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Polarized Photons from the Early Stages of Relativistic Heavy-Ion Collisions

Sigtryggur Hauksson∗

Institut de Physique Théorique, CEA/Saclay, Université Paris-Saclay, 91191, Gif sur Yvette, France

Charles Gale†

Department of Physics, McGill University, 3600 University Street, Montréal, QC, Canada H3A 2T8

The polarization of real photons emitted from early-time heavy-ion collisions is calculated, con-
centrating on the contribution from bremsstrahlung and quark-antiquark annihilation processes at
leading order in the strong coupling. The effect of an initial momentum space anisotropy of the par-
ton distribution is evaluated using a model for the non-equilibrium scattering kernel for momentum
broadening. The effect on the photon polarization is reported for different degrees of anisotropy.
The real photons emitted early during in-medium interactions will be dominantly polarized along
the beam axis.

I. INTRODUCTION

The theory of the nuclear strong interaction, QCD, fea-
tures a transition from a phase where the relevant degrees
of freedom are quarks and gluons – at high temperature
– to one where the appropriate basis consists of com-
posite hadrons at a lower temperature. This transition
has been predicted by several theoretical approaches, in-
cluding the non-perturbative field-theoretical framework
of lattice QCD [1]. Decades of intense theoretical effort
have revealed that the transition from confined hadrons
to partons is not a thermodynamic phase transition in
the proper sense but rather an analytic crossover [2].
On the experimental side, this exotic state of strongly
interacting matter – the quark-gluon plasma (QGP) –
has been observed in the relativistic collisions of nuclei
(“heavy-ions”) performed at the Relativistic Heavy-Ion
Collider (RHIC), and its existence has been later con-
firmed by experiments performed at the Large Hadron
Collider (LHC) [3]. There also is strong evidence sup-
porting the presence of QGP in smaller systems [4].

Even though new aspects of the QGP are continuously
being discovered, it is fair to assert that the field is well
poised to enter a phase of quantitative characterization,
owing in large part to the large variety of experimental
observables being measured by the experimental collabo-
rations. Measurements designed to probe the QGP have
reported results on soft hadron collective behavior [5], on
QCD jet modification and energy loss [6], on photon [7]
and dilepton [8] production, and on many other aspects
as well. The theoretical tools developed to study the dy-
namics of nuclear collisions and the formation of the QGP
typically consist of multistage models, rendered necessary
by the complexity of the nuclear reaction. Recent exam-
ples of such a composite theoretical approach are studies
[9–12] where the initial state model (e.g. TRENTo [13],
IP-Glasma [14]) preceded a fluid-dynamical phase ([15–
18]. A hadronic cascade afterburner (e.g. UrQMD [19],
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SMASH [20]), evolve the final state hadrons until their mea-
surement. Such composite models can make statistically
significant statements about transport parameters such
as shear and bulk viscosity, as well as quantify the energy
loss of energetic QCD jets [21].

As the multistage modeling of relativistic heavy-ion
collisions covers a variety of dynamical conditions rang-
ing from far from equilibrium initial states to almost ideal
fluid dynamics, it is important to critically examine its
different eras. In searching for observables capable of re-
vealing the different modeling epochs, penetrating probes
such as real and virtual photons impose themselves. Elec-
tromagnetic variables are emitted at all stages of the col-
lision and as such can report on local conditions at their
creation point [22]. The largest uncertainty in the chain
of models currently lie at the beginning, in the time span
preceding “hydrodynamization”. Early in the history of
the collision, photon emission is liable to occur in media
far from equilibrium which necessitate a dedicated the-
oretical treatment. The emission of photons from non-
equilibrium environments has received some recent at-
tention [23, 24].

This study will consider photon emission in the early
stages of heavy-ion collisions, and will focus more specif-
ically on the polarization states of those photons as a
probe of the medium at early times. As our calculation
only relies on the medium having a pressure anisotropy,
or equivalently a momentum anisotropy in parton distri-
bution, it holds both before hydrodynamization as well as
in the beginning of the hydrodynamic stage while pres-
sure anisotropy still persists. Some previous estimates
for photon polarization at early times considered leading
order direct photon production channels like those of the
Compton process and qq̄ annihilation [25–27]. It is known
that an equally important contribution as those two –
at the same order in αs, the strong coupling constant –
is that associated with the Landau-Pomeranchuk-Migdal
effect (LPM) [28–30]. That contribution, evaluated for a
medium out of equilibrium forms the basis of this work.
It is fair to remind readers that the measurement of real
photon polarization states is challenging, owing to the
complications related to the external conversions into lep-
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FIG. 1. Our choice of coordinate system. The z-axis is chosen
to be along the beam axis. For a photon emitted at midra-
pidity we choose the x-axis to be along its momentum. The
photon (in red) can either be transversely polarized along the
beam axis (z-axis) or transversely polarized orthogonal to the
beam axis, i.e. along the y-axis.

px + k px

k

FIG. 2. Photon radiation through medium-induced
bremsstrahlung off a quark

ton pairs. The angular distribution of this pairs will re-
flect the polarization state. A more realistic proposition
is a measurement of virtual photon polarization states, as
measured through an internal conversion process leading
to a dilepton final state. Consequently, the goal of our
work is to first set the foundations for subsequent such
evaluations and to perform a first estimate of the polar-
ization signature of an early, non-equilibrium, strongly
interacting medium.

Our paper is organized as follows: Section II lays out
the building blocks of our non-equilibrium formalism.
The section following that one discusses the collision ker-
nel used to model the medium interactions. The numer-
ical methods used to obtain the production rate of po-
larized photons are discussed in Section IV. Results and
conclusion constitute Sections V and VI, respectively. We
present analytical and numerical details in the Appen-
dices.

FIG. 3. Photon radiation through medium-induced quark-
antiquark pair annihilation

II. POLARIZED PHOTON EMISSION

The quark-gluon plasma radiates photons through two
different processes at leading order in perturbation the-
ory. (See [31] for higher order corrections.) These pro-
cesses are two-to-two scattering with a photon in the final
state [32, 33], and bremsstrahlung and pair annihilation
with a resulting photon [28, 30]. Two-to-two scatter-
ing on one hand and bremsstrahlung and pair annihila-
tion on the other hand give roughly equal contribution
to photon yield in the plasma [29]. While photons from
two-to-two scattering have been studied extensively in an
anisotropic medium and have been shown to be polarized
[25], bremsstrahlung and pair annihilation photons have
been studied much less in an anisotropic plasma due to
the more complicated physics involved. We consider this
now. Polarized photon emission has also been studied
in other contexts, including in holography where a back-
ground magnetic field is included [34–36], due to vortical
flow in the plasma [37], and due to the chiral magnetic ef-
fect [38, 39]. Dilepton polarization has furthermore been
considered in [40–42]
In bremsstrahlung an on-shell photon is emitted

collinearly off a quark or an antiquark, see Fig. 2. In
vacuum this process would be kinematically forbidden as
an on-shell quark cannot emit an on-shell photon. How-
ever, in a medium the process is made possible to due
soft gluon kicks from the medium that bring the quark
slightly off-shell. These kicks have momentum ∼ gΛ
where Λ is a hard scale akin to temperature and g is the
coupling constant. The off-shellness of the quark is there-
fore of order P 2 ∼ g2Λ2 meaning that the emission takes
time t ∼ p/P 2 ∼ 1/g2Λ where p is the quark momentum.
During this time the quark can receive arbitrarily many
soft gluon kicks since the mean-free time between two
such kicks is also of order 1/g2Λ. All of these kicks need
to be included at leading order in perturbation theory
[28, 30, 43]. In an analogous fashion a quark-antiquark
pair can annihilate and radiate a photon due to medium
kicks, see Fig. 3.
We will now show that photons emitted through

bremsstrahlung and pair annihilation are polarized in an
anisotropic medium. This polarization can be described
by extending the framework developed in [23, 28, 30], see
App. A. To fix ideas we choose the coordinate system in
Fig. 1. The z-axis lies along the beam axis in a heavy-ion
collision. We consider a photon at midrapidity and orient
the coordinate system so that the x-axis lies along its mo-
mentum k. The momentum of the photon can of course
have any direction in the plane transverse to the beam
axis; aligning it with the short axis of the plasma as in
Fig. 1 is simply for illustration. 1 As an on-shell photon
is transversely polarized, the polarization basis can be

1 In this work, the net polarization of photons emitted from a
fluid cell is independent of the angular orientation in the trans-
verse plane as we focus on the effect of longitudinal expansion.
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choosen as ϵz = (0, 0, 0, 1) and ϵy = (0, 0, 1, 0). The pho-
ton is thus polarized along the beam axis or transverse
to the beam axis.

In Appendix A we show that the rate of produc-
ing z-polarized photons with momentum k through
bremsstrahlung is

k
dΓz

d3k
=

6αEM

∑
s q

2
s

(2π)3
2

∫ ∞

0

dpx
k

8p2x(k + px)

× nf (k + px) [1− nf (px)] (Fin(ζ)Az + Fout(ζ)Ay) (1)

where momenta are defined in Fig. 2 and ζ = k/(px + k)
is the momentum fraction of the photon. Similarly, the
rate of producing y-polarized photons is

k
dΓy

d3k
=

6αEM

∑
s q

2
s

(2π)3
2

∫ ∞

0

dpx
k

8p2x(k + px)

× nf (k + px) [1− nf (px)] (Fin(ζ)Ay + Fout(ζ)Az) (2)

where Az and Ay have been interchanged relative to Eq.
(1). Here Az and Ay quantify the amount of momentum
broadening in the z- and y−direction and are defined as

Az = Re

∫
d2p⊥
(2π)2

2pzfz(p⊥)

Ay = Re

∫
d2p⊥
(2π)2

2pyfy(p⊥) (3)

where f solves an integro-differential equation given be-
low. Furthermore,

Fin(ζ) =
(2− ζ)2

ζ
(4)

and

Fout(ζ) = ζ, (5)

are polarized splitting functions [44]. Finally, there are
momentum factors nf for the incoming and outgoing
quarks. 2 The analogous expressions for quark-antiquark
pair annihilation are given in Appendix A.

Eqs. (1) and (2) for polarized photon emission can be
understood intuitively. We consider a z-polarized photon
for concreteness. As the photon travels in the x-direction,
the splitting plane of the photon and the outgoing quark
is spanned by êx and a vector orthogonal to êx which
we call n̂, see Fig. 4. Eqs. (1) and (2) show that we
can project the vector n̂ on to the y- and the z-axes and
sum over the contributions. For n̂ in the z-direction, the

This could be generalized to include transverse expansion which
breaks this symmetry. Our formalism could also easily be ex-
tended to photons at finite rapidity.

2 We have assumed that there is no chiral imbalance in the medium
and that the baryon chemical potential vanishes, so that quarks
and antiquarks of both helicities have the same momentum dis-
tribution nf .

y

z
ϕq

q⊥

n

FIG. 4. Definition of the quantities n (the vector between the
outgoing quark and photon) and ϕq (the angle defining a soft
gluon kick of magnitude q⊥). The photon can be polarized in
the y- or the z-directions which are transverse to its direction
of motion, see also Fig. 1.

z-polarized photon is polarized in the splitting plane and
the hard splitting function is Fin. Momentum broaden-
ing is quantified by the z-component Az. On the other
hand, for n̂ in the y-direction, the z-polarized photon is
polarized out of the splitting plane and the hard splitting
function is Fout. Momentum broadening is then quanti-
fied by Ay.

The rate equations for photon emission depend on the
function f = (fz, fy) which quantifies momentum broad-
ening. It solves the integro-differential equation

2p⊥ = iδEf(p⊥)+
∫

d2q⊥
(2π)2

C(q⊥) [f(p⊥)− f(p⊥ + q⊥)]

(6)
where

δE =
k

2p(p+ k)

[
p2⊥ +m2

∞
]
. (7)

The central ingredient in this equation is the collision
kernel C(q⊥) which gives the rate for a quark to receive
soft gluon kicks of transverse momentum q⊥. The colli-
sion kernel gives rise to a gain term and a loss term in
Eq. (6).

In an isotropic medium, the collision kernel is by def-
inition isotropic, C(q⊥) = C(q⊥) and one can show that

f = p⊥f̂(p⊥). This means that Az = Ay and thus there is
no net polarization of photons emitted. In an anisotropic
medium, C(q⊥) depends not only on the magnitude of the
kick q⊥ but also on its orientation. In other words, when
writing

q⊥ = (qz, qy) = q⊥(cosϕq, sinϕq) (8)

the collision kernel depends on both ϕq and q⊥, see Fig.
4. This leads to f having more complicated angular de-
pendence so that Az ̸= Ay. Therefore, photon emission
from an anisotropic medium is polarized.
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III. MODEL OF THE COLLISION KERNEL IN
AN ANISOTROPIC PLASMA

As previously argued, the collision kernel for soft
gluon kicks C(q⊥) is anisotropic in heavy-ion collisions
which leads to polarization of photons emitted through
bremsstrahlung. The ultimate source of the anisotropy in
the kernel is longitudinal expansion of the medium along
the beam axis. Such a longitudinal expansion gives pres-
sure anisotropy at early and intermediate times with lon-
gitudinal pressure PL less than transverse pressure PT .
On a microscopic level, this means that quark and gluon
quasiparticles have an anisotropic momentum distribu-
tion with ⟨p2z⟩ < ⟨p2x⟩, ⟨p2y⟩. This is captured by the dis-
tribution introduced in Ref. [45]:

f(p) =
√

1 + ξfiso(
√

p2 + ξp2z) (9)

where fiso is an isotropic distribution, and ξ > 0 quan-
tifies the degree of anisotropy. The prefactor

√
1 + ξ en-

sures that the number density of quarks and gluons is the
same as in equilibrium. A simple calculation gives the
pressure anisotropy PT /PL in terms of the momentum
space anisotropy ξ, linking the macroscopic and micro-
scopic descriptions.3

Ideally, one would want to calculate the collision kernel
for momentum broadening, C(q⊥), directly from Eq. (9).
Such a calculation would use that the hard quasiparticles
in Eq. (9) radiate soft gluons which are then responsible
for momentum broadening. This would allow to quantify
the degree of photon polarization in a non-equilibrium
medium from first principles. Unfortunately, going from
Eq. (9) to the collision kernel is difficult in practice,
partially due to instabilities that can be present in an
anisotropic plasma [47].

In this study, we will use a simple model of the collision
kernel in a longitudinally expanding medium. We take
inspiration from results for the collision kernel in thermal
equilibrium at leading order in perturbation theory [48],

Ceq(q⊥) = g2CFT

(
1

q2⊥
− 1

q2⊥ +m2
D0

)
(10)

Here m2
D0 is the equilibrium Debye mass which describes

screening of electric fields. (The equilibrium kernel has
furthermore been evaluated at next-to-leading order [49],
as well as on the lattice, see e.g. [50, 51].) In our
anisotropic model, we replace the equilibrium Debye
mass by its anisotropic extension4 found in [45]

m2
D(ϕq) =

(
1− 2ξ

3

)
m2

D0 + ξm2
D0 cos

2 ϕq. (11)

3 Specifically, PT /PL = 1
2

√
ξ+(ξ−1) arctan

√
ξ

arctan
√
ξ−

√
ξ/(1+ξ)

, see e.g. [46].
4 In [45] this quantity is referred to as m2

+. We have expanded in
small ξ in Eq. (13) but this is simply for convenience and not
fundamental to the setup we use.

so that

C(q⊥) = g2CFΛ
( 1

q2⊥
− 1

q2⊥ +m2
D(ϕq)

)
(12)

The anisotropic correction has an angular dependence
with more broadening in the z-direction than in the y-
direction. To simplify calculations, we expand the colli-
sion kernel in ξ, writing

C(q⊥) ≈ g2CFΛ

(
1

q2⊥
− 1

q2⊥ +m2
D0

+
−2ξm2

D0/3 + ξm2
D0 cos

2 ϕq

(q2⊥ +m2
D0)

2

)
(13)

where Λ is a hard scale, akin to temperature.
Eq. (13) is a toy model for the collision kernel, in-

tended to illustrate how an anisotropic kernel leads to
polarized photon emission and to estimate the magnitude
of this effect. This toy model only includes changes to
the screening of electric fields in an anisotropic medium
and not the myriad other non-equilibrium effects that
can arise. Nevertheless, this collision kernel can be mo-
tivated by theoretical arguments making us belief that
it captures some of the salient features of the full non-
equilibrium kernel.
In general the collision kernel is defined by

C(q⊥) = g2CF

∫
dq0dqx
(2π)2

Dµν
rr (Q)vµvν 2πδ(v ·Q) (14)

where vµ = (1, 1, 0, 0) is the four-velocity of the quark
emitting a photon. The kernel depends on the statistical
correlator for gluons in the medium,

Drr(Q) :=
1

2
⟨{A,A}⟩ (Q) = Dret(Q)Π(Q)Dadv(Q)

(15)
which characterizes the occupation density of a pair of
soft gluons. We have omitted Lorentz indices for sim-
plicity. This statistical correlator contains information
on how the soft gluons are emitted by hard quasiparti-
cles with rate Π(Q) and then propagate in the medium
according to the retarded propagator Dret(Q) = i/(Q2 −
Πret) and the advanced propagator Dadv = −D∗

ret.
Making some heuristic assumptions allows one to em-

ploy a sum rule in [48] to motivate the toy model for the
collision kernel in Eq. (13), starting from the definitions
in Eqs. (14) and (15). The goal is to include anisotropic
corrections to the screening of chromoelectric fields, while
ignoring anisotropic corrections to the density of gluons
and to change in polarization that occurs during prop-
agation. We work strictly at small anisotropy ξ ≪ 1,
including only effects of order O(ξ).
The first heuristic assumption is to employ the identity

Π(Q) = Λ
q0 2ImΠret which is known as the KMS identity

and which expresses detailed balance between produc-
tion and decay of soft gluons. This is not strictly valid
in a non-equilibrium medium and amounts to ignoring
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anisotropic corrections to the density of gluons. Then
one can write

Drr(Q) :=
Λ

q0
(Dret −Dadv) . (16)

At small anisotropy the retarded propagator in Eq. (16)
is

Dµν
ret(Q) ≈

Pµν
T

Q2 −ΠT
+

Pµν
L

Q2 −ΠL
. (17)

Here we have only included anisotropic corrections to the
screening as given by ΠT and ΠL, see App. B.
Our second heuristic approximation is to focus on the

anisotropic correction to ΠL and ignore those in ΠT .
Comparing with the equilibrium calculation [48], this
amounts to calculating anisotropic corrections to the
term 1/(q2⊥ + m2

D0) in Eq. (10) while leaving the term
1/q2⊥ as is. This means that we include anisotropic cor-
rections to the screening of chromoelectric fields as given
by a Debye mass but do not include anistropic corrections
to the screening of chromomagnetic fields.

The reason we use this approximation is that the sum
rule we employ does not work for the transverse screen-
ing in ΠT . This is because the term 1/(Q2 − ΠT ) has a
pole in the upper half complex plane of q0 corresponding
to Weibel instabilities [52]. A formal use of the sum rule
would lead to a contribution of the form 1/(q2⊥ − m2)
which is ill-defined at q⊥ = m. The solution to this issue
is to use a retarded propagator for soft gluons that in-
cludes the mechanism by which non-Abelian interaction
caps the growth of the unstable soft gluon modes. This
is beyond the scope of this project.

Given these two approximations, one can use the sum
rule in [48] nearly directly. The longitudinal retarded
self-energy at small anisotropy ξ is

ΠL(Q) = Π0
L(x) + ξ

[
1

6
(1 + 3 cos 2θn)

Q2

q2
m2

D0

+Π0
L(x)

(
cos 2θn − x2

2
(1 + 3 cos 2θn)

)]
(18)

where θn is the angle between q and the anisotropy vector
n = ez which defines a preferred direction in Eq. (9) [45].
Here

Π0
L(x) =

(
x2 − 1

)
m2

D0

[
x

2
log

x+ 1 + iϵ

x− 1 + iϵ
− 1

]
(19)

is the equilibrium value. We next do a change of variables
in Eq. (14) to x = q0/q = qx/

√
q2x + q2⊥ so that q2x =

x2q2⊥/(1 − x2) and q2 = q2⊥/(1 − x2). Then one should
substitute cos 2θn = 2(qz/q)

2 − 1 = 2(1− x2) cos2 ϕq − 1
to get dependence only on x, q⊥ and ϕq. This gives that
the longitudinal contribution to the collision kernel is

Λg2CF

π

∫ 1

0

dx

x

Im Π̃L(x, ϕq)(
q2
⊥ +Re Π̃L(x, ϕq)

)2

+
(
Im Π̃L(x, ϕq)

)2 .

(20)

where

Π̃L(x, ϕq) = Π0
L(x) + ξ

[
1

6
(1 + 3 cos 2θn) (x

2 − 1)m2
D0

+Π0
L(x)

(
cos 2θn − x2

2
(1 + 3 cos 2θn)

)] ∣∣∣∣
cos 2θn=2(1−x2) cos2 ϕq−1

(21)

has no explicit dependence on q⊥.
@articleAurenche:2002pd, @articleAurenche:2002pd,

An argument nearly identical5 to the one in [48] then
shows that Eq. (20) is

g2CFΛ

[
1

q2⊥ + limx→∞ Π̃L(x, ϕ)
− 1

q2⊥ + Π̃L(0, ϕ)

]

= −g2CFΛ
1

q2⊥ +m2
D(ϕq)

(22)

since Π̃L(0, ϕ) = m2
D(ϕq). Our conclusion is therefore

that given our heuristic approximations, the collision ker-
nel is given by Eq. (13). We emphasize that this col-
lision kernel is not intended to capture all of the non-
equilibrium physics but to focus on anisotropic correc-
tions to the screening of chromoelectric fields.

IV. NUMERICAL METHOD

We wish to evaluate the rate of polarized photon emis-
sion in an anisotropic medium such as that found in a
longitudinally expanding quark-gluon plasma. The start-
ing point is Eqs. (1) and (2) which require solving the
integro-differential equation in Eq. (6) numerically, as-
suming the model for the collision kernel given in Eq.
(13). To solve Eq. (6) we go to impact parameter space,
i.e. the space Fourier conjugate to p⊥. Defining

f(b) =

∫
d2p⊥
(2π)2

eip⊥·b f(p⊥). (23)

the equation we wish to solve becomes

−2i∇bδ
(2)(b) =

ik

2p(p+ k)

[
−∇2

b +m2
∞
]
f(b)+C(b)f(b).

(24)

5 The retarded propagator 1/
[
x2q2⊥ − q2⊥ − (1− x2)ΠL(x, ϕ)

]
in

Eq. 7 in [48] has an extra pole in the upper half complex plane
in the anisotropic case. This pole can be seen by taking the
limit x = k0/k → ∞ in which case the propagator becomes

∼ 1/(1−x2)/(q2⊥+
(
1
3
− 1

3
ξ cos2 ϕ

)
m2

D0+
ξ
3
x2 cos2 ϕm2

D0) which

has a pole which is parametrically of the form x ∼ ±iq⊥/mD
√
ξ

and thus far from the real axis when ξ ≪ 1. This is not in con-
tradiction with the usual properties of the retarded propagator
as we have imposed q0 = qx and then search for poles in q0. One
can then show that the correction due to this pole to the sum
rule in Eq. 9 in [48] is O(ξ3/2) which is subleading to the O(ξ)
contributions we consider.
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where

C(b) =
∫

d2p⊥
(2π)2

[
1− eip⊥·b ]

C(p⊥). (25)

A straightforward calculation shows that the collision
kernel from Eq. (13) is

C(b) = C0(b) + ξ C(a)
1 (b) + ξ cos 2β C(b)

1 (b) (26)

in impact parameter space where b = (bz, by) =
(cosβ, sinβ) b. The terms of the collision kernel are given
by

C0(b) =
g2CFT

2π

[
K0(mD0b) + γE + log

mD0b

2

]
, (27)

C(a)
1 (b) = g2CFT

1

8π

M2

m2
D0

(mD0bK1(mD0b)− 1) (28)

and

C(b)
1 (b) = g2CFT

M2b2

4π

[
2

(mD0b)4

− 1

2mD0b
K1(mD0b)−

1

(mD0b)
2K2(mD0b)

]
(29)

In order to solve Eq. (24) we do an expansion in small
ξ, giving

f(b) = f0(b) + ξf1(b) + . . . (30)

The zeroth order solution in ξ satisfies the usual isotropic
equation

ik

2p(p+ k)

[
−∇2

b +m2
∞
]
f0(b)+C0(b)f0(b) = −2i∇bδ

(2)(b)

(31)
and can be shown to have angular dependence f0(b) ∼
(cosβ, sinβ). The first order satisfies

ik

2p(p+ k)

[
−∇2

b +m2
∞
]
f1(b) + C0(b)f1(b)

= −
[
C(a)
1 (b) + cos 2β C(b)

1 (b)
]
f0(b).(32)

Due to the angular dependence of the right hand side we
can write in full generality

f1z(b) = cosβf
(1z)
1 (b) + cos 3β f

(3)
1 (b) (33)

and

f1y(b) = sinβf
(1y)
1 (b) + sin 3β f

(3)
1 (b) (34)

where these functions solve

K
[
f
(1z)
1 (b)

]
+ C0(b)f (1z)

1 (b) = −
[
C(a)
1 (b) +

1

2
C(b)
1 (b)

]
f0,

(35)

K
[
f
(1y)
1 (b)

]
+ C0(b)f (1y)

1 (b) = −
[
C(a)
1 (b)− 1

2
C(b)
1 (b)

]
f0

(36)
with

K [f(b)] = − ik

2p(p+ k)

[
d2

db2
+

1

b

d

db
− 1

b2
−m2

∞

]
f(b).

(37)

(The differential equation for f
(3)
1 is given in App. C.)

Our goal is to evaluate

Az = 2Im ∂bzfz(b)

∣∣∣∣
b=0

= 2Im
b̂ · f0 + ξ f

(1z)
1

b

∣∣∣∣
b=0

(38)

and

Ay = 2Im ∂byfy(b)

∣∣∣∣
b=0

= 2Im
b̂ · f0 + ξ f

(1y)
1

b

∣∣∣∣
b=0

(39)

which were defined in Eqs. (1) and (2). Thus, we only

need to know f
(1z)
1 (b)/b and f

(1y)
1 (b)/b in the limit b → 0

where it must be finite. This gives the boundary condi-

tion that This is done by demanding that f
(1z)
1 and f

(1y)
1

vanish at b = 0. The other boundary condition is that
the functions vanish as b → ∞ as can be seen from Eq.
(23).

To evaluate f
(1z)
1 (b)/b and f

(1y)
1 (b)/b at b = 0, we de-

mand that the functions f
(1z)
1 and f

(1y)
1 vanish at very

large b and evolve the functions numerically to small b us-
ing Eqs. (35) and (36). In practice, this means that we
start the evolution at a large but finite value of b where

f
(1z)
1 and f

(1y)
1 are initialized to a small value. A typi-

cal numerical solution for f1z
1 and f1y

1 then blows up as
evolved towards b → 0. We must then extract the finite
part of our numerical solution. This is done by matching
with known, analytic solutions of the differential equa-
tions in the small b limit.

For instance, focusing on Eq. (35), we call the partic-
ular solution w(b) and the two independent solutions of
the homogeneous equation w1(b) and w2(b). These are
known analytically at small b, see Appendix C. We can
write our numerical solution in full generality at small b
as

f
(1z)
1 (b) = w(b) + α1w1(b) + α2w2(b) (40)

where α1 and α2 are found numerically. To extract from
this a solution with the right behaviour as b → 0, one
must in essence subtract a linear combination of w1 and
w2 which satisfies the boundary condition at b → ∞.
Then one is left with a solution which satisfies boundary
conditions both at b = 0 and b → ∞ and which gives

f
(1z)
1 (b)/b at b = 0. This procedure is explained in fur-
ther detail in Appendix C, see also [48, 53, 54] for earlier
work in the isotropic case. A major difference with the
isotropic case is that Eqs. (35) and (36) have a non-
trivial right hand side which complicates the matching
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FIG. 5. Spectrum of photons coming from bremsstrahlung
and pair annihilation in a plasma at effective temperature Λ.
The anisotropic plasma has ξ = 1.0.
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FIG. 6. Degree of polarization of photons emitted from
bremsstrahlung and pair annihilation in an anisotropic plasma
with ξ = 1.0. The quantity R is defined in Eq. (43).

procedure. For instance, one must find an analytic so-
lution w(b) of the full differential equations at small b,
including the right hand side. Furthermore, cancellation
errors between solutions of the full differential equation
and the homogeneous equation must carefully be avoided
to get reliable results, see Appendix C.

V. RESULTS

Figs. 5 and 6 are the main results of this work.
They show the rate of photon production through
bremsstrahlung and pair-annihilation in an anisotropic
quark-gluon plasma with fixed anisotropy ξ. The colli-
sion kernel is given by Eq. (13) while the momentum

distribution of medium quarks is

f(p) =

√
1 + ξ

e
√

p2+ξp2
z/Λ + 1

(41)

where Λ can be seen as an effective temperature. Fig.
5 shows the total rate for producing photons at mid-
rapidity and with momentum k, i.e.

k
dΓ

d3k
= k

dΓz

d3k
+ k

dΓy

d3k
, (42)

where k dΓz

d3k is the rate of producing photons polarized

along the beam axis and k
dΓy

d3k is the rate for photons
polarized orthogonal to the beam axis and to the photon
momentum. Fig. 6 shows the degree of polarization at
different momenta defined as

R =
k dΓz

d3k − k
dΓy

d3k

k dΓz

d3k + k
dΓy

d3k

. (43)

These quantities are shown for three values of anisotropy
parameter, ξ = 0.3, ξ = 0.6 and ξ = 0.9, which
correspond to pressure anisotropy of PL/PT ≈ 0.81,
PL/PT ≈ 0.68 and PL/PT ≈ 0.57 respectively. These are
rather moderate values of pressure anisotropy which can
be found in the early and intermediate stages of heavy-
ion collisions.
The spectrum in an anisotropic medium is higher than

that in an equilibrium medium at the same effective tem-
perature Λ, as can be seen in Fig. 5. This is due to
the factor

√
1 + ξ in the momentum distribution in Eq.

(9) which increases the number of quarks with pz = 0
which can emit photons at midrapidity. This effect is
partially compensated by anisotropic corrections which
reduce the collision kernel C(q⊥) meaning that a given
quark receives less momentum broadening, reducing the
rate at which it emits photons collinearly.
More interesting is the polarization R as a function

of momentum k. As seen in Fig. 6, the polarization
has different signs for lower and higher values of the
photon energy k: it is along the beam axis for lower
values of k while it is orthogonal to the beam axis
at higher values of k. This owes to the interplay be-
tween bremsstrahlung and pair annihilation. As shown
in Appendix A, because of the different polarized split-
ting functions, bremsstrahlung tends to give photons po-
larized along the z-axis, while pair annihilation tends
to give polarization along the x-axis, see Fig. 1. As
bremsstrahlung is suppressed at high k (there are few
medium quarks with energy higher than k) x-polarization
dominates in that regime. On the contrary, pair annihi-
lation is suppressed at low k since the number of quarks
with energy less than k/2 is phase space suppressed. This
gives z-polarized photons in that regime.
Despite the complicated dependence of polarization

on photon momentum, polarization along the beam axis
dominates. This is simply because there are many more
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photons at lower k and thus their polarization is dom-
inant. Furthermore, in [25] it was shown that photons
from two-to-two scattering, which are equally important
as bremsstrahlung and pair annihilation photons, are also
predominantly polarized along the beam axis, with an
even greater magnitude of polarization. Thus a definite
prediction of our work is that medium photons are po-
larized along the beam axis.

To make contact with potential experiments on photon
polarization more work is needed. Firstly, all photon
sources that cannot be subtracted in experiments need to
be included, such as prompt photons and photons from
the hadronic stage. Secondly, calculation of the rate of
photon production in an anisotropic medium need to be
folded with hydrodynamic or kinetic theory simulations
of the medium to get a realistic evolution of the medium
anisotropy.

VI. CONCLUSION

In this work, we have calculated for the first time
the degree of polarization for photons emitted in
bremsstrahlung and off-shell pair annihilation processes
in a hot medium consisting of quarks and gluons. Our
evaluation includes the LPM regime and is at complete
leading order in the strong coupling. The polarization
of the real photons originating from bremsstrahlung and
annihilation processes depends on the anisotropy of the
original parton distribution, and therefore the polariza-
tion can instruct us on the dynamics in an environment
that is not accessible to the vast majority of probes and
observables measured in relativistic heavy-ion collisions.
Specifically, it gives a measure of the pressure anisotropy
at early times.

We trust that the methods and techniques developed
and used here will be useful in the evaluations of polar-
ization signatures of real and virtual photons, evaluated
with scattering kernels for momentum broadening de-
rived from microscopic theories and using time-evolution
models based in QCD.
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Appendix A: Derivation of rate equations

We wish to show that the total rate for polarized pho-
ton production through bremsstrahlung and pair annihi-

lation can be written as

k
dΓz

d3k
=

6αEM

∑
s q

2
s

(2π)3

∫ ∞

−∞
dpz F (k+ p) [1− F (p)]

×1

2

1

4(px)2(px + k)2
[
(2px + k)2Az + k2Ay

]
(A1)

and

k
dΓy

d3k
=

6αEM

∑
s q

2
s

(2π)3

∫ ∞

−∞
dpz F (k+ p) [1− F (p)]

×1

2

1

4(px)2(px + k)2
[
k2Az + (2px + k)2Ay

]
(A2)

where Az and Ay are defined in Eq. (3). Here the mo-
mentum distributions are contained in

F (px) = θ(px)f(p) + θ(−px) (1− f(−p)) . (A3)

Looking at the momentum factors in Eqs. (A1) and (A2),
we see that bremsstrahlung off a quark or an antiquark
corresponds to px > 0 and px < −k. These cases can be
rewritten to give Eqs. (1) and (2). Furthermore, −k <
px < 0 corresponds to quark-antiquark pair annihilation.
As the quark moves in the same direction as the photon
we can set e.g. f(p) = f(px).
The derivation of polarized photon emission in Eqs.

(A1) and (A2) is similar to that for unpolarized emission
found in [23, 28, 30]. The polarized rate comes from eval-
uating the diagram in Fig. 8. The gluon ladders which
represent soft kicks from the medium are evaluated in
the same way as for unpolarized photon emission. Phys-
ically, this is because the soft kicks do not have enough
energy to flip the helicity of quarks. The gluon ladders
are summed to all orders to give the integral equation in
Eq. (6). On the contrary, one must keep track of po-
larization at the hard emission vertices to evaluate the
polarized emission rate.
For a bare quark loop without soft gluon kicks, Fig. 7,

the hard emission vertices for a z−polarized photon take
the form

Hzz := ϵzµϵ
z ∗
ν Tr

[
γµ( /K + /P )γν /P

]
. (A4)

Here ϵzµ is the photon polarization tensor for z-
polarization. This trace is most easily evaluated by using
that e.g.

/P =
∑
s

us(p)us(p) (A5)

where the sum is over spin states and

us(p) =
√

2p

[
1−σ·p̂

2 ξs
1+σ·p̂

2 ξs

]
(A6)

are helicity states of quarks [55]. Here ξs form a basis
for two-component spin states. One can then show by an
explicit calculation that

Hzz =
∑
s,t

[
γzus(p+ k)us(p+ k)γzut(p)ut(p)

]
=

8p(p+ k)

p2(p+ k)2
[
(2p+ k)2p2⊥ z + k2p2⊥ y

]
. (A7)
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FIG. 7. Definition of momenta in photon emission.

FIG. 8. Diagram for medium-induced photon emission. The
gluon rungs are responsible for momentum broadening.

Similarly, the hard emission vertices for emission of y-
polarized photons are

Hyy =
8p(p+ k)

p2(p+ k)2
[
(2p+ k)2p2⊥ y + k2p2⊥ z

]
. (A8)

This is the same as Eq. (A7), except that p2⊥ z and p2⊥ y
have been interchanged.

To include soft gluon as in Fig. 8 one simply replaces
one of the hard vertices by the dressed vertex f(p⊥)
which includes gluons rungs and obeys the integral equa-
tion in Eq. (6). This means that in Eqs. (A7) and (A8)
one replaces p2⊥ z −→ p⊥ zfz and p2⊥ y −→ p⊥ yfy. This

reproduces Eqs. (A1) and (A2).

Appendix B: The retarded gluon propagator at
small anisotropy

In a system whose hard quasiparticles have the mo-
mentum distribution in Eq. (9), the retarded propagator
for soft gluons is [45, 47]

Dµν
ret(Q) = (Pµν

T − Cµν)DB
ret

+
[(
Q2 −Πc

)
Pµν
L +

(
Q2 −ΠL

)
Cµν +ΠdD

µν
]
DA

ret

(B1)

where

DA
ret =

1

(Q2 −ΠL) (Q2 −Πc)− Q2q2

q20
Π2

d

(B2)

and

DB
ret =

1

Q2 −Πe
. (B3)

The tensors Pµν
T and Pµν

L are the same as in thermal equi-
librium while Cµν and Dµν are new tensors that depend
on the anisotropy vector n. The self-energy components

Πe, ΠL, ΠT and Πd are given in [47] which contains fur-
ther details.
As Πd = O(ξ) we can approximate

DA
ret ≈

1

(Q2 −ΠL) (Q2 −Πc)
(B4)

up to order O(ξ). We furthermore ignore O(ξ) correc-
tions in the numerator as they do not describe anisotropic
corrections to screening which are the non-equilibrium
corrections we focus on. Then

Dµν
ret(Q) ≈ (Pµν

T − Cµν)DB
ret

+
[(
Q2 −Πc

)
Pµν
L +

(
Q2 −ΠL

)
Cµν

]
DA

ret

=
Pµν
T − Cµν

Q2 −Πe
+

Pµν
L

Q2 −ΠL
+

Cµν

Q2 −Πc
(B5)

The terms with the tensor Cµν go like

Cµν

[
−1

Q2 −Πe
+

1

Q2 −Πc

]
= Cµν Πc −Πe

(Q2 −Πe)(Q2 −Πc)
(B6)

which can be ignored as Πc−Πe = O(ξ) in the numerator.
We are thus left with

Dµν
ret(Q) ≈

Pµν
T

Q2 −Πe
+

Pµν
L

Q2 −ΠL
. (B7)

at small anisotropy where we only include anisotropic
corrections in the denominators. The tensors PL and PT

are the same as in equilibrium while Πe and ΠL have
anisotropic corrections. (We call Πe = ΠT in the main
text of the paper.)

Appendix C: Details of numerical method

In this Appendix we discuss how to solve Eqs. (35)
and (36) numerically. Unlike the isotropic equation, Eq.
(31), the anisotropic equation has a non-vanishing source
term on the right hand side for all values of b. One thus
needs a different numerical solution method than that
developed in [48, 53, 54] for the equilibrium case. We

note that the differential equation for the function f
(3)
1 is

K
[
f
(3)
1 (b)

]
+

ik

2p(p+ k)

8

b2
f
(3)
1 (b) + C0(b)f (3)

1 (b)

= −1

2
C(b)
1 (b)f0 (C1)

but we will not discuss this function further as it is not
needed to evaluate Az and Ay in Eqs. (38) and (39)
For concreteness, we focus on solving Eq. (35). Defin-

ing a scaled function

G =
π

2

k

p(p+ k)m2∞

f
(1z)
1 (b)

b
, (C2)
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as well as scaled collision kernels C(t) = 2p(p+k)
k

1
m2

∞
C(b)

and variable t = m∞b, this equation becomes

−i

[
d2G

dt2
+

3

t

dG

dt
−G

]
+ C0(t)G

= −
[
C(a)

1 (t) +
1

2
C(b)

1 (t)

]
f0(t) (C3)

where f0(t) = π
2

k
p(p+k)m2

∞
b · f0/b2. As shown in [48],

we can write f0(t) = K1(t)/t + f
rest

0 (t) where f
rest

0 (t) is
function that is finite in the limit t → 0 and which we
know numerically using the methods of [48, 53].

We need to solve Eq. (C3), imposing the boundary
conditions that G(t) → 0 as t → ∞, as well as that
G(t) is finite as t → 0. These boundary conditions are
difficult to satisfy simultaneously for a numerical solu-
tion. Instead we find a numerical solutions g(t) of Eq.
(C3) with g(t → ∞) = 0 and a solution of the homoge-
neous equation without the source term that also satisfies
g0(t → ∞) = 0. In general, both g(t) and g0(t) blow up
as t → 0. However, we know that the solution we are
seeking can be written as

G(t) = g(t) +Ag0(t) (C4)

where A is chosen so that G(0) is finite.
We can find an explicit expression of A by using ana-

lytic solutions of Eq. (C3) for t ≪ 1. In that limit the
right hand side is[

C(a)

1 (t) +
1

2
C(b)

1 (t)

]
f0(t)

≈
[
C(a)

1 (t) +
1

2
C(b)

1 (t)

]
K1(t)/t ≈ a+ b log t (C5)

where a and b are constants that depend on the momenta
k and p as well as the masses m2

D and m2
∞. The differ-

ential equation becomes

−i

[
d2g

dt2
+

3

t

dg

dt
− g

]
+ C0(t)g = a+ b log t (C6)

which has general solution

g(t) = w(t) + α1w1(t) + α2w2(t) (C7)

where

w(t) = −ia− ib(log t+
2

t2
) (C8)

is an exact particular solution and w2(t) =
2J1(it)/(it) and w1(t) = π

2Y1(−it)/(−it) −
1
4 (2γE − 2 log 2 + iπ)w2(t) are solutions of the homoge-

nous equation such that w1(t) = 1/t2+ 1
2 log t+O(1) and

w2(t) = O(1) for small t. Similarly, the homogeneous
equation can be written as

g0(t) = β1w1(t) + β2w2(t). (C9)
The coefficients α1, α2, β1 and β2 can be found from Eqs.
(C7) and (C9) by equating the numerical solutions g(t)
and g0(t) and their derivatives with the analytic functions
at some small value tmin ≪ 1.

The small t behaviour of Eqs. (C7) and (C9) shows
that

A =
2ib− α1

β1
(C10)

which makes

G(0) = −ia− 1

2
ib+ α2 +

(2ib− α1)β2

β1
(C11)

finite. This is the expression that we need in order to
evaluate Eq. (38). All quantities are known for numerical
solutions g(t) and g0(t).

Eq. (C11) suffers from numerical cancellation errors
in the terms α2 − α1β2/β1. It is thus better to rewrite
these terms using Eqs. (C7) and (C9) which shows that

α2 −
α1β2

β1
=

g′g0 − gg′0 + g′0w − g0w
′

g0w′
2 − g′0w2

. (C12)

where all quantities are evaluated at tmin ≪ 1. The cul-
prit behind cancellation errors is the term g′g0 − gg′0. It
can be evaluated more precisely by noting that

GW (t) = g′(t)g0(t)− g(t)g′0(t). (C13)

solves the equation

d(t3GW )

dt
= −it3

[
C(a)

1 (t) +
1

2
C(b)

1 (t)

]
f0(t)g0 (C14)

which can be integrated to give GW (tmin) and thus a re-
liable value of G(0).
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