i q `C2 q p .
The last term has finite expectation, since µ has finite p-moment. Thus the series 6. EXAMPLES 6.1. Automata of polynomial activity growth. Let G be a faithful self-similar group acting on X ˚. Consider, for g P G the function α g pnq " |tv P X n : g| v ‰ 1u| counting the number of non-trivial sections on the nth level. Since the total set of sections tg| v : v P X ˚u is finite, α g pnq is the number of paths in a finite directed graph (the Moore diagram with the trivial state removed) starting in a vertex. Therefore, the function α g pnq is either exponentially growing, or is bounded by a polynomial. It is not hard to show that the subset of elements g P G for which α g pnq is bounded from above by a polynomial of degree d is a subgroup of G. We say that G is generated by an automaton of polynomial activity growth if α g pnq is bounded by a polynomial for every g P G.

Groups generated by automata of polynomial activity growth were introduced by S. Sidki in [START_REF] Said | Automorphisms of one-rooted trees: growth, circuit structure and acyclicity[END_REF] (in greater generality than we described here). In particular, he showed that such groups can not have free subgroups.

A special sub-class of such groups are groups generated by bounded automata, i.e., consisting of elements g such that α g pnq is bounded. It includes iterated monodromy groups of all post-critically finite polynomials (see [START_REF] Bartholdi | Iterated monodromy groups of quadratic polynomials I[END_REF][START_REF]Combinatorics of polynomial iterations, Complex dynamics -families and friends[END_REF]).

L. Bartholdi and B. Virág proved amenability of IMG `z2 ´1˘i n [9] using random walks. Their methods were extended in [START_REF] Bartholdi | On amenability of automata groups[END_REF] to prove that all groups generated by bounded automata are amenable. Later, this result was extended to groups for which α g pnq is bounded by polynomials of degree 1 (in [START_REF] Amir | Amenability of linear-activity automaton groups[END_REF]) and 2 (in [START_REF]Amenability of quadratic automaton groups[END_REF]).

The following theorem is proved in [START_REF] Nekrashevych | On amenability of iterated monodromy groups[END_REF].

Theorem 6.1. If pG, Bq is a contracting group such that its action on X ˚for some basis X Ă B is a subgroup of the group of automata of polynomial activity growth, then ARdim J G ď 1.

Corollary 6.2. If pG, Bq satisfies the conditions of the above theorem, and if µ is a symmetric probability measure on G with a finite p-moment for some p ą 1, then the µ-random walk is Liouville. In particular G is amenable.

Note that groups generated by bounded automata are always contracting, but this is no longer true for groups generated by automata of polynomial activity of degree at least 1. For example, the group generated by the wreath recursion a " σp1, aq and b " pb, aq is generated by automata of linear activity growth and is not contracting. By [START_REF] Amir | Positive speed for high-degree automaton groups[END_REF], there are automata groups of polynomial activity that are not Liouville for any finitely supported symmetric non-degenerate measure, so that the contracting assumption is crucial in Corollary 6.2.

It follows from the results of [START_REF] Juschenko | Extensions of amenable groups by recurrent groupoids[END_REF] that a sufficient condition for a group generated by automata of polynomial activity growth to be amenable is recurrence of the orbital graphs of its action on the boundary of the tree X ˚(see the proof of [START_REF] Juschenko | Extensions of amenable groups by recurrent groupoids[END_REF]Theorem 5.1]). This gives another way to conclude amenability of groups satisfying the conditions of Theorem 6.1, see [START_REF] Nekrashevych | On amenability of iterated monodromy groups[END_REF]. The statement on the Liouville property in Corollary 6.2 is new. For bounded automata groups, it extends the result of [START_REF] Amir | The Liouville property for groups acting on rooted trees[END_REF] to measures with a moment condition (in that particular case the proof of Theorem 5.9 can actually be modified to include measures with finite first moment, by observing that Proposition 4.6 holds for p " 1). 6.2. Iterated monodromy groups of rational functions. Theorem 6.3. Let f P Cpzq be a post-critically finite rational function. Then the canonical homeomorphism of the limit space of IMG pf q with the Julia set of f is a quasi-symmetry with respect to the visual metric on the limit space and the spherical metric on the Julia set.

Proof. This is a result of P. Haïssinksy and K. Pilgrim. Namely, it is proved in [20, Theorem 6.15] that the limit dynamical system s : J G ÝÑ J G of every self-replicating contracting group is coarse expanding conformal with respect to a visual metric (see the definition in [START_REF] Haïssinsky | Pilgrim, Coarse expanding conformal dynamics[END_REF]).

It is also shown in [START_REF]Finite type coarse expanding conformal dynamics[END_REF]Theorem 3.3] that for every post-critically finite rational function f the spherical metric restricted to a neighborhood of the Julia set of f is also coarse expanding conformal. By [START_REF] Haïssinsky | Pilgrim, Coarse expanding conformal dynamics[END_REF]Theorem 2.8.2] any topological conjugacy between coarse expanding conformal dynamical systems is a quasi-symmetry. □ Corollary 6.4. Let f P Cpzq be a post-critically finite rational function such that its Julia set is not the whole sphere (equivalently, if f has a cycle containing a critical point).

Then IMG pf q is amenable. Moreover, if µ is a symmetric measure on IMG pf q with finite second moment, then the random walk generated by µ is Liouville.

Proof. By Theorems 6.3, 5.9, and 4.7, it is enough to show that the Julia set of f has Hausdorff dimension strictly less than 2. But this is shown in [START_REF] Curtis | Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps[END_REF]Corollary 6.2]. □

Let us consider some examples of iterated monodromy groups that are not generated by automata of polynomial activity growth.

Consider f pzq " z 2 ´1 16z 2 . This function is representative of the well-studied family of maps of the form z n `λ z m , see the survey [START_REF] Blanchard | Sierpinski carpets and gaskets as Julia sets of rational maps[END_REF]. See the Julia set of this function on Figure 1.

Its critical points are 0, 8, and roots of z 4 ´1{16. The latter critical points are mapped to ˘i 2 , which are both mapped to 0. Consequently, the post-critical set is t0, 8, i{2, ´i{2u. Let us take the generators a, b, c given by loops around the points 0, i{2, and ´i{2, respectively, and connected to a basepoint, which we choose to be equal to 1. The preimages of the basepoint 1 are ˘a2 ˘?5{2 (where the choices of the sign are independent), which are approximately equal to ˘0.24i and ˘1.03. Let us connect the basepoint to the preimages « ˘0.24i and « 1.03 by straight paths. We can not do it for ´1.03, since such a path will contain 0. Let us connect it to the basepoint by a path passing below 0. We denote the connecting paths from 1 to « 0.24i, « ´1.03, « ´0.24i, « 1.03 by ℓ 1 , ℓ 2 , ℓ 3 , ℓ 4 , respectively. This will be our chosen basis of the biset associated with the rational function (see 2.4). We also denote ℓ 1 , ℓ 2 , ℓ 3 , ℓ 4 just by 1, 2, 3, 4 when we write the corresponding wreath recursion.

The generators a, b, c, and their preimages f ´1paq, f ´1pbq, f ´1pcq together with the connecting paths ℓ i are shown on Figure 2.

It follows that the iterated monodromy group is generated by the wreath recursion

a " pb, 1, c, 1q, b " p23qp14q, c " p12qp34qpa, a ´1, 1, 1q.
Note that all generators are of order 2. (In particular, we may replace a ´1 by a in the wreath recursion.)

The wreath recursion implies the recurrent rules for the graph of actions on the levels X n of the tree, shown on Figure 3. The same substitution rules from Figure 3 are also valid for the infinite orbital Schreier graphs of the action on the boundary X ω of the tree X ˚. If we assume that the edges corresponding to a have length 0, and the edges corresponding to b and c have length 1, then we get graphs that are (uniformly) quasi-isometric to the Schreier graphs (since the group xay is finite). It follows then from the recurrent rules that the shift map xv Þ Ñ v contracts the distances twice. Since this map is four-to-one, it follows that the orbital Schreier graphs have quadratic growth.

See Figure 4 where the graph of the action on the 5th level X 5 is shown in a way approximating the Julia set of z 2 ´1 16 z 2 . 6.3. Sierpi ński carpet group. Let X " t1, ¨¨¨, 8u be an alphabet. Consider the group G acting on X ˚generated by the set S " ta, b, c, du, given by the wreath recursion Its dual Moore diagram is shown in Figure 5.

The limit space J G can be identified (up to quasisymmetry) with the classical Sierpiński carpet, obtained by successively subdividing a euclidean square into nine equal squares and removing the middle one. The limit dynamical system s : J G Ñ J G can be described by FIGURE 2. Generators of IMG `z2 ´1{16z 2 first dilating the carpet by a factor nine, and then folding it in the natural way, so that each of the eight tiles of the dilated carpet is mapped isometrically onto the original carpet (preserving the orientation for the four corner tiles, and reversing it for the four remaining ones).

The products ab, bc, cd, and ad are of order 6. For example, ab " p12qp476qp58qpb, b, ba, 1, a, 1, 1, aq, so pabq 2 " p476qp1, 1, pbaq 2 , 1, 1, 1, 1, 1q, and pabq 6 " p1, 1, pbaq 6 , 1, 1, 1, 1, 1q, which implies that pabq 6 " 1.

We have ac " p123qp678qpc, a, 1, c, a, c, a, 1q, hence ac has infinite order and pacq 6 " ppacq 2 , pcaq 2 , pacq 2 , 1, 1, pacq 2 , pcaq 2 , pacq 2 q.

It follows that the Thurston's p-map T p satisfies T p pracsq " 2 ¨31´p racs.

It is contracting only when 1 ´p ă log 2 log 3 , i.e., for p ą log 6 log 3 . Consequently, p c pG, Bq ě Consider the group H of affine transformations of the space Z 3 2 (where Z 2 is the ring of dyadic integers) of the form ⃗ x Þ Ñ p´1q k ⃗ x `⃗ v, where ⃗ v P Z 3 and k " 0, 1.

We will denote the points of Z '`2⃗ y.

Essentially, we are using the binary numeration system with digits 0 and ´1, but write 1 instead of ´1.

Denote, for pi 1 , i 2 , i 3 q P t0, 1u '' if i t `jt " 2l t ´kt . Equivalently, l t " maxpi t , j t q and k t is i t `lt modulo 2.

To shorten notation, let us denote the columns ¨0 0 0

', ¨0 0 1 ', ¨0 1 0 ', ¨0 1 1 ', ¨1 0 0 ', ¨1 0 1 ', ¨1 1 0 ', ¨1 1 1 
' by 0, 1, 2, 3, 4, 5, 6, 7, respectively. Similarly, we will denote the generators a i1i2i3 by a 0 , a 1 , . . . , a 7 . We have then a 0 " pa 0 , a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 q, a 1 " p01qp23qp45qp67qpa 1 , a 1 , a 3 , a 3 , a 5 , a 5 , a 7 , a 7 q, a 2 " p02qp13qp46qp57qpa 2 , a 3 , a 2 , a 3 , a 6 , a 7 , a 6 , a 7 q, a 3 " p03qp12qp47qp56qpa 3 , a 3 , a 3 , a 3 , a 7 , a 7 , a 7 , a 7 q, a 4 " p04qp15qp26qp37qpa 4 , a 5 , a 6 , a 7 , a 4 , a 5 , a 6 , a 7 q, a 5 " p05qp14qp27qp36qpa 5 , a 5 , a 7 , a 7 , a 5 , a 5 , a 7 , a 7 q, a 6 " p06qp17qp24qp35qpa 6 , a 7 , a 6 , a 7 , a 6 , a 7 , a 6 , a 7 q, a 7 " p07qp16qp25qp34qpa 7 , a 7 , a 7 , a 7 , a 7 , a 7 , a 7 , a 7 q.

Note that a 0 is not a section of any of the other generators a i . Let us "fragment" a 0 into a product of two commuting elements b and c given by b " pb, a 1 , 1, 1, 1, 1, 1, 1q, c " pc, 1, a 2 , a 3 , a 4 , a 5 , a 6 , a 7 q.

Note that b, c R G and bc " a 0 . Let G be the group generated by H and b, c. Proposition 6.5. Let µ be the uniform probability measure on the generating set ta i u i"1,...7 Y tb, cu of G. Then the µ-random walk is not Liouville.

Proof. It follows directly from the recursion that if not all letters of v P X ˚are 0 and the first non-zero letter of v is 1, then bpvq " a 0 pvq and b| v " a 0 | v . If not all letters of v are 0 and the first non-zero letter is not 1, then bpvq " v and b| v " 1. Similar statement (but other way around) is true for c.

Define the map χ : H ÝÑ t0, 1u by the condition that χpgq " 0 if g ´1| 00 . . . 0 loomoon n times P G for all n large enough, and χpgq " 1 otherwise.

Then, according to the first paragraph of the proof, if g P H and s P ta i u i"1,...,7 Ytb, cu is a generator, then χpgq ‰ χpgsq only if gp00 . . .q " 00 . . . and s P tb, cu.

Consider the µ-random walk on G. The induced random walk on the G-orbit of 000 . . . coincides with a random walk on generated by a finitely supported measure on the generating set ta i u i"0,1,...,7 Y t1u of H. Since the Schreier graph is quasi-isometric to Z 3 , and simple random walk on Z 3 is transient by Pólya's theorem, it follows from the comparison theorem (see e.g., [START_REF] Lyons | Probability on trees and networks[END_REF]Theorem 2.17]) that this random walk is transient. Consequently, it will visit 000 . . . finitely many times almost surely, and so the value of χ along a trajectory of the walk will be eventually constant. The eventual value of χ will be a non-trivial event invariant under the tail equivalence relation, hence the Poisson boundary of the random walk is non-trivial. □ Tianyi Zheng Department of Mathematics University of California, San Diego (UCSD), 9500 Gilman Drive # 0112, La Jolla, CA 92093-0112, United States of America tzheng2@math.ucsd.edu
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 2236 Theorem 10.19], the identity map is quasisymmetric. □ Let d be an Ahlfors regular quasi-conformal metric on J G . Then lim nÑ8 sup ξPJ G diampT pξ, nqq Ñ 0 as n Ñ 8. If d is quasisymmetric to a visual metric, then there exist C ą 0 and λ P p0, 1q such that sup ξPJ G diampT pξ, nqq ď Cλ n for all n.

Lemma 4 . 1 .

 41 Denoteη p,n " lim sup lpgqÑ8 p ř vPX n lpg| v q p q 1{p lpgq .

which finishes the proof. □ Proposition 4 . 4 .

 44 Let I : X b B ÝÑ X be a contracting model of the group pG, Bq. For every p ą p c pG, Bq and every δ ą 0 there exists C such that ÿ vPX ˚,dpI |v| pξ1bvq,dpI |v| pξ2bvqqěδ dpI |v| pξ 1 b vq, I |v| pξ 2 b vqq p ď Cdpξ 1 , ξ 2 q p

E

  ¨ÿ vPX n ,dpI n pξibvq,I n pξi´1bvqqě1{3 dpI n pξ i b vq, I n pξ i´1 b vqq p ' is convergent. Therefore its terms converge to 0 as n tends to 8. This finishes the proof by Proposition 5.4. □ Theorem 1.3 stated in the Introduction follows from Theorem 4.7 and 5.9.
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 1 FIGURE 1. The Julia set of z 2 ´1 16z 2
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  " p12qp67qp1, 1, a, 1, a, 1, 1, aq b " p46qp58qpb, b, b, 1, 1, 1, 1, 1q c " p23qp78qpc, 1, 1, c, 1, c, 1, 1q d " p14qp35qp1, 1, 1, 1, 1, d, d, dq
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 63 by Theorem 4.11. In particular, Theorem 4.7 provides the same lower bound for ARdimpG, Bq.
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 383 FIGURE 3. Recursion rules for Schreier graphs of IMG `z2 ´1{16z 2 Ȏn

  x 2 x 1 P X dp. . . x 2 x 1 gpvq, . . . x 2 x 1 vq β ď ϵ n lpgq p .If pG, Bq is self-replicating, then we can take ϵ n " Cλ n for some C ą 0 and λ P p0, 1q.Proof. Let ν be the Hausdorff measure of the metric d. Take an element g P G. For every v P X n , let v 1 be the shortest prefix of v such that g| v P N . If such a prefix does not exist, then define v1 " v. Let v 2 P X ˚be such that v " v 1 v 2 .We have . . . x 2 x 1 gpvq P T p. . . x 2 x 1 v, |v 2 |q for every v P X n . It follows that dp. . . x 2 x 1 gpvq, . . . x 2 x 1 vq α ď C 1 νpT p. . . x 2 x 1 v, |v 2 |q for some constant C 1 . Therefore, there exists C 2 ą 0 such that for every sequence pk n q we have ÿ vPX n dp. . . x 2 x 1 gpvq, . . . x 2 x 1 vq β ď C 2 : |v 2 | ď k n u| ď C 3 η n´kn p lpgq p , for some C 3 not depending on k n or on g. For the second summand, note that if T p. . . x 2 x 1 v 1 , |v 2 1 |q and T p. . . x 2 x 1 v 2 , |v 2 2 |q intersect for v 1 , v 2 P X n , then either v 1 P N 2 . It follows that every point of J G is contained in not more than |Lpgq|¨|N 2 | sets of the form T p. . . x 2 x 1 v, |v 2 |q, recalling that Lpgq is the set of words v P X ˚such that g| v P N but g| u R N for any proper prefix u of v. It follows that ÿ vPX n ,|v 2 |ąkn νpT p. . . x 2 x 1 v, |v 2 |q ď |Lpgq| ¨|N 2 | ¨νpJ G q. By Proposition 4.6, |Lpgq| ď C 4 lpgq p for some constant C 4 . Hence ÿ vPX n dp. . . x 2 x 1 gpvq, . . . x 2 x 1 vq β ď C 2 Since νpT pξ, kqq -diampT pξ, kqq α , Proposition 3.6 implies that the coefficient
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Proof. For every λ i ą η p,ni and every g long enough, we have ÿ vPX n i lpg| v q p ď λ p i lpgq p .

It follows that there exists a constant C not depending on g such that ÿ

vPX n i lpg| v q p ď λ p i plpgq `Cq p for all g P G.

Suppose at first that p ě 1. We have then, using the triangle inequality for the p-norm:

λ p 2 plpg| v1 q `Cq p ď ¨λ2 C|X n1 | `λ2 ˜ÿ v1PX n 1 lpg| v1 q p ¸1{p 'p ď pλ 2 C|X n1 | `λ2 λ 1 plpgq `Cqq p which implies that η p,n1`n2 ď λ 1 λ 2 , for all λ 1 ą η p,n1 and λ 2 ą η p,n2 .

The case p P p0, 1q is analogous, but using the triangle inequality for the norm

It is shown in [START_REF]Groups and topological dynamics[END_REF]Proposition 4.3.12] that η p does not depend on the choice of the finite generating set or the choice of the basis X Ă B. (This is true for all p P p0, 8s.)

It is shown in [START_REF]Groups and topological dynamics[END_REF]Proposition 4.3.15] that for all 0 ă p ă q ď 8 we have (5)

In particular, the function p Ñ η p is non-increasing and continuous.

Definition 4.2. The critical exponent p c pG, Bq of a contracting group is the infimum of the set of values p such that η p ă 1.

Proposition 4.3. Suppose that pG, Bq is a contracting group. Fix a basis X Ă B and a finite generating set S containing the nucleus. Let p ě 1 be such that η p ă 1. Then for every l ě 2 there exists a constant C such that for every g P G we have ÿ vPX ˚,lpg|v qěl lpg| v q p ď Clpgq p .

Proof. Note that since G is contracting and the generating set contains the nucleus, for every l there exists m such that if lpgq ď l, then lpg| v q ď 1 for all v P X ˚such that |v| ě m. Therefore if we fix l 1 ă l 2 , every vertex in the set tv P X ˚: l 1 ď lpg| v q ă l 2 u is at a uniformly bounded distance either below the root, or below a w such that lpg| w q ě ℓ 2 .

It follows that there exists some constant C 1 such that

Consequently, it is enough to prove the proposition for any large l. It is also easy to see that we can replace X by any power X n0 , i.e., consider in the sum only words v of length divisible by n 0 .

Then for A, B disjoint subsets of Ω, Cap 2,µ pA, Bq "

Proof. We use the same notation and terminology on electric networks as in [START_REF] Lyons | Probability on trees and networks[END_REF]. Since µ is symmetric, we may regard the induced random walk transition operator P µ on Ω as coming from an electric network with conductance cpx, yq " ř gPG 1 ty"g¨xu µpgq, and reversing measure πpxq " 1, x, y P Ω. Denote by τ ωÑA " mintt ě 0 : g t ω P Au the hitting time of A. Let vpxq " Ppτ xÑA ă τ xÑB q. Then v is a voltage function which is 1 on the source set A, and 0 on the sink set B. Considering the first step of the random walk, we have [START_REF] Rosenblatt | Ergodic and mixing random walks on locally compact groups[END_REF].

Recall that given a probability measure ν supported on a discrete set Ω, the (Shannon) entropy of ν is defined as Hpνq " ´ÿ ωPΩ νpωq log νpωq.

If X is a discrete random variable taking values in a set Ω, the entropy HpXq is defined as the entropy of the distribution of X. Let X, Y be discrete random variables, and for any value y taken by Y with positive probability, denote by X pyq the variable with the conditional distribution of X given tY " yu. Then the conditional entropy of X given Y is defined as the expected value of HpX pyq q, namely HpX|Yq " ÿ y HpX pyq qPpY " yq.

We resume below some basic properties of Shannon entropy. Lemma 5.2.

(1) If X is a random variable taking values in a finite set Ω, then HpXq ď log |Ω|.

(2) The entropy of the joint distribution of two discrete random variables pX, Yq satisfies HpX, Yq " HpX|Yq `HpYq.

1.4.12]

). Hence if ARdim J G ă 2, then Theorem 2.14 implies that pG, Bq has a contracting model ∆ 0 which is a locally finite connected graph, and we can place ourselves in the setting of Notation 2.15.

Corollary 5.8. Let pG, Bq be a finitely generated contracting self similar group such that ARdim J G ă 2, and retain Notation 2.15. Let µ be a symmetric probability measure on G with a finite p-moment, where p ą p c pG, Bq. Then for any two distinct vertices z 1 and z 2 of Γ 0 , we have lim nÑ8 Cap 2,µ pU z1,n , U z2,n q " 0.

Proof. Note first that since ∆ 0 is a contracting model, if we replace the basepoint ξ 0 in Notation 2.15 by a different basepoints ξ 1 0 , then the corresponding sets U 1 z,n satisfy U 1 z,n " U z,n for all n large enough. Therefore, without loss of generality, we can suppose that ξ 0 is the image of a point p ξ 0 P X G under the natural map X G Ñ ∆ 0 given by Theorem 2.9. The map X G Ñ ∆ 0 also induces in the quotient a map J G Ñ Γ 0 . We will apply Theorem 5.6 to the sets A, B Ă J G given by the pre-images of U z1 , U z2 . To this end we choose the sequence . . . x 2 x 1 P X ´ω in the statement of Theorem 5.6 so that it represents the same element of X G as p ξ 0 . With this choice, we have U z1,n " A n and U z2,n " B n . □ 5.3. Proof of Liouville property under conformal dimension ă 2. In this subsection we complete the proof of the following statement on Liouville property.

Theorem 5.9. Let pG, Bq be finitely generated contracting group such that ARdim J G ă 2. Let p ą p c pG, Bq. Then every symmetric probability measure µ on G with finite pmoment has trivial Poisson boundary.

Corollary 5.10. Let pG, Bq be a finitely generated contracting group. If ARdim J G ă 2, then G is amenable.

In the proofs below we take terminology and notation from Subsection 2.5, in particular the set U z,n and the number of traverses τ n as in Definition 2.16 and Theorem 2.17.

For clarity we first prove the theorem under the simplifying assumption that µ is symmetric and finitely supported.

Proof of Theorem 5.9 (finite support case). Let µ be a symmetric probability measure supported on the finite set S, and g t " s t ¨¨¨s 1 be the associated random walk. We wish to estimate the expected number of traverses Erτ n ps t ¨¨¨s 1 qs. By Corollary 5.8 we have max z1,z2 Cap 2,µ pU z1,n , U z2,n q Ñ 0 as n Ñ 8, where the maximum is taken over all distinct vertices z 1 , z 2 of Γ 0 . Denote this maximum by ε n .

Say that a level n traverse from z 1 to z 2 starts at time i at a vertex v P U z1,n if there exists w P U z2,n and j ě i so that pi, j, v, wq is a traverse from z 1 to z 2 . Denote this event by Api, v, z 1 , z 2 q. Let N i be the total number of traverses that start at time i. Then N i " ř z1,z2 ř vPUz