C K Jradeh

J David

O Teste

C Trojahn
email: cassia.trojahn@irit.fr

L'Apport Mutuel de la Combinaison des Tâches d'Interconnexion de Données et d'Alignement d'Ontologies pour l'Alignement Expressif

Keywords: Alignement d Ontology matching, data interlinking, 1, Internationalised Resources Identifier

Plusieurs méthodes ont été proposées pour aborder les tâches d'interconnexion de données et d'alignement d'ontologies, qui sont généralement traitées séparément. Dans cet article, nous présentons DICAP, un algorithme qui permet leur collaboration mutuelle. Les expériences réalisées montrent que l'ajout de relations owl:sameAs résultant de l'interconnexion de données permet de découvrir des correspondances ontologiques supplémentaires. De plus, la présence de correspondances ontologiques permet l'extraction de règles de liage supplémentaires et discriminantes.

Introduction

La représentation des connaissances basée sur les graphes de connaissance a gagné en popularité au cours des dernières décennies. Récemment, les graphes de connaissances sont utilisés par des moteurs de recherche comme Google [START_REF] Brickley | Google dataset search : Building a search engine for datasets in an open web ecosystem[END_REF], et par d'autres entreprises comme Amazon [START_REF] Krishnan | Making search easier : How amazon's product graph is helping customers find products more easily[END_REF]. Les graphes de connaissances RDF représentent des données structurées sous la forme d'entités et de relations entre elles. Ces relations sont représentées sous forme de triplets. Un triplet est formé d'un sujet, d'un prédicat et d'un objet. Les sujets et les prédicats sont des ressources, mais les objets peuvent être des ressources ou des littéraux. Les ressources sont identifiées par des identificateurs de ressources internationalisés (IRI 1). Les graphes de connaissance (Knowledge Graphs,ou KGs) sont souvent créés indépendamment les uns des autres. Par conséquent, ils peuvent contenir différents IRI qui font référence à la même entité du monde réel mais qui ne sont pas explicitement liés par la propriété d'équivalence owl:sameAs. La propriété owl:sameAs permet de déclarer que deux IRI différentes font référence à la même entité du monde réel. Le fait de lier ces IRI permet de compléter les graphes RDF. Le problème de liaison de différentes entités à travers différents graphes s'appelle l'interconnexion des données. De même, les ontologies sur lesquelles les graphes de connaissances s'appuient peuvent décrire des concepts et des propriétés qui sont reliées sémantiquement. Le problème de la recherche de relations entre les entités d'ontologies s'appelle l'alignement d'ontologies. De nombreuses méthodes ont été proposées dans la littérature pour résoudre l'interconnexion des données et l'alignement d'ontologies. Cependant, ces tâches sont généralement effectuées séparément. Dans cet article, nous étudions le bénéfice mutuel de la coopération entre ces deux tâches. Plus précisément, nous étudions les questions sui-vantes dans un contexte, encore peu étudié dans la littérature, des alignements expressifs :

1. Que peut apporter l'alignement d'ontologique à la tâche d'interconnexion des données ? 2. Que peut apporter l'interconnexion des données pour la tâche de mise en correspondance des ontologies ? Dans ce but, nous proposons l'algorithme DI-CAP qui, étant donné une paire de graphes de connaissances et leurs ontologies, permet d'effectuer à la fois l'interconnexion des données et l'alignement d'ontologies. Pour la tâche d'interconnexion des données, nous choisissons Linkex [START_REF] Atencia | Data interlinking through robust linkkey extraction[END_REF] et pour la tâche de mise en correspondance des ontologies, nous choisissons CA-NARD [START_REF] Thiéblin | CANARD complex matching system : results of the 2018 OAEI evaluation campaign[END_REF]. Linkex produit un ensemble de clés de liage, qui à leur tour sont utilisées pour établir des liens de type owl:sameAs entre les individus des graphes de connaissances. CANARD produit un ensemble de correspondances complexes entre les ontologies. Linkex utilisera ces correspondances pour générer un ensemble de clés de liage, chaque clé étant applicable à une paire de classes spécifique définie dans la correspondance. Nous supposons que la combinaison de CA-NARD et Linkex permet d'identifier un plus grand nombre de clés de liage discriminatoires, ainsi que la découverte de correspondances plus complexes. Le reste de l'article est organisé comme suit : la section 2 résume et discute les travaux liés qui ont été proposés pour l'interconnexion des données et l'alignement d'ontologies. La section 3 donne les définitions et explique les techniques utilisées dans cet article. La section 4 décrit l'algorithme DICAP. La section 5 décrit les évaluations réalisées et discute leur résultats. Enfin, la section 6 résume l'article et présente les directions pour les travaux futurs.

Travaux liés

Différentes méthodes ont été proposées pour résoudre le problème de l'interconnexion des données [START_REF] Volz | Silk -a link discovery framework for the web of data[END_REF][START_REF] Ngomo | Limes : A time-efficient approach for large-scale link discovery on the web of data[END_REF][START_REF] Saïs | L2R : A Logical Method for Reference Reconciliation[END_REF][START_REF] Al-Bakri | Uncertainty-sensitive reasoning for inferring sameas facts in linked data[END_REF][START_REF] Fuhr | Probabilistic datalog : Implementing logical information retrieval for advanced applications[END_REF]. Ces méthodes se répartissent en deux grandes catégories : les méthodes numériques et les méthodes logiques. Les approches numériques [START_REF] Volz | Silk -a link discovery framework for the web of data[END_REF][START_REF] Ngomo | Limes : A time-efficient approach for large-scale link discovery on the web of data[END_REF] réduisent la tâche d'interconnexion des données à une tâche de calcul de similarité. Les approches logiques [START_REF] Saïs | L2R : A Logical Method for Reference Reconciliation[END_REF][START_REF] Al-Bakri | Uncertainty-sensitive reasoning for inferring sameas facts in linked data[END_REF][START_REF] Fuhr | Probabilistic datalog : Implementing logical information retrieval for advanced applications[END_REF] définissent, quant à elles, un ensemble de règles ou d'axiomes permettant d'inférer des égalités entre individus. Les approches numériques calculent la similarité entre deux entités qui appartiennent à des graphes de connaissances différents. La similarité entre deux entités est calculée par des fonctions de similarité, basées sur les valeurs des propriétés de la paire d'entités donnée. Les entités qui sont suffisamment similaires sont considérées comme identiques et sont liées par la propriété owl:sameAs. Certaines approches numériques comme Silk [START_REF] Volz | Silk -a link discovery framework for the web of data[END_REF] permettent à l'utilisateur de spécifier tous les conditions que les entités doivent remplir pour être liées. D'autres, comme Limes [START_REF] Ngomo | Limes : A time-efficient approach for large-scale link discovery on the web of data[END_REF] utilisent différentes méthodes pour découvrir automatiquement des spécifications supplémentaires. Les approches logiques sont, quant à elles, divisées en approches basées sur les règles et sur les clés. Les premières sont basées sur des règles permettant de dériver des liens d'identité à partir des graphes d'entrée et de leurs ontologies [START_REF] Saïs | L2R : A Logical Method for Reference Reconciliation[END_REF][START_REF] Al-Bakri | Uncertainty-sensitive reasoning for inferring sameas facts in linked data[END_REF][START_REF] Fuhr | Probabilistic datalog : Implementing logical information retrieval for advanced applications[END_REF] [START_REF] Sabou | Survey on complex ontology matching[END_REF][START_REF] Faria | The agreementmakerlight ontology matching system[END_REF][START_REF] Faria | Aml and amlc results for oaei[END_REF], notamment les méthodes basées sur les instances, lexicales, structurales, sémantiques, et hybrides. Il existe deux types de correspondances, simples et complexes. Une correspondance simple fait référence à une relation sémantique de base entre deux concepts ou propriétés. Une correspondance complexe fait référence à un relation entre deux ontologies qui implique plusieurs classes ou propriétés. Il existe plusieurs méthodes pour extraire des correspondances simples [START_REF] Faria | The agreementmakerlight ontology matching system[END_REF][START_REF] Otero-Cerdeira | Ontology matching : A literature review[END_REF] et complexes [START_REF] Faria | Aml and amlc results for oaei[END_REF][START_REF] Sabou | Survey on complex ontology matching[END_REF]. L'article [START_REF] Faria | The agreementmakerlight ontology matching system[END_REF] présente un outil appelé Agree-mentMakerLight AML, utilisé pour aligner automatiquement des ontologies. L'outil utilise diverses mesures pour comparer les concepts et les relations entre différentes ontologies, telles que des mesures de similarité lexicale, syntaxique et sémantique. Il utilise également des sources de connaissances externes et des techniques d'apprentissage supervisé pour améliorer le processus d'alignement. Le papier évalue l'outil en utilisant des bancs d'essai standard et montre qu'il surpasse plusieurs outils d'alignement d'ontologies de pointe. Cependant, cela ne permet pas de générer des alignements complexes. Correspondances complexes ont été identifiées dans divers domaines, comme les ontologies médicales [START_REF] Fung | Synergism between the mapping projects from snomed ct to icd-10 and icd-10-cm[END_REF]. AMLC [START_REF] Faria | Aml and amlc results for oaei[END_REF] permet de générer des alignements complexes. AMLC est une version de l'AML développée pour la correspondance d'ontologies complexes. AMLC comprend une implémentation d'un algorithme de correspondance d'ontologies basé sur des règles d'association, qui effectue une extraction de motifs. Il existe peu d'approches comme PARIS [START_REF] Suchanek | Paris : Probabilistic alignment of relations, instances, and schema[END_REF] qui aligne les instances, les relations et les classes. La méthode calcule la probabilité d'équivalence des instances et des propriétés des différentes ontologies considérées de manière itérative jusqu'à ce qu'elle atteigne la convergence. Ensuite, elle calcule la probabilité d'équivalence entre les classes. DICAP, d'autre part, se concentre sur l'amélioration des résultats de CANARD et Linkex. Il fournit à CANARD les relations owl:sameAs nécessaires pour extraire de nouvelles correspondances. Il fournit également à Linkex des correspondances, ce qui lui permet d'extraire des clés de liage entre les classes équivalentes. L'impact des relations owl:sameAs sur la tâche de correspondance d'ontologies a été étudié en [START_REF] Raad | On the impact of sameas on schema matching[END_REF]. Les expériences menées montrent que l'inclusion de liens owl:sameAs a un impact positif sur les approches de correspondance de schémas basées sur les instances en augmentant la distance de JAC-CARD 2 entre les classes de l'ontologie considérée. Dans notre approche proposée, nous étudions d'une part l'impact de la relation owl:sameAs sur CANARD, qui relève des méthodes basées sur les instances pour la tâche de correspondance d'ontologies. D'autre part, nous étudions l'impact de l'utilisation de la correspondance sur l'extraction de clé de liage effectuée par Linkex.

Correspondances simples et complexes

Soient

Le système CANARD

CANARD 3 est une approche d'alignement qui permet de découvrir des correspondances complexes entre des ontologies peuplées en se basant sur des questions de compétences pour l'alignement (CQAs). Les CQAs représentent les besoins en connaissances d'un utilisateur. L'approche prend en entrée une paire de KGs, source et cible, leurs ontologies et les CQAs (exprimées en SPARQL) définies par l'utilisateur. Elle renvoie en sortie un ensemble de correspondances au format EDOAL 4 . L'approche est composée par plusieurs étapes :

Clés de liage

Les clés de liage sont des axiomes utilisés pour générer des liens entre une paire de graphes RDF décrits à l'aide de différentes ontologies [START_REF] Atencia | Data interlinking through robust linkkey extraction[END_REF]. Une clé de liage entre deux graphes RDF KG 1 et KG 2 est une expression de la forme Les clés de liage peuvent être construites par des experts du domaine ou extraites automatiquement de deux ensembles de données [START_REF] Abbas | Discovery of Link Keys in RDF Data Based on Pattern Structures : Preliminary Steps[END_REF][START_REF] Atencia | Data interlinking through robust linkkey extraction[END_REF][START_REF] Atencia | Link key candidate extraction with relational concept analysis[END_REF]. Une fois obtenues, les clés de liage peuvent être transmises à un outil de génération de liens tel que [START_REF] Saïs | L2R : A Logical Method for Reference Reconciliation[END_REF] pour générer l'ensemble des liens d'identité.

({⟨P 1 , Q 1 ⟩, ..., ⟨P n , Q n ⟩} linkkey ⟨C, D⟩) où ⟨C, D⟩ est une paire de concepts ap- partenant respectivement à KG 1 et KG 2 et ⟨P 1 , Q 1 ⟩, ..., ⟨P n , Q n ⟩ est une séquence non vide de paires de propriétés où pour chaque ⟨P i , Q i ⟩ dans {⟨P 1 , Q 1 ⟩, ..., ⟨P n , Q n ⟩}, P i appartient à KG 1 et Q i appartient à KG 2 .

Le système Linkex

Résultats et discussion

′ 1 et KG ′ 2 tels que KG 1 ⊆ KG ′ 1 et KG 2 ⊆ KG ′ 2 . 1 KG ′ 1 ← KG 1 , KG ′ 2 ← KG 2 ; 2 for λ dans Lks et chaque paire d'instances a, b ∈ KG i , i ∈ {1, 2} satisfaisant la condition de λ do 3 ajouter x owl : sameAs y à KG ′ i , où x ∈ a + et y ∈ b + ; 4 end 5 for y ≈ x ∈ KG i , i ∈ 1, 2 tel que Σ ∩ KG i = ∅, Σ\KG i ̸ = ∅, où Σ ∈ C(x), C(y), R(z, x), R(z,

9314

ObjectProp.

94020

Prop. d'ann.

16361

Table 1 -Caractéristiques du jeu de données.

situation stationnaire après 2 itérations. Dans l'état initial, nous avions parmi les clés de liage, la clé suivante :

({⟨edas:hasName, conference:has_a_name⟩} linkkey ⟨owl:Thing, owl:Thing⟩)

Nous avions également 221 correspondances complexes et simples obtenues par canard. La saturation de edas_100 et conference_100 avec les clés de liage initiales permet d'obtenir des relations owl:sameAs supplémentaires entre ces deux RDF KGs. En conséquence, le nombre de correspondances est passé de 221 à 341. La valeur moyenne de la confiance des correspondances obtenues a également augmenté de 0.831 à 0.878 (passant par 0,864 dans l'état intermédiaire) comme indiqué dans le Tableau 3. Ces clés de liage possèdent une valeur hmean plus élevée que celles des clés originales, comme indiqué dans le Tableau 5. Nous avons réalisé une autre expérience avec edas_100 et ekaw_100. Les résultats sont cohérents avec les résultats de l'expérience présentée.

Les correspondances ont été utilisées comme en-

Comparaison avec CANARD

Figure 1

 1 Figure 1 -L'architecture de DICAP.

]. Les approches basées sur les clés visent à extraire un ensemble de clés. Chaque clé est constituée d'un ensemble de propriétés et d'une classe, les propriétés permettant d'identifier de manière unique une instance qui appartient à la classe spécifiée. Selon cette définition, deux instances qui ont les mêmes valeurs pour les propriétés d'une clé sont considérées comme identiques. Plus précisément, une clé a la forme ({p 1 , ..., p k } key C) où p 1 , • • • , p k sont des propriétés et C une classe.

	pondances entre les entités de deux ontologies.
	Il existe différents types de méthodes d'aligne-
	ment
	Un exemple de clé est le suivant :
	({creator, title} key Work)
	indiquant que lorsque deux instances de la classe
	Work partagent respectivement les valeurs du rôle
	creator et du rôle title, elles désignent la même
	entité.
	Pour utiliser des approches basées sur les clés
	afin de relier une paire d'ensembles de données,
	les clés candidates sont d'abord extraites des en-
	sembles de données, puis les meilleures clés candi-
	dates sont sélectionnées en fonction de différentes
	mesures de qualité [21, 9, 2]. Lorsque les graphes
	RDF sont décrits à l'aide de la même ontologie,
	les clés peuvent être utilisées directement pour in-
	terconnecter ces graphes RDF. Par contre, pour
	interconnecter des graphes RDF qui sont décrits
	à l'aide de différentes ontologies, les clés doivent
	être combinées avec des alignements d'ontologies
	qui relient les propriétés et les classes. Ainsi pour
	interconnecter deux graphes RDF il est nécessaire
	d'avoir soit la même ontologie décrivant les deux
	graphes, soit un alignement entre les ontologies.
	Les clés de liage (Section 3.3) permettent de sur-
	monter cette limitation.
	D'autre part, les méthodes d'alignement d'on-
	tologies sont utilisées pour trouver des corres-

 Elle est définie comme la différence entre la taille de l'intersection des classes et la taille de leur union, divisée par la taille de l'union. Le concept Paper ⊓ ∃hasDecision.Acceptance désigne les entités qui appartiennent au concept Paper et qui ont une relation hasDecision ayant la valeur Acceptance. Le degré de confiance de cette correspondance est de 0,8.

	La correspondance			
	⟨o1:AcceptedPaper,		
	o2:Paper ⊓ ∃o2:hasDecision.o2:Acceptance,
				≡, 0.8⟩		
	est une correspondance complexe entre l'expres-
	sion simple o1:AcceptedPaper et l'expression com-
	plexe o2:Paper ⊓ ∃o2:hasDecision.o2:Acceptance.
	Elle indique que le concept AcceptedPaper
	dans	o1	est	équivalent	au	concept
	Paper ⊓ ∃hasDecision.Acceptance dans o2.

o 1 et o 2 deux ontologies. Une correspondance c est définie par un quadrulet ⟨e o1 , e o2 , r, n⟩ où e o1 et e o2 sont des membres de la correspondance. Ils peuvent être des expressions simples ou complexes entre les entités e o1 et e o2 : 1. une correspondance est dite simple, si e o1 et e o2 sont toutes deux des expressions simples (atomiques) ; 2. une correspondance est dite complexe, si au moins l'une des expressions e o1 ou e o2 est une expression complexe ; 3. r est une relation entre e o1 et e o2 , par exemple l'équivalence (≡), plus générale (⊑), plus spécifique (⊒) ; 4. une valeur n (généralement comprise entre [0,1]) peut être associée à la correspondance c pour indiquer le degré de confiance que la relation r existe entre e o1 et e o2 . 2. La distance de JACCARD mesure la similarité entre deux ensembles(classes).

 Elle stipule que si deux entités appartenant respectivement aux concepts C et D partagent au moins une valeur pour chaque paire de propriétés ⟨P i , Q i ⟩ éventuellement multivaluées alors elles sont identiques. Un exemple de clé de liage est : ({⟨creator, auteur⟩, ⟨title, titre⟩} linkkey

	⟨NonFiction, Essai⟩)	(1)

en déclarant que lorsqu'une instance de la classe NonFiction et une instance de la classe Essai, partagent des valeurs pour les rôles auteur et author, et pour les rôles title et titre, respectivement, elles désignent la même entité. Dans ce cas on dit que ces instances satisfont la condition de la clé de liage

[START_REF] Abbas | Discovery of Link Keys in RDF Data Based on Pattern Structures : Preliminary Steps[END_REF]

.

 cette clé de liage candidate. Finalement, les clés de liage candidates peuvent être filtrées grâce à des mesures d'estimation de leur qualité comme la couverture et la discriminabilité[START_REF] Atencia | Data interlinking through robust linkkey extraction[END_REF]. La couverture est définie comme la proportion d'instances des deux classes qui pourraient être liées par la clé de liage. La discriminabilité mesure la proximité d'une clé de liage candidate à un appariement 1 à 1. L'utilisation à la fois de la couverture et de la discriminabilité établit un équilibre entre la précision et la généralité des clés de liage candidates. A l'instar de la précision et du rappel, ces mesures peuvent être agrégées par la moyenne harmonique (hmean). Une paire de graphes de connaissances KG 1 et KG 2 , un ensemble de CQA et un seuil de confiance ρ. Output : Un ensemble d'alignements et un ensemble de clés de liage entre KG 1 et KG 2 . Une paire de graphes de connaissances KG 1 et KG 2 et un ensemble de correspondances CC.

		Algorithme 2 : Saturate with Correspon-	
		dences	
		Input : Output : Une paire de graphes de	
		connaissances KG ′ 1 et KG ′ 2 telle que KG 1 ⊆ KG ′ 1 et KG 2 ⊆ KG ′ 2 .	
	1 KG ′ 1 ← KG 1 , KG ′ 2 ← KG 2 ;	
	2 for ⟨c 1 , c 2 , r, n⟩ ∈ CC s'il existe un individu a	
	3	tel que c 1 (a) ∈ KG ′ i pour i ∈ {1, 2} do Ajouter c 2 (a) à KG ′ i ;	
	4 end 5 return KG ′ 1 , KG ′ 2 ;	5	Appeler l'algorithme 2 et l'algorithme 3 pour saturer KG 1 et KG 2 en utilisant CC
		4 L'algorithme DICAP		(KG 1 devient KG ′ 1 et KG 2 devient KG ′ 2) ;
		Cette section présente DICAP 6 , un algorithme 5.1 Implémentions qui vise à intégrer les pipelines d'interconnexion de données et d'alignement complexe des onto-logies. L'algorithme prend en entrée une paire DICAP 7 est un logiciel open-source écrit en Java. L'architecture de DICAP est divisée en 5 modules complémentaires comme indiqué sur la Figure 1. Les modules de saturation sont respectivement responsables de la saturation des clés de liage et de la saturation des correspondances. Le module de saturation des correspondances implémente l'algorithme 2 et le module de saturation par clés de liage implémente l'algorithme 3. Ces modules utilisent à leur tour les modules d'analyse des clés de liage et des correspondances. Les modules d'analyse utilisent respectivement de graphes de connaissances KG al-les API OWL et d'alignement [8] pour analyser	6 7 8 9 10	for ⟨c 1 , c 2 , r, n⟩ ∈ CC do Lks ← Linkex(KG ′ 1 , KG ′ 2 , c 1 , c 2); end if Il n'y a pas de nouvelles clés de liage ou de correspondances générées à partir de KG ′ 1 et KG ′ 2 then enter ← false;
		gorithme a atteint un état stationnaire (aucune les clés de liage et les alignements donnés par le clé de liage ou correspondance supplémentaire ne module principal. L'API d'alignement utilise éga-des concepts présents dans une correspondance. de concepts pour les individus appartenant à l'un fonctionne simplement en ajoutant des assertions connaissances en utilisant les correspondances. Il L'algorithme 2 permet de saturer les graphes de connaissance. ments ne peuvent être extraits des graphes de quence, aucune nouvelles clés de liage ou aligne-sances ne peuvent plus être enrichis. En consé-peut être extraite) et que les graphes de connais-lement l'API OWL.		Linkex 5 est un logiciel parmettant d'extraire des clés de liage à partir d'une paire de KG RDF itère sur les entrées communes aux deux index pour génèrer un troisième index associant chaque paire de sujets à son ensemble maximal de pro-priétés pour lequels les paires de sujets partage au moins une valeur. Ce troisième index sert d'ensemble de descriptions, ou contexte formel, trouver de correspondances. sence de ces liens, CANARD ne pourra pas graphe de connaissances source et cible. En l'ab-NARD de trouver des correspondances entre le L'ajout de ces liens owl:sameAs permet à CA-ject→ subject properties). Ensuite, l'algorithme cible) sont indexés sous la forme de o → sp (ob-suit : d'abord les triplets de chaque KG (source et source et cible. L'algorithme fonctionne comme
		Cela permet d'extraire des clés de liage entre		à partir duquel un treillis de concepts est calculé.
		des classes équivalentes simples et complexes.		Chaque intent du treillis de concepts résultat re-
		Les assertions de classes complexes ne sont gé-	
		néralement pas explicitement indiquées dans les	

présente une clé de liage candidate et l'extent associé correspond à l'ensemble de liens générés par 5. https ://gitlab.inria.fr/moex/linkex/ 1 et KG 2 , un ensemble de CQA et un seuil de confiance ρ. Il fonctionne comme suit, tout d'abord, il appelle les systèmes CANARD et Linkex qui renvoient, respectivement, un ensemble d'alignements CC et de clés de liage Lks. Ces correspondances et clés de liage sont ensuite utilisées pour saturer KG 1 et KG 2 en utilisant les algorithmes 2 et 3. Comme indiqué dans la ligne 1, l'algorithme utilise un booléen, appelé enter, initialisé à true, qui permet à l'algorithme d'entrer dans la boucle. L'algorithme appelle également Linkex pour générer un ensemble de clés de liage entre la paire de classes présentes dans chaque correspondance (Lignes 6 à 8). Après, si il n'y a pas de nouvelles correspondances ou de clés de liage générées, enter est mis à false. Cela signifie que l'6. https ://github.com/dace-dl-anr/DICAP Algorithme 1 : DICAP Input : 1 Lks← ∅, CC ← ∅, enter ← true; 2 while enter do 3 CC ← CANARD(KG 1 , KG 2 , CQA, ρ); 4 Lks ← Linkex(KG 1 , KG 2); 11 end 12 KG 1 ← KG ′ 1 , KG 2 ← KG ′ 2 13 end 14 return CC, Lks; graphes de connaissances, ce qui ne permet pas d'extraire des clés de liage entre elles. L'algorithme 3 permet de saturer les graphes de connaissances en utilisant des clés de liage. Premièrement il ajoute la relation owl:sameAs entre les individus satisfaisant la condition de clé de liage ou par les mêmes individus par transitivité. Ensuite, il ajoute de nouvelles assertions de concept et de rôle impliquées par la présence de relations owl:sameAs. Nous utilisons s+ pour désigner la fermeture transitive de l'individu s par rapport à la relation ≈ (apparaissant dans les assertions), c'est-à-dire que s+ est l'ensemble tel que s ∈ s+, et si c owl:sameAs b ou b owl:sameAs c avec un certain c ∈ s+ alors b ∈ s+. Le premier module est le module principal qui implémente l'algorithme 1, il utilise l'API OWL [14] pour analyser les graphes de connaissances d'entrée. Ce module est chargé d'appeler Linkex et CANARD. Il utilise les modules de saturation et les modules d'analyse.

 Nous avons choisi un sous-ensemble du jeu de données Conférence de la campagne OAEI 8 . Saturate with Link keys Input : Une paire de graphes de connaissances KG 1 et KG 2 , un ensemble de clés de liage Lks et un seuil de confiance de ρ. Output : Une paire de graphes de connaissances KG

	Nous considérons la paire d'ontologies peuplées
	edas_100 et conference_100 qui présentent les
	caractéristiques indiquées dans le Tableau 1 :
	Dans cette expérience, nous avons lancé l'Algo-
	rithme 1 des jeux de données edas_100 et confe-
	rence_100 avec une valeur de confiance de 0.7.
	Les résultats sont résumés dans le Tableau 2.
	Dans cette expérience, nous avons atteint une

7. https ://github.com/dace-dl-anr/DICAP 8. https ://oaei.ontologymatching.org/ Algorithme 3 :

Table 2 -

 2 Le nombre de correspondances et de clés de liage entre classes simples et complexes équivalentes à différentes itérations.

trée pour Linkex afin d'obtenir les clés de liage suivantes : ({⟨rdfs:label, rdfs:label⟩} linkkey ⟨edas:Review, conference:Review⟩) ({⟨rdfs:label, rdfs:label⟩} linkkey ⟨edas:Review, ∃conference:has_authors.conference:Review⟩)

Table 3 -

 3 Comparaison entre CANARD et DICAP. Le but de cet algorithme est de tirer parti des résultats de chaque tâche pour améliorer les résultats de l'autre. Notre algorithme aborde la tâche d'interconnexion de données en utilisant des clés de liage extraites par Linkex. De plus, il utilise le système CANARD pour aborder le problème d'alignement d'ontologies en produisant des correspondances simples et complexes entre les graphes de connaissances considérés. Nous avons mis en oeuvre cet algorithme et effectué une expérience qui révèle l'importance de cet algorithme pour améliorer les résultats des systèmes considérés, c'est-à-dire Linkex et CA-NARD. Notamment, DICAP a augmenté le nombre et amélioré la discriminabilité et aussi la couverture des clés de liage générées par Linkex. DICAP a également augmenté le nombre de correspondances simples et complexes générées par CANARD, en augmentant en conséquence la couverture. Ainsi, notre hypothèse est valide. Cependant, la précision de ces correspondances est inférieure à celle générée par CANARD. Afin d'améliorer cela, nous prévoyons d'enrichir les graphes de connaissances avec seulement des clés de liage entre des classes équivalentes. Cela permettra de créer des liens plus précis, conduisant à la génération de correspondances complexes plus précises. Nous prévoyons également d'étendre ce travail dans plusieurs directions. Parmi elles, nous prévoyons tout d'abord de prendre en compte de nouvelles classes complexes qui n'ont pas été prises en compte dans la version actuelle, telles que celles formées à l'aide du constructeur de rôle inverse. Cela permet de saturer les graphes de connaissances avec de nouvelles assertions de classes complexes, ce qui permet d'extraire des clés de liage entre ces classes. Nous aimerions également réaliser un ensemble d'expériences avec des jeux de données réels dé-

		DICAP CANARD	le nombre de clés de liage obtenues par Linkex
	Précision intrinsèque	0.076	0.109	et a également augmenté le nombre de correspon-
	Couverture de CQA	0.5	0.357	dances obtenues par CANARD.
	Table 4 -La précision et le couverture des	6 Conclusion
	correspondances générées par DICAP et CA-NARD.	Dans cet article, nous avons présenté DICAP, un algorithme combinant l'exploitation de straté-
				gies d'interconnexion de données et d'alignement
	mettent de générer des liens similaires à une cor-	d'ontologies.
	respondance 1 à 1. L'augmentation de la couver-	
	ture est causée par la capacité de ces clés de liage	
	à lier plus d'entités. Puisque la probabilité que les	
	instances partagent des valeurs lorsque les entités	
	appartiennent à des classes équivalentes est plus	
	élevée.			
	Par exemple, le premier clé de liage dans le Ta-	
	bleau 5b			
	({⟨rdfs:label, rdfs:label⟩)} linkkey		
	⟨edas:Review, conference:Review⟩)	
			(2)	
	permet de relier des entités des classes	
	edas:Review et conference:Review si elles par-	
	tagent les mêmes valeurs pour la propriété	
	rdfs:label. Cela restreint le domaine d'application	
	de la clé de liage en permettant de ne relier	
	que des entités de ces classes, ce qui augmente	
	la discriminabilité. Cela permet également de	
	trouver plus d'instances satisfaisant la condition	
	de cette clé de liage, car il est plus probable	
	que les instances partagent des valeurs pour la	
	propriété rdfs:label si elles appartiennent à des	
	classes équivalentes. Ce n'est pas le cas pour la	
	première clé de liage dans le Tableau 5a.	
	({⟨rdfs:label, rdfs:label⟩)} linkkey		
		⟨owl:Thing, owl:Thing⟩)	
	qui relie des entités de n'importe quelle paire	
	de classes, rendant ainsi sa correspondance loin	
	d'être une correspondance de 1 à 1 et donc moins	
	discriminante. La couverture de cette clé de liage	
	est également plus faible que la clé de liage 2 car	
	il est moins probable que les entités partagent des	
	valeurs lorsqu'elles appartiennent à des classes	
	non équivalentes.			
	Par conséquent, l'intégration de CANARD et	
	Linkex dans DICAP a augmenté la qualité et	

Table 5 -

 5 Comparaison entre les trois premiers clés de liage (selon hmean) obtenues uniquement par Linkex et les clés de liage obtenues par DICAP. crits avec des ontologies riches telles que dbpedia et wikipedia.

PréliminairesDans cette section, nous introduisons les définitions nécessaires à la compréhension du reste de l'article. Nous décrivons également les systèmes CANARD (Complex Alignment Need and Abox based Relation Discovery) et Linkex qui sont utilisés par l'algorithme que nous proposons. CANARD traite la tâche de mise en correspondance d'ontologies en produisant des correspondances expressives entre une paire d'ontologies peuplées par des instances. Linkex est capable d'aborder la tâche d'interconnexion des données en produisant un ensemble de clés de liage, ces clés de liage représentent des axiomes permettant de relier des entités à travers une paire de graphes de connaissances différents.Nous commençons par définir une correspondance simple et les correspondances complexes.

ExpérimentationDans cette section, nous décrivons d'abord l'architecture de DICAP et ensuite nous discutons les expériences menées.

Remerciements

Ce travail a été partiellement financé par le projet DACE-DL, ANR.