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COMPUTATION OF EXCITED STATES FOR THE NONLINEAR

SCHRÖDINGER EQUATION: NUMERICAL AND THEORETICAL

ANALYSIS

CHRISTOPHE BESSE, ROMAIN DUBOSCQ, AND STEFAN LE COZ

Abstract. Our goal is to compute excited states for the nonlinear Schrödinger
equation in the radial setting. We introduce a new technique based on the

Nehari manifold approach and give a comparison with the classical shooting

method. We observe that the Nehari method allows to accurately compute
excited states on large domains but is relatively slow compared to the shooting

method.

1. Introduction

We consider the nonlinear Schrödinger equation

iut + ∆u+ f(u) = 0 (1)

where u : R × Rd → C and f ∈ C1(R,R) is an odd function extended to C by
setting f(z) = f(|z|)z/|z| for all z ∈ C \ {0}. Equation (1) arises in various phys-
ical contexts, for example in nonlinear optics or in the modelling of Bose-Einstein
condensates. For physical applications as well as for its numerous interesting math-
ematical properties, (1) has been the subject of an intensive research over the past
forty years. We refer for example to the books of Cazenave [12], Fibich [17] and
Sulem and Sulem [24] for an overview of the known properties of (1) and references.

In this paper, we focus on special solutions of (1), the so-called standing waves.
They are solutions of the form eiωtφ(x) with ω > 0 and φ satisfying{

−∆φ+ ωφ− f(φ) = 0,
φ ∈ H1(Rd) \ {0}. (2)

Among solutions of (2), it is common to distinguish between the ground states, or
least energy solutions, and the other solutions, the excited states. A ground state
is a solution of (2) minimizing among all solutions of (2) the functional S, often
called action, defined for v ∈ H1(Rd) by

S(v) :=
1

2
‖∇v‖2L2 +

ω

2
‖v‖2L2 −

∫
Rd

F (v)dx, (3)

where F (z) :=
∫ |z|

0
f(s)ds for all z ∈ C. An excited state is a solution of (2) which

is not a ground state. In general, we shall refer to any solution of (2) as bound
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state. Sufficient and almost necessary hypotheses on f to ensure the existence of
bound states are known since the fundamental works of Berestycki and Lions [7, 8]
and Berestycki, Gallouët and Kavian [6]. Under these hypotheses, it is proved in
[6, 7, 8] that, except in dimension d = 1 where all bound states are ground states,
there exist ground states and infinitely many excited states.

Note that the terminology ground state may be understood in different ways
depending on the context. Some authors may call ground state any minimizer of
the energy functional under the mass constraint. For power-type mass-subcritical
nonlinear Schrödinger equations, this definition will coincide with ours, However, in
other settings such as for the power-type mass-supercritical nonlinear Schrödinger
equations, the two definitions do not coincide any more (there is no ground states
in the later sense).

With our definition of ground states, it has long been established for power-
type nonlinearities that ground states are positive, radial, and unique (see [19, 20]).
On the other hand, excited states will necessarily change sign, and may even be
complex valued (see e.g. [21]). They also need not to be radial, nor to even have
any kind of symmetry group (as was shown recently in [3]).

There are numerous works devoted to the numerical calculations of ground states.
Among many others, we find the seminal work of Bao and Du [4] devoted to the
gradient flow with discrete normalisation which has been used in many settings
(including by the authors of the present paper in the context of quantum graphs
[9, 10]). We also mention the work of Choi and McKenna [13] devoted to the
numerical implementation of the Mountain Pass approach, which has also been
followed by numerous extension and improvements (see e.g. [22]). The Mountain
Pass approach can be modified to compute nodal states, as was done by Costa, Ding
and Neuberger [16], whose approach was later followed by Bonheure, Bouchez,
Grumiau, and van Schaftingen [11]. Not many other works in the literature are
devoted to the calculation of excited states, and to our knowledge this paper is the
first one to present an approach based on the Nehari manifold.

Our goal in this article is to develop numerical methods for the computation
of excited states. We will also take this opportunity to study numerically some
properties of the excited states and establish some conjectures that could be further
investigated theoretically.

The two methods that we are considering are the shooting method and the Nehari
method. The shooting method is a classical method for the computation of solutions
of boundary value problems. It consists in transforming the d-dimensional partial
differential equation into an ordinary differential equation by considering radial
solutions. The boundary value problem for the ordinary differential equation is then
converted into an initial value problem, which can be easily solved using a standard
scheme such as the Runge-Kutta 4th order method. In the present case, since we
are working with an elliptic problem, we are led to consider initial conditions on
the solution and its first derivative. The first derivative is necessarily set to 0 since
its originating from a smooth radial function. We are thus left with the initial value
of the solution which will be used as a parameter to be chosen in order to recover
the boundary condition at infinity. The method is described in Section 3.

The idea of the Nehari method originates from the variational characterization of
bound states as minimizers of the action functional under constraints build upon the
Nehari functional. In the case of the ground state, we simply minimize the action
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among functions for which the Nehari functional vanishes. To obtain excited states
more elaborate constructions are required. For example, one may minimize the
action on functions having non-trivial positive and negative parts both satisfying the
Nehari constraint. We establish the existence of a solution (called least energy nodal
minimizer) to this variational problem in a radial setting in Theorem 2.3. We refer
to Section 2 for more details on the theoretical background. The numerical approach
is based on a projected gradient method which consist in one step of gradient flow
for the action followed by a projection on the chosen space of constraints. The
method is described in Section 4. While being a standard theoretical tool, the
Nehari approach has been seldom used in numerical analysis. To our knowledge,
this paper is the first to investigate the computation of excited states using a Nehari
approach.

While the shooting method is the go-to method for finding excited states, we
identified some limitations of this approach. Indeed, it can only compute radial
excited states, while the Nehari method could be extended to non-radial problems.
Moreover, even in the radial case, the length of the interval on which the solution is
computed is limited for the shooting method due to propagation of the error from
the initial condition. This issue is not present for the Nehari approach. On the
other hand, the convergence of the Nehari approach is much slower compared to
the shooting method which has a maximal number of iteration for a given precision.
The two methods are discussed in Section 5.

We conclude this paper by some numerical experiments. We investigate numer-
ically the relation between the initial values of the bound states and their total
number of nodes. We also study the positions of the nodes and the extremal val-
ues between two consecutive nodes. For each case, we provide some guess on the
underlying behavior. This material is presented in Section 6.

2. Theoretical approach for the minimization over the Nehari
manifold

Our goal in this section is to present some theoretical elements around ground
states and excited states and the Nehari minimization approach. We start by
reviewing some well-known facts for the existence and properties of ground states
and excited states. We also present the classical variational characterization of
ground states as minimizers on the Nehari manifold (see Proposition 2.1). The
rest of the section is then devoted to the statement and proof of a characterization
of the first nodal radial excited state as a minimizer on the Nehari nodal set (see
Theorem 2.3). While the approach to obtain Theorem 2.3 borrows elements from
the existing literature, the result itself seems to be new.

We consider (2) with solutions belonging to H1(Rd,R). A typical example for
f is the power-type nonlinearity f(u) = |u|p−1u, 1 < p < 2∗ − 1, where 2∗ is the
critical Sobolev exponent, i.e. 2∗ = 2d

d−2 if d > 3, 2∗ = ∞ if d = 1, 2. More

generally, we assume that f : R → R verifies the following hypotheses (which are
not optimal, but sufficient for our purpose).

(H1) (regularity) The function f is continuous and odd.
(H2) (subcriticality) There exists 1 < p < 2∗ − 1 such that for large s, |f(s)| .

|s|p.
(H3) (superlinearity) At 0, lims→0

f(s)
s = 0.
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(H4) (focusing) There exists ξ0 > 0 such that F (ξ0) =
∫ ξ0

0
f(s)ds >

ξ20
2 .

Under (H1)-(H4), it is well known (see [6, 7]) that there exist ground state solu-
tions, i.e. solutions with minimal action (see (3) for the definition of the action)
among all possible solutions to (2). Our definition of ground states as minimal ac-
tion solutions is very common in the analysis of nonlinear elliptic partial differential
equations. The terminology ground state has however several other acceptations
in other contexts. E.g. when working with Schrödinger equations modelling Bose-
Einstein condensation, one might call ground state a minimizer of the energy on
fixed mass constraint.

Uniqueness of the ground state holds if f satisfies in addition to (H1)-(H4) some
complementary requirements, e.g. if f is of power-type, see [20]. When d > 2, it was
proved in [6, 8] that there exists an infinite sequence of excited states, i.e. solutions
to (2) whose action is not minimal (actually, the corresponding sequence of actions
tends to infinity). Moreover, under additional assumptions on the nonlinearity (e.g.
if d = 2 and f is of power-type), then there exists only one radial excited state with
a given number of nodes, see [14, 15].

Recall that the action functional S : H1(Rd) → R is defined in (3). It is a C1

functional (see e.g. [2]) and u is a solution of (2) if and only if S′(u) = 0. We define
the Nehari functional by

I(u) = 〈S′(u), u〉 = ‖∇u‖2L2 + ‖u‖2L2 −
∫
Rd

f(u)udx.

The Nehari manifold is defined by

N = {u ∈ H1(Rd) \ {0} : I(u) = 0}.

Define the Nehari level by

mN = inf{S(v) : v ∈ N}.

In addition to (H1)-(H4), we assume the following.

(H5) The function s→ f(s)
s is increasing for s > 0.

(H6) (Ambrosetti-Rabinowitz superquadraticity condition) There exists θ > 2
such that θF (s) < sf(s) for all s > 0.

Then under (H1)-(H6), the following holds (see e.g. [25] and the reference cited
therein).

Proposition 2.1. For every sequence (un) ∈ N such that

lim
n→∞

S(un) = mN ,

there exist u∞ ∈ N and (yn) ⊂ Rd such that

lim
n→∞

‖un(· − yn)− u∞‖H1 = 0.

Moreover, u∞ is a ground state solution of (2).

We now want to construct variational characterizations of excited states which
can be used in numerical approaches. Based on Proposition 2.1, it is natural to try
to generalize the Nehari manifold approach. Several directions of investigations are
possible. The most natural one is probably to define the Nehari nodal set as

Nnod = {u ∈ H1(Rd) : I(u+) = 0, I(u−) = 0, u± 6= 0}.
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where u+ = max(u, 0) and u− = max(−u, 0). Define the Nehari nodal level by

mNnod
= inf{S(v) : v ∈ Nnod}.

Remark 2.2. An approach based on minimization of the energy on mass constraints
for the positive and negative part of the function cannot work, as the minimizer
that we might obtain would be (formally) a solution of an equation of the form

E′(u) + λ+M
′(u+) + λ−M

′(u−) = 0,

with potentially different Lagrange multipliers λ±. This issue is avoided with the
Nehari approach.

We have

mNnod
= 2mN . (4)

Indeed, let u ∈ Nnod. Since u+ and u− are both in N , we have

S(u) = S(u+) + S(u−) > 2mN ,

and therefore mNnod
> 2mN . Let u∞ be a minimizer for mN and for (yn) ⊂ Rd,

define

un = u∞(·+ yn)− u∞(· − yn). (5)

When |yn| → ∞, we have

S(un)→ 2mN ,

and this proves (4). Unfortunately, mNnod
is not achieved. Indeed, suppose on

the contrary that unod realizes the minimum for mNnod
. Since u±nod ∈ N and

mNnod
= 2mN , both u+

nod and u−nod realize the minimum for N and are ground
states of (2). In particular, they are both regular, and by the maximum principle,
both have to be positive or negative on the whole Rd, which is a contradiction.
Therefore mNnod

is not achieved - from (5), we can easily guess that this is due to a
loss of compactness in the minimizing sequences. On the other hand, if the power
nonlinearity |u|p−1u is replaced by a Choquart/Hartree term (e.g. (|x|−1 ∗ |u|2)u in
R3), then it is possible to obtain nodal critical points by minimizing S on N+∩N−,
see [18]. To overcome this issue, we decide to work in a radial setting (recall from
Strauss’ Lemma [23] that the injection H1

rad(Rd) ↪→ Lq(Rd), 2 < q < 2∗ is compact
whenever d > 2). Define

Nnod,rad = {u ∈ H1
rad(Rd) : I(u+) = 0, I(u−) = 0, u± 6= 0},

and

mNnod,rad
= inf{S(v) : v ∈ Nnod,rad}.

Then the following result gives the existence of a minimizer for mNnod,rad
.

Theorem 2.3. For every sequence (un) ∈ Nnod,rad such that

lim
n→∞

S(un) = mNnod,rad

there exists u∞ ∈ Nnod,rad such that

lim
n→∞

‖un − u∞‖H1 = 0.

Moreover, u∞ is a nodal solution of (2) with exactly two nodal domains. We say
that u∞ is a least nodal excited state.
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Remark 2.4. Minimizing on Nnod,rad is intrinsically more difficult that minimizing
on N . Indeed, Nnod,rad is not a manifold, as the functionals

u ∈ H1(Rd)→ ‖∇u±‖2L2

are not C1 (see the discussion after Theorem 18 in [25]).

The rest of this section is devoted to the proof of Theorem 2.3. We start with
some preliminary lemmas.

Lemma 2.5. The constant 0 is a local minimum for S. Let u ∈ H1(Rd) \ {0}.
There exists a unique su ∈ (0,∞) such that I(suu) = 0. Moreover, S(suu) =
maxs∈(0,∞) S(su) > 0. If I(u) < 0, then su < 1, whereas if I(u) > 0, then su > 1
and S(u) > 0.

Proof. Let u ∈ H1(Rd) \ {0} and define h : (0,∞)→ R by

h(s) := S(su) =
s2

2
‖u‖2H1 −

∫
R
F (su)dx.

Since F is differentiable, so is h and we have

h′(s) = s‖u‖2H1 −
∫
R
f(su)udx.

Remark that sh′(s) = I(su). Due to (H5), the derivative h′ can vanish only once
in (0,∞). Indeed, assume by contradiction that there exist 0 < s1 < s2 such that
h′(s1) = h′(s2) = 0. Then we have∫

R

f(s1u)

s1u
u2dx =

∫
R

f(s2u)

s2u
u2dx.

Since by (H5) s → f(s)
s is increasing, we have a contradiction. Since f(s) = o(s)

for s→ 0, we have S(su) > 0 if s is small enough. On the other hand, (H6) implies
that

∂s
F (s)

s2
=
f(s)s− 2F (s)

s3
>

(θ − 2)

s

F (s)

s2
,

i.e. F is superquadratic and therefore for s large we must have S(su) < 0. Hence
h′ vanishes exactly once at su, h′(s) > 0 for s < su and h′(s) < 0 for s > su.
Moreover, h(su) = maxs∈(0,∞) h(s). Since S(su) = h(s) and I(su) = sh′(s), this
concludes the proof. �

Define Nrad := N ∩H1
rad(Rd). We have the following compactness result.

Lemma 2.6. Let d > 2. Let (un) ⊂ Nrad and assume that S(un) is bounded. Then
(un) is bounded in H1(Rd) and there exists u∞ ∈ H1

rad(R) \ {0} such that (up to
extraction of a subsequence) we have

un ⇀ u∞ weakly in H1
rad(R).

Moreover, there exists s∞ > 0 such that s∞u∞ ∈ Nrad and S(s∞u∞) 6 lim infn→∞ S(un).

Proof. Take a sequence (un) ∈ Nrad and assume that S(un) is bounded. Arguing
by contradiction, we assume that νn := ‖un‖H1 → ∞. Define a sequence (vn) ⊂
H1

rad(Rd) by

vn :=
un
νn
.
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Then (vn) is bounded in H1
rad(Rd) and there exists v∞ ∈ H1

rad(Rd) such that vn ⇀
v∞ weakly in H1

rad(Rd). We claim that v∞ 6= 0. Arguing again by contradiction,
assume that v∞ = 0. By Lemma 2.5, for any s > 0, we have

S(un) = S(νnvn) > S(svn) =
s2

2
−
∫
R
F (svn)dx.

Since d > 2, the injection H1
rad(Rd) ↪→ Lq(Rd) is compact for any 2 < q < 2∗.

Combined with (H2), this implies weak continuity of u →
∫
Rd F (u)dx. Since we

assumed v∞ = 0, for n large we have

S(un) >
s2

4
,

which is a contradiction since S(un) is bounded and s can be chosen a large as
desired. Hence v∞ 6= 0. Moreover, since I(un) = 0, we have

0 6
S(un)

ν2
n

=
1

2
− 1

ν2
n

∫
R
F (νnvn)dx. (6)

From (H6), we have F (s) > sθ, thus

lim
s→∞

F (s)

s2
=∞.

Recall that upon extraction of subsequences, vn ⇀ v∞ 6= 0 weakly in H1
rad(Rd) and

vn(x)→ v∞(x) a.e. By Fatou’s Lemma, this implies

1

ν2
n

∫
R
F (νnvn)dx =

∫
R

F (νnvn)

(νnvn)2
v2
ndx→∞ as n→∞.

This leads to a contradiction in (6). Therefore, (νn) = (‖un‖H1) has to remain
bounded. As a consequence, there exists u∞ ∈ H1

rad(Rd) such that un ⇀ u∞. We
can prove that u∞ 6= 0 in the same way as we did for v∞. Moreover, there exists
s∞ such that s∞u∞ ∈ Nrad and we have

S(s∞u∞) 6 lim inf
n→∞

S(s∞un) 6 lim inf
n→∞

S(un).

This concludes the proof. �

Proof of Theorem 2.3. Let (un) be a minimizing sequence for mNnod,rad
, i.e. (un) ⊂

Nnod,rad and S(un) → mNnod,rad
as n → ∞. Since (u±n ) ⊂ N , by Lemma 2.6 the

sequence (u±n ) is bounded in H1
rad(Rd) and there exists ũ±∞ ∈ H1

rad(Rd) \ {0} such
that u±n ⇀ ũ±∞ weakly in H1

rad(Rd) and a.e. In particular, pointwise convergence
implies ũ+

∞ũ
−
∞ = 0 a.e. Let s± be such that I(s±ũ±∞) = 0 and define

u∞ = s+ũ+
∞ − s−ũ−∞.

By construction u∞ ∈ Nnod,rad. Moreover,

S(u∞) = S(s+ũ+
∞)+S(s−ũ−∞) 6 lim inf

n→∞
(S(u+

n )+S(u−n )) = lim
n→∞

S(un) = mNnod,rad
.

This proves that u∞ is a minimizer for mNnod,rad
.

Let us show that in fact s± = 1 and the sequence (un) converges strongly
in H1

rad(Rd) toward u∞. By (H2) and Strauss’ Lemma, the functional u 7→∫
Rd f(u)udx is weakly continuous on H1

rad(Rd). This implies

I(ũ±∞) 6 lim inf
n→∞

I(u±n ) = 0.
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Hence by Lemma 2.5 we have s± 6 1. Moreover

mNnod,rad
6 S(u∞) 6 lim inf

n→∞
(S(u+

n ) + S(u−n )) = mNnod,rad

and weak continuity of the nonlinear part of S imply

‖u∞‖2H1 = lim inf
n→∞

(
‖u+

n ‖2H1 + ‖u−n ‖2H1

)
. (7)

Moreover

lim inf
n→∞

(
‖u+

n ‖2H1 + ‖u−n ‖2H1

)
> ‖ũ+

∞−ũ−∞‖2H1 =
1

(s+)2
‖s+ũ+

∞‖2H1+
1

(s−)2
‖s−ũ−∞‖2H1

>
1

max(s−, s+)2
(‖s+ũ+

∞‖2H1 + ‖s−ũ−∞‖2H1) =
1

max(s−, s+)2
‖u∞‖2H1

=
1

max(s−, s+)2
lim inf
n→∞

(
‖u+

n ‖2H1 + ‖u−n ‖2H1

)
.

where the first inequality is from weak convergence and the last equality follows
from (7). Since we already know that s± 6 1, this implies that s± = 1 and strong
convergence of (un) towards u∞ in H1(Rd).

We now show that u∞ is a critical point of S. Recall that Nnod,rad is not a
manifold and we cannot use a Lagrange multiplier argument for the minimizers of
mNnod,rad

. Instead, we shall use the quantitative deformation lemma of Willem [26,
Lemma 2.3], which we recall in Appendix (see Lemma A.1). Arguing by contradic-
tion, we assume that S′(u∞) 6= 0. Then there exist δ, µ > 0 such that

‖v − u∞‖H1 6 3δ =⇒ ‖S′(u∞)‖H1 > µ.

Define D =
[

1
2 ,

3
2

]
×
[

1
2 ,

3
2

]
and g(s, t) = su+

∞− tu−∞. Let s, t > 0 be such that either
s 6= 1 or t 6= 1. Then from (H5) we infer that

S(su+
∞ − tu−∞) = S(su+

∞) + S(tu−∞) < S(u+
∞) + S(u−∞) = mNnod,rad

.

Consequently, S(g(s, t)) = mNnod,rad
if and only if s = t = 1 and otherwise

S(g(s, t)) < mNnod,rad
. Hence

β := max
∂D

S ◦ g < mNnod,rad
.

Let ε := min
(
mNnod,rad

−β
4 , µδ8

)
. The deformation lemma A.1 gives us a deformation

η verifying

(a) η(1, v) = v if v /∈ S−1([mNnod,rad
− 2ε,mNnod,rad

+ ε]),

(b) S(η(1, v)) 6 mNnod,rad
−ε for every v ∈ H1

rad(Rd) such that ‖v−u∞‖H1 6 δ
and S(v) 6 mNnod,rad

+ ε,

(c) S(η(1, v)) 6 S(v) for all v ∈ H1
rad(Rd).

In particular, we have

max
(s,t)∈D

S(η(1, g(s, t))) < mNnod,rad
. (8)

To obtain a contradiction we prove that η(1, g(D))∩Nnod,rad 6= ∅. Define h(s, t) :=
η(g(1, g(s, st))) and

ψ0(s, t) :=
(
I(su+

∞), I(tu−∞)
)
, ψ1(s, t) :=

(
I(h+(s, t)), I(h−(s, t))

)
,

As I(su±∞) > 0 (resp. < 0) if 0 < s < 1 (resp. s > 1), the degree of ψ0 (see
e.g. [1] for the definition and basic properties of the degree) is Deg(ψ0, D, 0) = 1.
From (a) and (8), we have g = h on ∂D. Therefore, ψ0 = ψ1 on ∂D, which implies



9

Deg(ψ1, D, 0) = 1 = Deg(ψ0, D, 0) = 1. Therefore, there exists (s, t) ∈ D such
that ψ1(s, t) = 0. That means h(s, t) ∈ Nnod,rad, a contradiction with (8) and the
definition of mNnod,rad

. Therefore u∞ is a critical point of S.
It remains to prove that u∞ has exactly two nodal domains. Observe first that

u∞ is also a minimizer for

malt = inf

{∫
Rd

−F (u) +
1

2
f(u)udx : I(u+) 6 0, I(u−) 6 0, u± 6= 0

}
.

By (H6), 2F (s) − f(s)s < 0 for any s. As a consequence, the minimizers of
malt verify I(u+) = I(u−) = 0. Indeed, arguing by contradiction and assuming e.g.
I(u+) < 0, one could replace u+ by tu+ with 0 < t < 1 such that I(tu+) = 0, which
would give a minimizer of malt for a lower value and provides the contradiction.
Assume now that u∞ has more than one nodal region, i.e that there exists s1 <
s2 < s3 such that u∞ > 0 on (0, s1), u∞ < 0 on (s1, s2) and u∞ > 0 on (s2, s3).
Let u1 be such that u1 = u∞ on (0, s1) and u1 = 0 elsewhere. Define similarly u2

for (s1, s2) and u±3 = u±∞, on (s3,∞). Since I(u+) = 0 we either have I(u1) 6 0
or I(u+

3 ) 6 0. Without loss of generality, assume that I(u1) 6 0. We may then
construct ũ∞ such that ũ∞ = u1 on (0, s1), ũ∞ = u2 on (s1, s2) and ũ∞ = 0 on
(s3,∞). As it is not containing the u±3 parts, ũ∞ would be a minimizer for malt for
a lower value than u∞, which provides a contradiction and finishes the proof. �

3. The shooting method

We describe in this section the shooting method, its theoretical background and
its practical implementation. Radial solutions of (2) can be obtained as solutions
of the ordinary differential equation

− u′′(r)− d− 1

r
u′(r) + ωu(r)− f(u(r)) = 0. (9)

They should satisfy the boundary conditions

u′(0) = 0, lim
r→∞

u(r) = 0.

It was established in [15] that, under convexity assumptions on f (which hold for
example in dimension d = 2 when f is of power-type), that for any k ∈ N, the
equation (9) admits exactly one solution having exactly k nodes. More precisely, it
was proved in [15] that there exists an increasing sequence (αk) ⊂ (0,∞) such that
for any k ∈ N and for any α ∈ (αk−1, αk) (with the understanding that α−1 = 0),
the solution of the Cauchy Problem

− u′′(r)− d− 1

r
u′(r) + ωu(r)− f(u(r)) = 0, u(0) = α, u′(0) = 0, (10)

denoted by u(·;α), has exactly k nodes on [0,∞). Moreover, when (and only when)
α = αk, the solution u(·;αk) of (10) verifies

lim
r→∞

u(r;αk) = 0.

In other words, finding the k-th radial state amounts to finding the corresponding
αk. We expect that k ∼ α2

k (see Figure 7). Observe that when α ∈ (αk, αk+1), then
the solution of the differential equation such that u(0) = α has exactly k nodes
(but does not converge to 0 at infinity).

The so-called shooting method then consists in a simple application of the bi-
section principle to the search of αk. The idea is the following. Start with an
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interval [α∗, α
∗] such that u(·;α∗) and u(·;α∗) have respectively k− 1 and k nodes

on (0,∞). Define the middle of [α∗, α
∗] by c∗ = (α∗+α∗)/2. If the solution u(·; c∗)

with initial data c∗ has k − 1 nodes on (0,∞), then reproduce the procedure on
[c∗, α

∗], otherwise iterate the procedure on [α∗, c∗]. The interval size is divided by
two at each step and its bounds converge towards αk.

To compute the solution of (9), we rewrite it as a first order system

U ′(r) = AU + F (r, U(r)), U(0) =

(
α
0

)
(11)

where

U(r) =

(
u(r)

u′(r)

)
, A =

(
0 1
ω 0

)
, F (r, U(r)) =

(
0

d−1
r u′(r) + f(u(r))

)
.

The solution of the initial value problem (11) is then computed using the classical
Runge-Kutta 4th order method. The only difficulty concerns the value to affect to
F at r = 0. The singularity can in fact be raised when u is sufficiently regular and
the initial condition contains u′(0) = 0. Indeed, assuming that u′ ∈ C2 and writing
the Taylor expansion at 0, we have

u′(r) = u′(0) + u′′(0)r + u′′′(θ)
r2

2
= u′′(0)r + u′′′(θ)

r2

2
, θ ∈ (0, r).

Assuming that u verifies (9), we have

−u′′(r)− (d− 1)u′′(0) + u′′′(θ)
(d− 1)r

2
+ ωu(r)− f(u(r)) = 0.

Letting r tend to 0, we obtain

−du′′(0) + ωu(0)− f(u(0)) = 0.

Therefore, we choose to set

F

(
u(0)

0

)
=

(
0

(ωu(0)− f(u(0)))/d

)
.

Algorithm 1 The Shooting Method Algorithm.

Require: F , ε, nb expected nodes, b > 0
a← 0
while |a− b| < ε do
c← (a+ b)/2
Solve Y ′ = F (t, Y ), Y (0) = c with RK4
nb nodes← number of nodes of Y
if nb nodes > nb expected nodes then
b← c

else
a← c

end if
end while

The algorithm is given in Algorithm 1. Note that in Algorithm 1, it is understood
that b has been chosen large enough so that the initial data of the excited state
with the required number of nodes lies in [0, b]. In pratice, such a b can be obtained
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(a) Nnodes = 1 (b) Nnodes = 2

(c) Nnodes = 3 (d) Nnodes = 4

Figure 1. Bound states in dimension d = 3

by inspection, taking larger and larger values until the solution of (10) with initial
data α = b has a sufficiently large number of nodes.

Examples of solutions computed with the Shooting method are presented in
Figure 1.

4. The Nehari method

In this section, we assume that f(u) = |u|p−1u with p ∈ (1, 1 + 4/(d− 2)+). and
we consider the problem

−∆u+ u− |u|p−1u = 0

on Ω where Ω ⊂ Rd is a domain or Rd itself. We recall that the action functional
S is given by

S(u) =
1

2
‖∇u‖2L2(Ω) +

1

2
‖u‖2L2(Ω) −

1

p+ 1
‖u‖p+1

Lp+1(Ω),

and the Nehari functional

I(u) = ‖∇u‖2L2(Ω) + ‖u‖2L2(Ω) − ‖u‖
p+1
Lp+1(Ω).

The Nehari manifold on Ω is then given by

N =
{
u ∈ H1

0 (Ω) : I(u) = 0
}
.
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To compute numerically nodal solutions when Ω = Rd, an approach based on
Theorem 2.3 would provide only the least nodal excited state. As we would also
like to compute higher order excited states, we will adopt a slightly different setting
and we base our the approach on the theoretical result obtained by Bartsch and
Willem [5], which we describe now. Let Ω(ρ, σ) ⊂ Rd be the annulus of Rd of radii
ρ and σ:

Ω(ρ, σ) = {x ∈ Rd : ρ 6 |x| < σ}.
To obtain radial nodal excited states, we first work on each Ω(ρ, σ).

Lemma 4.1. For all 0 6 ρ < σ 6 ∞ there exists a positive minimizer wρ,σ ∈
H1

0 (Ω(ρ, σ)) of the action on the Nehari manifold on Ω(ρ, σ), i.e.

S(wρ,σ) = mρ,σ := min{S(u) : u ∈ N},
where it is understood that we have replaced Ω by Ω(ρ, σ) in the definitions of S, I
and N .

Nodal excited states are obtained by pasting together different wρj ,σj
and opti-

mizing over (ρj , σj). More precisely, we have the following result from [5].

Proposition 4.2. For every integer Nnodes > 0 there exists a radial solution uNnodes

of (4) having exactly Nnodes nodes, i.e. there exist 0 = ρ0 < ρ1 < · · · < ρNnodes
<

ρNnodes+1 =∞ such that

u−1
k (0) = {x ∈ Rd : |x| = ρj , for some j = 1, . . . , Nnodes}.

The set (ρj)j=0,...,Nnodes+1 is the minimizer of

min


Nnodes∑
j=0

mρj ,ρj+1 : 0 = ρ0 < ρ1 < · · · < ρNnodes
< ρNnodes+1 =∞

 .

The function uNnodes
is constructed with the wρj ,ρj+1

corresponding to mρj ,ρj+1
:

uNnodes
(x) = (−1)jwρj ,ρj+1

(x), if ρj 6 |x| < ρj+1.

Of course, if one wishes to compute numerically such a sequence, we must restrict
ourselves to a bounded interval. That is, instead of considering the problem on the
whole line R, we restrict ourselves to the interval [0, R] for a given R > 0 sufficiently
large. We consider the space

H1
rad,R :=

{
u : [0, R] 7→ R :

∫ R

0

(|u′(r)|2 + |u(r)|2)rd−1dr < +∞, u(R) = 0

}
,

on which we define the functionals S and I by the same formula, but restricted to
the interval [0, R]. Similarly, we define the nodal Nehari space

NNnodes,R :={
u ∈ H1

rad,R : u−1(0) = {ρ1, ρ2, . . . , ρNnodes
}, I(u|[ρk,ρk+1]) = 0, 0 6 k 6 Nnodes

}
,

where 0 = ρ0 < ρ1 < . . . < ρNnodes+1 = R are depending on u. Let

HNnodes,R :=
{
u ∈ H1

rad,R

∣∣ u−1(0) = {ρ1, ρ2, . . . , ρNnodes
}
}
.

Then, we define the projection ΠNNnodes
,R : HNnodes,R 7→ NNnodes,R by

ΠNNnodes
u :=

Nnodes∑
k=0

u|[ρk,ρk+1]

(
‖∇u|[ρk,ρk+1]‖2L2 + ‖u|[ρk,ρk+1]‖2L2

‖u|[ρk,ρk+1]‖p+1
Lp+1

)1/(p−1)

.
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A natural method to compute the solution of

min
u∈NNnodes,R

S(u),

is to use the so-called projected gradient descent given by{
u(0) ∈ NNnodes,R,
u(n+1) = ΠNNnodes,R

(
u(n) + τS′(u(n))

)
, ∀n > 0,

where τ ∈ R+ is the time-step, which also writes as{
u(0) ∈ NNnodes,R,
u(n+1) = ΠNNnodes,R

(
u(n) − τ(∆rad,Ru

(n) − u(n) + |u(n)|p−1u(n))
)
, ∀n > 0.

By setting πN ([0, R]) := {rk := (k − 1)h, 1 6 k 6 N + 1} with h = R/N , we can
consider a discretization of ∆rad,R by finite differences acting on RN . That is, for
any u ∈ H1

rad,R we use the second order approximations, for any 2 6 k 6 N − 1,

u′′(rk) ≈ u(rk+1)− 2u(rk) + u(rk−1)

h2
and u′(rk) ≈ u(rk+1)− u(rk−1)

2h
, (12)

to deduce the following approximation

∆rad,Ru(rk) ≈ u(rk+1)− 2u(rk) + u(rk−1)

h2
+
d− 1

rk

u(rk+1)− u(rk−1)

2h
.

Furthermore, the boundary conditions yield

∆rad,Ru(r1) ≈ 2(u(r2)− u(r1))

h2

and ∆rad,Ru(rN ) ≈ −2u(rN ) + u(rN−1)

h2
− d− 1

rN

u(rN−1)

2h
.

In the end, we obtain the matrix

[∆rad,R]i,j :=


2/h2, for (i, j) = (1, 2),
−2/h2, for 1 6 i 6 N and j = i,
1/h2 − (d− 1)/2hri, for 2 6 i 6 N and j = i− 1,
1/h2 + (d− 1)/2hri, for 2 6 i 6 N − 1 and j = i+ 1,
0, else.

By denoting u = (u(rj))16j6N ∈ RN as the discretization of u on πN ([0, R]), we
deduce that

∆rad,Ru(ri) ≈ ([∆rad,R]u)i, ∀i ∈ {1, . . . , N}.
We also need to discretize the positions of the nodes {ρ1, . . . , ρNnodes

} and the
projection on NNnodes,R. For any u ∈ H1

rad,R, each node of u is located in an

interval [rj , rj+1], for a certain 1 6 j 6 N , where u(rj+1)u(rj) < 0. By a linear
approximation of u on each interval [rj , rj+1], with 1 6 j 6 N , an approximation
of a node ρ belonging in [rj , rj+1] will be given by

ρ ≈ % =
rju(rj+1)− rj+1u(rj)

u(rj+1)− u(rj)
. (13)

Concerning the projection on NNnodes,R, we need approximations of integrals and
we choose to rely on a trapezoidal rule. This yields, for any v ∈ C([0, R]),∫ b

a

v(r)rd−1dr ≈ v(b)bd−1 + v(a)ad−1

2
(b− a).
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We denote (ρk)06k6Nnodes+1 the nodes of u with ρ0 = 0 and ρNnodes+1 = R. For
any u ∈ H1

rad,R and 0 6 k 6 Nnodes, we deduce the approximation (using the

trapezoidal rule)

‖u|[ρk,ρk+1]‖pLp =

∫ ρk+1

ρk

|u(r)|prd−1dr

≈ h
`(%k+1)∑
j=m(%k)

|u(rj)|prd−1
j +

(rm(%k) − %k)− h
2

|u(rm(%k))|prd−1
m(%k)

+
(%k+1 − r`(%k+1))− h

2
|u(r`(%k+1))|prd−1

`(%k+1) := Lpk(u), (14)

where m(ρ) = min{j ∈ {1, . . . , N} : rj > ρ}, `(ρ) = max{j ∈ {1, . . . , N} : rj 6 ρ}
and %k is the approximation of ρk obtained by (13). Furthermore, we have, by
using (12), for any u ∈ H1

rad,R and 1 6 k 6 Nnodes − 1,

‖∇u|[ρk,ρk+1]‖2L2 ≈ h
`(%k+1)∑
j=m(%k)

∣∣∣∣u(rj+1)− u(rj−1)

2h

∣∣∣∣2 rd−1
j

+
(rm(%k) − %k)− h

2

∣∣∣∣u(rm(%k)+1)− u(rm(%k)−1)

2h

∣∣∣∣2 rd−1
m(%k)

+
rm(%k) − %k

2

∣∣∣∣u(rm(%k))− u(rm(%k)−1)

h

∣∣∣∣2 %d−1
k

+
(%k+1 − r`(%k+1))− h

2

∣∣∣∣u(r`(%k+1)+1)− u(r`(%k+1)−1)

2h

∣∣∣∣2 rd−1
`(%k+1)

+
%k+1 − r`(%k+1)

2

∣∣∣∣u(r`(%k+1)+1)− u(r`(%k+1))

h

∣∣∣∣2 %d−1
k+1

:= Nk(u), (15)

where we used the following finite differences approximation

u′(ρ) ≈ u(rj)− u(rj−1)

rj − rj−1
,

with j ∈ {1, . . . , N} such that ρ is a nod belonging in (rj−1, rj). We notice that, in
the case k = Nnodes, the previous expression is replaced with

‖∇u|[ρNnodes
,R]‖2L2 ≈ h

N−1∑
j=m(%Nnodes

)

∣∣∣∣u(rj+1)− u(rj−1)

2h

∣∣∣∣2 rd−1
j

+
(rm(%Nnodes

) − %Nnodes
)− h

2

∣∣∣∣∣u(rm(%Nnodes
)+1)− u(rm(%Nnodes

)−1)

2h

∣∣∣∣∣
2

rd−1
m(%Nnodes

)

+
rm(%Nnodes

) − %Nnodes

2

∣∣∣∣∣u(rm(%Nnodes
))− u(rm(%Nnodes

)−1)

h

∣∣∣∣∣
2

%d−1
Nnodes

+
h

2

∣∣∣∣u(rN−1)

2h

∣∣∣∣2 rd−1
N

:= NNnodes
(u). (16)
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For the case k = 0, we use instead

‖∇u|[0,ρ1]‖2L2 ≈ h
`(%1)∑
j=2

∣∣∣∣u(rj+1)− u(rj−1)

2h

∣∣∣∣2 rd−1
j

+
(%1 − r`(%1))− h

2

∣∣∣∣u(r`(%1)+1)− u(r`(%1)−1)

2h

∣∣∣∣2 rd−1
`(%1)

+
%1 − r`(%1)

2

∣∣∣∣u(r`(%1)+1)− u(r`(%1))

h

∣∣∣∣2 %d−1
1

:= N0(u). (17)

Thanks to (14) and (15)-(16)-(17), we can deduce an approximation of the pro-
jection ΠNNnodes

. By denoting Ek(u) = 1
2Nk(u) + 1

2L
2
k(u), we obtain

ΠNNnodes
u ≈ PNnodes

u :=

Nnodes∑
k=0

u|{m(%k),`(%k+1)}

(
Ek(u)

Lp+1
k (u)

) 1
p−1

,

where, for 1 6 j 6 N ,(
u|{m(ρk),`(ρk+1)}

)
j

=

{
uj , if m(ρk) 6 j 6 `(ρk+1),
0, else.

We can now gives a completely discretized version of the projected gradient descent
method which is described in Algorithm 2 (where [v]i,j = vj if i = j and 0 if i 6= j).

Algorithm 2 The projected gradient descent method .

Require: R,> 0,u(0) ∈ RN , τ > 0, ε > 0
Crit← 2ε
j ← 0
while Crit > ε do
v ← (Id− τ([∆rad,R] + [|u(j)|p−1]))u(j)

u(j+1) ← PNnodes
v

Crit← max16`6N |u(j+1)
` − u

(j)
` |

j ← j + 1
end while

5. Some properties of the Nehari and shooting methods

In this section, we discuss some properties of the methods that we have intro-
duced. Our goal is to point out some of their strengths and weaknesses.

In the case of the shooting method, observe that there is an inherent numerical
difficulty associated with its practical implementation. Indeed, given k ∈ N, the
value of αk can be determined only up to machine precision, i.e. 10−16 in practice.
This is limiting the size of the domain in x on which u(·;αk) can be computed accu-
rately, even assuming no error on the numerical resolution of the Cauchy problem
(10). Indeed, let ε > 0 and define wε = u(·;αk)− u(·;αk + ε). Then wε verifies

−w′′ε + wε − f ′(u(·;αk))wε = O(w2
ε).

As limr→∞ f ′(u(r;αk)) = 0, the linear part of the equation is given by −w′′ε +
wε. Whenever wε become small enough so that O(w2

ε) becomes negligible, the
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dynamics of the equation of wε becomes driven by the linear part, for which 0 is
an exponentially unstable solution. As a consequence, we may have wε(x) ∼ εex,
which leads to wε ∼ 1 after x ∼ − ln(ε) (after which nonlinear effects cannot
be neglected any more). For ε = 10−16, the best we can hope (assuming that
the numerical method used to solve the ordinary differential equation is perfectly
accurate) is therefore to solve our equation on an interval of length − ln(ε) ∼ 36.
This is illustrated in Figure 2, on which we calculate the ground state with the
shooting and Nehari methods in the case of the dimension d = 2 and for p = 3
when R = 100. We observe on the log-graph that at a distance from the origine
around 19, the calculated solution starts to increase and goes far away from the
expected solution (which is exponentially decreasing toward 0 at infinity). This
issue is not observe in the case of the Nehari method due to the fact that we
implement a Dirichlet boundary condition directly in the operator. This ensures
that the numerical solution decreases properly to zero at the end of the domain.

(a) Solution (shooting method) (b) Log10 of solution (shooting method)

(c) Solution (Nehari method) (d) Log10 of solution (Nehari method)

Figure 2. Computation of a ground state on large domain

We now turn to the number of iterations required to compute a bound state. In
the case of the shooting method, this number is naturally bounded by the maximal
number of iterations used in the dichotomy. With a maximal precision set to be
ε = 10−16 and an initial interval of length 100 for the initial data, the number of
iterations will always be lower than 18 log2(10) ≈ 60. The Nehari method does not
benefit from such bound on its number of iterations. In Figure 3, we depict the
number of iterations necessary to the computation of bound states with respect to
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Figure 3. Total number of iterations for the Nehari method de-
pending on the number of nodes

their number of nodes for d = 2, p = 3, R = 30 and N = 212. In each case, we use
the following initial data

u0(r) = cos(r)e−r
2/30.

We remark that this initial data has a large number of nodes and decreases rapidly
to zero. By construction, the algorithm selects the desired number of nodes and
the excess nodes are discarded. We can see that the number of iterations grows
rapidly, making the Nehari method numerically costly compared to the shooting
method.

Finally, we investigate the convergence properties of these methods with respect
to the number of discretization points. To do so, we compute bounds states in
dimension d = 2 and for p = 3 on the interval [0, R], for R = 30, for different
numbers of nodes with each method. The number of discretization points is set to
be 2N with N ∈ {8, 9, 10, 11, 12} and we compute the errors

e
(1)
N := ‖u(N) − u(ref)‖L1 = h

2N∑
k=1

|u(N)
k − u

(ref)
k |

and e
(∞)
N := ‖u(N) − u(ref)‖L∞ = sup

16k62N

|u(N)
k − u

(ref)
k |,

for each N , where u(ref) is the bound state computed with 215 discretization points.
The results are depicted in Figure 4 for the Nehari method and Figure 5 for the
shooting method. We can see that the order of convergence of the Nehari method
depends on the number of nodes and does not seems to be a specific value. However,
we can affirm that it is of order above 1. In the case of the shooting method,
the conclusion is more straightforward since the order of convergence is clearly 1
regardless of the number of nodes. This is explained by the fact that the positions
of the nodes are computed with an error of the order of the space discretization.
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(a) Nnodes = 1 (b) Nnodes = 2 (c) Nnodes = 5

Figure 4. Convergence for the Nehari method depending on the
number of nodes

(a) Nnodes = 1 (b) Nnodes = 2 (c) Nnodes = 5

Figure 5. Convergence for the shooting method depending on
the number of nodes

We then perform a comparison between the bound state obtained by each method
in the same configuration. That is, we compute the errors

E
(1)
N := ‖u(N,Nehari) − u(N,Shooting)‖L1 = h

2N∑
k=1

|u(N,Nehari)
k − u

(N,Shooting)
k |

and E
(∞)
N := ‖u(N,Nehari) − u(N,Shooting)‖L∞ = sup

16k62N

|u(N,Nehari)
k − u

(N,Shooting)
k |,

for each N ∈ {8, 9, 10, 11, 12}, where u(N,Nehari) (resp. u(N,Shooting)) is the bound
state obtained by the Nehari method (resp. the shooting method). The results can
be observed in Figure 6 where we can see that, no matter the number of nodes,
both methods converge to the same bound state.

In conclusion, we have studied two numerical methods to compute the bound
states of the nonlinear Schrödinger equation in the radial case. The shooting
method offers the advantage of being fast but the disadvantage of being less ro-
bust, whereas the Nehari method is robust but slow. Based on this observation,
this suggest, for numerical experiments, to combine these two methods, that is, to
make an initial approximation of the bound state using the shooting method and
then refine it using the Nehari method to obtain the desired decay towards zero at
infinity.
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(a) Nnodes = 1 (b) Nnodes = 2 (c) Nnodes = 5

Figure 6. Gap between the bound states computed with the Ne-
hari method and the shooting method

6. Numerical Experiments

In this section, we present some results obtained by numerical experiments con-
sisting in running first the shooting method and then take the outcome as initial
data for the Nehari method.

In Figure 7, we consider the case d = 2 and p = 3 and depict the relation
between the number of nodes k of the bound state uk and its initial value uk(0).

We fit the data points with a function k 7→ a + b
√
k where a = 0.4841 (with

95 percent confidence bounds [0.4487, 0.5194]) and b = 2.415 (with 95 percent
confidence bounds [2.409, 2.422]).

Figure 7. Evolution of the number of nodes depending on the
value of the initial data

We also studied the positions of the nodes depending on the bound state (that is
depending on its total number of nodes). These positions are depicted in Figure 8a.
For each node, the position seems to follow a certain behavior that can be modeled
by the function k 7→ 1/

√
ak + b. We illustrate the value of the coefficients a and b

for each node in Figure 8b.
In Figure 9, we plot the positions and (absolute) values of the extrema of the

bound states between two consecutive nodes. We observe that for large numbers
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(a) Positions of the nodes (b) Interpolation’s coefficients

Figure 8. Nodes positions and interpolation by k 7→ 1/
√
ak + b

of nodes in the bound state, the extrema tend to a constant value which is
√

2.
This can be explained by the fact that for large r the first derivative term in (9)
vanishes and the solution is close to a soliton of the one dimensional setting whose
expression is known to be r 7→

√
2 sech(r). This is illustrated in Figure10 where

we superimpose this soliton (adequately shifted) with the (absolute) value of the
bound state between its last two nodes (with a total number of nodes equal to 60).

Figure 9. Local maxima of the bounds states by positions (x-
axis) and values (y-axis)

Appendix A. Quantitative Deformation Lemma

In this appendix, we recall the quantitative Deformation Lemma used in the
proof of Theorem 2.3.

For X in a Banach space and S ⊂ X, introduce the notation

Sδ := {u ∈ X|dist(u, S) 6 δ},
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(a) The bound state (b) Final oscillation

Figure 10. Asymptotic behavior of the bound state with 60 nodes

and for ϕ : X → R, c ∈ R, define

ϕc = ϕ−1((−∞, c]).

Lemma A.1 (Quantitative Deformation Lemma [26]). Let X be a Banach space,
ϕ ∈ C1(X,R), S ⊂ X, c ∈ R, ε, δ > 0 such that

‖ϕ′(u)‖X >
8ε

δ
for all u ∈ ϕ−1([c− 2ε, c+ 2ε]) ∩ S2δ,

Then there exists η ∈ C([0, 1]×X,X) such that

(i) η(t, u) = u if t = 0 or if u /∈ ϕ−1([c− 2ε, c+ 2ε]) ∩ S2δ,
(ii) η(1, ϕc+ε ∩ S) ⊂ ϕc−ε,

(iii) η(t, ·) is an homeomorphism of X for all t ∈ [0, 1],
(iv) ‖η(tu)− u‖X 6 δ for all u ∈ X and for all t ∈ [0, 1],
(v) ϕ(η(·, u)) is non increasing for all u ∈ X,

(vi) ϕ(η(t, u)) < c for all u ∈ ϕc ∩ Sδ and for all t ∈ (0, 1].
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