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ABSTRACT

Context. Neutron stars are known to be efficient accelerators that produce particles with ultra-relativistic energies. As a by-product,
they also emit copious amounts of photons from radio wavelengths up to gamma rays.
Aims. As a follow-up to our previous work on particle acceleration simulation near neutron stars, in this paper, we discuss the impact
of radiation reaction on test particles injected into their magnetosphere. We therefore neglect the interaction between particles through
the electromagnetic field as well as gravitation.
Methods. We integrate numerically the reduced Landau-Lifshitz equation for electrons and protons in the vacuum field of a rotating
magnetic dipole based on analytical solutions in a constant electromagnetic field. These expressions are simple in a frame where the
electric and magnetic field are parallel. Lorentz transforms are used to switch back and forth between this frame and the observer
frame.
Results. We found that, though due solely to the Lorentz force, electrons reach Lorentz factors up to γ = 1014 and protons reach
them up to γ = 1010.7. When radiation reaction is enabled, electrons reach energies up to γ = 1010.5 and protons reach energies up to
γ = 108.3. The second set of values are more realistic since the radiation reaction feedback is predominant within the magnetosphere.
Moreover, as expected, symmetrical behaviours between the north and south hemispheres are highlighted, either with respect to the
location around the neutron star or with respect to particles of opposite charge to mass ratio (q/m). Consequently, it is useless to
simulate the full set of geometrical parameters in an effort to obtain an overview of all possibilities.
Conclusions. The study of the influence of the magnetic dipolar moment inclination shows similar behaviours regardless of whether
radiation reaction is enabled. Protons (respectively electrons) impact the surface of the neutron star less as the inclination angle
increases (decreases for electrons), while if the rotation and magnetic axes are aligned, all the protons impact the neutron star, and
all the electrons impact the surface if the rotation and magnetic axes are anti-aligned. Similarly, we still find that particles are ejected
away from the neutron star, in some preferred directions and Lorentz factors.
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1. Introduction

Neutron stars are compact stellar remnants left after supernovae
explosions. Due to their intense magnetic and electric fields, they
are believed to be efficient sources of ultra-relativistic particles.
They also emit photons via the synchrotron and curvature radia-
tion mechanisms or inverse Compton, interacting with their sur-
rounding as well as with the interstellar medium.

In this paper, we use a simple model of a neutron star
described by only a few parameters, namely the inclination of
the neutron star χ, corresponding to the angle between its rota-
tion and magnetic axes, the angular rotation speed of the neutron
star Ω, allowing to define the light cylinder radius rL = c/Ω,
which is the distance at which an object in co-rotation with the
neutron star would reach the speed of light c, the radius of the
neutron star R and the magnetic field strength B at the surface of
the neutron star.

The extreme magnetic field of these remnant stars ranges
from B ' 105 T to B ' 1010 T. Moreover, coupled with an
angular speed between Ω ' 1000 rad s−1 and Ω ' 0.1 rad s−1,
they generate an intense electric field E, accelerating particles
around the neutron star to ultra-relativistic Lorentz factors. For
our purposes, the neutron star mass M is irrelevant because the
gravitational force exerted on charged particles Fg is negligible

compared to the Lorentz force FL. Indeed, both forces have a
typical intensity of Fg = G M mp

R2 ' 3.17× 10−15 N for a proton at
the surface of the neutron star compared to FL = q E = q ΩR B '
5.01 × 10−7 N. The ratio of these forces is

Fg

FL
=

G M mp

R2 q E
= 6.33 × 10−9,

so the electromagnetic force is approximately 109 times stronger
than the gravitational force for protons and even a factor
mp/me ∼ 2000 larger for electrons and positrons.

Most numerical simulations of neutron star magnetospheres
use the Boris (1970) scheme or better the Vay (2008) scheme;
however, these algorithms are not well suited for ultra-strong
electromagnetic fields, and some authors have consequently low-
ered the true field strengths in their simulations to unrealisti-
cally low values. Although scaling is sometimes applied to obtain
results closer to reality, such scaling cannot be straightforwardly
extrapolated, for instance, when radiation reaction is included
because of the non-linearities introduced by radiative feedback
(Vranic et al. 2016). Moreover, Lorentz factors reached by the
particles near pulsars hardly exceedγ = 104 with those algorithms
(see, for instance, Brambilla et al. 2018; Philippov & Spitkovsky
2018; Guépin et al. 2020, and Kalapotharakos et al. 2018).
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(b)

(a)

Fig. 1. Particle trajectory in a constant magnetic field with radiation
reaction. Panel a: trajectory of the simulated particle (in blue) compared
to theoretical positions (in orange) for τ0 ωB = 10−5, γ0 = 104, initial
speed along y. Panel b: relative error as a function of the proper time
step dτ for the simulations in blue points, compared to the first order
error expectations in red solid line.

This limitation arises from the huge span in timescales,
starting from the ultra-high frequency gyro motion ωB down
to the stellar rotation frequency Ω. These extreme values are
synthesised by their ratio, which is also known as the strength
parameter,

a =
ωB

Ω
=

q B
m Ω

' 1010

for a proton near a millisecond pulsar (Ω = 103 rad s−1 and B =
105 T). The situation becomes worse for electron-positron pairs
and for young pulsars. This ratio corresponds to the number of
gyrations made by a particle during the timescale of evolution of
the electromagnetic field due to the stellar rotation. It shows that
the difference in timescales makes computing the trajectory of
particles in a reasonable amount of time almost impossible since
billions of time steps are needed in the pulsar period timescale.

Table 1. Final state of the particles depending on the inclination χ of
the pulsar and on the species.

χ 30◦ 60◦ 90◦ 120◦ 150◦

Electrons Crashed 1 2 14 7202 7856
Trapped 185 2721 6158 83 0
Ejected 8006 5469 2020 907 337

Protons Crashed 7779 7069 10 1 0
Trapped 2 108 6067 2603 180
Ejected 411 1015 2115 5588 8012

Notes. Electrons are shown on the first line and protons on the second
line. 8192 particles per inclination have been simulated and radiation
reaction enabled.

To tackle this issue, our aim is to propose a new tech-
nique based on analytical solutions of the Lorentz force
equation in constant and ultra-strong electromagnetic fields
with an acceptable computational time and, most impor-
tantly, an approach that avoids the need for scaling, allow-
ing particles to reach high Lorentz factors with realistic fields.
Several authors have worked on analytical solutions to the
equation of motion including the radiation reaction, such as
Gordon & Hafizi (2021), Laue & Thielheim (1986), Li et al.
(2021), and Heintzmann & Schrüfer (1973). Our approach is
based on these works. For plane waves in a vacuum, exact solu-
tions are also known because of Hadad et al. (2010), Piazza
(2008). These solutions were applied in strong electromagnetic
waves by Pétri (2021) and around a dipole by Pétri (2022).

Neutron stars are known to act as unipolar inductors, gen-
erating huge electric potential drops between the poles and the
equator of the order

∆φ = Ω B R2 ≈ 1016 V. (1)

As a consequence, these stars expel electrons (and maybe pro-
tons and ions), filling the magnetosphere with charged particles.
The typical Lorentz factor for electrons in this static field is
therefore

γ =
e ∆φ

me c2 ≈ 1010. (2)

If the particle injection rate is high enough, this plasma will
screen the electric field, drastically mitigating the potential drop
∆φ and the acceleration efficiency. Resistive (Li et al. 2012) as
well as PIC simulations (Cerutti et al. 2015) have indeed showed
that only a small fraction of the full potential is available. How-
ever, for low particle injection rates, the plasma is unable to
screen the electric field, and the full potential drop develops.
In these cases, the magnetosphere is almost empty and known
as an electrosphere (Krause-Polstorff & Michel 1985; Pétri et al.
2002). Such electrospheres are the subject of the present paper.
They represent inactive pulsars that are able to accelerate parti-
cles to ultra-relativistic speeds. Our aim is to accurately quantify
the final Lorentz factor reached by the outflowing plasma in this
large-amplitude low-frequency electromagnetic wave. A similar
study was performed by Michel & Li (1999), though with a more
analytical perspective.

The outline of the paper is as follows. First in Sect. 2, we
summarise the principle of the algorithm. Next in Sect. 3, we
show some results obtained in fields where an analytical solution
is known before discussing the results of the simulations near
pulsars in Sect. 4. Some conclusions are drawn in Sect. 5.
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2. Description of the numerical algorithm

In this section, we describe the algorithm developed includ-
ing radiation reaction. It is similar to the one presented in
Pétri (2020), which was used the basis for the work of
Tomczak & Pétri (2020). This code successively finds analyti-
cal solutions to the equation of the motion of particles in an
electromagnetic field (E,B) assumed to remain constant within a
time step integration. During this time step, the algorithm solves
the equation of motion, approximated by the reduced Landau-
Lifshitz equation

duµ

dτ
=

q
m

Fµ
νuν−

q4

6 π ε0 m3 c3

[
FµσFλσuλ+

(
FσνuνFσλuλ

)
uµ

]
. (3)

We note that the four-velocity of the particle (in contravariant
form) is uµ =

(
u0 u1 u2 u3

)
= γc

(
1 βx βy βz

)
= γc

(
1 β

)
, with

the Lorentz factor γ =
1√

1 − β2
; β is the speed of the particle

normalised to the speed of light c, and it can be decomposed onto
a Cartesian coordinate basis with the usual labels of x, y and z;
and Fµ

ν is the electromagnetic tensor given in components by

Fµ
ν =


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By
Ey/c −Bz 0 Bx
Ez/c By −Bx 0

 . (4)

For this algorithm, we first needed to switch from the observer’s
reference frame denoted by R, in which the neutron star only
rotates, to a reference frame where E and B are parallel and
denoted by R′, where integrating the Lorentz force is easy. In
a Cartesian coordinate system, the evolution of the four-velocity
when E and B are constant and along the z-axis is

u0/c = γ = a(τ)γ0[cosh(ωEτ) + βz
0 sinh(ωEτ)] (5a)

u1/c = γβx = b(τ)γ0[βx
0 cos(ωBτ) + β

y
0 sin(ωBτ)] (5b)

u2/c = γβy = b(τ)γ0[−βx
0 sin(ωBτ) + β

y
0 cos(ωBτ)] (5c)

u3/c = γβz = a(τ)γ0[sinh(ωEτ) + βz
0 cosh(ωEτ)]. (5d)

We introduced the typical electric and magnetic frequencies as
ωE = q E/mc and ωB = q B/m. The initial Lorentz factor is indi-
cated with γ0, and

(
βx

0 β
y
0 βz

0

)
is the initial velocity normalised

to the speed of light c. The coefficients a(τ) and b(τ) bring cor-
rections to the velocity induced by the radiation reaction (setting
a(τ) = b(τ) = 1 removes radiation reaction). The coefficients are
given by

a(τ) =
1

γ0

√
(1 − β2

z ) − (β2
x + β2

y) exp(−2τ0(ω2
B + ω2

E)τ)
(6a)

b(τ) = a(τ) exp(−τ0(ω2
B + ω2

E)τ) (6b)

with τ0 = q2/6πε0mc3, a characteristic timescale of the energy
losses. It is unfortunately not possible to integrate the four-
position in an analytical manner, so we decided to use the ana-
lytical solution for the position without the radiation reaction

c(t − t0) =
γ0c
ωE

[sinh(ωEτ) + βz
0 cosh(ωEτ) − βz

0] (7a)

x − x0 =
γ0c
ωB

[βx
0 sin(ωBτ) − βy

0 cos(ωBτ) + β
y
0] (7b)

y − y0 =
γ0c
ωB

[βx
0 cos(ωBτ) − βx

0 + β
y
0 sin(ωBτ)] (7c)

z − z0 =
γ0c
ωE

[cosh(ωEτ) − 1 + βz
0 sinh(ωEτ)], (7d)

with the initial position and time being (x0, y0, z0) and t0. We
integrated the position of the particle according to τ, the proper
time; however, as we wanted to set the observer’s time step δt =
t − t0 to be constant, we resorted to finding dτ, the proper time
step, so as to always obtain the same observer time step dt.

This scheme has some drawbacks: It returns an approxima-
tion of the four-position of the particle with radiation reaction,
and it does not efficiently take into account field gradients. How-
ever, this method is still more efficient than other approxima-
tions, such as Euler or Runge-Kutta, most of which apply a
constant speed assumption. Indeed, this scheme does not assume
a constant speed but only that the radiation reaction has little
effect on the position of the particle. Nonetheless, it still takes
into account speed variations in terms of norm and direction. In
addition, compared to other methods, it allows for longer time
steps and multiple gyrations of the particle around a magnetic
field line during those longer time steps. Moreover, since the
gyration radius is relatively small compared to typical magnetic
field scales (followed by the trajectories of the particles), the
error related to the shrinking of the Larmor radius is negligible.

The light-like case, where E ·B = 0 and E2 = c2 B2, must be
treated separately because there exists no frame where E and B
are parallel. Due to the low likelihood of finding such configu-
rations, we kept solutions found in Pétri (2020) as not corrected
for radiation reaction. This means that if a particle were to find
a light-like field, the algorithm would keep working but the radi-
ation reaction would not be taken into account for just one time
step.

3. Tests

In order to check the correctness and accuracy of our code imple-
mentation, we simulated the evolution of a particle in a constant
and uniform magnetic field. Analytical solutions are known for
the four-velocity but also for the spatial position and observer
time in this case (Pétri 2022). An electron is kicked into a
constant magnetic field of strength Bz with an initial Lorentz
factor of γ0 = 104. The normalised damping parameter is there-
fore τ0 ωB = 10−5. As Fig. 1 highlights, the algorithm converges
and finds the spiral motion described by a charged particle los-
ing energy in a magnetic field. The exact analytical trajectory
is shown in orange solid lines and the numerical simulations
with blue dots. Thanks to this comparison, we observed that the
algorithm is first order in proper time, according to the particle
position. The first order convergence is due to the fact that the
four-position was updated according to the pure Lorentz force,
neglecting the radiation reaction corrections.

Being confident about the convergence and accuracy of our
algorithm, we then simulated the motion of charged particles in
the electromagnetic field of a rotating neutron star.

4. Simulations in the Deutsch field

As an application in the astrophysical context, we explored
particle acceleration and its radiation reaction in a strongly mag-
netised rotating magnetic dipole such as that expected around
rotating neutron stars. If the star is surrounded by vacuum, sim-
ple analytical expressions are known for the electromagnetic
field and given by Deutsch (1955).

4.1. Neutron star settings

Therefore, we injected particles in the field of a rotating neu-
tron star in a vacuum, namely, the Deutsch field (Deutsch 1955),
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(a) (b)

(c) (d)

Fig. 2. Final state of the protons depending on their initial positions around the pulsar. The obliquity and the initial position are χ = 60◦,
r0 ∈ [0.3; 0.4] for (a) and r0 ∈ [0.8; 0.9] for (b), χ = 90◦, r0 ∈ [0.3; 0.4] for (c) and r0 ∈ [0.8; 0.9] for (d), radiation reaction being enabled.

(a) (b)

(c) (d)

Fig. 3. Final state of the electrons depending on their initial positions around the pulsar. The obliquity and the initial position are χ = 120◦,
r0 ∈ [0.3; 0.4] for (a) and r0 ∈ [0.8; 0.9] for (b), χ = 90◦, r0 ∈ [0.3; 0.4] for (c) and r0 ∈ [0.8; 0.9] for (d), radiation reaction being enabled.
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(a) (b)

(c) (d)

Fig. 4. Map of the impact spots and Lorentz factor of protons on the surface for inclination χ = 30◦ (a), 60◦ (b), 90◦ (c), and 120◦ (d). Radiation
reaction was enabled, and the magnetic axis is in the φ = 0 plane.

(a) (b)

(c) (d)

Fig. 5. Map of the impact spots and Lorentz factor of electrons on the surface for inclination χ = 150◦ (a), 120◦ (b), 90◦ (c), and 60◦ (d). Radiation
reaction was enabled, and the magnetic axis is in the φ = 0 plane.
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(a) (b)

(c) (d)

Fig. 6. Map of the final colatitude, azimuth, and radius (colour) of protons around neutron stars of inclination 60◦ (a), 90◦ (b), 120◦ (c), and 150◦
(d). Radiation reaction was enabled, and the magnetic axis is in the φ = 0 plane.

(a) (b)

(c) (d)

Fig. 7. Map of the final colatitude, azimuth, and radius (colour) of electrons around neutron stars of inclination 60◦ (a), 90◦ (b), 120◦ (c), and 150◦
(d). Radiation reaction was enabled, and the magnetic axis is in the φ = 0 plane.
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(a) (b)

(c) (d)

Fig. 8. Map of the ejection colatitude and azimuth and Lorentz factor of protons on neutron stars of inclination 30◦ (a), 60◦ (b), 90◦ (c), and 120◦
(d). Radiation reaction was enabled.

(a) (b)

(c) (d)

Fig. 9. Map of the ejection colatitude and azimuth and Lorentz factor of electrons on neutron stars of inclination 150◦ (a), 120◦ (b), 90◦ (c), and
60◦ (d). Radiation reaction was enabled.
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(a) (b)

(c) (d)

Fig. 10. Final Lorentz factor of the particles shown in Fig. 2.

(a) (b)

(c) (d)

Fig. 11. Final Lorentz factor (a) and state (b) of the particles near a neutron star of inclination χ = 60◦, with r0 ∈ [0.8; 0.9], and final Lorentz factor
(c) and state (d) of the particles near a neutron star of inclination χ = 90◦, with r0 ∈ [0.8; 0.9]. Radiation reaction was disabled in both cases.
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Fig. 12. Two trajectories of the same particle injected at the same loca-
tion but with radiation reaction in one case(‘rr’, in red solid lines) and
without it in the other (‘no rr’, in dash-dotted blue lines). The upper
panel corresponds to a crashed particle, the middle panel to an ejected
particle, and the bottom panel to a trapped particle. The left column
projects the trajectory on the (x, y) plane, the middle column projects
it on the (x, z) plane, and the right column shows the evolution of the
Lorentz factor in a log scale.

decomposed in spherical coordinates and using the complex
form for the magnetic field as

Br(r, t) = 2 B

R3

r3 cos χ cosϑ +
R
r

h(1)
1 (k r)

h(1)
1 (k R)

sin χ sinϑ eiψ

 (8a)

Bϑ(r, t) = B
[
R3

r3 cos χ sinϑ

+

R
r

d
dr

(
r h(1)

1 (k r)
)

h(1)
1 (k R)

+
R2

r2
L

h(1)
2 (k r)

d
dr

(
r h(1)

2 (k r)
)
|R

 sin χ cosϑ eiψ


(8b)

Bϕ(r, t) = B

R
r

d
dr (r h(1)

1 (k r))

h(1)
1 (k R)

+
R2

r2
L

h(1)
2 (k r)

d
dr

(
r h(1)

2 (k r)
)
|R

cos 2ϑ

 i sin χ eiψ

(8c)

and for the electric field as

Er(r, t) = Ω B R
[(

2
3
−

R2

r2 (3 cos2 ϑ − 1)
)

R2

r2 cos χ

+ 3 sin χ sin 2ϑ eiψ R
r

h(1)
2 (k r)

d
dr

(
r h(1)

2 (k r)
)
|R

 (9a)

Eϑ(r, t) = Ω B R
[
−

R4

r4 sin 2ϑ cos χ

+ sin χ eiψ

R
r

d
dr

(
r h(1)

2 (k r)
)

d
dr

(
r h(1)

2 (k r)
)
|R

cos 2ϑ −
h(1)

1 (k r)

h(1)
1 (k R)


 (9b)

Eϕ(r, t) = Ω B R

R
r

d
dr

(
r h(1)

2 (k r)
)

d
dr

(
r h(1)

2 (k r)
)
|R

−
h(1)

1 (k r)

h(1)
1 (k R)

 i sin χ cosϑ eiψ, (9c)

where h(1)
`

represents the spherical Hankel functions for outgo-
ing waves (Arfken & Weber 2005), k rL = 1, and the phase is

ψ = ϕ − Ω t, with ϕ as the phase at t = 0. The physical compo-
nents of the electromagnetic field are the real parts of the above
expressions.

In our simulations, the magnetic field at the surface of the star
was set to B = 105 T, which corresponds to the typical values for
a millisecond pulsar. We worked in normalised units, setting the
reference rotation speed of the neutron star to Ω, the reference
speed to the speed of light c, and therefore the light cylinder
radius to rL = c/Ω. By choosing the normalised neutron star
radius to be R = 0.1 rL, we fixed the size of the light cylinder
and the stellar rotation speed. Indeed, the neutron star radius is
about R = 12 km (Nättilä et al. 2017), which means that the light
cylinder radius is about rL = 120 km. Moreover, since rL = c/Ω,
the angular velocity is Ω = 2500 rad s−1. Thus, a real period
of rotation of P is 2.5 ms. We needed the observer’s time step
to be small relative to the time of evolution of the magnetic field
(which is of the order of the rotation period), so we chose dt/P =
0.0001, meaning dt = 250 ns. Concerning the inclination of the
neutron star, the simulations were carried out with an inclination
from the following set: χ ∈ {0◦; 30◦; 60◦; 90◦; 120◦; 150◦; 180◦}.

Particle injection was made using a rejection method in order
to obtain a uniform and isotropic distribution of particles around
the neutron star. We generated three random numbers, each fol-
lowing an independent uniform distribution law in the inter-
val [−0.9; 0.9] and corresponding to the Cartesian coordinates
(x, y, z). We then defined the radius at which a particle is injected,
r =

√
x2 + y2 + z2, and if r/rL ≤ 0.1 or r/rL ≥ 0.9, we removed

that particle and generated it again. Otherwise, we kept the par-
ticle and injected the next one.

Particles were injected at rest and evolved in time up to a
final time of tf/P = 15. Sometimes particles crashed onto the
surface, and the integration was stopped earlier. As for particle
species, we considered electrons and protons. In order to obtain
reasonable statistics, we simulated 8192 particles per configu-
ration. In the following sections, we describe the final particle
properties, including their distribution in space and energy.

4.2. Distribution of particles in space

In this sub-section, we discuss the particle positions at the end of
the run as well as at the beginning of the run in order to link them
to their final Lorentz factor. We note, however, that the cases of
aligned (χ = 0◦) and anti-aligned (χ = 180◦) rotators are treated
separately in Sect. 4.4 because the electromagnetic field is static
in these configurations.

The coordinates used to characterise the position of a parti-
cle were either in the Cartesian coordinate system (x, y, z) or the
spherical coordinate system (r, θ, φ). In the spherical coordinate
system, r defines the distance of the particle relative to the centre
of the neutron star, θ is its colatitude (relative to the rotation axis),
andφ is its azimuth relative to the x axis, knowing that at the begin-
ning of the simulation the magnetic axis lies in the xOz plane. We
also defined three possible final states for the particles: ejected,
meaning that at the end r/rL ≥ 1 (in our case those particles have
a radial velocity); trapped, meaning that at the end r/rL ∈]0.1; 1[;
or crashed onto the neutron star, meaning that the particles should
have reached r/rL ≤ 0.1 or equivalently r < R at one point.

The statistics of the particles according to their final states are
summarised in Table 1 for our total number of 8192 particles. It
allowed us to notice that for the protons, asχ increases from 30◦ to
150◦, fewer particles impact the surface of the neutron star, while,
inversely, more protons are ejected away from it. We also found it
interesting to notice that the maximum number of protons trapped
close to the pulsar was obtained forχ = 90◦ and that a symmetrical

A128, page 9 of 25



Tomczak, I., and Pétri, J.: A&A 676, A128 (2023)

(a) (b)

(c) (d)

Fig. 13. Same as Fig. 4 but with radiation reaction disabled.

(a) (b)

(c) (d)

Fig. 14. Map of the final colatitude, azimuth, and radius (colour) of protons around neutron stars of inclination 60◦ (a), 90◦ (b), 120◦ (c), and 150◦
(d). Radiation reaction was disabled, and the magnetic axis is in the φ = 0 plane.
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(a) (b)

Fig. 15. Map of the final colatitude, azimuth, and radius (colour) of electrons around neutron stars with an inclination of 90◦. The simulations
lasted half (a) and twice (b) the time of other simulations. There were 2048 particles, radiation reaction was enabled, and the magnetic axis is in
the φ = 0 plane.

(a) (b)

(c) (d)

Fig. 16. Map of the final positions of protons in the y, z plane for x ∈ [−1; 1] with χ = 120◦ (a) and χ = 150◦ (b), and in the x, y plane for z ∈ [−1; 1]
with χ = 120◦ (c) and χ = 150◦ (d). Radiation reaction was enabled.
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(a) (b)

Fig. 17. Comparison of final proton positions to the expected striped winds in the y, z plane (a) and in the x, y plane (b). Radiation reaction was
enabled.

(a) (b)

(c) (d)

Fig. 18. Map of the ejection colatitude and azimuth and Lorentz factor of protons on neutron stars of inclination 30◦ (a), 60◦ (b), 90◦ (c) and 120◦
(d), radiation reaction disabled.
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Fig. 19. Final Lorentz factor of electrons as a function of the potential
drop (normalised to e V/me c2) along their path. 2048 particles were sim-
ulated, in green crosses for crashed particles, in blue crosses for trapped
particles and in red plus symbols for ejected particles. The magnetic
field is for an orthogonal rotator χ = 90◦.

Fig. 20. Same as Fig. 19 but without radiation reaction. The line y = x
in orange depicts the Lorentz factor if the full potential drop is used.
The correlation is clearly visible for all particles.

behaviour could be observed for electrons, namely, asχ increases,
more particles impact the surface of the neutron star, fewer elec-
trons are ejected away from it, and we still find that for χ = 90◦,
most electrons are trapped close to the neutron star in the same
proportion as the protons. We however noticed a few differences:
Protons for an inclination χ are ejected more easily than electrons
for an inclination π−χ, which either become trapped or crash onto
the surface more frequently.

Actually, we noticed that when respectively comparing the
trajectories of protons and electrons in Figs. 2–9, we found
the protons and electrons to possess very similar trajectories.
If a proton starting at a position (r0; θ0; φ0) ends at position
(r f ; θ f ; φ f ) for a pulsar of inclination χ, an electron close to a
pulsar of inclination π − χ starting at position (r0; π − θ0; φ0) is
very likely to end the simulation at position (r f ; π − θ f ; φ f ).

The symmetrical behaviour found in these simulations
reflects the fact that the trajectories are relatively insensitive to
the charge over mass ratio q/m of the particles, except for the
sign of the charge itself. Indeed, in the ultra-relativistic regime,
the mass of the particles becomes negligible compared to their
total kinetic energy, and they can be considered as massless par-

Fig. 21. Lorentz factor from the Landau-Lifshitz approximation (LLR),
in red and orange colours for different time steps, compared to the radi-
ation reaction limit (RRL) guess as given by Eq. (14), in green and blue
colours for different time steps.

Fig. 22. Fluctuation in the Lorentz factor for a sample of ten particles
zoomed around the time Ω t = 1.

ticles just like photons, for instance. However, because the radi-
ation reaction force does not scale linearly with this ratio q/m,
it is not at all obvious that the trajectories will remain similar.
Nevertheless, we found that the radiation reaction impacts the
motion of protons similarly to that of electrons. However, due
to the difference in mass between protons and electrons, their
respective Lorentz factors, although both ultra relativistic, scale
like their mass ratios me/mp.

Moreover, the statistics presented in Table 1 can be linked to
the initial positions of the particles.

Starting positions. Indeed, the initial position of the parti-
cles has an influence on their final state. Figures 2 and 3 respec-
tively show the map of the initial positions of protons and elec-
trons, and their final state is indicated with a colour code. We
chose two altitude intervals. The first is close to the surface, with
r/rL ∈ [0.3, 0.4] and χ = 60◦, and the second is close to the light
cylinder, with r/rL ∈ [0.8, 0.9] and χ = 90◦. The figures also
highlight the importance of the neutron star obliquity χ. In addi-
tion, we note the figures show regions with clear boundaries and
almost no overlap that are prone to ejection, crashing, or trap-
ping of particles, meaning that the particle’s behaviour is well
defined according to their starting point.
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(a) (b)

(c) (d)

Fig. 23. Comparison of the Lorentz factor distributions for simulations carried out with radiation reaction disabled for protons (a) and electrons
(b), and with radiation reaction enabled for protons (c) and electrons (d). The number of particles is 14 336 in (a) and (b) and 229 376 in (c) and (d).

Comparing Figs. 2–10 allowed us to find either clear distinc-
tions between the Lorentz factor of ejected particles and the other
populations or that their speed would be similar no matter if
they are ejected or not. Figure 10 also shows the influence of the
initial radius on the spread of energy of the particles: as the ini-
tial radius rises, proton energies become less spread for χ = 60◦,
spanning six orders of magnitude for low altitude (r ∈ [0.3, 0.4])
and only less than two orders of magnitude for high altitude
(r ∈ [0.8, 0.9]). However, for some other configurations, such
as the orthogonal rotator with χ = 90◦, the final Lorentz factor is
not affected by the initial altitude when the particles are trapped.

Upon comparing the results with the radiation reaction in
Figs. 2 and 10 to those without radiation reaction in Fig. 11,
we noticed that the radiation reaction drastically influences the
behaviour of the particles regarding their Lorentz factors. The
radiation reaction decreases the final Lorentz factor by at least
one order of magnitude and sometimes changes the final state of
the particles, depending on their initial position.

The impact of radiation reaction on the particle trajectory can
be drastic. Indeed, a comparison of two trajectories of particles
injected at the same location within the magnetosphere where
one has radiation reaction enabled, ‘rr’, and the other does not,
‘no rr’, is shown in Fig. 12. The upper row shows a crashed par-
ticle, the middle panel shows an ejected particle, and the bottom
panel shows a trapped particle. The left column of the figure
projects the trajectory on the (x, y) plane, and the middle column
projects the trajectory on the (x, z) plane. The particle with radia-
tion reaction enabled is shown with red and the particle without it
is blue. The right column shows the time evolution of the Lorentz
factor in both cases. The labels crashed, trapped, or ejected refer
to the trajectory as observed in the ‘no rr’ case. Simulations were
performed for electrons. For the trapped case, the particles start
by following a similar path until the one losing energy because

of radiation reaction brakes and only drifts, whereas the parti-
cle without radiation reaction decelerates and then accelerates
again in another direction (see lower panel). Its Lorentz factor
oscillates between 108 and 1013 in a periodic fashion associated
with a bouncing motion during the trapped stage of the ‘no rr’
case. The particle with ‘rr’ loses a large fraction of its initial
energy quickly, decreasing the Lorentz factor from 108 to 106.
It then experiences violent oscillations to a point it almost rests,
and then it accelerates again. For the crashed case, both particles
follow similar tracks, although they are slightly different in the
(x, y) plane (top panel of Fig. 12). Nevertheless, the Lorentz fac-
tor is four to five orders of magnitude lower in the radiation reac-
tion case. While moving towards the star, the electron efficiently
radiates its energy gained in the increasingly stronger electro-
magnetic field. The largest difference in particle trajectories was
observed between a particle ejected without radiation reaction
that actually crashes when radiation is enabled (middle panel).
The asymptotic Lorentz factor in the ejected case is about 1013,
whereas the Lorentz factor in the crashed case behaves as in the
trapped and crashed case shown in the bottom row of Fig. 12.

The properties of the particles can also be viewed according
to their final state: crashed, ejected, or trapped. This point of
view is explored more deeply in the following sub-section.

Particles impacting the neutron star. We also investigated
the final positions of particles when crashing onto the stellar sur-
face. Thus, as shown in Fig. 4, we report the hotspots on the
polar caps, which highlights the fact that the protons impact the
star in very localised areas concentrated around the magnetic
axis. Indeed, those areas are always located around the azimuth
φ = 0◦ and φ = 180◦, and they respectively stay in the northern
and southern hemispheres as χ increases. The spot at φ = 0◦ is
always found between θ = 0◦ and θ = 90◦, while the spot at
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(a) (b)

(c) (d)

Fig. 24. Comparison of the Lorentz factor distributions for electrons near a pulsar with an inclination χ = 120◦, without (a) and with (b) radiation
reaction enabled, and for protons near a pulsar with an inclination χ = 60◦, without (c) and with (d) radiation reaction enabled.

φ = 180◦ is found between θ = 90◦ and θ = 180◦. By com-
parison, if the radiation reaction is disabled, as in Fig. 13, the
hotspots move slightly along the meridian as χ changes. When
χ = 30◦, the hotspots are respectively at θ = 45◦ and θ = 135◦,
while for χ = 90◦, they are respectively centred around θ = 108◦
and θ = 72◦. We emphasise that there exists no south-north
hemisphere symmetry in these impact maps, neither for protons
nor for electrons. This is due to the nature of the electromag-
netic field, which is a vector field, and it does not produce the
same pattern when χ > 90◦ compared to χ < 90◦.

Trapped particles. The structures formed by trapped par-
ticles remained close to the neutron star. These are shown in
Figs. 6 and 7. Again, we noticed that these particles tend to avoid
some regions while populating other well-defined areas. We also
note that the order of the figure is for increasing χ for protons
but decreasing χ for electrons. This highlights the symmetry
between positive and negative charges when switching from χ
to π − χ.

As shown in Fig. 14, particles have quite similar positions
whether radiation reaction is enabled or not, with the same
regions being populated but some particles being farther away
from the neutron star when radiation reaction is disabled. We
also noticed that despite having fewer particles for the simula-
tions, the particles cover a wider area when radiation reaction is
not enabled.

Actually, Fig. 6 shows that as χ increases, the trapped parti-
cles are on average repelled farther away from the surface of the
neutron star. For χ = 60◦, all these particles are extremely close
to the surface of the neutron star (r ∈ [0.105; 0.135]), and it is

probable that given more time, these particles would eventually
crash onto the surface because of the energy losses . We noticed
that the particles formed over densities around φ = 0, θ = 2π/3
and φ = π, θ = π/3. For χ = 90◦, the structure has a spiralling
tail of particles that seems to trail towards the surface of the neu-
tron star, while most particles are in a more densely populated
region at slightly higher altitudes. Again, these particles are con-
centrated around φ = 0, θ = 3π/4 and φ = π, θ = π/4.

Particles are reputed to be trapped for the time of the simu-
lation. What happens later could not be guessed. However, this
final state could depend on the duration of the trapping before
being ejected or crashing onto the surface. In order to check
the ‘stability’ of the trapping state, we performed new simu-
lations with half the total time and twice the total time of the
fiducial run, respectively tf/P = 7.5 and tf/P = 30. In this fur-
ther analysis, we injected 2048 electrons and let them evolve in
an orthogonal rotator (χ = 90◦) for half and twice the time of
all other simulations. It showed that as time grows, the particles
spiral even more, as Fig. 15 highlights. However, despite their
proximity to the neutron star surface, the fraction of particles
impacting the surface does not vary. The statistics of the evolu-
tion of the particles are as follows: Out of the 2048 particles, 6
impact the surface, 1577 are trapped, and 465 are ejected. We
did not notice any significant difference between these runs and
concluded that the trapping state lasts for a significant time, at
least several neutron star rotation periods, which is long enough
to have an impact on the magnetosphere electrodynamics if there
is any.

For χ = 120◦, the structures are still around φ = 0 and φ = π,
but at θ = 4π/5 and θ = π/5 respectively, and around a dense
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(a) (b)

(c) (d)

Fig. 25. Lorentz factor distribution of protons impacting neutron stars with an inclination χ = 30◦ (a), χ = 60◦ (b), χ = 90◦ (c), and χ = 120◦ (d).
Radiation reaction was enabled.

area, one can notice a more diffuse region with fewer particles at
low altitude. For χ = 150◦, the structure takes the most different
form and corresponds to the part of striped wind below the light
cylinder radius. The above discussion for protons also applies to
electrons if the values for χ are replaced by π − χ.

Ejected particles. Since the striped wind has been men-
tioned, we checked if the simulations manage to produce such
a structure by plotting the final positions of particles outside the
light cylinder radius, as done in Fig. 16.

The distribution of the particles in space is very reminiscent
to the striped wind geometry, especially due to the spiral. How-
ever, this wind geometry was retrieved only for χ = 120◦ and
χ = 150◦ for protons (χ = 30◦ and χ = 60◦ for electrons).
The theoretical equation describing the striped wind is given by
Bogovalov (1999) and reads

rs(t, θ, φ) = rL

[
± arccos(cot θ cot χ) +

ct
rL
− φ + 2 `π

]
, (10)

where ` is an integer and rs the radius of the distance of the par-
ticles composing the striped wind. We observed that the striped
wind is found only in the angle θ ∈ [π/2− χ; π/2 + χ] if χ ≤ π/2
and θ ∈ [π − χ; χ] if χ > π/2.

When comparing the proton positions to the expected the-
oretical wind structure, as in Fig. 17, we found that the spiral
fits quite well. However, the opening angle at which the wind is
spread is not the one expected. We believe that adding the parti-
cle interactions may improve the results by giving more realistic
winds.

Upon looking at the final colatitude and azimuth of protons
in Fig. 8, we noticed that the most energetic particles prefer some

directions but also that a given direction of ejection can be more
densely populated or, conversely, almost void of particles. Com-
paring Figs. 8–18, we noticed some similarities regarding the
more or less densely populated directions of ejection. However,
the positions of the particles and their Lorentz factors are not the
same any more than when radiation reaction is enabled.

Taking a look at Figs. 2, 4, 6, 8, 10, and 16, we found a
symmetrical behaviour for particles injected on one side or the
opposite side of the neutron star. The centre of the neutron star is
a point of symmetry for the electric field and a point of anti-
symmetry for the magnetic field, meaning that E(x, y, z, t) =
−E(−x,−y,−z, t) and B(x, y, z, t) = B(−x,−y,−z, t). This prop-
erty led us to find that particles injected symmetrically rel-
ative to the centre of the neutron star have symmetrical
trajectories.

We considered two particles injected at x = (x, y, z) and
x′ = (−x,−y,−z) = −x with speeds of u(t = 0) = −u′(t = 0).
We first find the force acting on these particles at the initial
time step: the Lorentz force and the radiation reaction (here in
classical formulation), which gives the following for the first
particle:

F = q(E(x, y, z) + u × B(x, y, z)) +
µ0q2

6πc
d3x
dt3 , (11)

and the following for the second particle:

F′ = q(E(−x,−y,−z) + u′ × B(−x,−y,−z)) +
µ0q2

6πc
d3x′

dt3

= −q(E(x, y, z) + u × B(x, y, z)) −
µ0q2

6πc
d3x
dt3 . (12)
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(a) (b)

(c) (d)

Fig. 26. Lorentz factor distribution of protons impacting neutron stars with an inclination χ = 150◦ (a), χ = 120◦ (b), χ = 90◦ (c), and χ = 60◦ (d).
Radiation reaction was enabled.

Since the Lorentz force acting on the first particle FL is the oppo-
site of that acting on the second particle F′L = −FL, we found

that
d3x
dt3 = −

d3x′

dt3 , meaning in the end that F = −F′. When we
integrated the force, we found that the particles have symmet-
rical speeds relative to the centre of the neutron star: u = −u′,
and if we integrated this speed, we found that x′ = −x holds
regardless of the time of integration.

4.3. Lorentz factor distribution function

In addition to the spatial particle distribution, in order to bet-
ter understand the effects of radiation reaction on their dynam-
ics, we compared our results to those previously obtained by
Tomczak & Pétri (2020), knowing that simulations with the radi-
ation reaction enabled yield more realistic results. One way to
find a conservative upper limit to the Lorentz factor reached by
particles around neutron star has been given in the introduction
(Sect. 1). Taking the potential drop estimate ∆Φ = ΩBR2 =
1016 V and multiplying it by e/mc2, we found the Lorentz factor
γe = 1010 for electrons and γp = 106.7 for protons.

This estimate is however not accurate because it assumes
a constant static electric field and no radiation reaction. This
limit is therefore rather conservative. Our simulations are very
different because the electric field varies in time and radiation
reaction is taken into account. When looking for a correlation
between the potential drop and the final Lorentz factor reached
by the electrons in an orthogonal rotator, we obtained the plot

shown in Fig. 19, where the Lorentz factor is shown against
the potential along the particle trajectory in log–log scale. The
populations of crashed, trapped, and ejected particles are shown
with green, blue, and red symbols, respectively. The number of
crashed particles, less than ten, shown in green symbols, is too
limited to perform any significant statistical analysis. For the
two other populations, we found no evidence for a correlation
between the final Lorentz factor of the particle and the potential
drop, as Pearson’s correlation coefficient is r = 0.055 for trapped
electrons and r = −0.017 for ejected electrons. This demon-
strates that the Lorentz factor does not significantly depend on
the particle motion history but is rather controlled by the local
conditions (i.e., parallel accelerating electric field and curvature
radius).

Without radiation reaction, the correlation is very strong. We
found an excellent agreement between the potential drop and the
final Lorentz factor, as shown in Fig. 20, for all three kinds of
particles: trapped, ejected, and crashed.

Another way to estimate the true Lorentz factor consists of
equating the power of the electric force and that of the energy
losses due to the curvature radiation. Thus, we get:

q E · u =
q2

6 π ε0
γ4 c
ρ2 , (13)

where ρ =
√

R rL is a typical radius of the curvature of the
trajectory of the particle (here, that of a field line close to the
stellar surface); u is the speed of the particle (∼c); and ε0 is
the vacuum permittivity. By solving for the Lorentz factor, we
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(a) (b)

(c) (d)

Fig. 27. Lorentz factor distribution of protons trapped around neutron stars with an inclination of χ = 60◦ (a), χ = 90◦ (b), χ = 120◦ (c), and
χ = 150◦ (d). Radiation reaction was enabled.

found that

γ =

(
6 π ε0 E ρ2

q

)1/4

=

(
q E‖

m c Ω

rL

re
ρ̃2

)1/4

. (14)

This last expression uses quantities without dimensions, such as
ρ̃ = ρ/rL, and the electric strength parameter, with re being the
electron classical radius and E‖ = β · E as the accelerating elec-
tric field. In our case, we applied the expression to millisecond
pulsars and got γ = 107.5, which is only a guess because the
curvature radius can be very different from that on the stellar
surface. The true curvature κ is found from the velocity vector
derivative such that

κ =
1
ρ

=

∥∥∥∥∥ du
c2 dt

∥∥∥∥∥ . (15)

This expression accurately captures the local curvature radius ρ
along the trajectory. Therefore, by following the Lorentz factor
from the Landau-Lifshitz approximation and comparing it to the
radiation reaction limit estimate as given by Eq. (14), we show
that the latter always finds higher Lorentz factors, see Fig. 21.
To check that the results converged, several different time step
integration parameters were used, two times as well as five times
smaller without noticeable changes. Thus, our results have con-
verged and are robust.

We note that the Lorentz factors of trapped particles span
a large range from almost rest γ ∼ 10 to γ . 108. This does
not necessarily mean that they always experience strong radia-
tion damping. Indeed, the Lorentz factor variation is two-fold in
this electromagnetic field environment. First, the radiation reac-
tion decelerates the particles from a very high Lorentz factor
of γ ∼ 1012−13 to γ ∼ 107−8, decreasing by several orders of

magnitude their initial Lorentz factor. Second, at a low to mod-
erate Lorentz factor, the electric field component E‖ parallel to
the magnetic field can accelerate but can also decelerate parti-
cles depending on the sign of E‖. Thus, moderate energies do
not necessarily mean strong radiation reaction but rather effi-
cient electric field deceleration. Fluctuation was observed in the
Lorentz factor on short timescales for trapped particles, as seen
in Fig. 21. Depending on the final time, we picked out a γ fac-
tor value between the minimum and maximum of the possible
interval γ ∼ [10, 107−8]. This fluctuation is a kind of strobo-
scopic effect, giving a sample of the Lorentz factor spreading
at this interval. We checked this effect by looking at a sample
of ten trapped particles and found that the Lorentz factor drasti-
cally fluctuates on very short timescales in this energy range, see
Fig. 22.

As shown in Fig. 23, protons reach γ ' 1011 and electrons
reach γ ' 1014 without radiation reaction, while with radia-
tion reaction, they respectively reach γ ' 1010 and γ ' 1010.5,
which is quite different from the curvature radiation approxima-
tion. We note, however, that the particles reaching the highest
energies follow the field lines with the largest curvature radii,
while for our calculation, we took an averaged radius of the
curvature.

When comparing the influence of the particle species, we
noticed that particles with a high mass are less affected than
those with a low mass for a given charge. Indeed, as Fig. 24
shows, the loss of energy is higher for electrons than for protons
since the highest energy electrons lost ∼4.8 orders of magnitude
for their Lorentz factor, whereas the highest energy protons lost
only approximately one order of magnitude. Since the energy of
a particle is E = γmc2, we found that without radiation reaction,
the proton energy is about Ep = 1010.5 × mp c2 = 4, 75 J and
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(a) (b)

(c) (d)

Fig. 28. Lorentz factor distribution of electrons trapped around neutron stars of inclination χ = 120◦ (a), χ = 90◦ (b), χ = 60◦ (c), and χ = 30◦ (d).
Radiation reaction was enabled.

the electron energy Ee = 1013.8 × me c2 = 5, 17 J. With radia-
tion reaction enabled, we got Ep = 109.5 × mp c2 = 0.48 J and
Ee = 1010 × me c2 = 0.000082 J. This means that even if the
particles had approximately the same energy without radiation
reaction, the fastest electrons have only 0.017% of the energy
of the fastest protons after radiation reaction has been enabled.
We nonetheless note that with radiation reaction, the Lorentz
factor distribution for protons near a pulsar of inclination χ is
similar in shape to that of electrons near a pulsar of inclina-
tion π − χ. Two modes, one at low energy with low statistics
and another one at higher energy with up to N ∼ 10 000 at
the peak for the cases, are shown in Fig. 24. The main differ-
ence is the positions of the extrema. For protons near a pulsar
with an inclination of 60◦, the low energy peak is at γ = 107.5

and the high energy one is at γ = 108.9, while for electrons
near a pulsar with an inclination of 120◦, the low energy and
high energy peaks are reached at γ = 107.8 and γ = 108.8,
respectively.

Crashed particles. Figure 25 presents a closer look at parti-
cles impacting the neutron stars. Since the number of protons
impacting the surface is lower than ten when χ ≥ 90◦, we
could only interpret the Lorentz factor distribution for χ = 30◦
and χ = 60◦. For both inclinations, the protons reach at most

γ = 109.4, the peak of the distributions is γ = 108, and the
local maximum is at γ = 108.7. The main difference between
these spectral distributions is at low energy. For χ = 60◦, the
distribution starts at γ = 106.5, while for χ = 30◦, the dis-
tribution starts at γ = 107. Even if the statistics are too low,
protons reach at most γ = 107.8 and at least γ = 106.8 for
χ = 90◦. However, for this case as well as the χ = 150◦ case,
it is certain that if given more particles, the overall shape of the
distributions would drastically change, according to the initial
positions.

When taking a look at Fig. 26, we found that the overall
shape of the spectra is slightly different for protons and elec-
trons. In particular, the electrons do not have the high energy
local maximum. The values of the Lorentz factors reached by
electrons are lower than those reached by protons. For χ = 30◦
and χ = 60◦, the peak of the Lorentz factor distribution is
reached at γ = 107.8, while for χ = 150◦ and χ = 120◦, the
distributions of electrons peak at γ = 107.7 and γ = 107.5,
respectively.

Trapped particles. The distribution of the Lorentz factors
of protons trapped around neutron stars is shown in Fig. 27. It
always produces a mode ending at γ = 105, but for χ = 120◦, a
few protons reached γ = 108, and for χ = 150◦, more particles
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(e)

Fig. 29. Lorentz factor distribution of protons ejected by neutron stars with an inclination of χ = 30◦ (a), χ = 60◦ (b), χ = 90◦ (c), χ = 120◦ (d),
and χ = 150◦ (e). Radiation reaction was enabled.

were distributed between γ = 105 and γ = 108. For χ = 60◦, the
total number of particles is quite low and analysing the distribu-
tion function becomes problematic. With χ = 90◦, the maximum
of the distribution is a plateau between γ = 103.5 and γ = 104.5,
with N = 300 particles per bin. The distribution begins with a
power law with a slope of approximately one between γ = 10

and γ = 103.5. With χ = 120◦, the distribution also starts at
γ = 10, but the maximum is located at γ = 103.9, with N ∼ 300,
and a local maximum is reached at γ = 104.7, with N = 10
particles per bin. Finally, with χ = 150◦, most bins contain
between N = 1 and N = 20 particles, meaning that the distribu-
tion is highly sensitive to noise. The number of trapped particles
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(c) (d)

(e)

Fig. 30. Lorentz factor distribution of electrons ejected by neutron stars with an inclination of χ = 150◦ (a), χ = 120◦ (b), χ = 90◦ (c), χ = 60◦ (d),
and χ = 30◦ (e). Radiation reaction was enabled.

becomes very low in this configuration. However, protons with
an energy of about γ = 108 reach up to N = 10 particles per bin,
meaning that this part of the distribution is not simply a random
event and that it may become significant with a higher number
of simulated particles.

Again, looking at Fig. 28, proton and electron spectra are
different for mirror inclinations (i.e., χ and π − χ). The electron
distributions are always bimodal, but due to low statistics, the
cases with χ = 120◦ and χ = 30◦ are hard to interpret. Neverthe-
less, the protons hardly exceed γ = 108 in any inclination. When
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(a) (b)

(c) (d)

Fig. 31. Proton dynamics for an aligned rotator (χ = 0◦). Panel a: impact map on the neutron star. Panel b: Lorentz factor distribution of the protons
impacting the surface. Panel c: initial colatitude and azimuth, and final Lorentz factor of the protons starting at r ∈ [0.8; 0.9]. Panel d: same as
panel c but for protons starting at r ∈ [0.3; 0.4].

χ = 90◦, the two maxima are located at γ = 103 and γ = 106.5,
and both are close to N ∼ 300 particles per bin. The minimum
between the two modes is located at γ = 105.5, with N ∼ 50 par-
ticles per bin. For χ = 60, the two maxima are also at the same
statistical level of N ∼ 130 particles per bin, but at γ = 103.5 and
γ = 106.5, the minimum between the modes is found at γ = 105

for N ∼ 30 particles per bin.

Ejected particles. Figure 29 shows the spectral distribution
of the Lorentz factor of protons ejected away from neutron stars.
The case χ = 30◦ shows a power law with a slope of approxi-
mately two between γ = 107.9 (N ∼ 1) and γ = 108.9 (N ∼ 100)
followed by an abrupt cut-off. The inclination χ = 60◦, how-
ever, starts at γ = 108.4 (apart from a few particles below this
Lorentz factor) and grows fast until γ = 108.6 at N ∼ 30, where
the growth is slower until γ = 109.1 at N ∼ 70, which is where
the distribution ends. Taking a look at the orthogonal rotator, the
distribution starts with some particles at γ = 106, but then at
γ = 107, the distribution follows a power law until γ = 108.7

(N = 200), giving a slope of ∼1.35. Then the distribution forms
a plateau before a cut-off, ending at γ = 109.3. Regarding the
χ = 120◦ inclination, we noticed a rapid growth from γ = 108

up to γ = 109 followed by a short plateau that starts decreasing
at γ = 109.2 and ending at γ = 109.5. Finally, for χ = 150◦, the
distribution starts as a power law of slope ∼2.3 until γ = 109.3

and ends in γ = 109.4 with a sharp cut-off.
Figure 30 shows the Lorentz factor of ejected electrons. If

χ = 150◦, the distribution grows between γ = 107.5 and γ = 108.9

at N ∼ 60, and it then drops to zero at γ = 109.2. The distribution
of the Lorentz factors for χ = 120◦ starts at γ = 108.2 with low
statistics and some empty bins and grows to N ∼ 60 at γ = 109,
and then the distribution drops, first slowly until γ = 109.1 and
then faster to zero in γ = 109.2. In the case of the orthogonal
rotator, three particles were found at γ < 108, but most of the
distribution starts at γ = 108.2. It then peaks at γ = 109.1 with
N ∼ 300 and ends in γ = 109.9. If χ = 60◦, the distribution
starts with a growth between γ = 108 (N ∼ 1) and γ = 109.5

(N ∼ 500). It then decreases following a power law of slope
∼1.9 until N ∼ 15 at γ = 1010.4. After that, the distribution stops,
except for three particles close to γ = 1010.6. Finally, if χ = 30◦,
the distribution grows irregularly between γ = 107.3 and the peak
at γ = 109.5, with N ∼ 1500, and it then decreases irregularly
until γ = 1010.3.
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(a) (b)

(c) (d)

Fig. 32. Proton dynamics for the anti-aligned rotator (χ = 180◦). Panel a: final position and Lorentz factor of protons in the x ∈ [−1; 1] slice.
Panel b: the same in the z ∈ [−1; 1] slice. Panel c: initial colatitude and azimuth and final Lorentz factor of protons starting at r ∈ [0.8; 0.9]. Panel d:
Lorentz factor distribution of the protons around the neutron star.

4.4. Aligned and anti-aligned cases

Aligned case. As the aligned case, corresponding to χ = 0◦,
is a static field, it was treated separately from the other cases.
In addition, even if in reality there are open field lines due to
the plasma surrounding the neutron star, the Deutsch field does
not have such magnetic field lines. Regarding the results of the
simulations, we also found that in this case, all the protons crash
onto the surface of the neutron star.

Inspecting Fig. 31, we found that particles impact the neu-
tron star on its poles. When analysing the initial positions of the
particles and linking them to their final Lorentz factors, parti-
cles injected closer to the neutron star were found to reach a
lower Lorentz factor than those injected farther away. This phe-
nomenon is due to the potential drop being greater for particles
farther away from the neutron star than for those close to the
surface. For a given starting radius, protons injected closer to
the equator reach a lower energy than those injected close to the
poles. The most probable explanation for this is the energy loss
due to the curvature radiation. For instance, for a given radius, as
we get closer to the equator (θ = 10◦), the curvature radius gets
smaller, meaning that a particle injected there will have more
energy loss than other particles starting at the same radius.

When looking at the Lorentz factor distribution, we noticed
that protons reach up to γ = 109.8 and never go lower than γ =
106.5. Also, the peak of the distribution is located at γ = 108.1,
with N ∼ 1300, but a local maximum was also found at γ =
108.6, with N ∼ 130.

Anti-aligned case. The anti-aligned case was also treated
separately for reasons similar to the aligned case (i.e., a con-
stant field and no open magnetic field line in the case of the
Deutsch field). However, the same comment could be made that
the plasma normally around the neutron star changes the fields
and ‘opens’ the magnetic field lines beyond the light cylinder.

Looking at the starting positions of protons in Fig. 32, we
observed that particles close to the poles are accelerated more
efficiently than those close to the equator. We believe that, just
like for the aligned case, the curvature radiation is more impor-
tant for particles close to the equator than for particles close to
the poles.

Regarding the final positions of the protons, it appeared that
a thick disc forms around the equator because of radiation losses.
Indeed, protons tend to oscillate between the north and south poles
(as in a Van-Allen radiation belt), but as the radius of curvature
of the field lines gets smaller, the radiation losses become more
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(a) (b)

(c) (d)

Fig. 33. Electron dynamics for the anti-aligned rotator (χ = 180◦). Panel a: final position and Lorentz factor of electrons in the x ∈ [−1; 1]
slice. Panel b: the same as (a) but in the z ∈ [−1; 1] slice. Panel c: initial colatitude and azimuth and final Lorentz factor of protons starting at
r ∈ [0.8; 0.9]. Panel d: Lorentz factor distribution of the protons around the neutron star.

intense, and a particle that was previously oscillating between the
poles finally becomes stuck in the equatorial plane. Inversely, far-
ther away from the neutron star, the curvature radius of the mag-
netic field lines is larger, so protons continue to oscillate between
the north and south poles and do not lose enough energy to become
stuck in the equatorial plane. Particles starting close to the poles
follow the field lines with curvature radii so large that by the end of
the simulation they did not have time to reach the equatorial plane
(forming a dome in each hemisphere), and since the energy loss is
low because of the high curvature radius, these particles reach the
highest energy. Additionally, Fig. 32 shows not a disc but rather
a disc and rings. The rings are in fact particles that are still oscil-
lating between the north and south poles sufficiently so that they
may reach coordinates out of the range z ∈ [−1; 1] at other times,
and the holes between the rings are there since other particles have
similar behaviours but were not in the range z ∈ [−1; 1] by the end
of the simulation.

Finally, regarding the spectral distribution of the Lorentz
factors, we highlight three modes. First is a low energy mode
with a maximum at γ = 103.5, with N ∼ 500, and ranging
from γ ∼ 10 to γ = 105.3, with N = 30. The second mode
is at γ ∈ [105.3; 107.2] and has the overall maximum of the
distribution at γ = 106.9, at N ∼ 800. The last mode is at

γ ∈ [107.2; 108.4], and it has its maximum at γ = 107.9, with
N ∼ 200.

For comparison, we took a look at the aligned case for elec-
trons, too. Figure 33 shows that electrons also form a disc by the
end of the simulation, but due to their lower masses, radiation
reaction makes them lose more energy than the protons, mean-
ing that the disc formed by electrons is thinner than that of the
protons. The Lorentz factor distribution is composed of a more
populated low energy mode from γ = 1 to γ = 105 with the
maximum at γ = 102.5, while the high energy mode is between
γ = 106.5 and γ = 108. It appears that the high energy elec-
trons are those injected close to the poles (in terms of colatitude)
because these particles follow magnetic field lines going farther
away from the neutron star, meaning that these electrons spend
less time in a strong magnetic field and thus lose less energy
than those that remained close to the neutron star and ultimately
formed the disc.

5. Conclusions

In this paper, we studied the influence of radiation reaction
on proton and electron dynamics near millisecond pulsars. We
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showed the drastic impact of radiative losses onto their trajec-
tories and Lorentz factor. First of all, the evolution of the par-
ticles and their positions at the end of the simulations may still
share some similarities when radiation reaction is enabled or dis-
abled, but many particles have another behaviour, and almost
all of them end the simulations with positions that are differ-
ent from those in the simulations without radiation reaction. For
example, the hot spots have different shapes and are located at
different colatitudes regardless of whether radiation reaction is
enabled. Regarding trapped particles, their radial position seems
to be more impacted by radiation reaction than their colati-
tudes or azimuths. Moreover, the positions of particles are even
more different when they are ejected away from the neutron star.
Regarding the Lorentz factor distributions, it clearly appears that
particles lose energy due to radiation reaction, as the Lorentz
factors reached by the particles are more realistic than when
radiation reaction is neglected. The interaction between parti-
cles is the next and last step to study the evolution of parti-
cles around a neutron star with realistic fields. We hope that
the retroaction of the particles on the fields will help in obtain-
ing results even closer to reality for the particle speeds and
positions.
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