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LIOUVILLE PROPERTY FOR GROUPS AND CONFORMAL DIMENSION

NICOLAS MATTE BON, VOLODYMYR NEKRASHEVYCH, AND TIANYI ZHENG

ABSTRACT. Conformal dimension is a fundamental invariant of metric spaces, particu-
larly suited to the study of self-similar spaces, such as spaces with an expanding self-
covering (e.g. Julia sets of complex rational functions). The dynamics of these systems are
encoded by the associated iterated monodromy groups, which are examples of contracting
self-similar groups. Their amenability is a well-known open question. We show that if
G is an iterated monodromy group, and if the (Alfhors-regular) conformal dimension of
the underlying space is strictly less than 2, then every symmetric random walk with fi-
nite second moment on G has the Liouville property. As a corollary, every such group is
amenable. This criterion applies to all examples of contracting groups previously known to
be amenable, and to many new ones. In particular, it implies that for every post-critically
finite complex rational function f whose Julia set is not the whole sphere, the iterated
monodromy group of f is amenable.

1. INTRODUCTION

Conformal dimension was introduced in the late 1980s by P. Pansu in the study of
quasi-isometries of hyperbolic spaces and related constructions (see, for example [40]).
The conformal dimension of a metric space is the infimum of the Hausdorff dimensions
of spaces quasi-symmetric to it. Since quasi-isometries of hyperbolic spaces correspond
to quasi-symmetries of their boundaries, the conformal dimension is a natural invariant of
hyperbolic groups and their boundaries. Since its definition, the conformal (and related
Ahlfors-regular conformal) dimension became an important invariant in geometric group
theory and dynamical systems. See [31] for a survey of its properties and applications.

Ahlfors-regular conformal dimension is especially useful and natural for self-similar
metric spaces. Boundaries of hyperbolic groups are examples of such self-similar spaces.
Another natural class of examples is metric spaces together with an expanding (branched)
covering map f : J —> J (for example complex rational functions in restriction to
their Julia set). Their quasi-conformal geometry is the subject of the works [19-21] by
P. Haissinsky and K. Pilgrim.

Expanding self-coverings are encoded by the associated iterated monodromy groups,
introduced in the early 2000s, see [34,37]. They are examples of contracting self-similar
groups. The self-covering is reconstructed from the iterated monodromy group as their
limit dynamical system. The potential importance of the conformal dimension to the study
of contracting self-similar groups was observed in [20].
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The amenability of iterated monodromy groups has been a well-known open question
since their introduction. In fact, amenability of the iterated monodromy group of the com-
plex polynomial z? — 1 (also known as the Basilica group) was asked even before the
iterated monodromy groups were defined (see [18]).

Amenability of the Basilica group group was proved by L. Bartholdi and B. Virdg
in [9]. Their proof was later generalized to include iterated monodromy groups of all post-
critically finite complex polynomials in [7] (and more generally, all groups generated by
bounded automata). Their methods were extended to larger classes of self-similar groups
in[1,2].

Amenability was proved in these papers by constructing a self-similar random walk step
distribution 1 on the group and using the self-similarity to prove that the asymptotic en-
tropy (equivalently, speed) of the y-random walk is zero (see also [26]). By the results of
V. Kaimanovich and A. Vershik [27] and Y. Derriennic [12] this implies the triviality of the
Poisson boundary of the corresponding random walk, also known as the Liouville property
that all bounded p-harmonic functions are constant, which in turn implies amenability of
the group. Self-similarity is a very restrictive condition in this case, and it is not clear how
to construct such self-similar random walks in general (it seems that a finitely supported
self-similar step distribution does not exist in most cases), so the corresponding groups
have to be embedded into special “mother groups” for which such a self-similar random
walk can be constructed. For groups generated by bounded automata, this self-similarity
restriction was removed in in [1], by showing that every symmetric finitely supported mea-
sure generates a Liouville random walk.

A different approach to prove the amenability of groups is based on the notion of ex-
tensively amenable actions, first introduced by K. Juschenko and N. Monod [24]. This
method was used in [25] to show amenability of a class of iterated monodromy groups.
This approach allows one to prove the amenability of iterated monodromy groups of com-
plex rational functions with “crochet” Julia sets, see [39]. The framework of extensive
amenability is not based on the study of the Liouville property for random walks, but
random walks are implicitly present in it, as one of the main conditions used to prove
amenability is recurrence of the induced random walk on an orbit of some action of the
group.

We show in our paper how conformal geometry can be used to prove the Liouville prop-
erty for symmetric random walks under suitable moment conditions on many contracting
groups (equivalently, iterated monodromy groups of expanding covering maps).

Namely, we prove the following.

Theorem 1.1. Let (G, B) be a finitely generated contracting self-similar group, and sup-
pose that its limit space has Ahlfors-regular conformal dimension o, with oo < 2. Then for
every symmetric measure p on G having finite 3-moment for some 3 > «, the p-random
walk is Liouville. In particular, any such group is amenable.

Corollary 1.2. Let f be a post-critically finite complex rational function such that its Julia
set is not the whole sphere. Then the iterated monodromy group of f is amenable.

Our results cover many new examples of amenable groups. Namely, all previously
known contracting amenable groups had limit spaces of conformal dimension equal to 1
(this is true for any contracting group which can be generated by an automaton of poly-
nomial activity in the sense of S. Sidki [44], see Theorem 6.1). In this case, Theorem
1.1 implies that any random walk on them generated by symmetric measures of finite
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(1 + €)-moment is Liouville, encompassing various previous results for some more re-
stricted classes of groups and measures. Beyond this case, Theorem 1.1 can be applied
to contracting groups whose amenability was an open question until now, in particular to
groups whose limit space is homeomorphic to the Sierpiniski carpet. As shown in [21],
there exist hyperbolic rational maps with Sierpifiski carpet Julia sets whose conformal di-
mensions are arbitrarily close to 2 (the corresponding groups must therefore be generated
by automata of exponential activity).

It is known that for symmetric random walks with finite second moment, sufficiently
slow decay of return probability, namely 1(?™) (id) decaying slower than exp(—n'/?) im-
plies that p-random walk is Liouville, see [41]. However this result is not applicable in
the study of contracting self-similar groups: first it is not clear for what subclass of groups
one can expect such a slow decay, secondly, even in the case of bounded automata groups,
it is challenging to prove lower estimates for return probability. Indeed, to the best our
knowledge, for all contracting groups whose amenability has been proven so far and those
covered by Theorem 1.1, the best known lower bound for ;(?) (id) comes from entropy,
that is, (> (id) > exp(—H (X2y)). It is an open problem to find methods to establish
sharper lower estimates for return probability, even in examples such as the Basilica group,
and a tightly related problem is to find contracting groups that are amenable but not Li-
ouville for symmetric simple random walks (see § 6.4 for an example of non-Liouville
contracting group).

1.1. On the proof. Let us give some further insight on Theorem 1.1 and compare it with
previous work. Recall that contracting group G is generated by a finite state-automata over
a finite alphabet X, and has a natural action on the associated rooted tree X* whose vertex
set consists of finite words. For every integer n, the action of an element g € G on X*
is determined by two pieces of information: the permutation induced on the n-th level of
the tree, and associated collection of sections (g|,)yexn, Which describe the action of g
on the subtrees rooted at level n. In order to show vanishing of the asymptotic entropy of
the random walk measure y, one is immediately led to study the distribution of sections
g:|, for a sample g; of the y-random walk. More precisely, it is enough to show that the
rate of growth of the sum of word lengths of all sections g/, at level n is bounded by
some constant which tends to 0 as n tends to infinity (Proposition 5.4). This criterion was
the starting point, in various different formulations, of the previous results establishing the
Liouville property for random walk on automata groups [1,2,7,9]. All these results were
dealing with groups generated by some explicit automaton of polynomial (in fact, bounded
or linear) activity. This means that for every element s in a generating set of the group,
the number of vertices v € X" such that the sections s|, is non-trivial is bounded by a
polynomial in n. The behaviour of the process g; |, was analysed by explicit computations
based on the form of the automaton. In order to control the behaviour of the section, one
needs to first understand the behaviour of the process g;(v), which performs a random walk
on the finite Schreier graph associated with the n-th level of the tree. A crucial feature in all
previous examples is the fact that the sections g/, of the random walk can be essentially
controlled by studying the visits of g;(v) to some uniformly finite subset consisting of
“singular points”. In the simplest case of automata groups of bounded activity, the singular
points are just the vertices w such that s|,, is nontrivial for some generator s (for groups
of polynomial activity, they can be defined inductively on the activity degree). In this
situation, the length of the g;|, can be estimated by the number of fraverses up to time ¢
of the walk (g;(v)) between certain pairs of distinct singular points. The expected number
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of traverses can be estimated by analysing the Schreier graphs explicitly and computing
the ¢2-capacity (or effective conductance) between singular points. This is precisely the
method used in [1] to show that all symmetric finitely supported measures on automata
groups of bounded activity generate a Liouville random walk. The finiteness of the singular
points can equivalently be interpreted in terms of germs of the action on the boundary of
the tree X*, and is crucial also to apply the framework of extensive amenability [3,25,39],
which relies in a similar way on recurrence of the Schreier graphs to control visits to the
singular points, and deduce amenability.

For iterated monodromy groups, the finiteness condition of singular points seems to
be related to the existence of countable separating subsets in the limit space. This is a
restrictive condition limited to examples with limit space of conformal dimension 1, see
[39].

For a group satisfying the assumption in Theorem 1.1, the relevant set of singularities
is intrinsically infinite (corresponding to a Cantor subset of the boundary of the tree). An
automaton generating the group will typically have exponential activity and might be quite
complicated. Our proof of Theorem 1.1 is no longer based on the combinatorial analysis
of some explicit set of generators, but instead on the study of contracting groups through
the theory of limit spaces. It has three ingredients. The first ingredient, purely geometric,
is Theorem 2.17, which estimates the total length of n-th level sections of a word g =
S¢ - - - 81 in terms of the paths that the word describes on the corresponding Schreier graph.
It says that in order for the total length of sections to be large, these paths must traverse
many times between certain regions which approximate some disjoint parts of the limit
space (which roughly speaking correspond to different tiles). The precise identifications
of these regions requires the framework of contracting models developed in [36,38]. The
second ingredient is Theorem 5.6, where the assumption that conformal dimension of the
limit space is less than 2 is used to show that the £2-capacity between such disjoint regions
must tend to O as n — oo. This is reminiscent of the results of M. Carrasco [11] and J.
Kigami [28], which relate the conformal dimension of a metric space to potential theory on
graphs that approximate the space (although our proof of Theorem 5.6 is self-contained).
These two ingredients put us in position to apply a traverse-counting argument to show
vanishing of random walk asymptotic entropy, at least for symmetric finitely supported
measures.

The third ingredient, which allows to extend the result to measures under a moment
condition, is the study of another numeric invariant for contracting self-similar groups:
critical exponent. For every p € (0, 0] we define the ¢(P-contraction coefficient 1, of a
finitely generated contracting group (G, B). It is the exponential rate of decay of the £7-
norm of the vector of lengths of the sections g|, for the vertices v of the nth level of the
tree. The condition for a self-similar group to be contracting is equivalent to the condition
N < 1. The function p + 1), is continuous and non-increasing. The critical exponent
Pe(G, B) is the infimum of the values p for which n,, < 1. It is a measure of the complexity
of the group. For example, the action on the tree of every element g € GG of length n can
be explicitly described with O(nP<*€) bits of information. In particular, p. < 1 implies
sub-exponential volume growth. In our setting, such complexity bounds can be used to
control contribution to entropy from long jumps of the random walk.

In analogy to critical constant for recurrence introduced in [14], for a finitely generated
group G equipped with word metric, we define the (symmetric) critical constant for the
Liouville property, denoted by Crriouv(G), to be the infimum of p, such that all symmet-
ric random walks with finite p-moment are Liouville. For a contracting group (G, B) we
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denote by ARdim(G, 8) the Ahlfors-regular conformal dimension of its limit space. Be-
tween these critical quantities and conformal dimension, we show the following inequality.

Theorem 1.3. Ler (G, *B) be a finitely generated contracting self-similar group such that
ARdim(G, B) < 2, then

CrLiouv (G) < pe(G,B) < ARdim(G, B).

Then Theorem 1.1 above is a consequence of this inequality. The second inequality is
not sharp in general, see the discussion after Theorem 4.7; we do not know of an example
of a contracting group for which the first inequality is strict.

1.2. Organization of the article. Section 2 of the paper is an overview of the theory of
self-similar contracting groups and their limit spaces. In Section 3 we describe the natural
class of pairwise (weakly) quasi-symmetric metrics on the limit space. Similarly to the case
of boundaries of hyperbolic groups, examples of such metrics can be defined as the visual
metrics on the boundary of a natural Gromov-hyperbolic graph (the self-similarity complex
of the group). The Ahlfors-regular conformal dimension ARdim(G, B) is defined as the
infimum of the Hausdorff dimensions of metrics weakly quasisymmetric to a visual metric,
see [20]. If the group is self-replicating (which is automatically satisfied, for example, for
the iterated monodromy groups of postcritically finite rational functions), then any weak
quasisymmetry is actually a quasisymmetry (we do not know if this is true in general).

Section 4 discusses the critical exponent p.(G,*B) for contracting self-similar groups
as mentioned above. We prove that the critical exponent p.(G, ) of a contracting group
is not larger than the conformal dimension ARdim(G, B), see Theorem 4.7. Lower esti-
mates of for p.(G, B ), and hence also for ARdim (G, B), can be obtained from exhibiting
a carefully chosen sequence of group elements. In Theorem 4.11, we show a relation be-
tween /P-contraction and spectral radius of the linear operator 1},, where T}, is the Thurston
linear transform adapted to ¢ calculations.

Section 5 contains proofs of statements on Liouville property. It starts with a brief
review of preliminaries on random walk and electric network theory, bounded harmonic
functions and the entropy criterion. We then show a direct bound on ¢¢-capacity on the
Schreier graphs of action of a contracting group (G, B) on levels of the tree, which is
valid for ¢ > ARdim(G, *B) and for all symmetric measures which admit a finite moment
of order p > p.(G, B), see Proposition 5.5, from which estimates on capacity stated in
Theorem 5.6 follow. We then give a proof of Liouville property for the finite support case
based on traverse counting and ¢2-capacity estimates. For the general case under finite
p-moment, p > p.(G,B), we first apply a geometric argument similar to the proof of
Theorem 2.17, then random walk entropy is bounded by contributions from traverses and
long jumps separately. The former is controlled by /-capacity estimates in the same way
as in the finite supported case; and the latter is controlled by ¢P-contraction.

Section 6 contains several examples of applications of the main theorem. The first class
of examples are groups generated by automata of polynomial activity growth, as defined
by S. Sidki in [44]. It was shown in [39] that limit spaces of all contracting self-similar
groups in this class have Ahlfors-regular dimension 1. Amenability of such groups also
follows (as explained in [39]) from the theory of extensively amenable actions, developed
in [23,25] (the Liouville property for all groups in this class seems to be new even for
finitely supported symmetric measures).

The second class of examples is iterated monodromy groups of post-critically finite
complex rational functions. If f is a post-critically finite rational function, then the limit
space of its iterated monodromy group IMG ( f) is canonically homeomorphic to the Julia
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set of f. Moreover, the spherical metric restricted to the Julia set, seen as a metric on
the limit space of the group, is quasi-conformal and Ahlfors-regular. In particular, the
Hausdorff dimension of the Julia set is an upper bound of the conformal dimension of the
limit space of the iterated monodromy group. It follows that if the Julia set of the function is
not the whole sphere, then the iterated monodromy group is Liouville (for every symmetric
measure with finite second moment) and thus amenable.

We provide an explicit example of the iterated monodromy group of a rational function
whose Julia set is homeomorphic to the Sierpiriski carpet (and thus can not be generated
by an automaton of polynomial activity growth).

We also describe explicitly a contracting self-similar group whose limit space coincides
with the classical Sierpiniski carpet (i.e., quasi-symmetric to it).

Finally, we give an example of a self-similar contracting group, which is not Liouville
for any finitely supported measure.

1.3. Acknowledgements. This work was initiated during the trimester Groups acting on
fractals at IHP from April to June 2023. We thank the organizers of the program and the
Institut for the support and hospitality.

2. SELF-SIMILAR GROUPS AND THEIR LIMIT SPACES
2.1. Basic definitions.

Definition 2.1. An action of a group G on the set X* of finite words over a finite alphabet
X is said to be self-similar if such that for every g € G and v € X* there exists an element
glv € G such that

g(vw) = g(v)glv(w)
for all w € X*.

Consider a faithful self-similar action of G on X*. The biset of the action is the set B
of transformations of X* of the form

x-g:v— xg(v)

for x € Xand g € G. Since the action is faithful, the set B is in a natural bijection with the
set X x G.

The set B is closed under pre- and post-compositions with elements of GG, hence it is a
biset, i.e., a set with commuting left and right actions of G. They are given by the rules

(x-g)-h==z-gh, h-(x-g)=nh(z)- hl.g.

The right action of G on the biset ‘B is free and has |X| orbits, where X - {1} < B
(naturally identified with X) intersects each orbit exactly once.

In general, a self-similar group (G,B) is a group G and a biset B such that the right
action is free and has finitely many orbits. A subset X ‘B is called a basis of the biset if
it intersects each orbit exactly once.

If 84,8, are two G-bisets, then the biset B; ® B, is quotient of B, x B, by the
identification (z - g,y) ~ (x,g - y) and with the action on the quotient induced by the
actions g - (z,y) -h = (g x,y - h). We denote the image of the element (x,y) € B x By
in B1 ® B by x ® y or just by zy.

This operation is associative up to isomorphisms of bisets. In particular, for every biset
B we get bisets BE" for all n > 0. Here B is defined as G with the natural left and
right G-actions.
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If X < B is a basis of a biset, then every element of ®5 is written in a unique way as
x-gforz e Xand g € G. For every g € G and every x € (G there exist unique y € X and
h € G such that

g-x=1y-h.
It is easy to see that the map x — vy is a permutation of X (since the left G-action permutes
the right G-orbits). We get the associated action of G on X, and denote y = g(z), h = g|,.
The map g — 0,(9g|s)zex € Symm(X) x GX, where o, € Symm(X) is the image of g
under the associated action on X, is called the wreath recursion. It is a homomorphism
from G to the wreath product Symm(X) x GX.

Changing the basis X corresponds to composing the wreath recursion with an inner
automorphism of the wreath product.

If X is a basis of B, then X®" is a basis of B&". We identify the set X®" with X" in
the natural way.

In particular, for every v € X" < B®" and for every g € G there exist unique u € X"
and g|, € G such that

g v=1u-gly.
The map v — w is a permutation of X" (conjugate to the permutation induced by g on the
set of right orbits of BE™), so we denote u = g(v).

We get hence the associated action of G on X*. The associated action on X* does not
depend, up to conjugacy on the choice of the basis X (since it is conjugate to the left action
of Gon |, = B®"/G). The faithful quotient of a self-similar group (G, B) is the quotient
of G by the kernel of the associated action.

2.2. Contracting groups and limit space. Let (G, B3) be self-similar group. Let X < 9B
be a basis. The self-similar group is said to be contracting if there exists a finite set ' = G
such that for every g € G there exists n such that

glo N

for all v € X™ for all m > n. The smallest set A satisfying this condition is called
the nucleus of the group. It is shown in [34, Corollary 2.11.7] that the property to be
contracting does not depend on the choice of the basis X. The nucleus, however, depends
on X.

Definition 2.2. Let (G, B) be a contracting group. Choose a basis X < B, and let X~
be the space of left-infinite sequences ...xsx; with the direct product topology (where
X is discrete). The limit space Jg is the quotient of X™% by the asymptotic equivalence
relation, identifying two sequences . .. x2x1, . . . yoy1 if and only if there exists a sequence
gn, of elements of the nucleus A such that g, (z, . .. T2T1) = Yy - - - You1.

It is shown in [34] that the asymptotic equivalence relation is transitive, and that the
limit space is a metrizable compact space of finite topological dimension.

It follows from the definition that the asymptotic equivalence relation is invariant under
the shift ...x9x1 — ...2372. Consequently, the shift induces a continuous map s :
Ja — Jg, which we call the limit dynamical system. It is shown in [34] that the limit
dynamical system does not depend, up to topological conjugacy, on the choice of the basis
X.

Definition 2.3. Let (G,B) and X be as above. The limit G-space X is the quotient of
the direct product X~ x G (where G is discrete) by the equivalence relation identifying
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...xowy - g and ...yoy1 - h if and only if there exists a sequence g,, of elements of the
nucleus such that

Jn Ty .. -ToT1 -G =Yn...Y2y1 - h
in BE" for all n.

The equality in the definition of As is equivalent to the equalities

gn(xn---IQxl) =Yn---Y2U1, gn|zn...m2m19 = h.
We have a natural right action of G on X induced by the action (...xzox1 - g) - h =
...xox1 - gh on X7 x G. One can show that the space X and the action do not depend
(up to topological conjugacy) on the choice of the basis X.

Definition 2.4. We denote by 7 the image of X~ in X.

The action of G on X is proper and co-compact with the quotient X /G naturally
homeomorphic to the limit space J¢. The set T is compact and intersects every G-orbit.

Definition 2.5. We say that a self-similar group (G, B) is self-replicating if the left action
of G on B is transitive.

It is shown in [34, Theorem 3.5.1] that if a contracting group (G, B) is self-replicating,
then the spaces Jg and X are connected and locally connected.

Definition 2.6. For v € X*, we denote by 7, the image of the set X~“uv of sequences
ending with v in the limit space J¢. We call it a file of nth level if n = |v|.

For every point £ € J and every n > 0, the union of the tiles of the nth level containing
¢ is a neighborhood of &.

Proposition 2.7. Two tiles T,, T, of the same level intersect if and only if there exists an
element g of the nucleus such that g(v) = u.

2.3. Contracting models. Let (G,3) be a contracting self-similar group, and let X" be a
metric space on which G acts properly and co-compactly by isometries.

Then X ® B is defined as the quotient of X x B (where ‘B is discrete) by the action
(€,2) — (€-g~1, g x). We denote the orbit of (£, 7) by ¢ @ z. We have then E @ g - =
E-gQuxforallé e X, xePB,and g € G.

Let X be a basis of B. Assume that ] : X ®B — X’ is a G-equivariant map. Then [ is
uniquely determined by the maps I,(£) = I(£ ® x), which satisfy the following condition:

(D) Iz(gg) :Ig(z)(f)'mmv
forallz € X, g € G, and £ € X, where g(x) € X and g|, € G, as usual, are given by
g-z=g) gls

Conversely, every collection of maps I, : X — A&’ satisfying (1) defines an equivariant
map [ : X ® B — X by the formula I(§ ® z - g) = I.(£) - g.

Every equivariant map I : X ® 8 — X induces an equivariant map I, : X ®
PO+, ¥ @ BO" by the rule

I,E(®z®v)=I(Rz)®v
foréte X,z eB,ve BON According to this, we will sometimes denote I by Ij.
We also denote by I" : £ ® BO" 5 X the composition I,,_y oI, o0---0ljol.

Definition 2.8. A G-equivariant map [ : X ® 8 — X is said to be contracting if there
existn > 1and A € (0,1) such that d(I (£ ®v), I(§2®v)) < Ad(&1,&) forall £, & € X
and v € BE”,
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A G-equivariant map I : X ® *B — &’ is contracting if and only if there exist C' > 0
and A € (0, 1) such that

d(I" (& ®0), I" (&2 ®v)) < CN"d(&1, &)

forall n,ve BO", &, & e X

The natural map X¥g ® B — X mapping £ ® x, where £ is represented by ... ®
To ® x1 € (2, to the point of X represented by ... ® o ® 1 ® x, is a G-equivariant
homeomorphism Xg ® B — Xg. Since it is “identical,” we will denote the image of
& ® x just by £ ® x, thus identifying Xz ® B with Xg.

It is proved in [38, Theorem 2.10] that the natural homeomorphism Xz ® B — Xg
is contracting in the sense of Definition 2.8 (with respect to a natural distance on X)
provided G is finitely generated.

The following theorem is proved in [36].

Theorem 2.9. Let [ : X®*B — X be a contracting G-equivariant map. Then the inverse
limit of the sequence of G-spaces X @B and maps I,, is G-equivariantly homeomorphic
to the limit G-space Xg. The map on the limit induced by the maps I, is conjugated by
the homeomorphism with the natural homeomorphism Xg ® 8 — Xg.

Definition 2.10. Let (G, B) be a contracting self-similar group. A contracting model of
(G, *B) is a proper co-compact action of G on a metric space X’ by isometries together with
a contracting equivariant map [ : X ® B — X.

It is proved in [36] (see also [38, Theorem 3.1]) that every finitely generated contracting
group has a contracting model I : X ® B — X where X is a connected simplicial
complex and the maps I, are piecewise affine.

We will need the following simple lemma.

Lemma 2.11. Suppose that G is finitely generated, and let [(g) denote the length of an
element g € G with respect to a fixed finite generating set of G. Choose a basis X  *B.
Let X be a metric space on which G acts by isometries from the right so that the action
is co-compact and proper. Let [ : X ® B —> X be a G-equivariant map. Let T be a
compact subset of X such that I"(§ @ v) € T for every £ € T and v € X*.
Then for every & € X there exists a constant C > 0 such that

I(gly) < CA(I"((®0), I"(§-g®)) +C
foralln =21, ge G, €T, andv e X",

It follows directly from co-compactness of the action and Definition 2.8 that a compact
set 7 satisfying the conditions of the lemma exists for every contracting equivariant map
I: X ®%B — X and every basis X of B.

Proof. Since the action of G on X is isometric, proper, and co-compact, there exists C'
such that [(g) < Cd(&1,&2 - g) + Cforall £, € T.

It follows that I(g|,) < Cd(I"(£®v), I"(§®g(v)) - gl,) + C = Cd(I™"(E®v), I™ (&
g®v)+C. O

2.4. Iterated monodromy groups.

Definition 2.12. A virtual endomorphism of a topological space [ is a finite degree cov-
ering map f : J; — J together with a continuous map ¢ : J; — J.
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Let f,¢ : J1 — J be a virtual endomorphism. Suppose that 7 is path connected.
Consider the fundamental group G = 71 (7, t). The associated biset is the set B of pairs
(2,[0]), where z € f~1(t), and [4] is the homotopy class of a path § in J connecting # to
¢(z). The action of G on ‘B is given by the formulas

(z,[0]) - vl = (2 (09D, V(= 10]) = (y, [6(72)d]),

where ~ is a loop based at ¢, +y, is the lift of vy by f starting in z, y is the end of ~,. We
multiply paths as functions: in a product o3 the path j3 is passed before .

The iterated monodromy group of the virtual endomorphism is the faithful quotient of
the self-similar group (G, B).

By the definition of the associated biset, a basis of B is a collection

{(217 [El])v (ZQa [€2])a sy (Zm [fn]},

where {21,22,...,2,} = f71(t), and ¢; is a path from ¢ to ¢(2;). Let us denote z; =

(zi, [¢:]), then the action of the iterated monodromy group on the tree X* for X = {xy, x5, . ..

is given by the recurrent formula

@) M (wiw) = 2;[6(6; %) (w),
where +; is the unique lift of v by f starting in 2;, and j is such that z; is the end of ;.

A particular case of this situation is a partial self-covering, i.e., a finite degree covering
map f : J1 — J where J; < J. Itis a virtual endomorphism with the map ¢ :
J1 — J equal to the identical embedding. Then the iterated monodromy group of f is
the iterated monodromy group of the virtual endomorphism f, ¢ : J1 — J. In this case,
it is natural to omit ¢ (as it is the identity map) in the formula (2).

An important class of examples consists of post-critically finite complex rational func-
tions. Let f(z) € C(z) be a rational function seen as a self-map of the Riemannian sphere
PC'. Let P; be the union of the forward orbits of the critical values of f (i.e., values at
the critical points of the map f : PC' — PC'). We say that f is post-critically finite if
the set Py is finite.

Then f defines a partial self-covering f : PC'\f~!(P;) — PC'\P;. The iterated
monodromy group of this partial self-covering is, by definition, the iterated monodromy
group of f.

The following theorem is proved in [34, Theorem 6.4.4].

Theorem 2.13. Let f be a post-critically finite complex rational function. Then its iterated
monodromy group G = IMG (f) is contracting and its limit dynamical system s : Jo —
Jc is topologically conjugate to the restriction of f to its Julia set.

In fact, Theorem 2.13 is a corollary of Theorem 2.9 and of the Schwarz-Pick theorem.
2.5. One-dimensional limit spaces. The following theorem is proved in [38].

Theorem 2.14. Suppose that the limit space Jg (equivalently the X¢g) of a contracting
finitely generated group (G,B) has topological dimension 1. Then there is ng and a
contracting model I : Ay ® BEO™ — Ag, where A is a locally finite connected graph
on which G acts properly and co-compactly by automorphisms.

Below we suppose to be in the situation of Theorem 2.14. Denote A,, = Ay ® BE",
Since the action of G on A is by automorphisms of graphs, the spaces A,, are also graphs.
Denote by T, the quotient A,,/G and by 7,,: A,, — T, the quotient projection. Then
I',, is a finite graph. The maps I, : A, 41 —> A, induce continuous maps ¢,, : ', 11 —
I',,. We may assume that in the original action of G on A, no pair of neighbouring vertices

) Tn}
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of A belong to the same G-orbit (otherwise pass to the barycentric subdivision of Ag). In
particular, I'g has no loops.

Notation 2.15. Denote by U, the ball of radius 1/3 with center in a vertex z of the graph
Iy = X/G. It is a bouquet of segments of length 1/3. (We use the combinatorial distance
in the graphs, identifying each edge with a real segment of length 1.)

Fix a basepoint § € Ag. Denote by U, ,, the set of elements v € X" such that
WQ(I”(fo ® ’U)) € Uz.

Definition 2.16. Let s;5;—1 ...s; be a word in elements s; € G (formally, an element of
the free group with basis G). A traverse of level n from z; to zs is a triple (4, j, vy, v2),
where 1 <i < j <t v; €U, p, vo €U, , for 21 # 29 are such that si, - - - 5,115, (v1) ¢
Uzl,n U UzQ,n fori < k < j, and 8j8j—1""" Si(’l}l) = V9.

In other words, a traverse is a segment of a the word s;s¢_1 ... s; corresponding to a
travel from a point of U, ,, to a point of U, ,, such that the sets U, ,, and U, ,, are not
touched during the travel.

We denote by 7,,(s¢8¢—1 ... s1) the total number of traverses of level n for the word
StSt—1-.-S51-

Theorem 2.17. Let S be a finite generating set for G. There exists C > 1 such that for all
n big enough and every element g = s;s;_1 - -+ s1 € G, where s; € S, we have

Z U(gly) < Crn(se8t—1 -+ 81) + C|X".

veX™

Proof. Since the G action is isometric, the quantity d(& - g, & - s¢) is uniformly bounded
for s € Sand g € G. Hence there exists ng such that d(I" (& - g®wv), I"™ (&o-sg®wv)) < 1/3
forevery g € G,s € Sand v € X", n > ng. Fix such a v, consider g = s;---s7 as in
the statement of the theorem, and set &; = &g - s; - - - s1. Then the distance between two
consecutive points I (&; ® v) is at most 1/3. By Lemma 2.11, the length of g|,, is bounded
from above by C1d(I"(& ® v), I" (& ® v)) + C4 for some constant C; > 0. Let §; be a
geodesic curve joining 1™ (&;—1 ®v) to I"(§; ®v) and v = §; - - - 61 be their concatenation
(where the rightmost curve is passed first). Consider an edge e which is crossed by 7,
meaning that there is a subcurve 7|, ;,] such that (1), ~(t2) are the extreme points of
the edge and ~y(s) is in the interior of e for s € (¢1,t2). For every such edge crossing we
can find ¢ < j such that I"(¢; ® v) and I"(£; ® v) are at distance at most 1/3 from the two
extreme points of e, and every I" (£, ® v) with ¢ < k < j is in the interior of e at distance
at least 1/3 from the extreme points. The distance between d(I™({y ® v), I" (& ® v)) is
not larger than the total number of edge crossings of v plus 2. Now recall that the quotient
projection m: Ag — I'g maps edges homeomorphically to edges, and moreover

mo(I"(& ®v)) = mo(I"(§o @ 8-+ 51(v)) - 85+ -+ s1]0) = mo(I" ({0 @ 8i -+ - 51(v)))-

We deduce that to every edge-crossing of v we can associate (injectively) a traverse. Thus
there is a constant C' > 0 such that

l(glv) < CTn,v(St te 51) + C,

where 7, , denotes the number traverses at level n of the form (i, j,v1,v2) with v; =
8; -+~ $1(v). Summing over v we obtain the statement of the theorem. ]
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3. CONFORMAL DIMENSION OF CONTRACTING GROUPS

3.1. Visual metric. Let (G, B) be a contracting group. Choose a basis X of % and let
N be the corresponding nucleus of G. The self-similarity complex is the graph with set of
vertices X* in which two vertices are connected by an edge in one of the following two
situations: either they are of the form v, zv for v € X* and x € X (vertical edges), or they
are of the form v, g(v) for v € X* and g € N (horizontal edges).

The following theorem is proved in [33] (see also [34, Theorem 3.8.8]). The statement
about the Gromov product follows directly from the proof.

Theorem 3.1. The self-similarity complex is Gromov hyperbolic. Its boundary is home-
omorphic to the limit space Jg, where a point of Jg represented by ...xox17 € X%
corresponds to the limit of the geodesic path (x1,xox1, T3T221, . ..) in the self-similarity
complex.

The Gromov product €(x., . . . ToX1, Ym, - - - Y21 ) Of the vertices Ty, . . . xox1 and Yo, - . . Y21
is equal (up to an additive constant) to the largest k < min(n, m) such that there exists
g € N such that g(xy . .. Tow1) = Yk - - - Y2y1.

Define (... xox1,...y2y1) as the largest n such that g(z,, ... x221) = Yy ... Yoy for
some g € N. It is the natural extension of the Gromov product to J¢ (its value does not
depend, up to an additive constant, on the choice of the sequences . .. zox1, ... Y2y € X~
representing the points of the limit space). Note that we define £(¢,£) = oo for £ € Jg.

The following is a classical result of the theory of Gromov-hyperbolic spaces, see [16,

§3].

Theorem 3.2. There exists oy > 0 such that for every a < ayq there exists a metric d,, on
Ja and a constant C' > 1 such that

3) Cle—l&1.62) < do(£1,8) < Ce—t(61.62)
forall &1,& € Jg.

Note that (for a fixed value of «) the metric d,, is unique up to bi-Lipschitz equivalence.
We call it the visual metric of exponent a.

If f, g are real-valued functions with the same domain of definition, we write f = g if
there exists a constant C' > O such that C~' f < g < Cf.

It follows from Proposition 2.7 that for every ¢ € J the set

T(Cvn) = {5 € jG : 6(5,4) = TL}

is equal to the union of the tiles 7, of nth level intersecting tiles of the nth level that contain
¢. Note that T'(¢, n) is a union of not more than |\|? tiles of the nth level.
Note also that if d,, is a visual metric, then we have

4) B(¢,C7te™ ™) c T(¢,n) < B(¢,Ce™ ™),

where B(z, R) denotes the ball of radius R with center in x, and C satisfies (3).

Let u be the push-forward of the uniform Bernoulli measure on X~ by the quotient
map X~ — Jg. Since the quotient map is at most |A|-to-one, we have, for every
ve X"

X7 < u(To) < INT- X7

It follows that p(T'(¢,n)) = |X|™™, so

 _IR InRIn|X In |X]|
(B ) = X = e () g

(67
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3.2. Conformal dimension. Let (G, B) be a contracting self-similar group. Recall that
T(&,n) for € € Jg denotes the union of the nth level tiles 7 - v, v € BO™ intersecting the
nth level tiles that contain &.

Definition 3.3. A metric on J¢ is said to be quasi-conformal if there exists C' > 1 such
that for every £ € J¢ and every n > 1 there exists r such that

B(&,r) c T(&,n) c B Cr),

where the balls B(&, ) are defined using the metric d.
A metric d on a space X’ is said to be Ahlfors-regular if there exists § > 0 and a measure
pon X such that
w(B(z, R)) = R’
for all z € X and R < diam(X’). The exponent (3 is equal to the Hausdorff dimension of
d.

We have seen that the visual metric d, on Jg is quasi-conformal. We have also seen

that it is Ahlfors-regular of Hausdorff dimension In IXI

Definition 3.4. The infimum of the set of Hausdorff dimensions of Ahlfors-regular quasi-
conformal metrics on J¢ is called the Ahlfors-regular conformal dimension of Jq and is
denoted ARdim Jg or ARdim(G, B).

A map f : Xy — X, between metric spaces (Xi,d;) and (Xo,ds) is said to be
quasisymmetric if there exists a homeomorphism 7 : [0,0) — [0, c0) such that

do(f (), (1)) 1 (2,)
(@), £(2) S ’7( <x,z>)

forall x,y,z € A7.

It is not hard to see that the inverse of every quasisymmetric homeomorphism is also
quasisymmetric.

Two metrics on the same spaces are said to be quasisymmetric to each other if the
identity map is quasisymmetric.

It follows directly from the definitions that any two visual metrics d,,,ds, on Jg are
quasisymmetric to each other.

Proposition 3.5. Let (G, B) be a self-replicating group. Then an Ahlfors-regular metric
d on Jg is quasi-conformal if and only if it is quasisymmetric to a visual metric.

Proof. 1t is easy to see that every Ahlfors-regular metric on Jg quasisymmetric to a visual
metric is quasiconformal.

If d,, is a visual metric, and d is quasi-conformal, condition (3) implies that there exists
a constant C' > 1 such that for every { € J¢ and every r > 0 (such that By_ ((,7) # Jg)
there exists R, ¢ > 0 such that

Ed(@ Rr,() o= Bda (Ca T)
and
Eda (C7 T) < Bd(g7 CRT,C))

where B and B denote the open and the closed balls, respectively.

Let &1,& € Jg be such that d, (¢, &) < do(C,&2). Let do(¢, &) = r. Then
d(¢,&1) < CR¢ . £ d((,&2) < Re,p, thend, (¢, &2) < r, which is a contradiction. There-
fore, d(¢,&2) > Re¢,. We see that do((,&1) < da((,§2) implies d((,&1) < CR¢,r <
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Cd(¢,&2). It follows that the identity map from (J¢, do) to (Jg, d) is weakly quasisym-
metric.

Consequently (as Jg is connected and doubling in the self-replicating case), by [22,
Theorem 10.19], the identity map is quasisymmetric. (]

Proposition 3.6. Let d be an Ahlfors regular quasi-conformal metric on Jq. Then

lim sup diam(7T(¢,n)) — 0
n—o0 ﬁejG
asn — oo. If d is quasisymmetric to a visual metric, then there exist C > 0 and A € (0, 1)
such that
sup diam(7'(§,n)) < CA"
eda
for all n.

Proof. The first statement follows from the fact that it is true for a visual metric and that
compact spaces have a unique uniformity, so uniform convergence to 0 does not depend on
the choice of a metric.

Suppose now that d is quasisymmetric to a visual metric d,,. Let 5 : [0,00) —> [0, c0)

be the homeomorphism such that ﬂig <7 (%) for all x,y,z € Jg, where d,, is

a visual metric on Jg. Let uy,us € X*. Then for every z € Ty, < Ty, there exists
Yy € Tuyu, such that 2d(z,y) > diamg(Ty,., ). Similarly, there exists z € T, such that
do(z, 2) = diamg_ (T, )/2. Then

Qo (Toy) _ 2d(ay) _, (da(ey)) _,  (disma, (Tusu)
diam(7,,) — d(z,z) do(z, 2) diamg, (7y,)/2 )~

It follows from the definition of the visual metric that diamg_(7,) = e~ I*l®. It follows

. di s _
that there exists C' > 1 such that % < Ce 12l for all uy, ugy € X*.

Since 7 : [0,00) — [0, 00) is a homeomorphism, this implies that there exists m and

Ao € (0,1) such that %
ul

proposition. (]

< A for all ug € X™. This implies the statement of the

4. CONTRACTION COEFFICIENTS

4.1. ¢,-contraction. Let (G, B) be a contracting finitely generated group. Fix some finite
generating set of G, and let I(g) be the corresponding word length.
The ¢P-contraction coefficient of the group is

wl p)/P
np = lim | limsup (pexn Uglo)?) )
nE N U)o I(9)

The ¢,,-contraction coefficient 7, is defined in the similar way, replacing the ¢’ norm of
the vector (I(glv))vexn by its £° norm max,ex» {(g|,). The existence of the first limit in
the formula defining 7, follows from the lemma below.

Lemma 4.1. Denote

A Ugly)? 1/p
Np,n = limsup (Dvexn 1(gl)P) .
l(g)—mo l(g)

Then mp ny +ny < Mp.nyp,na-
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Proof. Forevery \; > 1, », and every g long enough, we have
D7 Ugly)” < Mi(g)”.
veX™i
It follows that there exists a constant C' not depending on ¢ such that
2 Uglo)” < 20g) + €y
veX™i
forall g € G.
Suppose at first that p > 1. We have then, using the triangle inequality for the p-norm:

Do Ugl)P= D D) Uglww)? < DL A(Ughy) + O <

vEXT1+ng V1EXNL vyEXN2 v1EX™L

1/p\ P
A20|><"1|+A2< > l<g|m)f’> <

v EXM1
(A2CIX™ [+ XA (U(g) + C))°
which implies that
Np,ni+ns S A2,

for all Ay > 1y, and Ay > 0 n,.

The case p € (0, 1) is analogous, but using the triangle inequality for the norm (z;) —
2P O

It is shown in [37, Proposition 4.3.12] that 7, does not depend on the choice of the finite

generating set or the choice of the basis X < B. (This is true for all p € (0, o0].)
It is shown in [37, Proposition 4.3.15] that for all 0 < p < g < o0 we have

(5) np =g = X7 X7V, < X7V,
In particular, the function p — 7, is non-increasing and continuous.

Definition 4.2. The critical exponent p.(G,*B) of a contracting group is the infimum of
the set of values p such that i, < 1.

Proposition 4.3. Suppose that (G,B) is a contracting group. Fix a basis X < B and a
finite generating set S containing the nucleus. Let p > 1 be such that n, < 1. Then for
every | = 2 there exists a constant C such that for every g € G we have

D1 Ugh)? < Cl(g)”.

vEX* [(g|y)=1

Proof. Note that since G is contracting and the generating set contains the nucleus, for
every [ there exists m such that if I(g) < [, then I(g],) < 1 for all v € X* such that
|v| = m. Therefore if we fix I; < lo, every vertex in the set {v € X*: [} < I(g|,) < l2}is
at a uniformly bounded distance either below the root, or below a w such that {(g|,,) = ¢o.
It follows that there exists some constant C; such that

Y W< S gl |+ o

veX*,l(glv) =l veX*,l(glv) =12

Consequently, it is enough to prove the proposition for any large /. It is also easy to see
that we can replace X by any power X", i.e., consider in the sum only words v of length
divisible by nyg.
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If n, < 1, then there exist ng, lp, and 7 < 1 such that
>3 Ugly)” < ni(g)?
veX™0
for all g € G such that [(g) = ly. If we redefine the length by setting

Z(g) _ { l(g) ifl(g) =1lo

0 otherwise '’

then we get

>3 gl < ni(g)?
veX™0

for all g € G. Consequently,
DT lgly)? < nfi(g)”
veXkno

for every k > 0 and every g € G, hence

S g Y S Tgh)? < ——ig),
1

ve(X"0)*,1(glv)=lo k=0 peXkno n
which finishes the proof. (]

Proposition 4.4. Let [ : X ® B —> X be a contracting model of the group (G,B). For
every p > p.(G,B) and every § > 0 there exists C such that

A1 (& ®0), I"(& ®@))P < Cd(&r, &)
veX*,d(I1Y1(&1Qv),d(I1*(£2@v)) =6

forall &,&5 € Xa.

Proof. Denote the sum in the proposition by X(0, &1, &2). If §; > 0, then the set of sum-
mands in X(01, &1, &2) is a subset of the set of summands of ¥(4, &1, £s).

It follows from the definition of a contracting model that we have d(I'*!(¢&,®@v), I (£,®
v)) < CAIYld(&, &) for some constants C' > 1 and \ € (0,1). Consequently, for every
summand d(I1*1(¢&; ®v), Il (£&,®@v))P of B(81, €1, £2) there is at most some fixed number
of summands of X(8,&;, &) of the form d(IV*(&; ® vu), I'"*!(&; ® vu))P and all the
values of these summands are bounded by CPd(1""!(&; ®v), I1°1(&, ®v))P. Tt follows that
there exists a constant & not depending on &1, &> such that (6, &1, &) < KX (01,61, &2).

Consequently, it is enough to prove the proposition for an arbitrary 6. Let 7' = X be a
compact set intersecting every G-orbit and such that I(T ® x) < T for every x € X. We
can find such a set since the maps £ — I(£ ® x) are contractions. There exist g1, g2 € G
such that & € T - g;. Since the action of G on X is proper, isometric, and co-compact,
there exists a constant L > 1 such that

L' g195 ") — L < d(&1,&2) < Li(grgy ') + L.
In particular, if d(&;, &2) > 2L, then

(2L) (9197 ") < d(é1,&2) < 2Li(g195 ).

For every v € X*, we have I1Vl (¢, ®@v) = I"I(¢-g;®@v) = I"I(€/®gi(v))-gil, for some
¢! e T. By the choice of T, we have II"/(¢! ® g;(v)) € T. Note that (g1],)(g2|,) " =
(9195 )lga(v)- Therefore, if d(11*/(&; @ v), I1"/(& ® v)) > 2L, then it is equal, up to
multiplicative constants to the word length of (g195 1)| ga(v)- We also can guarantee that
the word length is greater than any fixed number by bounding from below the distance
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d(I"\(& @ v), IIV1(&, ® v)). Tt follows that the sum (3, &5, &), if 6 is large enough,
is bounded from above by a constant multiple of the sum >}, cxx ;1,151 {(9]0)7, where

g = g199 'and [ is an arbitrary constant. Proposition 4.3 then finishes the proof. O

Definition 4.5. The portrait of an element g € G is the set P(g) of finite words v € X*
such that g|,, does not belong to the nucleus N of G for any proper prefix u of v. If g € NV,
then we set P(g) = {}.

The portrait is prefix-closed, i.e., a rooted subtree of X*. Let us denote by L(g) the set
of leaves of this subtree, i.e., the set of words v € X* such that g|, € N but g, ¢ N for
any proper prefix u of v.

The following bounds on the size of the portrait is proved in the same way as Proposi-
tion 4.3.

Proposition 4.6. Let (G, B) be a contracting group, choose a basis X < B. Let p = 1 be
such that n, < 1. Then there exists a constant C > 1 such that

|P(g) n X" < Cnyl(g)?

and
|P(9)| < Cl(g)”
for every g e G andn = 0.

The portrait P(g) of an element g together with the labeling of the elements v € P(g)
by the permutations the sections g|,, induce on the first level X < X* and the labeling of
the elements of L(g) by the sections g|, € N uniquely determine g. This, together with
Proposition 4.6 implies that the growth of the group G' is bounded from above by e“™” for
every a > p.(G,B).

4.2. Critical exponent and conformal dimension.

Theorem 4.7. Let (G,B) be a finitely generated contracting group. Its critical exponent
P is not greater than ARdim Jg.

Proof. Let d be an Ahlfors-regular quasiconformal metric on Jg. Let v be the correspond-
ing Hausdorff measure, and let « be its Hausdorff dimension. Take 8 > «. It is enough to
prove that p. < 3, i.e., that g < 1.

Let S be a finite symmetric generating set of G. Consider a product g = s, . . . s251 of
of elements of S. Let ng be such that all sections of elements of S in words of length ng
belong to the nucleus. Then for every u € X" and vy € X" consider the sequence

vou, s1(vou), Sas1(vou),..., Sm...S251(vVou).
Denote by ug, u1, . . . , U, the corresponding suffixes of length n. Then u; = s; 51151 (v0) (wi—1),
so the tiles 7, and T, , intersect in J¢, and the tiles 7 ® u; and T ® u;_; intersect in
Xg.
Choose &; vou € Tu; N Tu,_, forevery i = 1,2,...,m. Let R; ., and r; ., be the
smallest and the largest radii such that

B(gi,voua ri,vou) - T(gi,vouv n) - B(gi,voua Ri,vou)-

We know that R; yyu/7ivu € [1,C] and that u(T (& vgu, n)) = C~ 1, = C17RE, L,
for some constant C' > 1.

Denote by M,, the maximum over £ € J¢ of the minimal radius R such that T'({, n) <
B(&, R). It follows from Proposition 3.6 that M,, — 0 as n — oo.




18 NICOLAS MATTE BON, VOLODYMYR NEKRASHEVYCH, AND TIANYI ZHENG

Consequently (using 5 > 1),

(R1,vpu + Rowgu + -+ + Rm,vou)ﬁ < mﬂil(RB + R} toeet R?ﬂ,vou) <

1,v0u 2,v0u
B—1arB—a « a . a
m Mn ( 1,vou + RQ,UUU + + Rm,’uou) <

mﬁianﬁ,iaclJra(V(T(gl,vouv n)) + V(T(€2,vou7 n)) +eoet V(T(gm,,v(ﬂu Tl)))

We have 3 vng yexn V(T (Eivous 1)) < [X[™ - [N]? - v(Jg), hence adding all the in-
equalities over all vg € X" u € X", we will get

Z (R1v0u+ Rowou + - '+Rm,vou)ﬁ < X[ ‘N|2'V(~7G)'C1+Q'Mg_a -m”.

vEXM0 ,ueXn

Lemma 4.8. There exists a constant C; > 0, depending only on G, X, and d, such that
Z(g|vou) < Cl(Rl,vgu + R2,7J()’u + -+ Rm,vou) + Cl-

Proof. Let us define a metric on Xg. Let (1, (s € Xg. Take all v, vo € BO™ foralln > 0
such that §; € (T.S) ® v; and (TS) ® v1 N (TS) ® v2 # &, and then take the infimum
do(C1, ¢o) of diam((7°9) ® v1/G) + diam((T'S) ® v2/G). (Here BEY = G.) Denote the
infimum by do((1, (2) (it may be infinite).

We obviously have that dy((1, (2) is not smaller than the distance between the images
of (1 and (» in Jg.

Define then d; ({1, (2) as the infimum of do(&o,&1) + do(€1,&2) + -+ + do(En—1,&n)
over all sequences &; such that §y = (7 and &, = (5. Then d; is a finite metric on X. It is
obviously G-invariant. For every £ € X, the diameter of the union of the tiles of the nth
level of A containing £ is not larger than the diameter of the union of the tiles of the nth
level of J& containing the image of £. Consequently, the metric d; is compatible with the
topology on Aj.

Choose a point £, € T, and consider the sequence

So®@uou, &o-51@uou, 05251 @VoU,..., &0 Sm 5251 @ VoU.
Then Ry you + Roou + -+ + R veu i an upper bound on di (§p ® vou, & - g ® vou).
The lemma follows then from Lemma 2.11. O

Note that each R; ,,,, is bounded from below by some number r,, > 0. Consequently,

18
( > l(glv)ﬁ) <

peXn+ng

1/B
“@ < Z (Rlvvou + R27U0u +ot Rm,vou + 1)ﬁ> =
Vo EX™0 ,ueXn

/B
Ch ( Z (Rivgu + Rovgu + -+ + meou)ﬂ> X VB <

Ve EX"0 , ueX™
KM, 7 -U(g) + [X"[V?,
B8\1/8 _a
which implies that lim sup;y)_,q, (2’”Exn+ﬂi‘2;)(g‘“) ) < KM, 7. Since M, — 0 as
n — 00, Lemma 4.1 implies that ng < 1. O

Remark 4.9. The inequality in Theorem 4.7 is not sharp. For example, it is known that 7,
for the first Grigorchuk group G is strictly less than 1 (this is the classical sum-contraction



LIOUVILLE PROPERTY FOR GROUPS AND CONFORMAL DIMENSION 19

of Grigorchuk [17]), which implies by the inequality (5) that its critical exponent is strictly
less than 1. On the other hand, the limit space of the Grigorchuk group is a segment, hence
we have ARdim J& = 1. In fact, it follows from the norm contracting inequality in [5] and
the explicit sequence of group elements which satisfies the reverse inequality (see [6][Prop
4.7]), we have that its critical exponent is equal to g = log2/log A\g ~ 0.7674, where
Ao is the positive real root of the polynomial X3 — X2 — 2X — 4. Recall the definition
of critical constant for Liouville property in the Introduction. From the random walk with
nontrivial Poisson boundary constructed in [15] for the purpose of volume lower estimate,
we have that Crp,;ouy (G) is also equal to « and oy is the growth exponent of G.

4.3. Thurston obstructions. Let (G, B) be a self-similar group. Consider the linear span
V of conjugacy classes of infinite order elements of G. We denote by [g] the conjugacy
class of an element g € G seen as an element of V. If g is of finite order, then we define [g]
to be equal to zero. Choose a basis X < 9 and the associated self-similar action on X*.
Let g € G. Consider the action of g on X, and for every cycle z1 — T2 — ... — xf — I
of the action, consider the conjugacy class [g|., - - - 9lz»9]z,] = [(¢%)|2,]. Note that it
does not depend on the choice of the initial element x; of the cycle. Choose p > 1, and
denote by T, ([g]) the sum of the elements k*~P[(g*)|,,] € V taken over all cycles of the
action of g on X. Since a change of the basis X corresponds to conjugation of the wreath
recursion by an element of the wreath product, the value of T}, ([¢]) does not depend on the
choice of X.

For example, if a = o(1, a) is the binary odometer, then we have T),([a]) = 2! ~?[a].

We call the linear operator T}, the Thurston’s p-map.

Lemma 4.10. If T), is the Thurston’s p-map for (G,*B), then the Thurston’s p-map for
(G, B®")is T}

Proof. Let x1 — xy — --- — x} — x1 be a cycle of the action of g on X. Denote
h = (g*)|s,. For every cycle vy + vy > - - - = v,,, = v of the action of h on X" we get
the cycle

2101 = Tagle, (V1) = > 2e(g" e, (01) &

T10y > Tagla, (V2) > - > 2R(g" e, (02)

T1Um — x2g‘901 (vm) = xk(gkil)xl (’Um) = T101

of length km of the action of g on X"*1. We have (g¥™)|;,o, = h™|,,. A proof of the
lemma now follows by induction. (]

Theorem 4.11. Suppose that U <V is T,-invariant subspace spanned by a finite set of
conjugacy classes. If the {P-contraction coefficient 0, of (G,B) is less than 1, then the
spectral radius of T, |y is also less than 1.

In particular, we can use this theorem to find lower estimates for p.(G, ), and hence
for ARdim(G, B).

A particular case of this theorem is related to one direction of the Thurston’s theorem
(see [13]) characterizing post-critically finite branched self-coverings of the sphere that are
realizable as complex rational function. In Thurston’s theorem one considers subspaces
spanned by conjugacy classes defined by disjoint simple closed curves of the punctured
sphere (with some additional conditions). Such collections of curves are called multic-
urves.
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Proof. Let{[g1],[g2],---,[gm]} be a finite spanning set of U. Let N be a natural number
such that the action of each element glN on X is identical. Denote by L; ;n the length
of gV (with respect to some fixed finite generating set of the group). We have then
LikikoN < k1L p,n foralli =1,...,m, k1, ks > 1. Equivalently, we have

—1
Lig,Nn 2k Ligk,N-

Note also that L; ;5 — 00 as kN — o0, since we assume that the elements g; are of
infinite order.

Assume that 77, < 1. Let n be such that 5, < 1 < 1. After replacing X by X" for a
large n (using Lemma 4.10) and assuming that [V is large enough, we will have

DTUGNF)P < (g k)P

zeX
for all ¢ and k.
For cycle x1 ~— x9 +> -+ — x, > x1 of g;, the corresponding sections g.V*

z; are

conjugated to (g/|s,) = . If g7|s, has infinite order, then it is conjugate to one of the
elements g;. Since the number of corresponding conjugators is finite, we get

l(giNk h) = Lj,Nk:/r —-C.

Choose an arbitrary p € (1, 1), so that ~1p > 1. Assuming that N is large enough, we
will get [(g]V*|.,) = pL; nk/» for all k > 1. Consequently,

T

D UGN )P = prLE = pr (r L) = prtTPLE
=1

It follows that
L e = Ug ™) =07 DT 10N )P = 07 e &(Ty([9:])s

zeX

where ¢ is the linear functional defined by
o([9;]) = L} ny.-

Consider the matrix of the dual operator T'¥ in the basis of U* dual to the basis ([¢1], [¢2], - - -

The above inequality means that the ith coordinate 7,7 (¢)([9:]) = ¢(T},([g:]) of T*(¢) €
U* is less than or equal to 17p~! times the ith coordinate ¢([g;]) of ¢. Since all coordinates
of ¢ are positive, Perron-Frobenius theorem implies that the spectral radius of 7,7 is strictly
less than 1. Consequently, the spectral radius of T}, is also strictly less than 1. U

As an example of an application of Theorem 4.11 (and Thurston’s theorem), consider a
mating of two cubic polynomials, found by M. Shishikura and L. Tan, see [43].
The iterated monodromy group is generated by

alp = (12)(171,(13), b1 = (171)3,1),
ag = (a17171), b2 = (b1a171)7
az = (02)(az ', 1,a0a3), bs = (012)(b5", 1,bob3).
Note that ajagas = bibebs = 7, where 7 = (012)(1, 1, 7). The groups {a1, az, a3y and
(b1, b, b3) are the iterated monodromy groups of the mated cubic polynomials.
It is checked directly that the group is contracting with the nucleus consisting of the ele-
ments ag, azas, b3, babs, ajasas = bybobs, their inverses, and the identity element. More-

over, the wreath recursion is contracting for the free group (of rank 5), hence the limit
space has topological dimension 1, see [38, Theorem 4.4].
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Post-conjugating the wreath recursion by (1, b3 1 by 1), and passing to the generating
set by, ba, b3, x = by tay, y = bzag ' (we have b, "ag = ya ! in the faithful quotient), we
get an equivalent wreath recursion:

bl = (17b37 1)a T = (12)(15 17y_1)7

62 = (61717]‘)’ y = (12)(1:’ 17y71)’
by = (012)(1,1, by).

Let U be the formal linear span of the conjugacy classes [z], [z7], [y], [y~*]. Thurston
map 75 acts by the rule

1

B T R s P o}

)= [l + 5l ] ]+ Sl

It is easy to see that the spectral radius of 75|y is equal to 1. In particular, this means,
by Thurston’s theorem, that the mating is obstructed, i.e., is not equivalent to a rational
function. Theorem 4.11 implies that the conformal dimension of the limit space of the
group is at least 2.

5. RANDOM WALK AND LIOUVILLE PROPERTY
5.1. Random walk preliminaries.

5.1.1. Notation. Let G be a group endowed with a symmetric probability measure . The
measure 4 is said to be non-degenerate if its support supp p generates G as a semi-group.
If GG is finitely generated, the measure p is said to have finite p-moment for p > 0 if
S u(g)l(g)P < 400, where I(-) is the word metric on G associated to some finite sym-
metric generating set. We denote by (g;) the (left) random walk associated to y, namely
g: =S¢ -+ - 81, wWhere (s;);>1 is a sequence of independent random variables with distribu-
tion .

5.1.2. Capacities and random walk on Schreier graphs. Assume that G acts on a count-
able set 2. Then for each starting point w € €2, the process (g; - w) is a Markov chain on {2
with transition probabilities p(v, w) = 3, _, #1(g). The assumption that 1 is symmetric
implies that the induced Markov chain is reversible with respect to the counting measure
on (2, which we use as the reference measure in the Dirichlet forms below. For p > 1, the
associated p-Dirichlet form on /() is

Eulh) =5 Y wlf)=flg P fem@.

geG,veQ

Let A, B be two disjoint finite subsets of 2. For p > 1, the (effective) p-capacity between
A and B is defined as

Cap, (A, B) = inf{&,(f) : fe?(Q),fla=1,flz=0}.
For p = 2 this has a well-known probabilistic interpretation. The following is a refor-

mulation of [30, Exercises 2.13 and 2.47], we provide a proof for completeness.

Lemma 5.1. Let (G, ) be a group endowed with a probability measure, and (g,,) the
associated random walk. Assume that G acts on a finite set ). For w € Q and B < ),
consider the stopping time:

Ty_p=min{t > 1: g, -we B}.
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Then for A, B disjoint subsets of (2,

Cap2,u(A7B) = Z IED(T(.UHB < T(.UHA)'

weA

Proof. We use the same notation and terminology on electric networks as in [30]. Since
 is symmetric, we may regard the induced random walk transition operator P, on 2 as
coming from an electric network with conductance c(z,y) = X .o 1y=g}1(9), and
reversing measure 7(x) = 1, 2,y € Q. Denote by 7,,4 = min{t > 0 : gw € A} the
hitting time of A. Let v(z) = P(7,.4 < Tz—p). Then v is a voltage function which is 1
on the source set A, and 0 on the sink set B. Considering the first step of the random walk,
we have

DI P(Tymp < Tuma) = Y. O Pulw, 2)P(Tosp < Tomsa)

e weA ze)
- Z 2 c(w,z)(v(w) —v(x)).

weA xeQ)

Regard i(w,z) = ¢(w,z)(v(w) — v(x)) as the current on the edge (w,x). The capacity
Cap, (A, B) is the effective conductance between A and B, thus equal to the total amount
of current flowing out of A under the voltage function v, whichis > 4 > g i(w,z). O

5.1.3. Liouville property and entropy. Let 1 be a probability measure on G. A function
f+ G — Ris p-harmonic if f(z) = 3 5 f(zg)u(g) for all z € G. By definition
the p-random walk has the Liouville propery if 1 has trivial Poisson boundary, namely
if every bounded p-harmonic function is constant on the subgroup {supp p), Furstenberg
observed that admitting a non-degenerate measure p with the Liouville property implies
amenability of the group G (see [27, Theorem 4.2]). Conversely every amenable group
admits a symmetric non-degenerate measure with trivial Poisson boundary, by a result of
Kaimanovich and Vershik [27, Theorem 4.4] and Rosenblatt [42].

Recall that given a probability measure v supported on a discrete set €2, the (Shannon)
entropy of v is defined as

H(v) = = ) v(w)logv(w).

we

If X is a discrete random variable taking values in a set €2, the entropy H (X) is defined as
the entropy of the distribution of X.

Let X,Y be discrete random variables, and for any value y taken by Y with posi-
tive probability, denote by X (¥) the variable with the conditional distribution of X given
{Y = y}. Then the conditional entropy of X given Y is defined as the expected value of
H(X®)), namely

HX|Y) = Y HEXYWP(Y =y).

We resume below some basic properties of Shannon entropy.

Lemma 5.2. (1) If X is a random variable taking values in a finite set Q, then H(X) <
log |€Y].
(2) The entropy of the joint distribution of two discrete random variables (X,Y) sat-
isfies
H(X,Y)=HX|Y)+ H(Y).
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(3) Assume that a random variable Y can be expressed as Y = f(Xq,...,Xy) for
some discrete random variables X1, ..., Xy and some measurable function f.
Then

H(Y) gH(X1)+"'+H(Xk).

Another well-known and elementary fact is that every random variable X taking values
in the non-negative integers N and with finite expectation satisfies

H(X) <log(1 + E[X]) + 1.

This in turn gives the following simple bound for random variable taking values in a
group.

Lemma 5.3. Let G be a finitely generated group and l(-) be a word metric on G associated
to a finite symmetric generating set S containing the identity. Then for every G-valued
random variable g with finite entropy we have H(g) < (log |S| + 1)E[i(g)] + 1.

Proof. 'We may assume that the expectation of [(g) is finite. We have H(g) < H(gli(g))+
H(g). Let g(™ be the variable g conditioned to I(g) = n. Since g(™ belongs to S™, we
have H(g(™) < nlog|S| and H(g|i(g)) < log|S|E(I(g)). On the other hand H (I(g)) <
E(l(g)) + 1. (]

Assume that g is a probability measure on a countable group G'. Then the limit o, =
lim %H (u*™) exists and is called the (Avez) asymptotic entropy of p. The entropy crite-
rion, proven by Kaimanovich and Vershik [27] and Derriennic [12], states that if H(u) <
+00, then p has trivial Poisson boundary if and only if h,, = 0.

For groups acting on rooted trees, the entropy criterion combined with the previous
properties of entropy gives the following sufficient condition for boundary triviality. Some
tightly related criteria appeared in [9,26] and were used in several papers.

Proposition 5.4. Let G be a finitely generated group of automorphisms of a rooted tree
X* endowed with a word metric, and |1 be a probability measure on G with finite entropy.
Then there is a constant C > 0 such that for every n,t > 0 we have

H(u*") < CE[ ) Ugelo)]+CIXI™
veX™

In particular, if there exists a sequence (e,,) tending to 0 such that for every n we have

1
Jimy tE[ > l<gm>] <en

veX™

then p has trivial Poisson boundary.

Proof. For every n and t, the variable g, is completely determined by the collection of
sections (g¢|, )yexn and by the permutation o describing the action on level n. Thus

H(g:) < Y, H(gil) + H(o).
veX™
By Lemma 5.3, the first term is bounded by C1E[Y;, .x» I(8¢|,)] + C1|X|™. The permu-
tation o is completely determined by the first-level permutation of all sections g;|,, where
|w| < n — 1. Thus the total number of possibilities for o is bounded by exp(C2|X|™), and
H(o) < C3|X|™ for some constant C; > 0. The proposition follows. O
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5.2. Critical contraction exponent and p-capacity. Let (G, ‘B) be a finitely generated
contracting group with a basis X, and p be a symmetric measure on G. In this subsection
we will relate the p-capacities associated to the action of G on the levels X" with p.(G, B)
and ARdim J¢.

Proposition 5.5. Suppose that (G,*B) is a contracting finitely generated group. Denote
by l(g) the word length with respect to some fixed finite generating set on G.
Let d be an Ahlfors-regular metric on Jg of Hausdorff dimension o. Let 8 > « and let
p > pe(G,B). Pick a basis X  B.
There exists a sequence €, — 0 such that for every g € G and every ...xox7 € X™%
we have
Z d(...zaz19(v),. .achlv)ﬁ < e,l(g)P.

veX™

If (G, B) is self-replicating, then we can take €,, = C\" for some C > 0 and X € (0, 1).

Proof. Let v be the Hausdorff measure of the metric d. Take an element g € G. For every
v € X", let v’ be the shortest prefix of v such that g, € A. If such a prefix does not exist,
then define v’ = v. Let v” € X* be such that v = v"v”.

We have ... x2219(v) € T(... zaxqv, |v”|) for every v € X™. It follows that

d(...wam1g(v), ... waw10)* < Crv(T(... 2210, |0V"|)

for some constant C. Therefore, there exists Co > 0 such that for every sequence (k)
we have

8
Z d(...2om19(v), ... 22710)? < Oy Z v(T(...zom10,|0"])= <

veEX™ veEX™

C’gl/(](;)g HoeX: W <k} + Co Z v(T(...xzom0, |V"|)>.

vEX™, [V |>ky,

B
@

By Proposition 4.6
[{ve X" |0"] < kn}| < Cynl " 1(g)?,

for some C3 not depending on &, or on g. For the second summand, note that if 7°(. . . 2T, [vf])
and T'(.. mgxlvg, |v5]) intersect for vy, ve € X™, then either v] # v} or vj = v} and

h(v{) = v4 for some h € N2. It follows that every point of J is contained in not more

than | L(g)|-|[N?| sets of the form T'(. .. zox1v, [v”|), recalling that L(g) is the set of words

v € X* such that g|, € M but g|, ¢ N for any proper prefix u of v. It follows that

Y, T zamo ") < |L(9)] - IN? - v(Te)-
veX™ v >k,
By Proposition 4.6, |L(g)| < C4l(g)? for some constant Cy. Hence
8

Z d(...zox19(v), ... xx10)P < Cy Z v(T(...zom1v, [V"])

veXn veEX™

Cs (ng_k" +  max v(T(...za110, v”|)g_1) I(g)?

vEX™ v |>ky,

<

<Cs (77;"“" + sup  v(T(E, k))51> I(g)*.

§eda k>kn
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Since v(T'(&, k)) = diam(T'(&, k))®, Proposition 3.6 implies that the coefficient

et sup w(T(E k)
feda k>ky,

converges to zero if simultaneously n — k,, — o0 and k,, — o0. Note that this coefficient
does not depend on g. We have proved that there exists a sequence ¢,, — 0 not depending
on g such that

Z d(...zox19(v),. .$2171U)ﬂ < e,l(g)?

veX™
forall g € G.

If the group (G, B) is self-replicating, then the second part of Proposition 3.6 implies

that (for example, if we choose k,, = |n/2]) we can choose ¢,, of the form C'A\™ for some
C >0and A€ (0,1). O

Theorem 5.6. Let (G,B) be a contracting finitely generated self-similar group, and let
be a symmetric probability on G with finite p-moment for some p > p.(G,*B).
Let A and B be disjoint closed subsets of Jg. Fix £ = ... x2x1 € X™, and denote by
A,, and B, the sets of words v € X" such that the point of Jq represented by the sequence
.. x9x1v belongs to A and B, respectively. If § > ARdim Jg then

7}1_{130 Capﬁ,y(Anv B’n) =0.

Moreover if (G, *B) is self replicating, then there exist C > 0 and X € (0, 1) such that
Capg ,,(An, Bn) < CA™.

Proof. The algebra of Lipschitz functions Jz — R is dense in the algebra of all con-
tinuous functions, by Stone-Weierstrass theorem. Therefore, for every e > 0, there exists
a Lipschitz function fy : Jo — R such that |fo(a) — 1| < € and |fo(b)| < € for all
a€ Aand b e B. Let x : R — R be a Lipschitz (with respect to the usual metric on R)
function such that x(z) = 0 forall z € (—1/3,1/3) and x(z) = 1 for all x € (2/3,5/3).
Then the function f = x o fo : Jo — R is a Lipschitz function such that f(a) = 0 and
f(b) = 1foralla € A and b € B. By Proposition 5.5 there exists C' > 0 and a sequence
(en) tending to 0 such that for every g € G

DG mamrg(v) = f( - mazav) P < Crent(g).

veX™

This finishes the proof. (]

Remark 5.7. Given an infinite index subgroup H of a finitely generated group G, the
(symmetric) critical constant for recurrence Cr(G, H) is defined as the infinum of p such
that all symmetric random walks with finite p-moment induce recurrent random walks on
G/H. This notion was introduced by Erschler [14]. In our setting, Theorem 5.6 implies
that if ARdim Js < 2, and if H is a stabiliser for the action of G on the boundary X“ of
the tree, then Cr(G, H) < p.(G, B). This inequality is an equality in some cases (for the
Grigorchuk and Basilica group for instance). We do not know whether this inequality is
always sharp.

We conclude this subsection by pointing out a consequence of Theorem 5.6 which will
be used in the proof of Liouville property next subsection. To state it, we first note that the
topological dimension of J¢ is always bounded above by ARdim J¢ (see [31, Theorem
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1.4.12]). Hence if ARdim J¢ < 2, then Theorem 2.14 implies that (G, ®B) has a contract-
ing model A which is a locally finite connected graph, and we can place ourselves in the
setting of Notation 2.15.

Corollary 5.8. Let (G, B) be a finitely generated contracting self similar group such that
ARdim Jg < 2, and retain Notation 2.15. Let p be a symmetric probability measure on
G with a finite p-moment, where p > p.(G,*B). Then for any two distinct vertices z, and
22 of T'o, we have lim,, o, Capy (U, n, Uzyn) = 0.

Proof. Note first that since Ag is a contracting model, if we replace the basepoint &y in
Notation 2.15 by a different basepoints &, then the corresponding sets U_ ,, satisfy U_ ,, =
U. n for all n large enough. Therefore, without loss of generality, we can suppose that &,
is the image of a point on € X under the natural map X — Ag given by Theorem 2.9.
The map Xo — Ay also induces in the quotient a map Jo — I'g. We will apply Theorem
5.6 to the sets A, B < J given by the pre-images of U, , U,,. To this end we choose the
sequence . ..zox1; € X~ in the statement of Theorem 5.6 so that it represents the same
element of X as on. With this choice, we have U, , = A, and U, ,, = B,,. U

5.3. Proof of Liouville property under conformal dimension < 2. In this subsection
we complete the proof of the following statement on Liouville property.

Theorem 5.9. Let (G, ‘B) be finitely generated contracting group such that ARdim Jg <
2. Let p > p.(G,B). Then every symmetric probability measure | on G with finite p-
moment has trivial Poisson boundary.

Corollary 5.10. Let (G,*B) be a finitely generated contracting group. If ARdim Jg < 2,
then G is amenable.

In the proofs below we take terminology and notation from Subsection 2.5, in particular
the set U, ,, and the number of traverses 7, as in Definition 2.16 and Theorem 2.17.

For clarity we first prove the theorem under the simplifying assumption that p is sym-
metric and finitely supported.

Proof of Theorem 5.9 (finite support case). Let p be a symmetric probability measure sup-
ported on the finite set S, and g; = s; - - - s; be the associated random walk. We wish to
estimate the expected number of traverses E[7,(s;---s1)]. By Corollary 5.8 we have
max, -, Capy ,(Uzy 0y Uszyn) — 0 as n — oo, where the maximum is taken over all
distinct vertices 21, 25 of I'g. Denote this maximum by &,,.

Say that a level n traverse from z; to z, starts at time ¢ at a vertex v € U, , if there
exists w € U,, , and j > i so that (4, ,v,w) is a traverse from z; to z,. Denote this
event by A(i, v, 21, 22). Let N; be the total number of traverses that start at time 7. Then
Ni =2, 2 2vev., , LA(i,0,21,25) - It follows from Lemma 5.1 that

E[N]< Y, > P(Toor.,, <Tosr,,,) <|Tol’en.

21,22 V€U 1n

Therefore, we have
t
E[7a(se -+ s1)] < > E[N;] < [Tol*ent.
i=1
By Theorem 2.17 we deduce that there is C' > 0 such that

1 .1
Jim [ D7 Uegil)] < lim inf ~E[7(s; -+ 81)] < Cen.

veX™
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Since ¢,, tends to 0 as n — o0, Proposition 5.4 concludes the proof. O
We now move to the general case.

Proof of Theorem 5.9. First note that when p.(G,B) < 1, the upper volume growth ex-
ponent of G is < p.. It follows from a general argument that any measure (not necessar-
ily symmetric) of finite p-moment, p > p.(G, B), has finite entropy and trivial Poisson
boundary, see Corollary 2.3 in [15].

For the rest of the proof assume p.(G,B) > 1. Let p be a measure on G of finite
p-moment, p > p.(G, B). In particular, y has finite first moment, and thus expectations of
length of sections [(g¢|,) are finite. By Corollary 5.8, we have the capacity estimate
(6) én = max Cap, (U n,Uz,n) — 0.

z1,22€l

The main difference from the finite-support case is that we can no longer apply directly
Theorem 2.17 to a word s; - - - 81 consisting of samples of 1 because the support of  is
infinite.

Let us follow the proof of Theorem 2.17 and take notations set there. Let s; - - -sgs
be a sample of the random walk, and set g; = s; - - - s9s1, with gg = 1, and §; = & - g;.
Let n be large enough and for v € X" fixed choose a geodesic path from I"™(§;—1 ® v)
to I"(¢; ® v) and let v = ;- - - §; be their concatenation. By the same arguments as in
Theorem 2.17, the length of g|, is bounded by an affine function of the total number of
edges crossed by . Consider a crossing of an edge e corresponding to a subcurve |, 4,1
and let ;,0; be the subcurves containing (¢1) and y(t2). If both §; and J; have length
less than 1/3, then we can associate to the crossing of e a traverse of the word s; - - - S287.
The number of edges crossed by 7 whose beginning or end is inside a path J; of length
> 1/3 is not larger than the length of §; plus 2, and hence less than a constant times the
length of §;. We obtain the estimate

3T Ugil) < CIX|™ + Cra(se - -s28)

veEX™

t
e 3 d(I" (& ® ), I"(Gi1 ®v)),
i=1 veXn,d(I" (&;®v),I" (£-1®v))=1/3

for some C' > 0. By (6) the expected total number of traverses (summed over all v € X"),
that is, E [7,,(s¢ - - - s281)], is bounded by €, - ¢ for a sequence ¢, converging to 0, by
the same argument as for finitely supported measures. Next note that each term d(I"(§; ®
v), I"(&,_1®w)) in the second sum is bounded above by 3P~ 1d(I"™(&®@v), I (&;_1®v))P.
By Proposition 4.4 we have that

d(I"(&®v), I" (-1 ®v))P <
veX#, d(I1°H(&;®@v),I1v|(¢;-1®v))=1/3
Chd(&;,&-1)P < (Cal(s;) + Co)P.

The last term has finite expectation, since p has finite p-moment. Thus the series

a0
D.E > A(I"(& @), I"(§i—1 ® V)P
n=0 veX™,d(I™(&:®@v), 1" (§i—1®v))=>1/3
is convergent. Therefore its terms converge to 0 as n tends to co. This finishes the proof by
Proposition 5.4. O
Theorem 1.3 stated in the Introduction follows from Theorem 4.7 and 5.9.
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6. EXAMPLES

6.1. Automata of polynomial activity growth. Let GG be a faithful self-similar group
acting on X*. Consider, for g € G the function

ag(n) = [{veX® : gf, # 1}

counting the number of non-trivial sections on the nth level. Since the total set of sections
{glo : ve X*}isfinite, ay(n) is the number of paths in a finite directed graph (the Moore
diagram with the trivial state removed) starting in a vertex. Therefore, the function a,(n)
is either exponentially growing, or is bounded by a polynomial. It is not hard to show that
the subset of elements g € G for which «,(n) is bounded from above by a polynomial of
degree d is a subgroup of G. We say that G is generated by an automaton of polynomial
activity growth if ag(n) is bounded by a polynomial for every g € G.

Groups generated by automata of polynomial activity growth were introduced by S. Sidki
in [44] (in greater generality than we described here). In particular, he showed that such
groups can not have free subgroups.

A special sub-class of such groups are groups generated by bounded automata, i.e.,
consisting of elements g such that ag(n) is bounded. It includes iterated monodromy
groups of all post-critically finite polynomials (see [8, 35]).

L. Bartholdi and B. Virdg proved amenability of IMG (z2 — 1) in [9] using random
walks. Their methods were extended in [7] to prove that all groups generated by bounded
automata are amenable. Later, this result was extended to groups for which ay,(n) is
bounded by polynomials of degree 1 (in [2]) and 2 (in [3]).

The following theorem is proved in [39].

Theorem 6.1. If (G,B) is a contracting group such that its action on X* for some ba-
sis X < B is a subgroup of the group of automata of polynomial activity growth, then
ARdim Jg < 1.

Corollary 6.2. If (G, *B) satisfies the conditions of the above theorem, and if 11 is a sym-
metric probability measure on G with a finite p-moment for some p > 1, then the p-random
walk is Liouville. In particular G is amenable.

Note that groups generated by bounded automata are always contracting, but this is no
longer true for groups generated by automata of polynomial activity of degree at least 1.
For example, the group generated by the wreath recursion @ = o(1,a) and b = (b,a) is
generated by automata of linear activity growth and is not contracting. By [4], there are
automata groups of polynomial activity that are not Liouville for any finitely supported
symmetric non-degenerate measure, so that the contracting assumption is crucial in Corol-
lary 6.2.

It follows from the results of [25] that a sufficient condition for a group generated by
automata of polynomial activity growth to be amenable is recurrence of the orbital graphs
of its action on the boundary of the tree X* (see the proof of [25, Theorem 5.1]). This gives
another way to conclude amenability of groups satisfying the conditions of Theorem 6.1,
see [39]. The statement on the Liouville property in Corollary 6.2 is new. For bounded
automata groups, it extends the result of [1] to measures with a moment condition (in that
particular case the proof of Theorem 5.9 can actually be modified to include measures with
finite first moment, by observing that Proposition 4.6 holds for p = 1).

6.2. Iterated monodromy groups of rational functions.
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Theorem 6.3. Let f € C(z) be a post-critically finite rational function. Then the canonical
homeomorphism of the limit space of IMG (f) with the Julia set of f is a quasi-symmetry
with respect to the visual metric on the limit space and the spherical metric on the Julia
set.

Proof. This is a result of P. Haissinksy and K. Pilgrim. Namely, it is proved in [20, Theo-
rem 6.15] that the limit dynamical system s : Jg — J¢ of every self-replicating contract-
ing group is coarse expanding conformal with respect to a visual metric (see the definition
in [19]).

Itis also shown in [20, Theorem 3.3] that for every post-critically finite rational function
f the spherical metric restricted to a neighborhood of the Julia set of f is also coarse
expanding conformal. By [19, Theorem 2.8.2] any topological conjugacy between coarse
expanding conformal dynamical systems is a quasi-symmetry. (I

Corollary 6.4. Let f € C(z) be a post-critically finite rational function such that its Julia
set is not the whole sphere (equivalently, if f has a cycle containing a critical point).
Then IMG (f) is amenable. Moreover, if v is a symmetric measure on IMG (f) with finite
second moment, then the random walk generated by (1 is Liouville.

Proof. By Theorems 6.3, 5.9, and 4.7, it is enough to show that the Julia set of f has
Hausdorff dimension strictly less than 2. But this is shown in [32, Corollary 6.2]. (]

Let us consider some examples of iterated monodromy groups that are not generated by
automata of polynomial activity growth.

Consider f(z) = 2% — ﬁ. This function is representative of the well-studied family
of maps of the form 2™ + zim see the survey [10]. See the Julia set of this function on
Figure 1.

Its critical points are 0, 00, and roots of z* — 1/16. The latter critical points are mapped
to + %, which are both mapped to 0. Consequently, the post-critical set is {0, 0,4/2, —i/2}.
Let us take the generators a, b, ¢ given by loops around the points 0, 4/2, and —i/2, respec-
tively, and connected to a basepoint, which we choose to be equal to 1. The preimages of
the basepoint 1 are ++/2 + /5/2 (where the choices of the sign are independent), which
are approximately equal to +0.24¢ and +1.03. Let us connect the basepoint to the preim-
ages ~ +0.247 and ~ 1.03 by straight paths. We can not do it for —1.03, since such a path
will contain 0. Let us connect it to the basepoint by a path passing below 0. We denote
the connecting paths from 1 to ~ 0.24i, ~ —1.03, ~ —0.24i, ~ 1.03 by {1, 45, 3,4y,
respectively. This will be our chosen basis of the biset associated with the rational function
(see 2.4). We also denote /1, ¢o, 03,0, just by 1,2, 3,4 when we write the corresponding
wreath recursion.

The generators a, b, ¢, and their preimages f~(a), f~1(b), f~!(c) together with the
connecting paths ¢; are shown on Figure 2.

It follows that the iterated monodromy group is generated by the wreath recursion

a=(b1,¢1),

b= (23)(14),

c=(12)(34)(a, a1, 1,1).
Note that all generators are of order 2. (In particular, we may replace a~! by a in the
wreath recursion.)

The wreath recursion implies the recurrent rules for the graph of actions on the levels
X" of the tree, shown on Figure 3.



30 NICOLAS MATTE BON, VOLODYMYR NEKRASHEVYCH, AND TIANYI ZHENG

FIGURE 1. The Julia set of 2% — 16%

The same substitution rules from Figure 3 are also valid for the infinite orbital Schreier
graphs of the action on the boundary X“ of the tree X*. If we assume that the edges
corresponding to a have length 0, and the edges corresponding to b and ¢ have length 1,
then we get graphs that are (uniformly) quasi-isometric to the Schreier graphs (since the
group {a) is finite). It follows then from the recurrent rules that the shift map zv — v
contracts the distances twice. Since this map is four-to-one, it follows that the orbital
Schreier graphs have quadratic growth.

See Figure 4 where the graph of the action on the 5th level X° is shown in a way
approximating the Julia set of 2% — 22,

6.3. Sierpinski carpet group. Let X = {1, - , 8} be an alphabet. Consider the group G
acting on X* generated by the set S = {a, b, ¢, d}, given by the wreath recursion

a=(12)(67)(1,1,a,1,a,1,1,a)
b= (46)(58)(b,b,b,1,1,1,1,1)
¢ = (23)(78)(c,1,1,¢,1,¢,1,1)
d = (14)(35)(1,1,1,1,1,d, d, d)

Its dual Moore diagram is shown in Figure 5.

The limit space J can be identified (up to quasisymmetry) with the classical Sierpifski
carpet, obtained by successively subdividing a euclidean square into nine equal squares and
removing the middle one. The limit dynamical system s: Jg — Jg can be described by
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FIGURE 2. Generators of IMG (2?2 — 1/162?)

first dilating the carpet by a factor nine, and then folding it in the natural way, so that
each of the eight tiles of the dilated carpet is mapped isometrically onto the original carpet
(preserving the orientation for the four corner tiles, and reversing it for the four remaining
ones).
The products ab, be, cd, and ad are of order 6. For example,
ab = (12)(476)(58)(b,b,ba, 1,a,1,1,a),
S0
(ab)?® = (476)(1, 1, (ba)?,1,1,1,1,1),
and
(ab)® = (1,1, (ba)®, 1,1,1,1,1),
which implies that (ab)® = 1.
We have
ac = (123)(678)(c,a, 1,¢,a, ¢, a,1),
hence ac has infinite order and
(ac)® = ((ac)?, (ca)?, (ac)?, 1,1, (ac)?, (ca)?, (ac)?).
It follows that the Thurston’s p-map T, satisfies

T,([ac]) = 2 - 3" P[ac].

log 6
log 3°

log 2
log 3°

i.e., for p >

It is contracting only when 1 — p < Consequently, p.(G,B) >

iggg, by Theorem 4.11. In particular, Theorem 4.7 provides the same lower bound for

ARdim(G, %B).




32 NICOLAS MATTE BON, VOLODYMYR NEKRASHEVYCH, AND TIANYI ZHENG

FIGURE 3. Recursion rules for Schreier graphs of IMG (2% — 1/162%)

On the other hand, the usual metric on Sierpiriski carpet implies that ARdim(G, B) <

igg 2. The exact value of ARdim(G, 9B) is still unknown, see some estimates in [29].

6.4. A non-Liouville contracting group. Not all contracting self-similar groups are Li-
ouville even for finitely supported generating measures. Let us describe one counter-
example.

Consider the group H of affine transformations of the space Z3 (where Zs is the ring of
dyadic integers) of the form # — (—1)*% + ¥, where 7 € Z3 and k = 0, 1.

211 112 ...
We will denote the points of Z% as infinite matrices 721 %22 ... |insuchaway
i31 132
7:11 ilg .
that i; € {0,1}, and if | a1 22 ... | represents ¥ € Z3, and the shifted matrix

131 132
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FIGURE 5. The Sierpinski carpet dual automaton
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212 113 .-
i92 @23 ... |represents %, then
132 133
i1
r=— 12 + 27
i3

Essentially, we are using the binary numeration system with digits 0 and —1, but write 1
instead of —1.

41
Denote, for (iy,i2,i3) € {0, 1}3, by a;,4,i, the transformation & +> —Z + | ia |. The
3
elements a;, ;,;, generate the group H.
We have
J1 it 11 k1 Iy
Givigis | — | J2 |+20 =1 Jo |-2y+| i2 |=—| ko |42 ¥+ | L
J3 J3 i3 k3 l3
if iy + j; = 2l — ky. Equivalently, [; = max(i, j;) and k; is i; + {; modulo 2.
0 0 0 0
To shorten notation, let us denote the columns 0 |, 0 |, 1 1, 1 1,
0 1 0 1
1 1 1 1
0 1, 0 1, 11, 1 |by0,1,2,3,4,5,6,7, respectively. Similarly, we will
0 1 0 1
denote the generators a;,i,i, by ao, a1, ..., a7. We have then

ag = (007(117@27(137@47@57@67a7),

a1 = (01)(23)(45)(67)(a1, a1, as, a3, as, as, azr, ar),
as = (02)(13)(46)(57)(az, as, as, as, ag, ar, ag, ar),
az = (03)(12)(47)(56)(as, as, as, a3, ar, a7, azr, az),
as = (04)(15)(26)(37)(as, as, as, ar, as, as, ag, az),
as = (05)(14)(27)(36)(as, as, a7, a7, as, as, azr, az),
ag = (06)(17)(24)(35)(as, az, as, az, as, ar, ag, az),
a7 = (07)(16)(25)(34)(ar, a7, ar, a7, az, az7, a7, ar).

Note that a is not a section of any of the other generators a;. Let us “fragment” ag into
a product of two commuting elements b and c given by

b= (b7 ai, 1a 17 17 17 17 1)7 c= (Ca 1,@2,@3,@4,@5,@6,@7).

Note that b, ¢ ¢ G and bc = ay.
Let G be the group generated by H and b, c.

Proposition 6.5. Let u be the uniform probability measure on the generating set {a;};=1, .7V
{b, c} of G. Then the p-random walk is not Liouville.

Proof. Tt follows directly from the recursion that if not all letters of v € X* are 0 and the
first non-zero letter of v is 1, then b(v) = ag(v) and b, = agl,. If not all letters of v are
0 and the first non-zero letter is not 1, then b(v) = v and b|, = 1. Similar statement (but
other way around) is true for c.
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Define the map x : H — {0,1} by the condition that x(g) = 0if g~ !|gg o € G
for all n large enough, and x(g) = 1 otherwise.

Then, according to the first paragraph of the proof, if g € H and s € {a;};=1,... 7V {b, ¢}
is a generator, then x(g) # x(gs) only if g(00...) = 00...and s € {b, c}.

Consider the p-random walk on G. The induced random walk on the G-orbit of 000 . . .
coincides with a random walk on generated by a finitely supported measure on the gener-
ating set {a;};—o,1,....7 v {1} of H. Since the Schreier graph is quasi-isometric to 73, and
simple random walk on Z3 is transient by P6lya’s theorem, it follows from the comparison
theorem (see e.g., [30, Theorem 2.17]) that this random walk is transient. Consequently, it
will visit 000 . . . finitely many times almost surely, and so the value of x along a trajectory
of the walk will be eventually constant. The eventual value of x will be a non-trivial event
invariant under the tail equivalence relation, hence the Poisson boundary of the random
walk is non-trivial. g
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