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LIOUVILLE PROPERTY FOR GROUPS AND CONFORMAL DIMENSION

NICOLÁS MATTE BON, VOLODYMYR NEKRASHEVYCH, AND TIANYI ZHENG

ABSTRACT. Conformal dimension is a fundamental invariant of metric spaces, particu-
larly suited to the study of self-similar spaces, such as spaces with an expanding self-
covering (e.g. Julia sets of complex rational functions). The dynamics of these systems are
encoded by the associated iterated monodromy groups, which are examples of contracting
self-similar groups. Their amenability is a well-known open question. We show that if
G is an iterated monodromy group, and if the (Alfhors-regular) conformal dimension of
the underlying space is strictly less than 2, then every symmetric random walk with fi-
nite second moment on G has the Liouville property. As a corollary, every such group is
amenable. This criterion applies to all examples of contracting groups previously known to
be amenable, and to many new ones. In particular, it implies that for every post-critically
finite complex rational function f whose Julia set is not the whole sphere, the iterated
monodromy group of f is amenable.

1. INTRODUCTION

Conformal dimension was introduced in the late 1980s by P. Pansu in the study of
quasi-isometries of hyperbolic spaces and related constructions (see, for example [40]).
The conformal dimension of a metric space is the infimum of the Hausdorff dimensions
of spaces quasi-symmetric to it. Since quasi-isometries of hyperbolic spaces correspond
to quasi-symmetries of their boundaries, the conformal dimension is a natural invariant of
hyperbolic groups and their boundaries. Since its definition, the conformal (and related
Ahlfors-regular conformal) dimension became an important invariant in geometric group
theory and dynamical systems. See [31] for a survey of its properties and applications.

Ahlfors-regular conformal dimension is especially useful and natural for self-similar
metric spaces. Boundaries of hyperbolic groups are examples of such self-similar spaces.
Another natural class of examples is metric spaces together with an expanding (branched)
covering map f : J ÝÑ J (for example complex rational functions in restriction to
their Julia set). Their quasi-conformal geometry is the subject of the works [19–21] by
P. Haı̈ssinsky and K. Pilgrim.

Expanding self-coverings are encoded by the associated iterated monodromy groups,
introduced in the early 2000s, see [34, 37]. They are examples of contracting self-similar
groups. The self-covering is reconstructed from the iterated monodromy group as their
limit dynamical system. The potential importance of the conformal dimension to the study
of contracting self-similar groups was observed in [20].
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The amenability of iterated monodromy groups has been a well-known open question
since their introduction. In fact, amenability of the iterated monodromy group of the com-
plex polynomial z2 ´ 1 (also known as the Basilica group) was asked even before the
iterated monodromy groups were defined (see [18]).

Amenability of the Basilica group group was proved by L. Bartholdi and B. Virág
in [9]. Their proof was later generalized to include iterated monodromy groups of all post-
critically finite complex polynomials in [7] (and more generally, all groups generated by
bounded automata). Their methods were extended to larger classes of self-similar groups
in [1, 2].

Amenability was proved in these papers by constructing a self-similar random walk step
distribution µ on the group and using the self-similarity to prove that the asymptotic en-
tropy (equivalently, speed) of the µ-random walk is zero (see also [26]). By the results of
V. Kaimanovich and A. Vershik [27] and Y. Derriennic [12] this implies the triviality of the
Poisson boundary of the corresponding random walk, also known as the Liouville property
that all bounded µ-harmonic functions are constant, which in turn implies amenability of
the group. Self-similarity is a very restrictive condition in this case, and it is not clear how
to construct such self-similar random walks in general (it seems that a finitely supported
self-similar step distribution does not exist in most cases), so the corresponding groups
have to be embedded into special “mother groups” for which such a self-similar random
walk can be constructed. For groups generated by bounded automata, this self-similarity
restriction was removed in in [1], by showing that every symmetric finitely supported mea-
sure generates a Liouville random walk.

A different approach to prove the amenability of groups is based on the notion of ex-
tensively amenable actions, first introduced by K. Juschenko and N. Monod [24]. This
method was used in [25] to show amenability of a class of iterated monodromy groups.
This approach allows one to prove the amenability of iterated monodromy groups of com-
plex rational functions with “crochet” Julia sets, see [39]. The framework of extensive
amenability is not based on the study of the Liouville property for random walks, but
random walks are implicitly present in it, as one of the main conditions used to prove
amenability is recurrence of the induced random walk on an orbit of some action of the
group.

We show in our paper how conformal geometry can be used to prove the Liouville prop-
erty for symmetric random walks under suitable moment conditions on many contracting
groups (equivalently, iterated monodromy groups of expanding covering maps).

Namely, we prove the following.

Theorem 1.1. Let pG,Bq be a finitely generated contracting self-similar group, and sup-
pose that its limit space has Ahlfors-regular conformal dimension α, with α ă 2. Then for
every symmetric measure µ on G having finite β-moment for some β ą α, the µ-random
walk is Liouville. In particular, any such group is amenable.

Corollary 1.2. Let f be a post-critically finite complex rational function such that its Julia
set is not the whole sphere. Then the iterated monodromy group of f is amenable.

Our results cover many new examples of amenable groups. Namely, all previously
known contracting amenable groups had limit spaces of conformal dimension equal to 1
(this is true for any contracting group which can be generated by an automaton of poly-
nomial activity in the sense of S. Sidki [44], see Theorem 6.1). In this case, Theorem
1.1 implies that any random walk on them generated by symmetric measures of finite
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p1 ` εq-moment is Liouville, encompassing various previous results for some more re-
stricted classes of groups and measures. Beyond this case, Theorem 1.1 can be applied
to contracting groups whose amenability was an open question until now, in particular to
groups whose limit space is homeomorphic to the Sierpiński carpet. As shown in [21],
there exist hyperbolic rational maps with Sierpiński carpet Julia sets whose conformal di-
mensions are arbitrarily close to 2 (the corresponding groups must therefore be generated
by automata of exponential activity).

It is known that for symmetric random walks with finite second moment, sufficiently
slow decay of return probability, namely µp2nqpidq decaying slower than expp´n1{2q im-
plies that µ-random walk is Liouville, see [41]. However this result is not applicable in
the study of contracting self-similar groups: first it is not clear for what subclass of groups
one can expect such a slow decay, secondly, even in the case of bounded automata groups,
it is challenging to prove lower estimates for return probability. Indeed, to the best our
knowledge, for all contracting groups whose amenability has been proven so far and those
covered by Theorem 1.1, the best known lower bound for µp2nqpidq comes from entropy,
that is, µp2nqpidq ě expp´HpX2nqq. It is an open problem to find methods to establish
sharper lower estimates for return probability, even in examples such as the Basilica group,
and a tightly related problem is to find contracting groups that are amenable but not Li-
ouville for symmetric simple random walks (see § 6.4 for an example of non-Liouville
contracting group).

1.1. On the proof. Let us give some further insight on Theorem 1.1 and compare it with
previous work. Recall that contracting group G is generated by a finite state-automata over
a finite alphabet X, and has a natural action on the associated rooted tree X˚ whose vertex
set consists of finite words. For every integer n, the action of an element g P G on X˚

is determined by two pieces of information: the permutation induced on the n-th level of
the tree, and associated collection of sections pg|vqvPXn , which describe the action of g
on the subtrees rooted at level n. In order to show vanishing of the asymptotic entropy of
the random walk measure µ, one is immediately led to study the distribution of sections
gt|v for a sample gt of the µ-random walk. More precisely, it is enough to show that the
rate of growth of the sum of word lengths of all sections gt|v at level n is bounded by
some constant which tends to 0 as n tends to infinity (Proposition 5.4). This criterion was
the starting point, in various different formulations, of the previous results establishing the
Liouville property for random walk on automata groups [1, 2, 7, 9]. All these results were
dealing with groups generated by some explicit automaton of polynomial (in fact, bounded
or linear) activity. This means that for every element s in a generating set of the group,
the number of vertices v P Xn such that the sections s|v is non-trivial is bounded by a
polynomial in n. The behaviour of the process gt|v was analysed by explicit computations
based on the form of the automaton. In order to control the behaviour of the section, one
needs to first understand the behaviour of the process gtpvq, which performs a random walk
on the finite Schreier graph associated with the n-th level of the tree. A crucial feature in all
previous examples is the fact that the sections gt|v of the random walk can be essentially
controlled by studying the visits of gtpvq to some uniformly finite subset consisting of
“singular points”. In the simplest case of automata groups of bounded activity, the singular
points are just the vertices w such that s|w is nontrivial for some generator s (for groups
of polynomial activity, they can be defined inductively on the activity degree). In this
situation, the length of the gt|v can be estimated by the number of traverses up to time t
of the walk pgipvqq between certain pairs of distinct singular points. The expected number
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of traverses can be estimated by analysing the Schreier graphs explicitly and computing
the ℓ2-capacity (or effective conductance) between singular points. This is precisely the
method used in [1] to show that all symmetric finitely supported measures on automata
groups of bounded activity generate a Liouville random walk. The finiteness of the singular
points can equivalently be interpreted in terms of germs of the action on the boundary of
the tree Xω , and is crucial also to apply the framework of extensive amenability [3,25,39],
which relies in a similar way on recurrence of the Schreier graphs to control visits to the
singular points, and deduce amenability.

For iterated monodromy groups, the finiteness condition of singular points seems to
be related to the existence of countable separating subsets in the limit space. This is a
restrictive condition limited to examples with limit space of conformal dimension 1, see
[39].

For a group satisfying the assumption in Theorem 1.1, the relevant set of singularities
is intrinsically infinite (corresponding to a Cantor subset of the boundary of the tree). An
automaton generating the group will typically have exponential activity and might be quite
complicated. Our proof of Theorem 1.1 is no longer based on the combinatorial analysis
of some explicit set of generators, but instead on the study of contracting groups through
the theory of limit spaces. It has three ingredients. The first ingredient, purely geometric,
is Theorem 2.17, which estimates the total length of n-th level sections of a word g “

st ¨ ¨ ¨ s1 in terms of the paths that the word describes on the corresponding Schreier graph.
It says that in order for the total length of sections to be large, these paths must traverse
many times between certain regions which approximate some disjoint parts of the limit
space (which roughly speaking correspond to different tiles). The precise identifications
of these regions requires the framework of contracting models developed in [36, 38]. The
second ingredient is Theorem 5.6, where the assumption that conformal dimension of the
limit space is less than 2 is used to show that the ℓ2-capacity between such disjoint regions
must tend to 0 as n Ñ 8. This is reminiscent of the results of M. Carrasco [11] and J.
Kigami [28], which relate the conformal dimension of a metric space to potential theory on
graphs that approximate the space (although our proof of Theorem 5.6 is self-contained).
These two ingredients put us in position to apply a traverse-counting argument to show
vanishing of random walk asymptotic entropy, at least for symmetric finitely supported
measures.

The third ingredient, which allows to extend the result to measures under a moment
condition, is the study of another numeric invariant for contracting self-similar groups:
critical exponent. For every p P p0,8s we define the ℓp-contraction coefficient ηp of a
finitely generated contracting group pG,Bq. It is the exponential rate of decay of the ℓp-
norm of the vector of lengths of the sections g|v for the vertices v of the nth level of the
tree. The condition for a self-similar group to be contracting is equivalent to the condition
η8 ă 1. The function p ÞÑ ηp is continuous and non-increasing. The critical exponent
pcpG,Bq is the infimum of the values p for which ηp ă 1. It is a measure of the complexity
of the group. For example, the action on the tree of every element g P G of length n can
be explicitly described with Opnpc`ϵq bits of information. In particular, pc ă 1 implies
sub-exponential volume growth. In our setting, such complexity bounds can be used to
control contribution to entropy from long jumps of the random walk.

In analogy to critical constant for recurrence introduced in [14], for a finitely generated
group G equipped with word metric, we define the (symmetric) critical constant for the
Liouville property, denoted by CrLiouvpGq, to be the infimum of p, such that all symmet-
ric random walks with finite p-moment are Liouville. For a contracting group pG,Bq we
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denote by ARdimpG,Bq the Ahlfors-regular conformal dimension of its limit space. Be-
tween these critical quantities and conformal dimension, we show the following inequality.

Theorem 1.3. Let pG,Bq be a finitely generated contracting self-similar group such that
ARdimpG,Bq ă 2, then

CrLiouvpGq ď pcpG,Bq ď ARdimpG,Bq.

Then Theorem 1.1 above is a consequence of this inequality. The second inequality is
not sharp in general, see the discussion after Theorem 4.7; we do not know of an example
of a contracting group for which the first inequality is strict.

1.2. Organization of the article. Section 2 of the paper is an overview of the theory of
self-similar contracting groups and their limit spaces. In Section 3 we describe the natural
class of pairwise (weakly) quasi-symmetric metrics on the limit space. Similarly to the case
of boundaries of hyperbolic groups, examples of such metrics can be defined as the visual
metrics on the boundary of a natural Gromov-hyperbolic graph (the self-similarity complex
of the group). The Ahlfors-regular conformal dimension ARdimpG,Bq is defined as the
infimum of the Hausdorff dimensions of metrics weakly quasisymmetric to a visual metric,
see [20]. If the group is self-replicating (which is automatically satisfied, for example, for
the iterated monodromy groups of postcritically finite rational functions), then any weak
quasisymmetry is actually a quasisymmetry (we do not know if this is true in general).

Section 4 discusses the critical exponent pcpG,Bq for contracting self-similar groups
as mentioned above. We prove that the critical exponent pcpG,Bq of a contracting group
is not larger than the conformal dimension ARdimpG,Bq, see Theorem 4.7. Lower esti-
mates of for pcpG,Bq, and hence also for ARdimpG,Bq, can be obtained from exhibiting
a carefully chosen sequence of group elements. In Theorem 4.11, we show a relation be-
tween ℓp-contraction and spectral radius of the linear operator Tp, where Tp is the Thurston
linear transform adapted to ℓp calculations.

Section 5 contains proofs of statements on Liouville property. It starts with a brief
review of preliminaries on random walk and electric network theory, bounded harmonic
functions and the entropy criterion. We then show a direct bound on ℓq-capacity on the
Schreier graphs of action of a contracting group pG,Bq on levels of the tree, which is
valid for q ą ARdimpG,Bq and for all symmetric measures which admit a finite moment
of order p ą pcpG,Bq, see Proposition 5.5, from which estimates on capacity stated in
Theorem 5.6 follow. We then give a proof of Liouville property for the finite support case
based on traverse counting and ℓ2-capacity estimates. For the general case under finite
p-moment, p ą pcpG,Bq, we first apply a geometric argument similar to the proof of
Theorem 2.17, then random walk entropy is bounded by contributions from traverses and
long jumps separately. The former is controlled by ℓ2-capacity estimates in the same way
as in the finite supported case; and the latter is controlled by ℓp-contraction.

Section 6 contains several examples of applications of the main theorem. The first class
of examples are groups generated by automata of polynomial activity growth, as defined
by S. Sidki in [44]. It was shown in [39] that limit spaces of all contracting self-similar
groups in this class have Ahlfors-regular dimension 1. Amenability of such groups also
follows (as explained in [39]) from the theory of extensively amenable actions, developed
in [23, 25] (the Liouville property for all groups in this class seems to be new even for
finitely supported symmetric measures).

The second class of examples is iterated monodromy groups of post-critically finite
complex rational functions. If f is a post-critically finite rational function, then the limit
space of its iterated monodromy group IMG pfq is canonically homeomorphic to the Julia
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set of f . Moreover, the spherical metric restricted to the Julia set, seen as a metric on
the limit space of the group, is quasi-conformal and Ahlfors-regular. In particular, the
Hausdorff dimension of the Julia set is an upper bound of the conformal dimension of the
limit space of the iterated monodromy group. It follows that if the Julia set of the function is
not the whole sphere, then the iterated monodromy group is Liouville (for every symmetric
measure with finite second moment) and thus amenable.

We provide an explicit example of the iterated monodromy group of a rational function
whose Julia set is homeomorphic to the Sierpiński carpet (and thus can not be generated
by an automaton of polynomial activity growth).

We also describe explicitly a contracting self-similar group whose limit space coincides
with the classical Sierpiński carpet (i.e., quasi-symmetric to it).

Finally, we give an example of a self-similar contracting group, which is not Liouville
for any finitely supported measure.

1.3. Acknowledgements. This work was initiated during the trimester Groups acting on
fractals at IHP from April to June 2023. We thank the organizers of the program and the
Institut for the support and hospitality.

2. SELF-SIMILAR GROUPS AND THEIR LIMIT SPACES

2.1. Basic definitions.

Definition 2.1. An action of a group G on the set X˚ of finite words over a finite alphabet
X is said to be self-similar if such that for every g P G and v P X˚ there exists an element
g|v P G such that

gpvwq “ gpvqg|vpwq

for all w P X˚.

Consider a faithful self-similar action of G on X˚. The biset of the action is the set B
of transformations of X˚ of the form

x ¨ g : v ÞÑ xgpvq

for x P X and g P G. Since the action is faithful, the set B is in a natural bijection with the
set X ˆ G.

The set B is closed under pre- and post-compositions with elements of G, hence it is a
biset, i.e., a set with commuting left and right actions of G. They are given by the rules

px ¨ gq ¨ h “ x ¨ gh, h ¨ px ¨ gq “ hpxq ¨ h|xg.

The right action of G on the biset B is free and has |X| orbits, where X ¨ t1u Ă B
(naturally identified with X) intersects each orbit exactly once.

In general, a self-similar group pG,Bq is a group G and a biset B such that the right
action is free and has finitely many orbits. A subset X Ă B is called a basis of the biset if
it intersects each orbit exactly once.

If B1,B2 are two G-bisets, then the biset B1 b B2 is quotient of B1 ˆ B2 by the
identification px ¨ g, yq „ px, g ¨ yq and with the action on the quotient induced by the
actions g ¨ px, yq ¨ h “ pg ¨ x, y ¨ hq. We denote the image of the element px, yq P B1 ˆB2

in B1 b B2 by x b y or just by xy.
This operation is associative up to isomorphisms of bisets. In particular, for every biset

B we get bisets Bbn for all n ě 0. Here Bb0 is defined as G with the natural left and
right G-actions.
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If X Ă B is a basis of a biset, then every element of B is written in a unique way as
x ¨ g for x P X and g P G. For every g P G and every x P G there exist unique y P X and
h P G such that

g ¨ x “ y ¨ h.

It is easy to see that the map x ÞÑ y is a permutation of X (since the left G-action permutes
the right G-orbits). We get the associated action of G on X, and denote y “ gpxq, h “ g|x.
The map g ÞÑ σgpg|xqxPX P SymmpXq ⋉ GX, where σg P SymmpXq is the image of g
under the associated action on X, is called the wreath recursion. It is a homomorphism
from G to the wreath product SymmpXq ⋉GX.

Changing the basis X corresponds to composing the wreath recursion with an inner
automorphism of the wreath product.

If X is a basis of B, then Xbn is a basis of Bbn. We identify the set Xbn with Xn in
the natural way.

In particular, for every v P Xn Ă Bbn and for every g P G there exist unique u P Xn

and g|v P G such that
g ¨ v “ u ¨ g|v.

The map v ÞÑ u is a permutation of Xn (conjugate to the permutation induced by g on the
set of right orbits of Bbn), so we denote u “ gpvq.

We get hence the associated action of G on X˚. The associated action on X˚ does not
depend, up to conjugacy on the choice of the basis X (since it is conjugate to the left action
of G on

Ť

ně0 B
bn{G). The faithful quotient of a self-similar group pG,Bq is the quotient

of G by the kernel of the associated action.

2.2. Contracting groups and limit space. Let pG,Bq be self-similar group. Let X Ă B
be a basis. The self-similar group is said to be contracting if there exists a finite set N Ă G
such that for every g P G there exists n such that

g|v P N

for all v P Xm for all m ě n. The smallest set N satisfying this condition is called
the nucleus of the group. It is shown in [34, Corollary 2.11.7] that the property to be
contracting does not depend on the choice of the basis X. The nucleus, however, depends
on X.

Definition 2.2. Let pG,Bq be a contracting group. Choose a basis X Ă B, and let X´ω

be the space of left-infinite sequences . . . x2x1 with the direct product topology (where
X is discrete). The limit space JG is the quotient of X´ω by the asymptotic equivalence
relation, identifying two sequences . . . x2x1, . . . y2y1 if and only if there exists a sequence
gn of elements of the nucleus N such that gnpxn . . . x2x1q “ yn . . . y2y1.

It is shown in [34] that the asymptotic equivalence relation is transitive, and that the
limit space is a metrizable compact space of finite topological dimension.

It follows from the definition that the asymptotic equivalence relation is invariant under
the shift . . . x2x1 ÞÑ . . . x3x2. Consequently, the shift induces a continuous map s :
JG ÝÑ JG, which we call the limit dynamical system. It is shown in [34] that the limit
dynamical system does not depend, up to topological conjugacy, on the choice of the basis
X.

Definition 2.3. Let pG,Bq and X be as above. The limit G-space XG is the quotient of
the direct product X´ω ˆ G (where G is discrete) by the equivalence relation identifying
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. . . x2x1 ¨ g and . . . y2y1 ¨ h if and only if there exists a sequence gn of elements of the
nucleus such that

gn ¨ xn . . . x2x1 ¨ g “ yn . . . y2y1 ¨ h

in Bbn for all n.

The equality in the definition of XG is equivalent to the equalities

gnpxn . . . x2x1q “ yn . . . y2y1, gn|xn...x2x1g “ h.

We have a natural right action of G on XG induced by the action p. . . x2x1 ¨ gq ¨ h “

. . . x2x1 ¨ gh on X´ω ˆ G. One can show that the space XG and the action do not depend
(up to topological conjugacy) on the choice of the basis X.

Definition 2.4. We denote by T the image of X´ω in XG.

The action of G on XG is proper and co-compact with the quotient XG{G naturally
homeomorphic to the limit space JG. The set T is compact and intersects every G-orbit.

Definition 2.5. We say that a self-similar group pG,Bq is self-replicating if the left action
of G on B is transitive.

It is shown in [34, Theorem 3.5.1] that if a contracting group pG,Bq is self-replicating,
then the spaces JG and XG are connected and locally connected.

Definition 2.6. For v P X˚, we denote by Tv the image of the set X´ωv of sequences
ending with v in the limit space JG. We call it a tile of nth level if n “ |v|.

For every point ξ P JG and every n ě 0, the union of the tiles of the nth level containing
ξ is a neighborhood of ξ.

Proposition 2.7. Two tiles Tv, Tu of the same level intersect if and only if there exists an
element g of the nucleus such that gpvq “ u.

2.3. Contracting models. Let pG,Bq be a contracting self-similar group, and let X be a
metric space on which G acts properly and co-compactly by isometries.

Then X b B is defined as the quotient of X ˆ B (where B is discrete) by the action
pξ, xq ÞÑ pξ ¨ g´1, g ¨ xq. We denote the orbit of pξ, xq by ξ b x. We have then ξ b g ¨ x “

ξ ¨ g b x for all ξ P X , x P B, and g P G.
Let X be a basis of B. Assume that I : X bB ÝÑ X is a G-equivariant map. Then I is

uniquely determined by the maps Ixpξq “ Ipξbxq, which satisfy the following condition:

(1) Ixpξ ¨ gq “ Igpxqpξq ¨ g|x,

for all x P X, g P G, and ξ P X , where gpxq P X and g|x P G, as usual, are given by
g ¨ x “ gpxq ¨ g|x.

Conversely, every collection of maps Ix : X ÝÑ X satisfying (1) defines an equivariant
map I : X b B ÝÑ X by the formula Ipξ b x ¨ gq “ Ixpξq ¨ g.

Every equivariant map I : X b B ÝÑ X induces an equivariant map In : X b

Bbpn`1q ÝÑ X b Bbn by the rule

Inpξ b x b vq “ Ipξ b xq b v

for ξ P X , x P B, v P Bbn. According to this, we will sometimes denote I by I0.
We also denote by In : ξ b Bbn ÝÑ X the composition In´1 ˝ In´2 ˝ ¨ ¨ ¨ ˝ I1 ˝ I .

Definition 2.8. A G-equivariant map I : X b B ÝÑ X is said to be contracting if there
exist n ě 1 and λ P p0, 1q such that dpIpξ1 bvq, Ipξ2 bvqq ď λdpξ1, ξ2q for all ξ1, ξ2 P X
and v P Bbn.
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A G-equivariant map I : X b B ÝÑ X is contracting if and only if there exist C ą 0
and λ P p0, 1q such that

dpInpξ1 b vq, Inpξ2 b vqq ď Cλndpξ1, ξ2q

for all n, v P Bbn, ξ1, ξ2 P X .
The natural map XG b B ÝÑ XG mapping ξ b x, where ξ is represented by . . . b

x2 b x1 P Ω, to the point of XG represented by . . . b x2 b x1 b x, is a G-equivariant
homeomorphism XG b B ÝÑ XG. Since it is “identical,” we will denote the image of
ξ b x just by ξ b x, thus identifying XG b B with XG.

It is proved in [38, Theorem 2.10] that the natural homeomorphism XG b B ÝÑ XG

is contracting in the sense of Definition 2.8 (with respect to a natural distance on XG)
provided G is finitely generated.

The following theorem is proved in [36].

Theorem 2.9. Let I : X bB ÝÑ X be a contracting G-equivariant map. Then the inverse
limit of the sequence of G-spaces X bBbn and maps In is G-equivariantly homeomorphic
to the limit G-space XG. The map on the limit induced by the maps In is conjugated by
the homeomorphism with the natural homeomorphism XG b B ÝÑ XG.

Definition 2.10. Let pG,Bq be a contracting self-similar group. A contracting model of
pG,Bq is a proper co-compact action of G on a metric space X by isometries together with
a contracting equivariant map I : X b B ÝÑ X .

It is proved in [36] (see also [38, Theorem 3.1]) that every finitely generated contracting
group has a contracting model I : X b B ÝÑ X where X is a connected simplicial
complex and the maps Ix are piecewise affine.

We will need the following simple lemma.

Lemma 2.11. Suppose that G is finitely generated, and let lpgq denote the length of an
element g P G with respect to a fixed finite generating set of G. Choose a basis X Ă B.

Let X be a metric space on which G acts by isometries from the right so that the action
is co-compact and proper. Let I : X b B ÝÑ X be a G-equivariant map. Let T be a
compact subset of X such that Inpξ b vq P T for every ξ P T and v P X˚.

Then for every ξ P X there exists a constant C ą 0 such that

lpg|vq ď CdpInpξ b vq, Inpξ ¨ g b vqq ` C

for all n ě 1, g P G, ξ P T , and v P Xn.

It follows directly from co-compactness of the action and Definition 2.8 that a compact
set T satisfying the conditions of the lemma exists for every contracting equivariant map
I : X b B ÝÑ X and every basis X of B.

Proof. Since the action of G on X is isometric, proper, and co-compact, there exists C
such that lpgq ď Cdpξ1, ξ2 ¨ gq ` C for all ξ1, ξ2 P T .

It follows that lpg|vq ď CdpInpξ b vq, Inpξ b gpvqq ¨ g|vq `C “ CdpInpξ b vq, Inpξ ¨

g b vq ` C. □

2.4. Iterated monodromy groups.

Definition 2.12. A virtual endomorphism of a topological space J is a finite degree cov-
ering map f : J1 ÝÑ J together with a continuous map ϕ : J1 ÝÑ J .



10 NICOLÁS MATTE BON, VOLODYMYR NEKRASHEVYCH, AND TIANYI ZHENG

Let f, ϕ : J1 ÝÑ J be a virtual endomorphism. Suppose that J is path connected.
Consider the fundamental group G “ π1pJ , tq. The associated biset is the set B of pairs
pz, rδsq, where z P f´1ptq, and rδs is the homotopy class of a path δ in J connecting t to
ϕpzq. The action of G on B is given by the formulas

pz, rδsq ¨ rγs “ pz, rδγsq, rγspz, rδsq “ py, rϕpγzqδsq,

where γ is a loop based at t, γz is the lift of γ by f starting in z, y is the end of γz . We
multiply paths as functions: in a product αβ the path β is passed before α.

The iterated monodromy group of the virtual endomorphism is the faithful quotient of
the self-similar group pG,Bq.

By the definition of the associated biset, a basis of B is a collection

tpz1, rℓ1sq, pz2, rℓ2sq, . . . , pzn, rℓnsu,

where tz1, z2, . . . , znu “ f´1ptq, and ℓi is a path from t to ϕpziq. Let us denote xi “

pzi, rℓisq, then the action of the iterated monodromy group on the tree X˚ for X “ tx1, x2, . . . , xnu

is given by the recurrent formula

(2) rγspxiwq “ xjrϕpℓ´1
j γiℓiqspwq,

where γi is the unique lift of γ by f starting in zi, and j is such that zj is the end of γi.
A particular case of this situation is a partial self-covering, i.e., a finite degree covering

map f : J1 ÝÑ J where J1 Ă J . It is a virtual endomorphism with the map ϕ :
J1 ÝÑ J equal to the identical embedding. Then the iterated monodromy group of f is
the iterated monodromy group of the virtual endomorphism f, ϕ : J1 ÝÑ J . In this case,
it is natural to omit ϕ (as it is the identity map) in the formula (2).

An important class of examples consists of post-critically finite complex rational func-
tions. Let fpzq P Cpzq be a rational function seen as a self-map of the Riemannian sphere
PC1. Let Pf be the union of the forward orbits of the critical values of f (i.e., values at
the critical points of the map f : PC1

ÝÑ PC1). We say that f is post-critically finite if
the set Pf is finite.

Then f defines a partial self-covering f : PC1
zf´1pPf q ÝÑ PC1

zPf . The iterated
monodromy group of this partial self-covering is, by definition, the iterated monodromy
group of f .

The following theorem is proved in [34, Theorem 6.4.4].

Theorem 2.13. Let f be a post-critically finite complex rational function. Then its iterated
monodromy group G “ IMG pfq is contracting and its limit dynamical system s : JG ÝÑ

JG is topologically conjugate to the restriction of f to its Julia set.

In fact, Theorem 2.13 is a corollary of Theorem 2.9 and of the Schwarz-Pick theorem.

2.5. One-dimensional limit spaces. The following theorem is proved in [38].

Theorem 2.14. Suppose that the limit space JG (equivalently the XG) of a contracting
finitely generated group pG,Bq has topological dimension 1. Then there is n0 and a
contracting model I : ∆0 b Bbn0 ÝÑ ∆0, where ∆0 is a locally finite connected graph
on which G acts properly and co-compactly by automorphisms.

Below we suppose to be in the situation of Theorem 2.14. Denote ∆n “ ∆0 b Bbn.
Since the action of G on ∆0 is by automorphisms of graphs, the spaces ∆n are also graphs.

Denote by Γn the quotient ∆n{G and by πn : ∆n Ñ Γn the quotient projection. Then
Γn is a finite graph. The maps In : ∆n`1 ÝÑ ∆n induce continuous maps ϕn : Γn`1 ÝÑ

Γn. We may assume that in the original action of G on ∆0, no pair of neighbouring vertices
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of ∆0 belong to the same G-orbit (otherwise pass to the barycentric subdivision of ∆0). In
particular, Γ0 has no loops.

Notation 2.15. Denote by Uz the ball of radius 1/3 with center in a vertex z of the graph
Γ0 “ X {G. It is a bouquet of segments of length 1/3. (We use the combinatorial distance
in the graphs, identifying each edge with a real segment of length 1.)

Fix a basepoint ξ0 P ∆0. Denote by Uz,n the set of elements v P Xn such that
π0pInpξ0 b vqq P Uz .

Definition 2.16. Let stst´1 . . . s1 be a word in elements si P G (formally, an element of
the free group with basis G). A traverse of level n from z1 to z2 is a triple pi, j, v1, v2q,
where 1 ď i ď j ď t, v1 P Uz1,n, v2 P Uz2,n for z1 ‰ z2 are such that sk ¨ ¨ ¨ si`1sipv1q R

Uz1,n Y Uz2,n for i ă k ă j, and sjsj´1 ¨ ¨ ¨ sipv1q “ v2.

In other words, a traverse is a segment of a the word stst´1 . . . s1 corresponding to a
travel from a point of Uz1,n to a point of Uz2,n such that the sets Uz1,n and Uz2,n are not
touched during the travel.

We denote by τnpstst´1 . . . s1q the total number of traverses of level n for the word
stst´1 . . . s1.

Theorem 2.17. Let S be a finite generating set for G. There exists C ą 1 such that for all
n big enough and every element g “ stst´1 ¨ ¨ ¨ s1 P G, where si P S, we have

ÿ

vPXn

lpg|vq ď Cτnpstst´1 ¨ ¨ ¨ s1q ` C|Xn|.

Proof. Since the G action is isometric, the quantity dpξ0 ¨ g, ξ0 ¨ sgq is uniformly bounded
for s P S and g P G. Hence there exists n0 such that dpInpξ0 ¨gbvq, Inpξ0 ¨sgbvqq ă 1{3
for every g P G, s P S and v P Xn, n ě n0. Fix such a v, consider g “ st ¨ ¨ ¨ s1 as in
the statement of the theorem, and set ξi “ ξ0 ¨ si ¨ ¨ ¨ s1. Then the distance between two
consecutive points Inpξi b vq is at most 1/3. By Lemma 2.11, the length of g|v is bounded
from above by C1dpInpξ0 b vq, Inpξt b vqq ` C1 for some constant C1 ą 0. Let δi be a
geodesic curve joining Inpξi´1 b vq to Inpξi b vq and γ “ δt ¨ ¨ ¨ δ1 be their concatenation
(where the rightmost curve is passed first). Consider an edge e which is crossed by γ,
meaning that there is a subcurve γ|rt1,t2s such that γpt1q, γpt2q are the extreme points of
the edge and γpsq is in the interior of e for s P pt1, t2q. For every such edge crossing we
can find i ă j such that Inpξi b vq and Inpξj b vq are at distance at most 1/3 from the two
extreme points of e, and every Inpξk b vq with i ă k ă j is in the interior of e at distance
at least 1/3 from the extreme points. The distance between dpInpξ0 b vq, Inpξt b vqq is
not larger than the total number of edge crossings of γ plus 2. Now recall that the quotient
projection π0 : ∆0 Ñ Γ0 maps edges homeomorphically to edges, and moreover

π0pInpξi b vqq “ π0pInpξ0 b si ¨ ¨ ¨ s1pvqq ¨ si ¨ ¨ ¨ s1|vq “ π0pInpξ0 b si ¨ ¨ ¨ s1pvqqq.

We deduce that to every edge-crossing of γ we can associate (injectively) a traverse. Thus
there is a constant C ą 0 such that

lpg|vq ď Cτn,vpst ¨ ¨ ¨ s1q ` C,

where τn,v denotes the number traverses at level n of the form pi, j, v1, v2q with v1 “

si ¨ ¨ ¨ s1pvq. Summing over v we obtain the statement of the theorem. □
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3. CONFORMAL DIMENSION OF CONTRACTING GROUPS

3.1. Visual metric. Let pG,Bq be a contracting group. Choose a basis X of B and let
N be the corresponding nucleus of G. The self-similarity complex is the graph with set of
vertices X˚ in which two vertices are connected by an edge in one of the following two
situations: either they are of the form v, xv for v P X˚ and x P X (vertical edges), or they
are of the form v, gpvq for v P X˚ and g P N (horizontal edges).

The following theorem is proved in [33] (see also [34, Theorem 3.8.8]). The statement
about the Gromov product follows directly from the proof.

Theorem 3.1. The self-similarity complex is Gromov hyperbolic. Its boundary is home-
omorphic to the limit space JG, where a point of JG represented by . . . x2x1 P X´ω

corresponds to the limit of the geodesic path px1, x2x1, x3x2x1, . . .q in the self-similarity
complex.

The Gromov product ℓpxn . . . x2x1, ym . . . y2y1q of the vertices xn . . . x2x1 and ym . . . y2y1
is equal (up to an additive constant) to the largest k ď minpn,mq such that there exists
g P N such that gpxk . . . x2x1q “ yk . . . y2y1.

Define ℓp. . . x2x1, . . . y2y1q as the largest n such that gpxn . . . x2x1q “ yn . . . y2y1 for
some g P N . It is the natural extension of the Gromov product to JG (its value does not
depend, up to an additive constant, on the choice of the sequences . . . x2x1, . . . y2y1 P X´ω

representing the points of the limit space). Note that we define ℓpξ, ξq “ 8 for ξ P JG.
The following is a classical result of the theory of Gromov-hyperbolic spaces, see [16,

§3].

Theorem 3.2. There exists α0 ą 0 such that for every α ă α0 there exists a metric dα on
JG and a constant C ą 1 such that

(3) C´1e´αℓpξ1,ξ2q ď dαpξ1, ξ2q ď Ce´αℓpξ1,ξ2q

for all ξ1, ξ2 P JG.

Note that (for a fixed value of α) the metric dα is unique up to bi-Lipschitz equivalence.
We call it the visual metric of exponent α.

If f, g are real-valued functions with the same domain of definition, we write f — g if
there exists a constant C ą 0 such that C´1f ď g ď Cf .

It follows from Proposition 2.7 that for every ζ P JG the set

T pζ, nq “ tξ P JG : ℓpξ, ζq ě nu

is equal to the union of the tiles Tv of nth level intersecting tiles of the nth level that contain
ζ. Note that T pζ, nq is a union of not more than |N |2 tiles of the nth level.

Note also that if dα is a visual metric, then we have

(4) Bpζ, C´1e´αnq Ă T pζ, nq Ă Bpζ, Ce´αnq,

where Bpx,Rq denotes the ball of radius R with center in x, and C satisfies (3).
Let µ be the push-forward of the uniform Bernoulli measure on X´ω by the quotient

map X´ω ÝÑ JG. Since the quotient map is at most |N |-to-one, we have, for every
v P Xn

|X|´n ď µpTvq ď |N | ¨ |X|´n.

It follows that µpT pζ, nqq — |X|´n, so

µpBpζ,Rqq — |X|´
´ lnR

α “ exp

ˆ

lnR ln |X|

α

˙

“ R
ln |X|

α .
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3.2. Conformal dimension. Let pG,Bq be a contracting self-similar group. Recall that
T pξ, nq for ξ P JG denotes the union of the nth level tiles T ¨ v, v P Bbn intersecting the
nth level tiles that contain ξ.

Definition 3.3. A metric on JG is said to be quasi-conformal if there exists C ą 1 such
that for every ξ P JG and every n ě 1 there exists r such that

Bpξ, rq Ă T pξ, nq Ă Bpξ, Crq,

where the balls Bpξ, rq are defined using the metric d.
A metric d on a space X is said to be Ahlfors-regular if there exists β ą 0 and a measure

µ on X such that
µpBpx,Rqq — Rβ

for all x P X and R ă diampX q. The exponent β is equal to the Hausdorff dimension of
d.

We have seen that the visual metric dα on JG is quasi-conformal. We have also seen
that it is Ahlfors-regular of Hausdorff dimension ln |X|

α .

Definition 3.4. The infimum of the set of Hausdorff dimensions of Ahlfors-regular quasi-
conformal metrics on JG is called the Ahlfors-regular conformal dimension of JG and is
denoted ARdimJG or ARdimpG,Bq.

A map f : X1 ÝÑ X2 between metric spaces pX1, d1q and pX2, d2q is said to be
quasisymmetric if there exists a homeomorphism η : r0,8q ÝÑ r0,8q such that

d2pfpxq, fpyqq

d2pfpxq, fpzqq
ď η

ˆ

d1px, yq

d1px, zq

˙

for all x, y, z P X1.
It is not hard to see that the inverse of every quasisymmetric homeomorphism is also

quasisymmetric.
Two metrics on the same spaces are said to be quasisymmetric to each other if the

identity map is quasisymmetric.
It follows directly from the definitions that any two visual metrics dα1

, dα2
on JG are

quasisymmetric to each other.

Proposition 3.5. Let pG,Bq be a self-replicating group. Then an Ahlfors-regular metric
d on JG is quasi-conformal if and only if it is quasisymmetric to a visual metric.

Proof. It is easy to see that every Ahlfors-regular metric on JG quasisymmetric to a visual
metric is quasiconformal.

If dα is a visual metric, and d is quasi-conformal, condition (3) implies that there exists
a constant C ą 1 such that for every ζ P JG and every r ą 0 (such that Bdαpζ, rq ‰ JG)
there exists Rr,ζ ą 0 such that

Bdpζ,Rr,ζq Ă Bdαpζ, rq

and
Bdαpζ, rq Ă Bdpζ, CRr,ζq,

where B and B denote the open and the closed balls, respectively.
Let ξ1, ξ2 P JG be such that dαpζ, ξ1q ď dαpζ, ξ2q. Let dαpζ, ξ2q “ r. Then

dpζ, ξ1q ă CRζ,r. If dpζ, ξ2q ď Rζ,r, then dαpζ, ξ2q ă r, which is a contradiction. There-
fore, dpζ, ξ2q ą Rζ,r. We see that dαpζ, ξ1q ď dαpζ, ξ2q implies dpζ, ξ1q ď CRζ,r ă
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Cdpζ, ξ2q. It follows that the identity map from pJG, dαq to pJG, dq is weakly quasisym-
metric.

Consequently (as JG is connected and doubling in the self-replicating case), by [22,
Theorem 10.19], the identity map is quasisymmetric. □

Proposition 3.6. Let d be an Ahlfors regular quasi-conformal metric on JG. Then

lim
nÑ8

sup
ξPJG

diampT pξ, nqq Ñ 0

as n Ñ 8. If d is quasisymmetric to a visual metric, then there exist C ą 0 and λ P p0, 1q

such that
sup
ξPJG

diampT pξ, nqq ď Cλn

for all n.

Proof. The first statement follows from the fact that it is true for a visual metric and that
compact spaces have a unique uniformity, so uniform convergence to 0 does not depend on
the choice of a metric.

Suppose now that d is quasisymmetric to a visual metric dα. Let η : r0,8q ÝÑ r0,8q

be the homeomorphism such that dpx,yq

dpx,zq
ď η

´

dαpx,yq

dαpx,zq

¯

for all x, y, z P JG, where dα is
a visual metric on JG. Let u1, u2 P X˚. Then for every x P Tu2u1 Ă Tu1 there exists
y P Tu2u1

such that 2dpx, yq ě diamdpTu2u1
q. Similarly, there exists z P Tu1

such that
dαpx, zq ě diamdα

pTu1
q{2. Then

diampTu2u1
q

diampTu1
q

ď
2dpx, yq

dpx, zq
ď 2η

ˆ

dαpx, yq

dαpx, zq

˙

ď 2η

ˆ

diamdαpT u2u1q

diamdα
pTu1

q{2

˙

.

It follows from the definition of the visual metric that diamdαpTvq — e´|v|α. It follows
that there exists C ą 1 such that diamdα pTu2u1

q

diamdα pTu1 q
ď Ce´|u2|α for all u1, u2 P X˚.

Since η : r0,8q ÝÑ r0,8q is a homeomorphism, this implies that there exists m and
λ0 P p0, 1q such that diampTu2u1

q

diampTu1
q

ď λ0 for all u2 P Xm. This implies the statement of the
proposition. □

4. CONTRACTION COEFFICIENTS

4.1. ℓp-contraction. Let pG,Bq be a contracting finitely generated group. Fix some finite
generating set of G, and let lpgq be the corresponding word length.

The ℓp-contraction coefficient of the group is

ηp “ lim
nÑ8

n

g

f

f

elim sup
lpgqÑ8

p
ř

vPXn lpg|vqpq
1{p

lpgq
.

The ℓ8-contraction coefficient η8 is defined in the similar way, replacing the ℓp norm of
the vector plpg|vqqvPXn by its ℓ8 norm maxvPXn lpg|vq. The existence of the first limit in
the formula defining ηp follows from the lemma below.

Lemma 4.1. Denote

ηp,n “ lim sup
lpgqÑ8

p
ř

vPXn lpg|vqpq
1{p

lpgq
.

Then ηp,n1`n2
ď ηp,n1

ηp,n2
.
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Proof. For every λi ą ηp,ni
and every g long enough, we have

ÿ

vPXni

lpg|vqp ď λp
i lpgqp.

It follows that there exists a constant C not depending on g such that
ÿ

vPXni

lpg|vqp ď λp
i plpgq ` Cqp

for all g P G.
Suppose at first that p ě 1. We have then, using the triangle inequality for the p-norm:

ÿ

vPXn1`n2

lpg|vqp “
ÿ

v1PXn1

ÿ

v2PXn2

lpg|v1v2qp ď
ÿ

v1PXn1

λp
2plpg|v1q ` Cqp ď

¨

˝λ2C|Xn1 | ` λ2

˜

ÿ

v1PXn1

lpg|v1qp

¸1{p
˛

‚

p

ď

pλ2C|Xn1 | ` λ2λ1plpgq ` Cqq
p

which implies that
ηp,n1`n2 ď λ1λ2,

for all λ1 ą ηp,n1
and λ2 ą ηp,n2

.
The case p P p0, 1q is analogous, but using the triangle inequality for the norm pxiq ÞÑ

ř

|xi|
p. □

It is shown in [37, Proposition 4.3.12] that ηp does not depend on the choice of the finite
generating set or the choice of the basis X Ă B. (This is true for all p P p0,8s.)

It is shown in [37, Proposition 4.3.15] that for all 0 ă p ă q ď 8 we have

(5) ηp ě ηq ě |X|´1, |X|´1{pηp ď |X|´1{qηq.

In particular, the function p Ñ ηp is non-increasing and continuous.

Definition 4.2. The critical exponent pcpG,Bq of a contracting group is the infimum of
the set of values p such that ηp ă 1.

Proposition 4.3. Suppose that pG,Bq is a contracting group. Fix a basis X Ă B and a
finite generating set S containing the nucleus. Let p ě 1 be such that ηp ă 1. Then for
every l ě 2 there exists a constant C such that for every g P G we have

ÿ

vPX˚,lpg|vqěl

lpg|vqp ď Clpgqp.

Proof. Note that since G is contracting and the generating set contains the nucleus, for
every l there exists m such that if lpgq ď l, then lpg|vq ď 1 for all v P X˚ such that
|v| ě m. Therefore if we fix l1 ă l2, every vertex in the set tv P X˚ : l1 ď lpg|vq ă l2u is
at a uniformly bounded distance either below the root, or below a w such that lpg|wq ě ℓ2.
It follows that there exists some constant C1 such that

ÿ

vPX˚,lpg|vqěl1

lpg|vqp ď C1

¨

˝

ÿ

vPX˚,lpg|vqěl2

lpg|vqp

˛

‚` C1.

Consequently, it is enough to prove the proposition for any large l. It is also easy to see
that we can replace X by any power Xn0 , i.e., consider in the sum only words v of length
divisible by n0.
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If ηp ă 1, then there exist n0, l0, and η ă 1 such that
ÿ

vPXn0

lpg|vqp ď ηlpgqp

for all g P G such that lpgq ě l0. If we redefine the length by setting

lpgq “

"

lpgq if lpgq ě l0
0 otherwise ,

then we get
ÿ

vPXn0

lpg|vqp ď ηlpgqp

for all g P G. Consequently,
ÿ

vPXkn0

lpg|vqp ď ηklpgqp

for every k ě 0 and every g P G, hence
ÿ

vPpXn0 q˚,lpg|vqěl0

lpg|vqp ď

8
ÿ

k“0

ÿ

vPXkn0

lpg|vqp ď
1

1 ´ η
lpgqp,

which finishes the proof. □

Proposition 4.4. Let I : X b B ÝÑ X be a contracting model of the group pG,Bq. For
every p ą pcpG,Bq and every δ ą 0 there exists C such that

ÿ

vPX˚,dpI|v|pξ1bvq,dpI|v|pξ2bvqqěδ

dpI |v|pξ1 b vq, I |v|pξ2 b vqqp ď Cdpξ1, ξ2qp

for all ξ1, ξ2 P XG.

Proof. Denote the sum in the proposition by Σpδ, ξ1, ξ2q. If δ1 ą δ, then the set of sum-
mands in Σpδ1, ξ1, ξ2q is a subset of the set of summands of Σpδ, ξ1, ξ2q.

It follows from the definition of a contracting model that we have dpI |v|pξ1bvq, I |v|pξ2b

vqq ď Cλ|v|dpξ1, ξ2q for some constants C ą 1 and λ P p0, 1q. Consequently, for every
summand dpI |v|pξ1 bvq, I |v|pξ2 bvqqp of Σpδ1, ξ1, ξ2q there is at most some fixed number
of summands of Σpδ, ξ1, ξ2q of the form dpI |vu|pξ1 b vuq, I |vu|pξ2 b vuqqp and all the
values of these summands are bounded by CpdpI |v|pξ1 b vq, I |v|pξ2 b vqqp. It follows that
there exists a constant K not depending on ξ1, ξ2 such that Σpδ, ξ1, ξ2q ď KΣpδ1, ξ1, ξ2q.

Consequently, it is enough to prove the proposition for an arbitrary δ. Let T Ă X be a
compact set intersecting every G-orbit and such that IpT b xq Ă T for every x P X. We
can find such a set since the maps ξ ÞÑ Ipξ b xq are contractions. There exist g1, g2 P G
such that ξi P T ¨ gi. Since the action of G on X is proper, isometric, and co-compact,
there exists a constant L ą 1 such that

L´1lpg1g
´1
2 q ´ L ď dpξ1, ξ2q ď Llpg1g

´1
2 q ` L.

In particular, if dpξ1, ξ2q ą 2L, then

p2Lq´1lpg1g
´1
2 q ď dpξ1, ξ2q ď 2Llpg1g

´1
2 q.

For every v P X˚, we have I |v|pξibvq “ I |v|pξ1
i ¨gibvq “ I |v|pξ1

ibgipvqq¨gi|v for some
ξ1
i P T . By the choice of T , we have I |v|pξ1

i b gipvqq P T . Note that pg1|vqpg2|vq´1 “

pg1g
´1
2 q|g2pvq. Therefore, if dpI |v|pξ1 b vq, I |v|pξ2 b vqq ą 2L, then it is equal, up to

multiplicative constants to the word length of pg1g
´1
2 q|g2pvq. We also can guarantee that

the word length is greater than any fixed number by bounding from below the distance
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dpI |v|pξ1 b vq, I |v|pξ2 b vqq. It follows that the sum Σpδ, ξ1, ξ2q, if δ is large enough,
is bounded from above by a constant multiple of the sum

ř

vPX˚,lpg|vqěl lpg|vqp, where
g “ g1g

´1
2 and l is an arbitrary constant. Proposition 4.3 then finishes the proof. □

Definition 4.5. The portrait of an element g P G is the set P pgq of finite words v P X˚

such that g|u does not belong to the nucleus N of G for any proper prefix u of v. If g P N ,
then we set P pgq “ tHu.

The portrait is prefix-closed, i.e., a rooted subtree of X˚. Let us denote by Lpgq the set
of leaves of this subtree, i.e., the set of words v P X˚ such that g|v P N but g|u R N for
any proper prefix u of v.

The following bounds on the size of the portrait is proved in the same way as Proposi-
tion 4.3.

Proposition 4.6. Let pG,Bq be a contracting group, choose a basis X Ă B. Let p ě 1 be
such that ηp ă 1. Then there exists a constant C ą 1 such that

|P pgq X Xn| ď Cηnp lpgqp

and
|P pgq| ď Clpgqp

for every g P G and n ě 0.

The portrait P pgq of an element g together with the labeling of the elements v P P pgq

by the permutations the sections g|v induce on the first level X Ă X˚ and the labeling of
the elements of Lpgq by the sections g|v P N uniquely determine g. This, together with
Proposition 4.6 implies that the growth of the group G is bounded from above by eCnα

for
every α ą pcpG,Bq.

4.2. Critical exponent and conformal dimension.

Theorem 4.7. Let pG,Bq be a finitely generated contracting group. Its critical exponent
pc is not greater than ARdimJG.

Proof. Let d be an Ahlfors-regular quasiconformal metric on JG. Let ν be the correspond-
ing Hausdorff measure, and let α be its Hausdorff dimension. Take β ą α. It is enough to
prove that pc ď β, i.e., that ηβ ă 1.

Let S be a finite symmetric generating set of G. Consider a product g “ sm . . . s2s1 of
of elements of S. Let n0 be such that all sections of elements of S in words of length n0

belong to the nucleus. Then for every u P Xn and v0 P Xn0 consider the sequence

v0u, s1pv0uq, s2s1pv0uq, . . . , sm . . . s2s1pv0uq.

Denote by u0, u1, . . . , um the corresponding suffixes of length n. Then ui “ si|si´1¨¨¨s1pv0qpui´1q,
so the tiles Tui

and Tui´1
intersect in JG, and the tiles T b ui and T b ui´1 intersect in

XG.
Choose ξi,v0u P Tui X Tui´1 for every i “ 1, 2, . . . ,m. Let Ri,v0u and ri,v0u be the

smallest and the largest radii such that

Bpξi,v0u, ri,v0uq Ď T pξi,v0u, nq Ď Bpξi,v0u, Ri,v0uq.

We know that Ri,v0u{ri,v0u P r1, Cs and that µpT pξi,v0u, nqq ě C´1rαi,v0u ě C´1´αRα
i,v0u

,
for some constant C ą 1.

Denote by Mn the maximum over ξ P JG of the minimal radius R such that T pξ, nq Ă

Bpξ,Rq. It follows from Proposition 3.6 that Mn Ñ 0 as n Ñ 8.
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Consequently (using β ą 1),

pR1,v0u ` R2,v0u ` ¨ ¨ ¨ ` Rm,v0uqβ ď mβ´1pRβ
1,v0u

` Rβ
2,v0u

` ¨ ¨ ¨ ` Rβ
m,v0uq ď

mβ´1Mβ´α
n pRα

1,v0u ` Rα
2,v0u ` ¨ ¨ ¨ ` Rα

m,v0uq ď

mβ´1Mβ´α
n C1`αpνpT pξ1,v0u, nqq ` νpT pξ2,v0u, nqq ` ¨ ¨ ¨ ` νpT pξm,v0u, nqqq.

We have
ř

v0PXn0 ,uPXn νpT pξi,v0u, nqq ď |X|n0 ¨ |N |2 ¨ νpJGq, hence adding all the in-
equalities over all v0 P Xn0 , u P Xn, we will get

ÿ

v0PXn0 ,uPXn

pR1,v0u `R2,v0u `¨ ¨ ¨`Rm,v0uqβ ď |X|n0 ¨ |N |2 ¨νpJGq ¨C1`α ¨Mβ´α
n ¨mβ .

Lemma 4.8. There exists a constant C1 ą 0, depending only on G, X, and d, such that
lpg|v0uq ď C1pR1,v0u ` R2,v0u ` ¨ ¨ ¨ ` Rm,v0uq ` C1.

Proof. Let us define a metric on XG. Let ζ1, ζ2 P XG. Take all v1, v2 P Bbn for all n ě 0
such that ζi P pT Sq b vi and pT Sq b v1 X pT Sq b v2 ‰ H, and then take the infimum
d0pζ1, ζ2q of diamppT Sq b v1{Gq ` diamppT Sq b v2{Gq. (Here Bb0 “ G.) Denote the
infimum by d0pζ1, ζ2q (it may be infinite).

We obviously have that d0pζ1, ζ2q is not smaller than the distance between the images
of ζ1 and ζ2 in JG.

Define then d1pζ1, ζ2q as the infimum of d0pξ0, ξ1q ` d0pξ1, ξ2q ` ¨ ¨ ¨ ` d0pξn´1, ξnq

over all sequences ξi such that ξ0 “ ζ1 and ξn “ ζ2. Then d1 is a finite metric on XG. It is
obviously G-invariant. For every ξ P XG, the diameter of the union of the tiles of the nth
level of XG containing ξ is not larger than the diameter of the union of the tiles of the nth
level of JG containing the image of ξ. Consequently, the metric d1 is compatible with the
topology on XG.

Choose a point ξ0 P T , and consider the sequence

ξ0 b v0u, ξ0 ¨ s1 b v0u, ξ0 ¨ s2s1 b v0u, . . . , ξ0 ¨ sm ¨ ¨ ¨ s2s1 b v0u.

Then R1,v0u ` R2,v0u ` ¨ ¨ ¨ ` Rm,v0u is an upper bound on d1pξ0 b v0u, ξ0 ¨ g b v0uq.
The lemma follows then from Lemma 2.11. □

Note that each Ri,v0u is bounded from below by some number rn ą 0. Consequently,
˜

ÿ

vPXn`n0

lpg|vqβ

¸1{β

ď

C1

˜

ÿ

v0PXn0 ,uPXn

pR1,v0u ` R2,v0u ` ¨ ¨ ¨ ` Rm,v0u ` 1qβ

¸1{β

ď

C1

˜

ÿ

v0PXn0 ,uPXn

pR1,v0u ` R2,v0u ` ¨ ¨ ¨ ` Rm,v0uqβ

¸1{β

` |Xn|1{β ď

KM
1´ α

β
n ¨ lpgq ` |Xn|1{β ,

which implies that lim suplpgqÑ8

p
ř

vPXn`n0 lpg|vq
βq

1{β

lpgq
ď KM

1´ α
β

n . Since Mn Ñ 0 as
n Ñ 8, Lemma 4.1 implies that ηβ ă 1. □

Remark 4.9. The inequality in Theorem 4.7 is not sharp. For example, it is known that η1
for the first Grigorchuk group G is strictly less than 1 (this is the classical sum-contraction
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of Grigorchuk [17]), which implies by the inequality (5) that its critical exponent is strictly
less than 1. On the other hand, the limit space of the Grigorchuk group is a segment, hence
we have ARdimJG “ 1. In fact, it follows from the norm contracting inequality in [5] and
the explicit sequence of group elements which satisfies the reverse inequality (see [6][Prop
4.7]), we have that its critical exponent is equal to α0 “ log 2{ log λ0 » 0.7674, where
λ0 is the positive real root of the polynomial X3 ´ X2 ´ 2X ´ 4. Recall the definition
of critical constant for Liouville property in the Introduction. From the random walk with
nontrivial Poisson boundary constructed in [15] for the purpose of volume lower estimate,
we have that CrLiouvpGq is also equal to α0 and α0 is the growth exponent of G.

4.3. Thurston obstructions. Let pG,Bq be a self-similar group. Consider the linear span
V of conjugacy classes of infinite order elements of G. We denote by rgs the conjugacy
class of an element g P G seen as an element of V . If g is of finite order, then we define rgs

to be equal to zero. Choose a basis X Ă B and the associated self-similar action on X˚.
Let g P G. Consider the action of g on X, and for every cycle x1 ÞÑ x2 ÞÑ . . . ÞÑ xk ÞÑ x1

of the action, consider the conjugacy class rg|xk
¨ ¨ ¨ g|x2

g|x1
s “ rpgkq|x1

s. Note that it
does not depend on the choice of the initial element x1 of the cycle. Choose p ě 1, and
denote by Tpprgsq the sum of the elements k1´prpgkq|x1s P V taken over all cycles of the
action of g on X. Since a change of the basis X corresponds to conjugation of the wreath
recursion by an element of the wreath product, the value of Tpprgsq does not depend on the
choice of X.

For example, if a “ σp1, aq is the binary odometer, then we have Tpprasq “ 21´pras.
We call the linear operator Tp the Thurston’s p-map.

Lemma 4.10. If Tp is the Thurston’s p-map for pG,Bq, then the Thurston’s p-map for
pG,Bbnq is Tn

p .

Proof. Let x1 ÞÑ x2 ÞÑ ¨ ¨ ¨ ÞÑ xk ÞÑ x1 be a cycle of the action of g on X. Denote
h “ pgkq|x1

. For every cycle v1 ÞÑ v2 ÞÑ ¨ ¨ ¨ ÞÑ vm ÞÑ v1 of the action of h on Xn we get
the cycle

x1v1 ÞÑ x2g|x1
pv1q ÞÑ ¨ ¨ ¨ ÞÑ xkpgk´1qx1

pv1q ÞÑ

x1v2 ÞÑ x2g|x1
pv2q ÞÑ ¨ ¨ ¨ ÞÑ xkpgk´1qx1

pv2q ÞÑ

. . .

x1vm ÞÑ x2g|x1
pvmq ÞÑ ¨ ¨ ¨ ÞÑ xkpgk´1qx1

pvmq ÞÑ x1v1

of length km of the action of g on Xn`1. We have pgkmq|x1v1 “ hm|v1 . A proof of the
lemma now follows by induction. □

Theorem 4.11. Suppose that U ă V is Tp-invariant subspace spanned by a finite set of
conjugacy classes. If the ℓp-contraction coefficient ηp of pG,Bq is less than 1, then the
spectral radius of Tp|U is also less than 1.

In particular, we can use this theorem to find lower estimates for pcpG,Bq, and hence
for ARdimpG,Bq.

A particular case of this theorem is related to one direction of the Thurston’s theorem
(see [13]) characterizing post-critically finite branched self-coverings of the sphere that are
realizable as complex rational function. In Thurston’s theorem one considers subspaces
spanned by conjugacy classes defined by disjoint simple closed curves of the punctured
sphere (with some additional conditions). Such collections of curves are called multic-
urves.
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Proof. Let trg1s, rg2s, . . . , rgmsu be a finite spanning set of U . Let N be a natural number
such that the action of each element gNi on X is identical. Denote by Li,kN the length
of giNi (with respect to some fixed finite generating set of the group). We have then
Li,k1k2N ď k1Li,k2N for all i “ 1, . . . ,m, k1, k2 ě 1. Equivalently, we have

Li,k2N ě k´1
1 Li,k1k2N .

Note also that Li,kN Ñ 8 as kN Ñ 8, since we assume that the elements gi are of
infinite order.

Assume that ηp ă 1. Let η be such that ηp ă η ă 1. After replacing X by Xn for a
large n (using Lemma 4.10) and assuming that N is large enough, we will have

ÿ

xPX

lpgNk
i |xqp ď ηlpgNk

i qp

for all i and k.
For cycle x1 ÞÑ x2 ÞÑ ¨ ¨ ¨ ÞÑ xr ÞÑ x1 of gi, the corresponding sections gNk

i |xi are
conjugated to pgri |x1

q
Nk
r . If gri |x1 has infinite order, then it is conjugate to one of the

elements gj . Since the number of corresponding conjugators is finite, we get

lpgNk
i |xi

q ě Lj,Nk{r ´ C.

Choose an arbitrary ρ P pη, 1q, so that η´1ρ ą 1. Assuming that N is large enough, we
will get lpgNk

i |xiq ě ρLj,Nk{r for all k ě 1. Consequently,
r

ÿ

i“1

lpgNk
i |xi

qp ě ρrLp
j,Nk{r ě ρr

`

r´1Lj,Nk

˘p
“ ρr1´pLp

j,Nk.

It follows that

Lp
i,Nk “ lpgNk

i qp ě η´1
ÿ

xPX

lpgNk
i |xqp ě η´1ρ ¨ ϕpTpprgisqq,

where ϕ is the linear functional defined by

ϕprgjsq “ Lp
j,Nk.

Consider the matrix of the dual operator T˚
p in the basis of U˚ dual to the basis prg1s, rg2s, . . . , rgmsq.

The above inequality means that the ith coordinate T˚
p pϕqprgisq “ ϕpTpprgisq of T˚pϕq P

U˚ is less than or equal to ηρ´1 times the ith coordinate ϕprgisq of ϕ. Since all coordinates
of ϕ are positive, Perron-Frobenius theorem implies that the spectral radius of T˚

p is strictly
less than 1. Consequently, the spectral radius of Tp is also strictly less than 1. □

As an example of an application of Theorem 4.11 (and Thurston’s theorem), consider a
mating of two cubic polynomials, found by M. Shishikura and L. Tan, see [43].

The iterated monodromy group is generated by

a1 “ p12qp1, 1, a3q, b1 “ p1, b3, 1q,

a2 “ pa1, 1, 1q, b2 “ pb1, 1, 1q,

a3 “ p02qpa´1
3 , 1, a2a3q, b3 “ p012qpb´1

3 , 1, b2b3q.

Note that a1a2a3 “ b1b2b3 “ τ , where τ “ p012qp1, 1, τq. The groups xa1, a2, a3y and
xb1, b2, b3y are the iterated monodromy groups of the mated cubic polynomials.

It is checked directly that the group is contracting with the nucleus consisting of the ele-
ments a3, a2a3, b3, b2b3, a1a2a3 “ b1b2b3, their inverses, and the identity element. More-
over, the wreath recursion is contracting for the free group (of rank 5), hence the limit
space has topological dimension 1, see [38, Theorem 4.4].
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Post-conjugating the wreath recursion by p1, b´1
3 , b´1

3 q, and passing to the generating
set b1, b2, b3, x “ b´1

1 a1, y “ b3a
´1
3 (we have b´1

2 a2 “ yx´1 in the faithful quotient), we
get an equivalent wreath recursion:

b1 “ p1, b3, 1q, x “ p12qp1, 1, y´1q,

b2 “ pb1, 1, 1q, y “ p12qpx, 1, y´1q,

b3 “ p012qp1, 1, b2q.

Let U be the formal linear span of the conjugacy classes rxs, rx´1s, rys, ry´1s. Thurston
map T2 acts by the rule

rxs ÞÑ
1

2
ry´1s, rx´1s ÞÑ

1

2
rys,

rys ÞÑ rxs `
1

2
ry´1s, ry´1s ÞÑ rx´1s `

1

2
rys.

It is easy to see that the spectral radius of T2|U is equal to 1. In particular, this means,
by Thurston’s theorem, that the mating is obstructed, i.e., is not equivalent to a rational
function. Theorem 4.11 implies that the conformal dimension of the limit space of the
group is at least 2.

5. RANDOM WALK AND LIOUVILLE PROPERTY

5.1. Random walk preliminaries.

5.1.1. Notation. Let G be a group endowed with a symmetric probability measure µ. The
measure µ is said to be non-degenerate if its support suppµ generates G as a semi-group.
If G is finitely generated, the measure µ is said to have finite p-moment for p ą 0 if
ř

µpgqlpgqp ă `8, where lp¨q is the word metric on G associated to some finite sym-
metric generating set. We denote by pgtq the (left) random walk associated to µ, namely
gt “ st ¨ ¨ ¨ s1, where psiqiě1 is a sequence of independent random variables with distribu-
tion µ.

5.1.2. Capacities and random walk on Schreier graphs. Assume that G acts on a count-
able set Ω. Then for each starting point ω P Ω, the process pgt ¨ωq is a Markov chain on Ω
with transition probabilities ppv, wq “

ř

g¨v“w µpgq. The assumption that µ is symmetric
implies that the induced Markov chain is reversible with respect to the counting measure
on Ω, which we use as the reference measure in the Dirichlet forms below. For p ě 1, the
associated p-Dirichlet form on ℓppΩq is

Ep,µpfq “
1

2

ÿ

gPG,vPΩ

µpgq|fpvq ´ fpg ¨ vq|p, f P ℓppΩq.

Let A,B be two disjoint finite subsets of Ω. For p ě 1, the (effective) p-capacity between
A and B is defined as

Capp,µpA,Bq “ inf tEp,vpfq : f P ℓppΩq, f |A “ 1, f |B “ 0u .

For p “ 2 this has a well-known probabilistic interpretation. The following is a refor-
mulation of [30, Exercises 2.13 and 2.47], we provide a proof for completeness.

Lemma 5.1. Let pG,µq be a group endowed with a probability measure, and pgnq the
associated random walk. Assume that G acts on a finite set Ω . For ω P Ω and B Ă Ω,
consider the stopping time:

TωÑB “ mintt ě 1: gt ¨ ω P Bu.
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Then for A,B disjoint subsets of Ω,

Cap2,µpA,Bq “
ÿ

ωPA

PpTωÑB ă TωÑAq.

Proof. We use the same notation and terminology on electric networks as in [30]. Since
µ is symmetric, we may regard the induced random walk transition operator Pµ on Ω as
coming from an electric network with conductance cpx, yq “

ř

gPG 1ty“g¨xuµpgq, and
reversing measure πpxq “ 1, x, y P Ω. Denote by τωÑA “ mintt ě 0 : gtω P Au the
hitting time of A. Let vpxq “ PpτxÑA ă τxÑBq. Then v is a voltage function which is 1
on the source set A, and 0 on the sink set B. Considering the first step of the random walk,
we have

ÿ

ωPA

PpTωÑB ă TωÑAq “
ÿ

ωPA

ÿ

xPΩ

Pµpω, xqPpτxÑB ă τxÑAq

“
ÿ

ωPA

ÿ

xPΩ

cpω, xqpvpωq ´ vpxqq.

Regard ipω, xq “ cpω, xqpvpωq ´ vpxqq as the current on the edge pω, xq. The capacity
Cap2,µpA,Bq is the effective conductance between A and B, thus equal to the total amount
of current flowing out of A under the voltage function v, which is

ř

ωPA

ř

xPΩ ipω, xq. □

5.1.3. Liouville property and entropy. Let µ be a probability measure on G. A function
f : G Ñ R is µ-harmonic if fpxq “

ř

gPG fpxgqµpgq for all x P G. By definition
the µ-random walk has the Liouville propery if µ has trivial Poisson boundary, namely
if every bounded µ-harmonic function is constant on the subgroup xsuppµy, Furstenberg
observed that admitting a non-degenerate measure µ with the Liouville property implies
amenability of the group G (see [27, Theorem 4.2]). Conversely every amenable group
admits a symmetric non-degenerate measure with trivial Poisson boundary, by a result of
Kaimanovich and Vershik [27, Theorem 4.4] and Rosenblatt [42].

Recall that given a probability measure ν supported on a discrete set Ω, the (Shannon)
entropy of ν is defined as

Hpνq “ ´
ÿ

ωPΩ

νpωq log νpωq.

If X is a discrete random variable taking values in a set Ω, the entropy HpXq is defined as
the entropy of the distribution of X.

Let X,Y be discrete random variables, and for any value y taken by Y with posi-
tive probability, denote by Xpyq the variable with the conditional distribution of X given
tY “ yu. Then the conditional entropy of X given Y is defined as the expected value of
HpXpyqq, namely

HpX|Yq “
ÿ

y

HpXpyqqPpY “ yq.

We resume below some basic properties of Shannon entropy.

Lemma 5.2. (1) If X is a random variable taking values in a finite set Ω, then HpXq ď

log |Ω|.
(2) The entropy of the joint distribution of two discrete random variables pX,Yq sat-

isfies
HpX,Yq “ HpX|Yq ` HpYq.
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(3) Assume that a random variable Y can be expressed as Y “ fpX1, . . . ,Xkq for
some discrete random variables X1, . . . ,Xk and some measurable function f .
Then

HpYq ď HpX1q ` ¨ ¨ ¨ ` HpXkq.

Another well-known and elementary fact is that every random variable X taking values
in the non-negative integers N and with finite expectation satisfies

HpXq ď logp1 ` ErXsq ` 1.

This in turn gives the following simple bound for random variable taking values in a
group.

Lemma 5.3. Let G be a finitely generated group and lp¨q be a word metric on G associated
to a finite symmetric generating set S containing the identity. Then for every G-valued
random variable g with finite entropy we have Hpgq ď plog |S| ` 1qErlpgqs ` 1.

Proof. We may assume that the expectation of lpgq is finite. We have Hpgq ď Hpg|lpgqq`

Hpgq. Let gpnq be the variable g conditioned to lpgq “ n. Since gpnq belongs to Sn, we
have Hpgpnqq ď n log |S| and Hpg|lpgqq ď log |S|Eplpgqq. On the other hand Hplpgqq ď

Eplpgqq ` 1. □

Assume that µ is a probability measure on a countable group G. Then the limit hµ “

lim 1
nHpµ˚nq exists and is called the (Avez) asymptotic entropy of µ. The entropy crite-

rion, proven by Kaimanovich and Vershik [27] and Derriennic [12], states that if Hpµq ă

`8, then µ has trivial Poisson boundary if and only if hµ “ 0.
For groups acting on rooted trees, the entropy criterion combined with the previous

properties of entropy gives the following sufficient condition for boundary triviality. Some
tightly related criteria appeared in [9, 26] and were used in several papers.

Proposition 5.4. Let G be a finitely generated group of automorphisms of a rooted tree
X˚ endowed with a word metric, and µ be a probability measure on G with finite entropy.
Then there is a constant C ą 0 such that for every n, t ą 0 we have

Hpµ˚tq ď CEr
ÿ

vPXn

lpgt|vqs ` C|X|n.

In particular, if there exists a sequence pεnq tending to 0 such that for every n we have

lim
tÑ8

1

t
E

«

ÿ

vPXn

lpgt|vq

ff

ď εn,

then µ has trivial Poisson boundary.

Proof. For every n and t, the variable gt is completely determined by the collection of
sections pgt|vqvPXn and by the permutation σ describing the action on level n. Thus

Hpgtq ď
ÿ

vPXn

Hpgt|vq ` Hpσq.

By Lemma 5.3, the first term is bounded by C1Er
ř

vPXn lpgt|vqs ` C1|X|n. The permu-
tation σ is completely determined by the first-level permutation of all sections gt|w where
|w| ď n ´ 1. Thus the total number of possibilities for σ is bounded by exppC2|X|nq, and
Hpσq ď C2|X|n for some constant C2 ą 0. The proposition follows. □
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5.2. Critical contraction exponent and p-capacity. Let pG,Bq be a finitely generated
contracting group with a basis X, and µ be a symmetric measure on G. In this subsection
we will relate the p-capacities associated to the action of G on the levels Xn with pcpG,Bq

and ARdimJG.

Proposition 5.5. Suppose that pG,Bq is a contracting finitely generated group. Denote
by lpgq the word length with respect to some fixed finite generating set on G.

Let d be an Ahlfors-regular metric on JG of Hausdorff dimension α. Let β ą α and let
p ą pcpG,Bq. Pick a basis X Ă B.

There exists a sequence ϵn Ñ 0 such that for every g P G and every . . . x2x1 P X´ω

we have
ÿ

vPXn

dp. . . x2x1gpvq, . . . x2x1vqβ ď ϵnlpgqp.

If pG,Bq is self-replicating, then we can take ϵn “ Cλn for some C ą 0 and λ P p0, 1q.

Proof. Let ν be the Hausdorff measure of the metric d. Take an element g P G. For every
v P Xn, let v1 be the shortest prefix of v such that g|v P N . If such a prefix does not exist,
then define v1 “ v. Let v2 P X˚ be such that v “ v1v2.

We have . . . x2x1gpvq P T p. . . x2x1v, |v2|q for every v P Xn. It follows that

dp. . . x2x1gpvq, . . . x2x1vqα ď C1νpT p. . . x2x1v, |v2|q

for some constant C1. Therefore, there exists C2 ą 0 such that for every sequence pknq

we have
ÿ

vPXn

dp. . . x2x1gpvq, . . . x2x1vqβ ď C2

ÿ

vPXn

νpT p. . . x2x1v, |v2|q
β
α ď

C2νpJGq
β
α ¨ |tv P Xn : |v2| ď knu| ` C2

ÿ

vPXn,|v2|ąkn

νpT p. . . x2x1v, |v2|q
β
α .

By Proposition 4.6

|tv P Xn : |v2| ď knu| ď C3η
n´kn
p lpgqp,

for some C3 not depending on kn or on g. For the second summand, note that if T p. . . x2x1v1, |v2
1 |q

and T p. . . x2x1v2, |v2
2 |q intersect for v1, v2 P Xn, then either v1

1 ‰ v1
2 or v1

1 “ v1
2 and

hpv2
1q “ v2

2 for some h P N 2. It follows that every point of JG is contained in not more
than |Lpgq|¨|N 2| sets of the form T p. . . x2x1v, |v2|q, recalling that Lpgq is the set of words
v P X˚ such that g|v P N but g|u R N for any proper prefix u of v. It follows that

ÿ

vPXn,|v2|ąkn

νpT p. . . x2x1v, |v2|q ď |Lpgq| ¨ |N 2| ¨ νpJGq.

By Proposition 4.6, |Lpgq| ď C4lpgqp for some constant C4. Hence
ÿ

vPXn

dp. . . x2x1gpvq, . . . x2x1vqβ ď C2

ÿ

vPXn

νpT p. . . x2x1v, |v2|q
β
α ď

C5

ˆ

ηn´kn
p ` max

vPXn,|v2|ąkn

νpT p. . . x2x1v, |v2|q
β
α ´1

˙

lpgqp

ď C5

˜

ηn´kn
p ` sup

ξPJG,kąkn

νpT pξ, kqq
β
α ´1

¸

lpgqp.
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Since νpT pξ, kqq — diampT pξ, kqqα, Proposition 3.6 implies that the coefficient

ηn´kn
p ` sup

ξPJG,kąkn

νpT pξ, kqq
β
α ´1

converges to zero if simultaneously n ´ kn Ñ 8 and kn Ñ 8. Note that this coefficient
does not depend on g. We have proved that there exists a sequence ϵn Ñ 0 not depending
on g such that

ÿ

vPXn

dp. . . x2x1gpvq, . . . x2x1vqβ ď ϵnlpgqp

for all g P G.
If the group pG,Bq is self-replicating, then the second part of Proposition 3.6 implies

that (for example, if we choose kn “ tn{2u) we can choose ϵn of the form Cλn for some
C ą 0 and λ P p0, 1q. □

Theorem 5.6. Let pG,Bq be a contracting finitely generated self-similar group, and let µ
be a symmetric probability on G with finite p-moment for some p ą pcpG,Bq.

Let A and B be disjoint closed subsets of JG. Fix ξ0 “ . . . x2x1 P X´ω , and denote by
An and Bn the sets of words v P Xn such that the point of JG represented by the sequence
. . . x2x1v belongs to A and B, respectively. If β ą ARdimJG then

lim
nÑ8

Capβ,µpAn, Bnq “ 0.

Moreover if pG,Bq is self replicating, then there exist C ą 0 and λ P p0, 1q such that

Capβ,µpAn, Bnq ď Cλn.

Proof. The algebra of Lipschitz functions JG ÝÑ R is dense in the algebra of all con-
tinuous functions, by Stone-Weierstrass theorem. Therefore, for every ϵ ą 0, there exists
a Lipschitz function f0 : JG ÝÑ R such that |f0paq ´ 1| ă ϵ and |f0pbq| ă ϵ for all
a P A and b P B. Let χ : R ÝÑ R be a Lipschitz (with respect to the usual metric on R)
function such that χpxq “ 0 for all x P p´1{3, 1{3q and χpxq “ 1 for all x P p2{3, 5{3q.
Then the function f “ χ ˝ f0 : JG ÝÑ R is a Lipschitz function such that fpaq “ 0 and
fpbq “ 1 for all a P A and b P B. By Proposition 5.5 there exists C ą 0 and a sequence
pϵnq tending to 0 such that for every g P G

ÿ

vPXn

|fp¨ ¨ ¨x2x1gpvqq ´ fp¨ ¨ ¨x2x1vq|p ď C1ϵnℓpgqp.

This finishes the proof. □

Remark 5.7. Given an infinite index subgroup H of a finitely generated group G, the
(symmetric) critical constant for recurrence CrpG,Hq is defined as the infinum of p such
that all symmetric random walks with finite p-moment induce recurrent random walks on
G{H . This notion was introduced by Erschler [14]. In our setting, Theorem 5.6 implies
that if ARdimJG ă 2, and if H is a stabiliser for the action of G on the boundary Xω of
the tree, then CrpG,Hq ď pcpG,Bq. This inequality is an equality in some cases (for the
Grigorchuk and Basilica group for instance). We do not know whether this inequality is
always sharp.

We conclude this subsection by pointing out a consequence of Theorem 5.6 which will
be used in the proof of Liouville property next subsection. To state it, we first note that the
topological dimension of JG is always bounded above by ARdimJG (see [31, Theorem
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1.4.12]). Hence if ARdimJG ă 2, then Theorem 2.14 implies that pG,Bq has a contract-
ing model ∆0 which is a locally finite connected graph, and we can place ourselves in the
setting of Notation 2.15.

Corollary 5.8. Let pG,Bq be a finitely generated contracting self similar group such that
ARdimJG ă 2, and retain Notation 2.15. Let µ be a symmetric probability measure on
G with a finite p-moment, where p ą pcpG,Bq. Then for any two distinct vertices z1 and
z2 of Γ0, we have limnÑ8 Cap2,µpUz1,n, Uz2,nq “ 0.

Proof. Note first that since ∆0 is a contracting model, if we replace the basepoint ξ0 in
Notation 2.15 by a different basepoints ξ1

0, then the corresponding sets U 1
z,n satisfy U 1

z,n “

Uz,n for all n large enough. Therefore, without loss of generality, we can suppose that ξ0
is the image of a point pξ0 P XG under the natural map XG Ñ ∆0 given by Theorem 2.9.
The map XG Ñ ∆0 also induces in the quotient a map JG Ñ Γ0. We will apply Theorem
5.6 to the sets A,B Ă JG given by the pre-images of Uz1 , Uz2 . To this end we choose the
sequence . . . x2x1 P X´ω in the statement of Theorem 5.6 so that it represents the same
element of XG as pξ0. With this choice, we have Uz1,n “ An and Uz2,n “ Bn. □

5.3. Proof of Liouville property under conformal dimension ă 2. In this subsection
we complete the proof of the following statement on Liouville property.

Theorem 5.9. Let pG,Bq be finitely generated contracting group such that ARdimJG ă

2. Let p ą pcpG,Bq. Then every symmetric probability measure µ on G with finite p-
moment has trivial Poisson boundary.

Corollary 5.10. Let pG,Bq be a finitely generated contracting group. If ARdimJG ă 2,
then G is amenable.

In the proofs below we take terminology and notation from Subsection 2.5, in particular
the set Uz,n and the number of traverses τn as in Definition 2.16 and Theorem 2.17.

For clarity we first prove the theorem under the simplifying assumption that µ is sym-
metric and finitely supported.

Proof of Theorem 5.9 (finite support case). Let µ be a symmetric probability measure sup-
ported on the finite set S, and gt “ st ¨ ¨ ¨ s1 be the associated random walk. We wish to
estimate the expected number of traverses Erτnpst ¨ ¨ ¨ s1qs. By Corollary 5.8 we have
maxz1,z2 Cap2,µpUz1,n, Uz2,nq Ñ 0 as n Ñ 8, where the maximum is taken over all
distinct vertices z1, z2 of Γ0. Denote this maximum by εn.

Say that a level n traverse from z1 to z2 starts at time i at a vertex v P Uz1,n if there
exists w P Uz2,n and j ě i so that pi, j, v, wq is a traverse from z1 to z2. Denote this
event by Api, v, z1, z2q. Let Ni be the total number of traverses that start at time i. Then
Ni “

ř

z1,z2

ř

vPUz1,n
1Api,v,z1,z2q. It follows from Lemma 5.1 that

ErNis ď
ÿ

z1,z2

ÿ

vPUz1,n

PpTvÑUz2,n
ă TvÑUz1,n

q ď |Γ0|2εn.

Therefore, we have

Erτnpst ¨ ¨ ¨ s1qs ď

t
ÿ

i“1

ErNis ď |Γ0|2εnt.

By Theorem 2.17 we deduce that there is C ą 0 such that

lim
tÑ8

1

t
Er

ÿ

vPXn

lpgt|vqs ď lim inf
tÑ8

1

t
Erτnpst ¨ ¨ ¨ s1qs ď Cεn.
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Since εn tends to 0 as n Ñ 8, Proposition 5.4 concludes the proof. □

We now move to the general case.

Proof of Theorem 5.9. First note that when pcpG,Bq ă 1, the upper volume growth ex-
ponent of G is ď pc. It follows from a general argument that any measure (not necessar-
ily symmetric) of finite p-moment, p ą pcpG,Bq, has finite entropy and trivial Poisson
boundary, see Corollary 2.3 in [15].

For the rest of the proof assume pcpG,Bq ě 1. Let µ be a measure on G of finite
p-moment, p ą pcpG,Bq. In particular, µ has finite first moment, and thus expectations of
length of sections lpgt|vq are finite. By Corollary 5.8, we have the capacity estimate

(6) ϵn :“ max
z1,z2PΓ0

Cap2,µpUz1,n, Uz2,nq Ñ 0.

The main difference from the finite-support case is that we can no longer apply directly
Theorem 2.17 to a word st ¨ ¨ ¨ s1 consisting of samples of µ because the support of µ is
infinite.

Let us follow the proof of Theorem 2.17 and take notations set there. Let st ¨ ¨ ¨ s2s1
be a sample of the random walk, and set gi “ si ¨ ¨ ¨ s2s1, with g0 “ 1, and ξi “ ξ0 ¨ gi.
Let n be large enough and for v P Xn fixed choose a geodesic path from Inpξi´1 b vq

to Inpξi b vq and let γ “ δt ¨ ¨ ¨ δ1 be their concatenation. By the same arguments as in
Theorem 2.17, the length of g|v is bounded by an affine function of the total number of
edges crossed by γ. Consider a crossing of an edge e corresponding to a subcurve γ|rt1,t2s,
and let δi, δj be the subcurves containing γpt1q and γpt2q. If both δi and δj have length
less than 1/3, then we can associate to the crossing of e a traverse of the word st ¨ ¨ ¨ s2s1.
The number of edges crossed by γ whose beginning or end is inside a path δi of length
ě 1{3 is not larger than the length of δi plus 2, and hence less than a constant times the
length of δi. We obtain the estimate

ÿ

vPXn

ℓpgt|vq ď C|X|n ` Cτnpst ¨ ¨ ¨ s2s1q

` C
t

ÿ

i“1

ÿ

vPXn,dpInpξibvq,Inpξi´1bvqqě1{3

dpInpξi b vq, Inpξi´1 b vqq,

for some C ą 0. By (6) the expected total number of traverses (summed over all v P Xn),
that is, E rτnpst ¨ ¨ ¨ s2s1qs, is bounded by ϵn ¨ t for a sequence ϵn converging to 0, by
the same argument as for finitely supported measures. Next note that each term dpInpξi b

vq, Inpξi´1bvqq in the second sum is bounded above by 3p´1dpInpξibvq, Inpξi´1bvqqp.
By Proposition 4.4 we have that

ÿ

vPX˚,dpI|v|pξibvq,I|v|pξi´1bvqqě1{3

dpInpξi b vq, Inpξi´1 b vqqp ď

C1dpξi, ξi´1qp ď pC2lpsiq ` C2qp.

The last term has finite expectation, since µ has finite p-moment. Thus the series

8
ÿ

n“0

E

¨

˝

ÿ

vPXn,dpInpξibvq,Inpξi´1bvqqě1{3

dpInpξi b vq, Inpξi´1 b vqqp

˛

‚

is convergent. Therefore its terms converge to 0 as n tends to 8. This finishes the proof by
Proposition 5.4. □

Theorem 1.3 stated in the Introduction follows from Theorem 4.7 and 5.9.
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6. EXAMPLES

6.1. Automata of polynomial activity growth. Let G be a faithful self-similar group
acting on X˚. Consider, for g P G the function

αgpnq “ |tv P Xn : g|v ‰ 1u|

counting the number of non-trivial sections on the nth level. Since the total set of sections
tg|v : v P X˚u is finite, αgpnq is the number of paths in a finite directed graph (the Moore
diagram with the trivial state removed) starting in a vertex. Therefore, the function αgpnq

is either exponentially growing, or is bounded by a polynomial. It is not hard to show that
the subset of elements g P G for which αgpnq is bounded from above by a polynomial of
degree d is a subgroup of G. We say that G is generated by an automaton of polynomial
activity growth if αgpnq is bounded by a polynomial for every g P G.

Groups generated by automata of polynomial activity growth were introduced by S. Sidki
in [44] (in greater generality than we described here). In particular, he showed that such
groups can not have free subgroups.

A special sub-class of such groups are groups generated by bounded automata, i.e.,
consisting of elements g such that αgpnq is bounded. It includes iterated monodromy
groups of all post-critically finite polynomials (see [8, 35]).

L. Bartholdi and B. Virág proved amenability of IMG
`

z2 ´ 1
˘

in [9] using random
walks. Their methods were extended in [7] to prove that all groups generated by bounded
automata are amenable. Later, this result was extended to groups for which αgpnq is
bounded by polynomials of degree 1 (in [2]) and 2 (in [3]).

The following theorem is proved in [39].

Theorem 6.1. If pG,Bq is a contracting group such that its action on X˚ for some ba-
sis X Ă B is a subgroup of the group of automata of polynomial activity growth, then
ARdimJG ď 1.

Corollary 6.2. If pG,Bq satisfies the conditions of the above theorem, and if µ is a sym-
metric probability measure on G with a finite p-moment for some p ą 1, then the µ-random
walk is Liouville. In particular G is amenable.

Note that groups generated by bounded automata are always contracting, but this is no
longer true for groups generated by automata of polynomial activity of degree at least 1.
For example, the group generated by the wreath recursion a “ σp1, aq and b “ pb, aq is
generated by automata of linear activity growth and is not contracting. By [4], there are
automata groups of polynomial activity that are not Liouville for any finitely supported
symmetric non-degenerate measure, so that the contracting assumption is crucial in Corol-
lary 6.2.

It follows from the results of [25] that a sufficient condition for a group generated by
automata of polynomial activity growth to be amenable is recurrence of the orbital graphs
of its action on the boundary of the tree X˚ (see the proof of [25, Theorem 5.1]). This gives
another way to conclude amenability of groups satisfying the conditions of Theorem 6.1,
see [39]. The statement on the Liouville property in Corollary 6.2 is new. For bounded
automata groups, it extends the result of [1] to measures with a moment condition (in that
particular case the proof of Theorem 5.9 can actually be modified to include measures with
finite first moment, by observing that Proposition 4.6 holds for p “ 1).

6.2. Iterated monodromy groups of rational functions.
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Theorem 6.3. Let f P Cpzq be a post-critically finite rational function. Then the canonical
homeomorphism of the limit space of IMG pfq with the Julia set of f is a quasi-symmetry
with respect to the visual metric on the limit space and the spherical metric on the Julia
set.

Proof. This is a result of P. Haı̈ssinksy and K. Pilgrim. Namely, it is proved in [20, Theo-
rem 6.15] that the limit dynamical system s : JG ÝÑ JG of every self-replicating contract-
ing group is coarse expanding conformal with respect to a visual metric (see the definition
in [19]).

It is also shown in [20, Theorem 3.3] that for every post-critically finite rational function
f the spherical metric restricted to a neighborhood of the Julia set of f is also coarse
expanding conformal. By [19, Theorem 2.8.2] any topological conjugacy between coarse
expanding conformal dynamical systems is a quasi-symmetry. □

Corollary 6.4. Let f P Cpzq be a post-critically finite rational function such that its Julia
set is not the whole sphere (equivalently, if f has a cycle containing a critical point).
Then IMG pfq is amenable. Moreover, if µ is a symmetric measure on IMG pfq with finite
second moment, then the random walk generated by µ is Liouville.

Proof. By Theorems 6.3, 5.9, and 4.7, it is enough to show that the Julia set of f has
Hausdorff dimension strictly less than 2. But this is shown in [32, Corollary 6.2]. □

Let us consider some examples of iterated monodromy groups that are not generated by
automata of polynomial activity growth.

Consider fpzq “ z2 ´ 1
16z2 . This function is representative of the well-studied family

of maps of the form zn ` λ
zm , see the survey [10]. See the Julia set of this function on

Figure 1.
Its critical points are 0,8, and roots of z4 ´ 1{16. The latter critical points are mapped

to ˘ i
2 , which are both mapped to 0. Consequently, the post-critical set is t0,8, i{2,´i{2u.

Let us take the generators a, b, c given by loops around the points 0, i{2, and ´i{2, respec-
tively, and connected to a basepoint, which we choose to be equal to 1. The preimages of
the basepoint 1 are ˘

a

2 ˘
?
5{2 (where the choices of the sign are independent), which

are approximately equal to ˘0.24i and ˘1.03. Let us connect the basepoint to the preim-
ages « ˘0.24i and « 1.03 by straight paths. We can not do it for ´1.03, since such a path
will contain 0. Let us connect it to the basepoint by a path passing below 0. We denote
the connecting paths from 1 to « 0.24i, « ´1.03, « ´0.24i, « 1.03 by ℓ1, ℓ2, ℓ3, ℓ4,
respectively. This will be our chosen basis of the biset associated with the rational function
(see 2.4). We also denote ℓ1, ℓ2, ℓ3, ℓ4 just by 1, 2, 3, 4 when we write the corresponding
wreath recursion.

The generators a, b, c, and their preimages f´1paq, f´1pbq, f´1pcq together with the
connecting paths ℓi are shown on Figure 2.

It follows that the iterated monodromy group is generated by the wreath recursion

a “ pb, 1, c, 1q,

b “ p23qp14q,

c “ p12qp34qpa, a´1, 1, 1q.

Note that all generators are of order 2. (In particular, we may replace a´1 by a in the
wreath recursion.)

The wreath recursion implies the recurrent rules for the graph of actions on the levels
Xn of the tree, shown on Figure 3.
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FIGURE 1. The Julia set of z2 ´ 1
16z2

The same substitution rules from Figure 3 are also valid for the infinite orbital Schreier
graphs of the action on the boundary Xω of the tree X˚. If we assume that the edges
corresponding to a have length 0, and the edges corresponding to b and c have length 1,
then we get graphs that are (uniformly) quasi-isometric to the Schreier graphs (since the
group xay is finite). It follows then from the recurrent rules that the shift map xv ÞÑ v
contracts the distances twice. Since this map is four-to-one, it follows that the orbital
Schreier graphs have quadratic growth.

See Figure 4 where the graph of the action on the 5th level X5 is shown in a way
approximating the Julia set of z2 ´ 1

16z
2.

6.3. Sierpiński carpet group. Let X “ t1, ¨ ¨ ¨ , 8u be an alphabet. Consider the group G
acting on X˚ generated by the set S “ ta, b, c, du, given by the wreath recursion

a “ p12qp67qp1, 1, a, 1, a, 1, 1, aq

b “ p46qp58qpb, b, b, 1, 1, 1, 1, 1q

c “ p23qp78qpc, 1, 1, c, 1, c, 1, 1q

d “ p14qp35qp1, 1, 1, 1, 1, d, d, dq

Its dual Moore diagram is shown in Figure 5.
The limit space JG can be identified (up to quasisymmetry) with the classical Sierpiński

carpet, obtained by successively subdividing a euclidean square into nine equal squares and
removing the middle one. The limit dynamical system s : JG Ñ JG can be described by
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FIGURE 2. Generators of IMG
`

z2 ´ 1{16z2
˘

first dilating the carpet by a factor nine, and then folding it in the natural way, so that
each of the eight tiles of the dilated carpet is mapped isometrically onto the original carpet
(preserving the orientation for the four corner tiles, and reversing it for the four remaining
ones).

The products ab, bc, cd, and ad are of order 6. For example,

ab “ p12qp476qp58qpb, b, ba, 1, a, 1, 1, aq,

so
pabq2 “ p476qp1, 1, pbaq2, 1, 1, 1, 1, 1q,

and
pabq6 “ p1, 1, pbaq6, 1, 1, 1, 1, 1q,

which implies that pabq6 “ 1.
We have

ac “ p123qp678qpc, a, 1, c, a, c, a, 1q,

hence ac has infinite order and

pacq6 “ ppacq2, pcaq2, pacq2, 1, 1, pacq2, pcaq2, pacq2q.

It follows that the Thurston’s p-map Tp satisfies

Tppracsq “ 2 ¨ 31´pracs.

It is contracting only when 1´ p ă
log 2
log 3 , i.e., for p ą

log 6
log 3 . Consequently, pcpG,Bq ě

log 6
log 3 , by Theorem 4.11. In particular, Theorem 4.7 provides the same lower bound for
ARdimpG,Bq.
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FIGURE 3. Recursion rules for Schreier graphs of IMG
`

z2 ´ 1{16z2
˘

On the other hand, the usual metric on Sierpiński carpet implies that ARdimpG,Bq ď
log 8
log 3 . The exact value of ARdimpG,Bq is still unknown, see some estimates in [29].

6.4. A non-Liouville contracting group. Not all contracting self-similar groups are Li-
ouville even for finitely supported generating measures. Let us describe one counter-
example.

Consider the group H of affine transformations of the space Z3
2 (where Z2 is the ring of

dyadic integers) of the form x⃗ ÞÑ p´1qkx⃗ ` v⃗, where v⃗ P Z3 and k “ 0, 1.

We will denote the points of Z3
2 as infinite matrices

¨

˝

i11 i12 . . .
i21 i22 . . .
i31 i32 . . .

˛

‚in such a way

that it P t0, 1u, and if

¨

˝

i11 i12 . . .
i21 i22 . . .
i31 i32 . . .

˛

‚ represents x⃗ P Z3
2, and the shifted matrix
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FIGURE 4. The 5th level Schreier graph of IMG
`

z2 ´ 1{16z2
˘

FIGURE 5. The Sierpiński carpet dual automaton
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¨

˝

i12 i13 . . .
i22 i23 . . .
i32 i33 . . .

˛

‚represents y⃗, then

x⃗ “ ´

¨

˝

i1
i2
i3

˛

‚` 2y⃗.

Essentially, we are using the binary numeration system with digits 0 and ´1, but write 1
instead of ´1.

Denote, for pi1, i2, i3q P t0, 1u3, by ai1i2i3 the transformation x⃗ ÞÑ ´x⃗`

¨

˝

i1
i2
i3

˛

‚. The

elements ai1i2i3 generate the group H .
We have

ai1i2i3

¨

˝´

¨

˝

j1
j2
j3

˛

‚` 2y⃗

˛

‚“

¨

˝

j1
j2
j3

˛

‚´2y⃗`

¨

˝

i1
i2
i3

˛

‚“ ´

¨

˝

k1
k2
k3

˛

‚`2

¨

˝´y⃗ `

¨

˝

l1
l2
l3

˛

‚

˛

‚

if it ` jt “ 2lt ´ kt. Equivalently, lt “ maxpit, jtq and kt is it ` lt modulo 2.

To shorten notation, let us denote the columns

¨

˝

0
0
0

˛

‚,

¨

˝

0
0
1

˛

‚,

¨

˝

0
1
0

˛

‚,

¨

˝

0
1
1

˛

‚,

¨

˝

1
0
0

˛

‚,

¨

˝

1
0
1

˛

‚,

¨

˝

1
1
0

˛

‚,

¨

˝

1
1
1

˛

‚by 0, 1, 2, 3, 4, 5, 6, 7, respectively. Similarly, we will

denote the generators ai1i2i3 by a0, a1, . . . , a7. We have then

a0 “ pa0, a1, a2, a3, a4, a5, a6, a7q,

a1 “ p01qp23qp45qp67qpa1, a1, a3, a3, a5, a5, a7, a7q,

a2 “ p02qp13qp46qp57qpa2, a3, a2, a3, a6, a7, a6, a7q,

a3 “ p03qp12qp47qp56qpa3, a3, a3, a3, a7, a7, a7, a7q,

a4 “ p04qp15qp26qp37qpa4, a5, a6, a7, a4, a5, a6, a7q,

a5 “ p05qp14qp27qp36qpa5, a5, a7, a7, a5, a5, a7, a7q,

a6 “ p06qp17qp24qp35qpa6, a7, a6, a7, a6, a7, a6, a7q,

a7 “ p07qp16qp25qp34qpa7, a7, a7, a7, a7, a7, a7, a7q.

Note that a0 is not a section of any of the other generators ai. Let us “fragment” a0 into
a product of two commuting elements b and c given by

b “ pb, a1, 1, 1, 1, 1, 1, 1q, c “ pc, 1, a2, a3, a4, a5, a6, a7q.

Note that b, c R G and bc “ a0.
Let G be the group generated by H and b, c.

Proposition 6.5. Let µ be the uniform probability measure on the generating set taiui“1,...7Y

tb, cu of G. Then the µ-random walk is not Liouville.

Proof. It follows directly from the recursion that if not all letters of v P X˚ are 0 and the
first non-zero letter of v is 1, then bpvq “ a0pvq and b|v “ a0|v . If not all letters of v are
0 and the first non-zero letter is not 1, then bpvq “ v and b|v “ 1. Similar statement (but
other way around) is true for c.
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Define the map χ : H ÝÑ t0, 1u by the condition that χpgq “ 0 if g´1|00 . . . 0
loomoon

n times

P G

for all n large enough, and χpgq “ 1 otherwise.
Then, according to the first paragraph of the proof, if g P H and s P taiui“1,...,7Ytb, cu

is a generator, then χpgq ‰ χpgsq only if gp00 . . .q “ 00 . . . and s P tb, cu.
Consider the µ-random walk on G. The induced random walk on the G-orbit of 000 . . .

coincides with a random walk on generated by a finitely supported measure on the gener-
ating set taiui“0,1,...,7 Y t1u of H . Since the Schreier graph is quasi-isometric to Z3, and
simple random walk on Z3 is transient by Pólya’s theorem, it follows from the comparison
theorem (see e.g., [30, Theorem 2.17]) that this random walk is transient. Consequently, it
will visit 000 . . . finitely many times almost surely, and so the value of χ along a trajectory
of the walk will be eventually constant. The eventual value of χ will be a non-trivial event
invariant under the tail equivalence relation, hence the Poisson boundary of the random
walk is non-trivial. □
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